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Microscopic model for the structural transition and spin gap formation in a8-NaV2O5
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We present a microscopic model fora8-NaV2O5. Using an extended Hubbard model for the vanadium
layers we derive an effective low-energy model consisting of pseudospin Ising chains and Heisenberg chains
coupled to each other. We find a ‘‘spin-Peierls-Ising’’ phase transition which causes charge ordering on every
second ladder and superexchange alternation on the other ladders. This transition can be identified with the first
transition of the two close-by transitions observed in experiment. Due to charge ordering the effective coupling
between the lattice and the superexchange is enhanced. This is demonstrated within a Slater-Koster approxi-
mation. It leads to a second instability with superexchange alternation on the charge-ordered ladders due to an
alternating shift of the O sites on the rungs of that ladder. We can explain within our model the observed spin
gap, the anomalous BCS ratio, and the anomalous shift of the critical temperature of the first transition in a
magnetic field. To test the calculated superstructure we determine the low-energy magnon dispersion and find
agreement with experiment.

DOI: 10.1103/PhysRevB.66.165108 PACS number~s!: 71.30.1h, 71.27.1a, 75.30.Ds
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I. INTRODUCTION

The layered oxidea8-NaV2O5 has attracted great intere
since 1996, when Isobe and Ueda reported a phase trans
at T534 K with a spin-Peierls like spin gap formation.1 At
low temperatures the spin gap has a size of abouD
'100 K,1–3 which yields a BCS ratio 2D/kBTC'6, much
higher than for other organic or inorganic spin-Peierls ma
rials, for which it lies around the canonical BCS-value of 3

Furthermore, experiments have shown that there are a
ally two transitions, which lie very close to each other.4,5

Both are of second order. The first one atTC1'34 K is
accompanied by a logarithmic peak in the specific hea6,7

while the second atTC12TC2'0.3 K is of mean-field char-
acter evident from a jump in the specific heat. NMR me
surements suggest that the first transition leads to charg
dering while the second one opens a spin gap.5

Measurements of the critical exponents yieldbd'0.15
•••0.2 for the critical exponent of the lattice distortiond and
bD'0.34 for the critical exponent of the spin gapD.8–11

From these values the existence of two transition can als
inferred indirectly. Close to the critical point the spin gapD
due to a lattice distortiond is expected to obeyD}d3/4,12

corresponding tobD53/4bd . This relation is not fulfilled in
a8-NaV2O5, indicating the existence of two separate tran
tions.

For T.TC1 a8-NaV2O5 has equivalent V sites13–15 im-
plying valence 4.51. For T,TC2 early 51V-NMR measure-
ments show only two inequivalent sites16 while x-ray struc-
ture determination reports three inequivalent sites17–19 as do
recent 51V-NMR measurements.20 Recently, new experi-
ments found two inequivalent V sites per layer by use
anomalous x-ray scattering21 and high resolution x-ray
data,22 while another x-ray structure determination fou
four inequivalent V sites23 per layer, two of which have simi
lar charge.

An interesting experimental observation is the magne
0163-1829/2002/66~16!/165108~16!/$20.00 66 1651
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field dependence ofTC1. It is only about 25% of the value
expected for a spin-Peierls transition4,24,25 but on the other
hand, it is much higher than what would be generally e
pected for a structural transition.26

In this article we explain a number of these above m
tioned features by an analysis of a microscopic model.
find that the phase transition atTC1 can be regarded as
combination of charge ordering on every second ladder
superexchange alternation on the other ladders, a ‘‘s
Peierls-Ising’’ transition. This also explains the anomalo
shift of TC1 in a magnetic field. The phase transition atTC2
can be regarded as a spin-Peierls transition on the cha
ordered ladders. It is driven by the charge ordering. The
tice distortion accompanying the charge ordering increa
the coupling constant of a lattice mode invoking super
change alternation on the charge-ordered ladders. With
creasing charge ordering for decreasing temperatures
coupling constant increases until the second phase trans
takes place atTC2. This second phase transition opens a s
gap in agreement with experimental observations. Charge
dering is not yet complete atTC2. The coupling constan
therefore continues to increase and due to this the l
temperature spin gap is larger than what would be expe
from TC2, i.e., the BCS ratio is enhanced.

We test our low-temperature structure against x-ray str
ture determination and find it to agree within experimen
resolution. Furthermore we calculate the low-energy mag
dispersion and find it to agree nicely with experimental
sults from inelastic neutron scattering.2,3

In the following we give an outline of the way our articl
is organized and the rationale behind choosing the mo
and the contributions that have to be present in the Ham
tonian in order to describe the observations mentioned
fore. In the first part of Sec. II we start from a model th
involves only electronic degrees of freedom. It is of the e
tended Hubbard type including intersite Coulomb repulsi
This is a necessary ingredient for a possible charge orde
transition. Because the on-site Coulomb interaction U
©2002 The American Physical Society08-1
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A. BERNERT, P. THALMEIER, AND P. FULDE PHYSICAL REVIEW B66, 165108 ~2002!
much bigger than the intersite interactions and the hopp
energies one may project to an effective low energy mo
involving only singly occupied V-V rungs that are repr
sented by an pseudospin1

2 .27–29This reduced but still purely
electronic model is of the Ising type in a ‘‘transverse fiel
where the latter is given by the intra-rung hopping. If this
sufficiently small the model has a quantum critical po
where a zig-zag charge ordered ground state of the si
ladder sets in. However, due to the geometric frustration
the Trellis lattice a 2D charge ordered state does not exis
finite temperature. To describe thea8-NaV2O5 phase transi-
tions it is therefore necessary to include spins and lat
distortions as additional degrees of freedom.

This is done in the second part of Sec. II. For a cha
ordering at finite temperature the geometric frustration ne
to be removed. For this purpose spin and lattice degree
freedom have to be involved such that the spin-Peierls Is
transition mentioned above generates inequivalent lad
with charge order appearing only on every second lad
The derivation and physical background of this extend
Ising spin-Peierls Hamiltonian is given at the end of Sec.

In Sec. III A we analyze this Hamiltonian by using Cros
Fisher theory for the individual ladders and an RPA appro
for the coupled 2D lattice. Sec. III B describes in quantitat
detail the spin-Peierls Ising phase transition in the 2D Tre
lattice atTC1 which creates alternating sets of charge orde
~A! and exchange dimerized~B! ladders. In Sec. III C we
show how the evolving charge order on one type of lad
~A! below TC2 increases the coupling to an exchange dim
ization mode on the same ladder. This leads to a sec
transition atTC2 immediately belowTC1 which is respon-
sible for the opening of the spin gap observed in the susc
tibility.

In Sec. IV we compare the calculated low temperat
structure with experiment. With regards to the x-ray struct
determination we argue that within experimental resolut
theory and experiment agree. Using this structure we ca
late the dispersion of gapped spin excitations parallel
perpendicular to the chain direction. The latter contains
formation on the charge ordered structure and allows on
extract various experimental exchange constants. We
that an additional splitting of spin excitation modes at zo
boundary points is very well explained within the inequiv
lent ladder model proposed. Finally Sec. V gives the su
mary and conclusions.

II. DERIVATION OF THE MODEL HAMILTONIAN

To construct a model Hamiltonian we note that accord
to LDA1U calculations30 the orbitals around the Fermi leve
are mostly of vanadiumdxy character. They are separate
both from the lower lying oxygenp orbitals as well as from
the remaining vanadiumd orbitals and the sodium 3s orbital
which lie energetically higher. This means that we have
consider only the quarter filleddxy orbitals. For a discussion
of charge ordering we restrict ourselves to a 2D model
glecting hopping matrix elements and Coulomb interactio
between the vanadium layers. The former have been sh
to be negligible both by LDA1U ~Ref. 30! and Slater-Koster
16510
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type calculations.19 The Coulomb interactions are expecte
to be small due to the large distance between the V site
neighboring layers. They are also screened by intermedia
ions. However, this interlayer interaction should play a ro
for the explanation of the devil’s staircase observed in
p-T-phase diagram.31 Therefore our initial Hamiltonian rep
resents an extended one-band Hubbard model at quarte
ing, taking on-site and intersite Coulomb interactions in
account:

H5 (
^ i , j &R

tR~ais
† aj s1H.c.!1 (

^ i , j &L

tL~ais
† aj s1H.c.!

1 (
^ i , j & IL

t IL~ais
† aj s1H.c.!1 (

^ i , j &D

tD~ais
† aj s1H.c.!

1 (
^ i , j &R

VRninj1 (
^ i , j &L

VLninj

1 (
^ i , j & IL

VILninj1(
i

Uni↑ni↓ . ~1!

Here ^,& IL denotes pairs of nearest-neighbor vanadi
dxy orbitals while^,&R and^,&L denote pairs of next-neares
neighbor vanadiumdxy orbitals along the rung~R! or the leg
(L). The first four terms describe the effective hopping of t
d electrons between V sitesi and j. This hopping can take
place both via oxygen orbitals and sodium orbitals. The l
four terms describe the intersite and on-site Coulomb rep
sion. These terms connect sites as shown in Fig. 1.

At T.TC1 the system is at quarter filling and the V site
are all equivalent.13 Therefore there is an average of on
electron per rung. The on-site15,32 and the intersite Coulomb
repulsion create a charge transfer gap, causinga8-NaV2O5
to be an insulator. Therefore hopping between rungs ta
place only virtually. This enables us to use an effect
Hamilton operatorH̃PP which acts on the Hilbert subspaceP
of all states with one electron on each rung. LetQ be the
Hilbert subspace complementary toP andP be the projector
onto P andQ the projector ontoQ. An eigenstateucPP

(0)& of

H̃PP satisfies

FIG. 1. Hopping matrix elements and Coulomb interactions
the V layers.
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MICROSCOPIC MODEL FOR THE STRUCTURAL . . . PHYSICAL REVIEW B 66, 165108 ~2002!
H̃PPucPP
(0)&5@PHP2PHQ~QHQ2E0!21QHP#ucPP

(0)&

5E0ucPP
(0)&. ~2!

To calculateH̃PP we need to know the energiesE0 which
can be either determined self-consistently or, as fo
Schrieffer-Wolff transformation, set equal to the eigenene
E0

PP of PHP. In the following we are interested inH̃PP only
to orderO(t2/E), i.e., to second order in the hopping. In th
case we can neglect the hopping terms in (QHQ2E0), since
both PHQ andQHP scale witht.

Within the subspaceP we use the operatorsaias
† , aias

for the electrons in the atomic orbitals. Herei denotes the
rung, the pseudospin variablea56 1

2 describes whether th
electron occupies the left (2 1

2 ) or right (1 1
2 ) V site of a

rung ands denotes thez component of the spin. Using thes
operators we define the conditional creation operators

âias
† 5~12ni ā↑!~12ni ā↓!~12nias̄!aias

†

similar to the operators used in thet-J model.33 We then
obtain forH̃PP

H̃PP5HS1(
i

2 t̂̃ R
i Ti

x1 (
^ i , j & IL

K̂ IL
i j Ti

zTj
z

1 (
^ i , j &L

~K̂Lz
i j Ti

zTj
z1K̂Lx

i j Ti
xTj

x1K̂Ly
i j Ti

yTj
y!, ~3!

whereK̂, HS , and t̂̃ R contain spin operator products. It turn
out to be useful to work with spin and pseudospin opera

SW i5
1

2 (
s1 ,s2 ,a

âias1

† sW s1s2
âias2

,

TW i5
1

2 (
s,a1 ,a2

âia1s
† sW a1a2

âia2s .

In Eq. ~3! SW i denotes the spin of the electron on thei th rung
and thez component ofTW i corresponds toa, so the pseu-
dospinTW i describes the hopping of the electron between
two V sites of a rung. The first term of Eq.~3! describes the
effective interaction between spins on neighboring run
The second term describes the hopping of the charge
tween the right and the left vanadium site of a rung. T
hopping also depends on spin-spin interactions. The t
term and K̂Lz describe the Coulomb interaction betwe
charges on neighboring rungs. These interactions are m
fied due to the interrung hopping; thus they contain spin-s
interactions.K̂Lx and K̂Ly also result from the interrung
hopping which has been projected out in the transfer fr
Eq. ~1! to Eq. ~3!. Within second order perturbation theo
these terms have the following form:

HS5 (
^ i , j &L

S 2tD
2

U1DD
U2E0

PP
1

2tL
2

U1DL
U2E0

PPD S SW iSW j2
1

4D ,
16510
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t̂̃ R
i 5tR1 (

^ i , j &L

tLtDS 4SW iSW j21

2~U1DLD
U 2E0

PP!

1
4SW iSW j21

2~VR1DLD
V 2E0

PP!
D ,

K̂ IL
i j 52VIL2

t IL
2 ~4SW iSj

W21!

U1D IL
U 2E0

PP
2

2t IL
2

VR1D IL
V 2E0

PP
,

K̂Lz
i j 52VL1

2tL
2~4SW iSW j21!

U1DL
U2E0

PP
2

2tD
2 ~4SW iSW j21!

U1DD
U2E0

PP

1
4tL

2

VR1DL
V2E0

PP
2

4tD
2

VR1DD
V2E0

PP
,

K̂Lx
i j 5

2tL
2~4SW iSW j11!

VR1DL
V2E0

PP
1

2tD
2 ~4SW iSW j11!

VR1DD
V2E0

PP
,

K̂Ly
i j 5

2tL
2~4SW iSW j11!

VR1DL
V2E0

PP
2

2tD
2 ~4SW iSW j11!

VR1DD
V2E0

PP
. ~4!

HereDV andDU are additional energy differences due to t
local change of occupation numbers with hoppings.K̂Lz and
K̂ IL describe the most important interactions between e
trons on neighboring V sites. They drive the system to lo
‘‘zig-zag’’ type ordering or local ‘‘in-line’’ type ordering of
the V 3d electrons. Assuming that we have locally comple
‘‘zig-zag’’ short-range ‘‘ordering’’ within a ladder and no
correlations between ladders theDV, DU are given by

DL
V5VL , DD

V50, D IL
V 52VL ,

DLD
V 50, DL

U52VL , DD
U50,

D IL
U 52VIL , DLD

U 52VL . ~5!

Assuming that we have local ‘‘in-line ordering,’’ they ar
equal to

DL
V5VIL2VL , DD

V52VIL22VL ,

D IL
V 5VIL22VL , DLD

V 50,

DL
U522VIL , DD

U5VIL ,

D IL
U 52VIL , DLD

U 50. ~6!

We now make a mean-field approximation for the sp

operator products contained inK̂ and t̂̃ R . With this we ob-
tain an effective pseudospin model for the charge degree

freedom.K5^K̂& and t̃ R5^ t̂̃ R& become effective pseudospi
coupling constants. This approximation should be accepta
since the corrections of the pseudospin part due to spin-
interactions are moderate.
8-3
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A. BERNERT, P. THALMEIER, AND P. FULDE PHYSICAL REVIEW B66, 165108 ~2002!
With this approximationH̃PP becomes the Hamiltonian
for a strongly anisotropic pseudospin Heisenberg model in
‘‘external field’’ 2 t̃ R . We calculate the effective coefficien
t̃ R , KL , KIL assuming that̂SW iSW i 11&52 3

4 along the ladders
and^SW iSW j&5 1

4 between ladders. This assumption is based
the LDA1U results for the sign of the intra-ladder and i
terladder exchange constants.30 We useDV, DU from Eq.~5!
for the case of local ‘‘zig-zag’’ ‘‘ordering’’ and setE0

PP to be
the ground-state energy forPHP. E0

PP is then given by the
expression for the ground-state energy of the Ising chain
transverse field34 represented bytR :

E052~2tR!
u12l0u

p
ES 2A 2l0

~l021!2D ~7!

with l05VL/2tR andE the complete elliptic integral of sec
ond kind. From the energies calculated in Ref. 30
LDA1U for different configurations one obtains

2VL2VIL50.027 eV. ~8!

To find VR we assume that it can be obtained fromVL by
scaling byd3 with the different distancesd of the V sites.
Using the values for the parameters from Ref. 19, i
tR520.172 eV, tL520.049 eV, tD520.062 eV, t IL
50.110 eV,VL52tR , andU54 eV, we find

t̃ R520.190 eV,

KIL520.677 eV,

KLz50.679 eV,

KLx520.027 eV,

KLy50.011 eV. ~9!

KLx and KLy are smaller than the other parameters
more than one order of magnitude and will therefore be
glected. Thus our model consists of Ising interactionsKLz ,
KIL and a ‘‘transverse field’’ 2t̃ R

H15 (
^ i , j &L

KLzTi
zTj

z1 (
^ i , j & IL

KILTi
zTj

z1(
i

2 t̃ RTi
x . ~10!

The resulting geometry is triangular, as can be seen in
2~a!. Note that the first term is antiferromagnetic and t
second term is ferromagnetic, resulting in geometrical fr
tration for the first two terms of Eq.~10!.

We first consider the caset̃ R50. For this case the the
relation between the absolute sizes ofKLz and KIL deter-
mines the behavior of the system.35 If uKLzu,uKIL u the sys-
tem undergoes a phase transition at some finite tempera
into a low-temperature ‘‘ferromagnetic’’ state of the pse
dospins with 2D-long range order. This state correspond
an ‘‘in-line’’ ordering of the electrons, i.e., chains of V41 and
V51 alternate along thea direction.

If uKLzu.uKIL u the system remains disordered at any fin
temperature. AtT50 it enters an antiferromagnetic state
16510
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the pseudospins with 1D order along theb direction and no
correlation between neighboring ladders. This correspond
a ‘‘zig-zag’’ ordering of V41 and V51 along the ladders.
Thus the system is effectively one dimensional, althou
there are correlations between next-nearest-neigh
ladders.36

In a8-NaV2O5, we haveuKLzu.uKIL u. Therefore there is
no phase transition at finite temperatures within the mo
described by Eq.~10!, provided thatt̃ R50 as assumed here
This is consistent with our choice ofDV, DU. This qualitative
result remains true for other choices for the hopping integ
resulting in differentKLz , KIL , e.g., those obtained from
LDA in Ref. 30. For t̃ R50 the system is therefore close to
quantum critical point with a transition from 1D ordering
the b direction to 2D long-range order.37

Next we consider the caset̃ RÞ0. We note that the tota
Hamiltonian H1 does not imply a phase transition into a
ordered state at any finite temperature. This is due to the
that the first two terms ofH1 do not lead to a phase transitio
as argued above and that the nonzero transverse field
presses ordering even more. This result remains qualitati
true if we include theKLx andKLy terms from Eq.~9! which
also suppress ordering. It also remains true if we includ
small interlayer Ising-like interaction. This demonstrates t
the phase transitions observed ina8-NaV2O5 cannot be of a
purely Coulombic origin: to understand what happens in t
material at low temperatures we have to include at least
spin degrees of freedom beyond the mean-field approxi
tion used above. Furthermore, we know from Raman sp
troscopy that there is a strong coupling between the cha
distribution on the V sites and the distortion of the system38

A change in the position of a V sites implies a change in
positions of the O site on the leg of the neighboring ladd

FIG. 2. ~a! Lattice geometry if one introducesSW i j andTW i j opera-
tors and represents each rung by a point.~b! The two subsystems o
the model described by Eq.~11! consisting of Ising~IS! pseudospin
and Heisenberg~HB! spin chains.
8-4
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MICROSCOPIC MODEL FOR THE STRUCTURAL . . . PHYSICAL REVIEW B 66, 165108 ~2002!
The displacement of the O ions can in turn affect the eff
tive superexchange interaction as observed from experim
tal data in Ref. 19.

Therefore we generalize the Hamiltonian from Eq.~3!,
such that it contains lattice degrees of freedom. Suc
Hamiltonian has the following form:

HISSP5(
i , j

K̃Lz
i j Ti j

z Ti 11 j
z 1(

i , j
2 t̃ RTi j

x 1(
i , j

Ji j SW i j SW i 11 j

1gIs(
i j

Ti j
z eW0uW i j 1(

q, j
vq j

VObVO,q j
† bVO,q j

1(
q, j

vq j
NabNa,q j

† bNa,q j1(
q, j

vq j
ORbOR ,q j

† bOR ,q j .

~11!

Here i numbers the rungs on a ladder, i.e., it denotes
~pseudo!spin on a chain,j denotes the ladder/chain in th
lattice, andeW0 is a unit vector. We have introduced phono
operatorsbq j

† , bq j for the displacement of neighboring V an
O ions ~VO! and for the displacement of Na or rung O io
~OR). uW andJi j are given by

Ji j 5 S 11uW
i 1

1
2 , j

VO
¹W

i 1
1
2 , j

VO
1uW

i 1
1
2 , j

Na
¹W

i 1
1
2 , j

Na
1uW

i 1
1
2 , j

OR
¹W

i 1
1
2, j

OR D
3J~Ti j

z ,Ti 11 j
z !,

J~Ti j
z ,Ti 11 j

z !5J0
i j @11 f ~Ti j

z ,Ti 11 j
z !#,

uW i j 5(
lq

1

~mN!1/2
exp~ iqW RW i j !Qj~lqW !,

Qj~lqW !5bq j
† 1bq j . ~12!

HISSP essentially describes a spin-Peierls model with
ditional coupling to a one-dimensional Ising chain in a tra
verse field. The first two terms describe the Ising model i
transverse field, the third term describes Heisenberg ch
where the interaction can be changed by lattice distortion
charge fluctuations. The fourth term inHISSP gives the cou-
pling between a lattice distortion and an effective field wh
leads to charge ordering. The last three terms denote
phonon dispersions of the lattice modes included in t
model. The model has to take into account the followi
observations.

At T50 K there is no correlation between pseudosp
of neighboring ladders for the pure Ising interaction ca
Regarding the Coulomb interactions we may therefore t
the ladders as independent, settingKIL50. The pseudospin
part of the Hamiltonian~3! for each ladder is then describe
by a one-dimensional Ising model in a transverse field yie
ing the first two terms ofHISSP. The property that the
Hamiltonian~10! describes a model close to a quantum cr
cal point has to be included inHISSP. Therefore we have to
use an effective value forKLz which is close to the value
needed for quantum critical behavior of the pseudospin Is
16510
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chains. This effective valueK̃Lz is not necessarily identical to
the ‘‘true’’ value of this Coulombic coupling in the materia

The spin part of the system behaves similar to a o
dimensional system at high temperatures,1 i.e., we can use a
one-dimensional Heisenberg model for each ladder to
scribe it. These terms are contained in the third term
HISSP. The magnon dispersion at low temperatures in tha
direction is much smaller than in theb direction,2,3 even
though interladder spin-spin coupling has a significa
value.30 Close to the disordered phase, however, interlad
coupling is reduced due to frustration: as far as interlad
spin-spin coupling is concerned the system consists of
angles with one large antiferromagnetic and two smaller
romagnetic interactions.

On each ladder spin and pseudospin degrees of free
are coupled. This coupling is incorporated into the effect
pseudospin couplingKLz and the effective coupling constan
Ji j for the superexchange along the ladder.

A shift of V and neighboring O ions is assumed to cau
an effective staggered field in thez direction for the pseu-
dospins on one leg of a ladder described by the fourth te
of HISSP. Such a shift also causes a change in the supe
change for the neighboring leg of the neighboring ladder~see
Fig. 3! which has to be incorporated into the effective co
pling constantJi j .

As has been argued in Ref. 19, a shift of the Na ions in
c direction alternating along the ladder direction will cau
an alternation in the superexchange along the ladder.
same effect is obtained by an alternating shift of O ions o
rung in theb direction. Such terms are included inJi j and
their significance will be examined in Sec. III C.

The last three terms ofHISSP describe the energies of th
important lattice modes. The spin-Peierls coupling contain
in the expression forJi j in Eq. ~12! is slightly different from
the normal form since it is the shift of the intermediate
ions or Na ions instead of the V ions, which causes the
perexchange dimerization. For parameters we will u

FIG. 3. Theq0 mode is shown, for which the V ion on one le
and O ion on neighboring leg move together in thec direction as
shown by arrows. This causes charge ordering onA ladders due to
a staggered change of the V on-site energies and superexch
alternation onB ladders due to O ion motion. In experiment~Ref.
19! shifts in thea direction are also observed which are not sho
here.
8-5
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t̃ R520.190 eV andJ050.045 eV for the case withou
charge ordering and no distortion.

The effective superexchange along a ladderJi j defined in
Eq. ~12! consists of three parts:J0

i j denotes the original su
perexchange for the ladder without charge ordering or dis
tions. The second part,J0

i j f (Ti j
z ,Ti 11 j

z ) describes the influ-
ence of the charge ordering on the superexchange. F
numerical calculations we know that homogenous charge
dering on a ladderj causes a drop of the effective supere
change which is quadratic in̂Tj

z&, as can be seen in Fig. 4
The parabolic form of the curve can be understood fr
noting that the spectral weight of pair states with two p
ticles on the same rung or the same leg decreases wi
2(11dCO)(12dCO)5dCO

2 . Analytic calculations show a
similar behavior.39 Therefore J0

i j f (Ti j
z ,Ti 11 j

z ) is approxi-
mately proportional to (Tj

z)2 and the square of the distortio
accompanying the charge ordering. If we use the experim
tal value for the phonon frequencies this effect is alrea
contained in the high-temperature values of the phonon
persionvq j and the termJ0

i j f (Ti j
z ,Ti 11 j

z ) is omitted, essen-
tially making a mean-field approximation with regard to t
spin operator products for this expression.

Finally, there is the essential contribution

S 11uW
i 1

1
2 , j

VO
¹W

i 1
1
2 , j

VO
1uW

i 1
1
2 , j

Na
¹W

i 1
1
2 , j

Na
1uW

i 1
1
2 , j

OR
¹W

i 1
1
2, j

OR D
3J0

i j @11 f ~Ti j
z ,Ti 11 j

z !#

FIG. 4. Dependence of superexchangeJ on charge ordering.
Results from cluster calculation for two rungs of the same lad
with parameterstR50.172 eV, tL50.049 eV, tD50.062 eV,VL

50.344 eV,VR50.398 eV,U54 eV and superexchange define
as the singlet-triplet gap.19 ‘‘Zig-zag’’ charge ordering or ‘‘in-line’’
charge ordering was induced by changing the on-site energies
e15e352e252e4 for ‘‘in-line’’ ordering and e152e252e3

5e4 for ‘‘zig-zag’’ ordering. The inset shows geometry of cluste
The difference in the behavior of the superexchange between
two ordering patterns comes from the fact thattLÞtD and VL

ÞVD50.
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to the superexchange. It describes the coupling between
tortion, superexchange dimerization, and charge order
Here we use a mean-field approximation for the pseudos
operator products. The term causes a competition betw
the spin-Peierls order parameter and charge order param
on a ladder.K̃Lz will be fitted to properly describe the sys
tem. As argued above, we must useK̃Lz instead ofKLz in Eq.
~11!.

In this section we have shown that the charge order
mechanism may be described by an effective Ising type
energy Hamiltonian where thed electrons in singly occupied
V-V rungs are described by an pseudospin. However du
the geometric frustration of the 2D Trellis lattice a char
ordering at finite temperature required the extension of
Hamiltonian to include spin and lattice degrees of freedo
The latter may lift the frustration due to a distortion of th
lattice and thus facilitate a combined charge ordering a
dimerization leading to inequivalent laddersA,B as shown in
the next section.

III. PHASE TRANSITIONS

Now we analyze the Hamiltonian given by Eq.~11!. We
have two types of instabilities to consider based on the th
and fourth term. The first type results from the fourth term
Eq. ~11! which describes a coupling between local distortio
and charge ordering. By distortion the system reduces
interaction energy. Due to elastic coupling this is also acco
panied by an alternating exchange coupling on neighbo
ladders. The second type results from the third term in
~11! which includes a coupling between lattice and spin d
grees fo freedom leading to an instability of a spin-Peie
type.

In the following subsection we separate the system i
two sublattices and first treat each subsystem on its o
Using RPA we analyze in Sec. III B the first type of instab
ity accompanied by charge ordering and superexchange
ternation. We fit the free parametersgIs andK̃Lz as to obtain
the proper value ofTC1 and the shift ofTC1 in a magnetic
field. By analyzing the ground-state energy of different
dered states we find that at low temperatures half the lad
are charge ordered and on the remaining half there is su
exchange alternation.

In Sec. III C we examine the influence of charge orderi
on the second type of instability. The distortions of t

charge-ordered ladders change the couplinguW
i 1

1
2 , j

OR
¹W

i 1
1
2 , j

OR
J0

i j

and therefore the spin-lattice interaction. It will be show
that this interaction increases and results in a second p
transition. As shown below, this explains the anomalous B
ratio.

A. Separation of the subsystems

The Hamiltonian~11! describes a model consisting of tw
subsystems 1 and 2 shown in Fig. 2~b!. Both subsystems
contain Ising pseudospin chains alternating with Heisenb
spin chains. The Ising pseudospin chains describe the ch
distribution on a ladder, and the Heisenberg spin chains

r

ith

he
8-6
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MICROSCOPIC MODEL FOR THE STRUCTURAL . . . PHYSICAL REVIEW B 66, 165108 ~2002!
scribe the spin on a neighboring ladder. The degrees of f
dom on each rung (i j ) are characterized by a pseudospinTW i j
on rung (i j ) which is contained in one subsystem and a s
SW i j contained in the other subsystem. The two subsystem
and 2 describe the complete spin-charge dynamics of
Hamiltonian~11!.

Neighboring chains of the same subsystem are couple
the lattice dynamics. A change of the superexchange alo
spin chain is obtained, e.g., by a displacement of an O ion
a leg. Via the elastic coupling this causes a displacemen
the neighboring V site~see Fig. 3!. Such a local distortion
changes the chemical environment and therefore the on
energy of the vanadiumdxy orbital. This change in energ
corresponds to a longitudinal field for the pseudospin of t
rung. We assume that this fieldhT

z is proportional to the
displacementdV of the V site of that rung and write

hT
z52gIsdV . ~13!

The two subsystems are coupled due to the dependen
the coupling Ji j on the charge distributionŝTi j

z & and

^Ti 11 j
z &. Ji j describes the coupling of spinsSW i j andSW i 11 j in

one subsystem and this term is contained in one subsys
while ^Ti j

z & and^Ti 11 j
z & are operators used in the descripti

of the other subsystem. The coupling between the cha
ordering is characterized by nonzero^Ti j

z & and ^Ti 11 j
z & and

the superexchange couplingJi j along the ladder is negative
With increasing charge ordering along a ladder the effec
superexchange couplingJi j decreases as shown in Fig.
This may change, though, if we include the effect of latt
distortions accompanying the charge ordering. We then h
to deal with a combination of effects onJi j as argued above

We first consider Eq.~11! for each of the two subsystem
separately and then discuss the combined ordered gro
state. We can make a Wigner-Jordan transformation of
spin operators of a subsystem to obtain spinless ferm
describing the spin degrees of freedom. LetkF5p/2b be the
Fermi momentum of these spinless fermions whereb is the
lattice constant in theb direction.

For a single subsystem, e.g., subsystem 1, alternatio
the superexchangeJi j along the Heisenberg chains can
obtained by shifting the Na ions alternatingly in thec direc-
tion or by shifting the O ions on the rungs in theb direction
as shown in Fig. 5. Applying the result of Cross and Fishe40

we arrive at renormalized phonon frequencies forq52kF :

ṽ2kF ,OR

2 5v2kF ,OR

2 20.26u2gOR
~2kF!u2T21,

ṽ2kF ,Na
2 5v2kF ,Na

2 20.26ugNa~2kF!u2T21. ~14!

The coupling of a shift of the Na ion to a superexchan
alternation is smaller by a factor of 2, because a shift of
Na site in thec direction affects the superexchange only
one two-rung cluster whereas a shift of the rung O site in
b direction affects the superexchange on two neighbor
two-rung clusters.

For a single subsystem, e.g., subsystem 1, there is als
instability towards superexchange alternation along
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Heisenberg chains accompanied by charge ordering along
Ising chains. This corresponds to shifts induced by the lat
modeq0 with q052kF as shown in Fig. 3. Within this mode
the V sites on the chains of theA ladder shift inc direction.
The direction of the shift alternates along the ladder, cor
sponding to a staggered longitudinal field for the pse
dospins of subsystem 1. The leg O ions on theB ladders also
shift in thec direction together with the neighboring V site
of the A ladder. This causes an alternation of the super
change along theB ladder, corresponding to an alternation
Ji j along the Heisenberg spin chains of subsystem 1. App
ing the results of Cross and Fisher and using RPA for
effect of the pseudospin-lattice coupling one obtains

ṽq0

2 5vq0

2 20.26ugVO~q0!u2T2124gIs
2 xq0

~T!, ~15!

where the last term describes the influence of the Is
chains. Herexq(T) is the susceptibility of the Ising chain
due to a longitudinal field along thez direction. gVO de-
scribes the coupling of a shift of the V sites on the super
change of the neighboring ladder via a shift of the O site

B. The phase transition atTC1

We know from experiment that the phase transition atTC1
in a8-NaV2O5 is accompanied by charge ordering.5 We
therefore first consider Eq.~15!. We can takeg for the q0
mode in Fig. 3 directly from the results in19

gq0

VO5A \

mV

dJ
expJ

dV
57.8843109 K s21/2 ~16!

with dV56.0768 pm being the square root of the average
the squared shifts of the V sites on the A ladder,dJ

exp50.26
the exchange dimerization along the B ladders for layera,
J5522 K, and mV the V ion mass. The large exchang
dimerizationdJ

exp has been obtained in Ref. 19 from a Slate
Koster-approximation for the distorted phase: It is mos
due to the shift of the oxygen atoms along the leg of theB

FIG. 5. ~a! Alternating Na shift in thec direction schematically
shown by arrows causes superexchange alternation.~b! Alternating
shift of the rung O ions in theb direction causing superexchang
alternation and inequivalence of the Na sites along the ladder.
8-7
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A. BERNERT, P. THALMEIER, AND P. FULDE PHYSICAL REVIEW B66, 165108 ~2002!
ladders. We also need to obtainxq(T). While this is very
difficult for general values ofq, it is facilitated considerably
when q5q0. In this case the effective field for the pse
dospins due to the lattice distortion is staggered in thb
direction. The Ising chain has an antiferromagnetic coupl
KLz.0 along theb direction. Calculatingxq0

(T) means
therefore to calculate the susceptibility of an antiferrom
netic Ising chain in a transverse field for the application of
infinitesimal staggered longitudinal field. This is equivale
to calculating the susceptibility of a ferromagnetic Isi
model in a transverse field for the application of an infi
tesimal constant longitudinal field. This susceptibility can
expressed via the pseudospin correlation functionr(l,T)

xq0
~T!5b lim

N→`

1

N (
i , j 51

N

r u i 2 j u
z ~l,T!, ~17!

where r u i 2 j u
z (l,T)5^Ti

zTj
z&(l,T) and b51/kBT is the in-

verse temperature.l5K̃Lz/4t̃ R is the ratio between the pseu
dospin interaction and the transverse field and determines
properties of the Ising chain.l5` corresponds to the Ising
chain without a transverse field,l50 to the paramagnetic
limit.

For an Ising chain in a transverse fieldrn
z(l,T) can be

written in the form of a Toeplitz determinant.34 For largen
acccording to Szego¨’s theorem41 we have

rn
z~l,T!5

1

4
P~l,T!Gn~l,T!, ~18!

where expressions forP(l,T) andG(l,T) are found in Ref.
42. Some simple limits are given below. To obtainxq0

(T) we
assume that the asymptotic expression~18! is correct for all
n. With this assumption summation of the series~17! yields

xq0 ,l5
1

4
bP~l,T!

11G~l,T!

12G~l,T!
. ~19!

The approximation is expected to be correct close to
quantum critical point, i.e., close tol51 atT50, since then
the susceptibility and the correlation length diverge. Ho
ever, we can obtainP(l,T) andG(l,T) for the casel5`,
i.e., the pure Ising chain, from Ref.42 as

Pl5`51,

Gl5`5tanh~b t̃ Rl!. ~20!

Whenl50 we are in the paramagnetic regime and find

Pl505
2

2b t̃ R

~12l2!23/45
2

2b t̃ R

,

Gl505l$tanh@b t̃ R~11l!#%exp$~2pb t̃ R!21/2

3exp@2b t̃ R~12l!#•••%50. ~21!

With these expressions we can calculatexq0
(T) in the limits

l5`, 0 and find
16510
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xq0 ,l5`~T!5
b

4
expS 1

2
bK̃LzD ~22!

and

xq0 ,l50~T!5
1

2~2 t̃ R!
tanhS 1

2
b~2 t̃ R! D . ~23!

Both expressions~22! and ~23! are equal to the exact solu
tion in these limits which implies that thisxq0 ,l should be a

reasonable approximation for all values ofl. We can there-
fore in principle calculateTC1 from Eq. ~15! knowing gIs ,
vq0

, andl by simply settingṽq0
50.

We can find vq0
from measurements of the elast

constants.43 There a strong anomaly in thec66 mode of
a8-NaV2O5 was observed at the phase transition tempe
ture. This mode couples to a zig-zag-like charge ordering
we therefore identify it with theq0 mode of the present cal
culations. Using the high-temperature value for the sou
velocity v6654200 m/s we estimatevq0

5pv66/b5279 K,

whereb53.611 Å is the lattice constant in theb direction
for the undistorted lattice.

Whenvq0
is known we obtainl andgIs by fitting them to

TC1534 K and to the experimental value of the shift ofTC1
in a magnetic field. The latter is reduced from its stand
spin-Peierls value44 due to the Ising part of the transition
This is seen as follows. Considering only the spin-Peie
part of the transition, applying a magnetic field lowers t
transition temperatureTC1(H50) without a magnetic field
to a valueTC1

H,SP. On the other hand, the Ising chain susce
tibility xq0 ,l(T) increases with decreasing temperature. T

causes an increase of the critical temperature fromTC1
H,SP to

the observed phase transition temperatureTC1(H).TC1
H,SP in

a magnetic field.
The expansion forTC1 in a magnetic fieldH for a pure

spin-Peierls system is44

TC1~H !2TC1~H50!

TC1~H50!
520.36S mBH

kBTC1~H50! D
2

. ~24!

Due to the influence of the Ising part this expression
modified to

TC1~H !2TC1
H

TC1
H,Is~0!

520.36S mBH

kBTC1
H,Is~0!

D 2

kBTC1
H,Is

J
~0!50.8

~gq0

VO!2

pJvq0 ,eff
2 @TC1~H !#

~25!

in the present case with

vq0 ,eff
2 @TC1~H !#5vq0

2 24gIs
2 xq0 ,l@TC1~H !#. ~26!

For small shifts this leads to
8-8
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MICROSCOPIC MODEL FOR THE STRUCTURAL . . . PHYSICAL REVIEW B 66, 165108 ~2002!
TC1~H !2TC1~0!

TC1~0!
52

0.36

11TC1~0!a@TC1~0!# S mBH

kBTC1~0! D
2

~27!

with

a~T!52
4gIs

2 @dxq0 ,l~T!/dT#

vq0

2 24gIs
2 xq0 ,l~T!

. ~28!

From the experimental result for the shift ofTC1534 K in a
magnetic field in Refs. 4,25,24 we obtaina(TC1)
'0.086 K21. Fitting gIs andl to these two values we ob
tain

l50.99850,

gIs51.688 K/~pm shift of V!. ~29!

Note that this value forl is close to the value for the rati
KIL /KLz'0.997 from Eq.~9!. This indicates that geometri
cal frustration plays an important role. To see how stable
solution is towards a change of the parameters, we eval
the dependence ofTC1 on K̃Lz , vq0

, andgIs :

]TC1

]K̃Lz

51.06,

]TC1

]vq0

520.14,

]TC1

]gIs
512 pm. ~30!

TC1 is rather sensitive to small changes ofK̃Lz or l. This
sensitivity is due to the fact, that (12l)!1. It is much less
and the stability therefore much improved compared to
result presented in Ref. 29, wherel'0.99986 was sug-
gested.

Next we include the coupling between the two su
systems. For this we will use the mean-field values
^Ti j

z &,^Ti 11 j
z &. They are zero atTC1 and therefore the critica

temperatureTC1 remains unchanged in this approximatio
But a mean-field approximation is not reliable close to
critical point of the transition where fluctuations must
taken into account. We therefore consider the zero temp
ture free energy of different ordered states. For this we n
the dependence of the superexchangeJ0

i j along a ladder on
the charge ordering order parameter^Tj

z& on the same ladder
This is approximately

Ji j
eff5J0

i j ~124^Tj
z&2!, ~31!

where we neglect a small contribution toJi j
eff from the diag-

onal hopping in the case of complete charge ordering on
ladder, i.e., for̂ Tj

z&5 1
2 . As argued at the end of Sec. II,Ji j

eff

enters our equations in two places. First, it effective
changesvq0

through J0f (Ti j
z ,Ti 11 j

z ). Since we usedvq0

from experiment, this effect is already included. Second,Ji j
eff
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modifies the energy gain resulting from the spin degrees
freedom due to distortions and it is this effect we have
consider now. Using the expression for the magnetic ene
gain from Ref. 12 for the alternating Heisenberg chain
can write down the energy gaindF(T50) of the ground-
state of the ordered system versus that of the ground-sta
the disordered system. The dimerization parameter of
Heisenberg chainsdJ

(1),(2) with dJ
(1),(2)5gq0

VOQ1,2/J from Eq.

~16! is the order parameter for each of the two subsyste
Q5dVAmV /\ is the canonical displacement. We find

dF~T50!5b~Q1
21Q2

2!2ESP~Q1!~124^T2
z&2!2ESP~Q2!

3~124^T1
z&2!22gIs~^T1

z&Q11^T2
z&Q2! ~32!

with

b5
1

2
vq0

2 ,

ESP~Q1,2!50.3134J~dJ
(1),(2)!4/3,

^T1,2
z &5

1

2
$12exp@24x Is~T50!gIsQ1,2#%. ~33!

Here we assumed thatTz approaches1
2 exponentially if a

staggered parallel fieldgIsQ is applied. In Eq.~32! ESP de-
notes the energy gain from the spin-Peierls distortions, w
the terms proportional togIs denote the energy gain from
charge ordering. The first term stands for the elastic ene
of the distortion. Optimizing Eq.~32! in dJ

(1),(2)P@0,1# we
find a minimum atdJ

(1)50.023, dQ
(2)50 or vice versa with

dF520.80 K. RequiringdJ
(1)5dJ

(2)5dJ , i.e., the equiva-
lence of the two subsystems we finddJ50.009 with
dF520.35 K. We have plotted in Fig. 6dF for dJ

(1)

5dJ
(2) and dJ

(2)50. In the previous calculations we use

FIG. 6. Ground-state energy gaindF of the ordered system
versus the disordered system depending on the order paramet
8-9
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A. BERNERT, P. THALMEIER, AND P. FULDE PHYSICAL REVIEW B66, 165108 ~2002!
dJ
exp50.26 to obtaingq0

VO , so the first result is more consiste

with our calculation than the second one and it also has
lower energy.

From the derivation ofx Is we can obtain the bare corre
lation length along the Ising chains as

j Is~T!52
1

ln G~T!
. ~34!

At TC1 we find thatj Is'183 lattice constants. This larg
value ofj Is might offer an explanation for the strong depe
dence ofTC1 on doping. By substituting Na with Ca or de
pleting the system of Na additional electrons/holes are in
duced into the system. This implies double/zero occupa
of rungs. They weaken correlations along the Ising chain
rough estimate of the critical doping value at which t
phase transition temperatureTC1 is suppressed isxC'0.5%.
We obtain it by assumingxCj Is'1. This value is in qualita-
tive agreement with experiment. Substituting Na by Ca
transition disappears between 1 and 2.5% of Ca.45 For hole
doping due to Na deficiency the transition disappears
tween 2 and 3% deficiency.46

C. The phase transition atTC2

Next we consider the second phase transition obser
According to Ref. 5 this transition is of the Ginzburg-Land
type. It opens a spin gap and creates a local distortion a
Na sites as observed from the changes of the quadrup
electric field tensor. Charge ordering at the V sites sta
before this transition sets in~Ref. 5!. For these reasons and
order to explain the observation of eight inequivalent
sites in 23Na-NMR ~Refs. 5,47! we suggested in Ref. 19 tha
the opening of the spin gap in the system is due to an a
nating shift of the Na ions along the charge-orderedA lad-
ders as shown in Fig. 5~a!. A second possibility is an alter
nating shift of the rung O ions on theA ladders as shown in
Fig. 5~b!.

By using the hopping matrix elements obtained in Ref.
for the charge-ordered ladder in layer a we can calculate
effective superexchangeJ dependence on the charge orderi
dCO on the same ladder. As we did for the undistorted ladd
~see Fig. 4!, the superexchange is defined by the sing
triplet gap on a two-rung cluster. It is obtained via exa
diagonalization. We know from experiment2 that J'440 K
in the low-temperature phase. This value ofJ corresponds to
an incomplete charge orderingdCO

0 5 1
2 (n12n2)'0.32 on

the A ladders in agreement with experiment.5

The hopping matrix elementstL , tD , tR change due to the
distortion accompanying the charge ordering.19 We param-
etrize these changes witht(dCO50)2t(dCO)}d lat}dCO,
and normalize the prefactors such that the hopping ma
elements from Ref. 19 for the high temperature undistor
ladder are obtained atdCO50 and those for the charge o
dered ladder are obtained atdCO5dCO

0 .
Due to alternating shifts of the rung O ions or the Na io

the effective hopping along the legtL and the effective diag-
onal hoppingtD alternate also. The size of this is given b
the parameterd tL,D

5(t1
L,D2t2

L,D)/(t1
L,D1t2

L,D). If we know
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d tL
andd tD

we can find the superexchange alternation para

eterdJ by calculating the superexchange for the inequival
two-rung clusters.19 This gives us an approximate value fo
the spin-lattice coupling. Using it, the parametrizedtL , tD ,
and tR from above, and Eq.~14! for the critical temperature
we find TSP(dCO) for a spin-Peierls transition depending o
the charge ordering:

kBTSP~dCO!

J~dCO!
50.8

4gOx
2 ~dCO!

pJ~dCO!vOx
2

. ~35!

We can estimate the valuevOx from the velocityv22 of the
c22 mode in Ref. 43. It describes a longitudinal mode alo
theb direction as required for the proposed shifts of the ru
O ions withv2256500 m/s which yieldsvOx5432 K. For
given values ofd tL

andd tD
we obtain the dependence of th

critical temperatureTSPon the charge orderingdCO as shown
in Fig. 7. In the low-temperature limit the spin gap is a
proximately given byD(dCO

0 )'1.8TSP(dCO
0 ). Therefore the

BCS ratio is enhanced by a factor ofTSP(dCO
0 )/TC1.

We search for values ofd tL
andd tD

for which the follow-
ing conditions are fulfilled.~i! Without charge ordering the
critical temperature for such a transition is below 34 K, sin
the spin gap opens only below the charge ordering temp
ture. ~ii ! With increasing charge ordering the critical tem
perature is required to increase, because an enhanced
ratio has been observed.~iii ! At dCO5dCO

0 the spin gap
D(dCO)'1.8TC

SP(dCO
0 ) should be approximately 100 K a

found experimentally.

FIG. 7. TSP dependence on charge ordering for a spin-Peie
transition due to alternating shifts of the rung O ions on theA
ladders in theb direction. Dimerisation of hopping matrix elemen
for a shift of 1 pm given byd tD

50.090 andd tL
520.059.3 mark

conditions~i! and~iii ! ~see text!. The increase ofTSP for smalldCO

is due to increase of the effectivedJ resulting from increase of the
hopping matrix elements due to the distortion accompanying
charge ordering. The decrease for largedCO is caused by the de

crease of the average superexchangeJ̄ as shown in Fig. 4.
8-10
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The result is found in Fig. 7. The conditions~i!–~iii ! are
fulfilled for d tL

520.059, d tD
50.090, and with TC1

534 K an effective BCS ratio of 6.05 is found. We therefo
have a spin-Peierls phase transition which is driven
charge ordering on the same ladder. When the first trans
takes place at aboutTC1534 K charge ordering sets in o
theA ladders. This changes the two-particle correlation fu
tions and the effective hoppings so thatTSP increases as
compared with its value without charge ordering. At som
temperatureTC2,TC1 we haveTSP@dCO(TC2)#5TC2 and a
spin-Peierls transition driven by charge ordering takes pla
This is caused by an alternating shift of the O ions on
rungs of theA ladders, probably together with a small alte
nating shift of the Na ions along theA ladders. This also
causes an inequivalence of the Na sites along the A ladd
such that we have eight inequivalent Na sites as observe
experiment.47 Since this happens beforedCO attains its final
value, the spin gap at lower temperatures is larger than w
would be expected from the standard BCS ratio andTC1.

In order to see whether the values ford tL
and d tD

are
plausible, we have investigated the effects of alternat
shifts of the rung O or the Na sites on the effective hopp
matrix elements between V sites on the ladders. For this
use the Slater-Koster method as described in Ref. 19.
results are given in Table I. Those ford tL

andd tD
have been

obtained for otherwise undistorted ladders.d tL
and d tD

are
found to have opposite signs, as assumed above. This ca
understood by noticing that an increase of diagonal hopp
due to increased hopping via the Na sites goes together
a decrease of the hopping along the legs of the ladder.
effects of charge ordering distortions and of the shifts of
or rung O sites on the hopping matrix elements are sm
Therefore we may neglect higher-order effects resulting fr
combinations of the distortions.

The results in the first three rows of Table I are based
Ref. 19, where we included V-O, V-V, and Na-O hoppin
matrix elements in the initial Hamiltonian, projecting the

TABLE I. Change of hopping matrix elements for an alternati
Na shift in thec direction, an alternating V shift in theb direction,
and an alternating shift of rung O ions in theb direction, respec-
tively. Shift is by 1 pm per site on an otherwise undistorted ladd
The accompanying change of the superexchange has been c
lated as the singlet-triplet gap on a cluster of two neighboring ru
of a ladder~Ref. 19!.

d tD
5

tD12tD2

tD11tD2

d tL dJ5
J12J2

J11J1

Na shift in the
c the direction 0.0105 20.0135 0.0035
V shift in the
b the direction 0.0236 0.0136 0.0347
Rung O shift
in the b direction 0.0072 20.0093 20.0016
Rung O shift
in the b direction with
tOO included 0.102 0.003 0.096
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on effective V-V hopping matrix elements. However, it h
been argued in Ref. 30 that direct hopping between the
sites should also contribute to the effective Hamiltonian
remains unclear which fraction of the total O-O hopping m
trix elements obtained in Ref. 30 results from direct hopp
and which fraction comes from indirect hopping via th
neighboring Na site. To investigate the effect of such a h
ping on the shifts of the rung O ions we introduced O
hopping matrix elements according to the Slater-Koster
proximation for into the initial Hamiltonian and calculate
effective V-V hopping matrix elements as befor
One finds tR520.17 eV, tL50.17 eV, tD520.04 eV,
t IL520.16 eV. Introducing an alternating shift of the run
O ions in theb direction by 1 pm leads tod tL

'0.003 and

d tD
'0.1 as given in the fourth row of Table I. The effe

especially on the diagonal hopping is much stronger than
without inclusion of the direct O-O hopping matrix elemen
However, these values fortL andt IL are far from those found
by LDA ~Ref. 30! andab initio methods.48 One can therefore
conclude that at least within the Slater-Koster method
contribution of the direct O-O hopping should be small
expected for next-nearest-neighbor hopping, although it m
help to explain the small differences between the LDA
sults of Ref. 30 and our results in Ref. 19. The results fr
Table I can serve only as an estimate of the values of
spin-lattice coupling.

In this section we have investigated how the mod
Hamiltonian of Eq.~11! leads to two consecutive phase tra
sitions. First atTC1 a combined spin-Peierls Ising transitio
leads to inequivalent exchange dimerized and charge ord
ladders which removes the geometric frustration of the T
lis lattice. The increasing charge order on theA ladders en-
hances their effective coupling to a dimerization mode c
nected with the Na shifts which leads then immediat
below at TC2 to another dimerization transition on theB
ladders which opens the spin gap.

IV. COMPARISON WITH X-RAY DIFFRACTION
AND NEUTRON SCATTERING EXPERIMENTS

In the following we compare our results with experime
tal observations. We do this with respect to two types
experiment: x-ray structure determination17–19 and inelastic
neutron scattering results for the magnon dispersion.2,3 We
compute the latter for the calculated structure by using
local-dimer approximation. We do not consider the Ram
spectroscopy experiments here, in which a sharp pea
65 cm21 is observed.49 This peak might be due to a charg
transfer excitation for which the interladder Coulomb rep
sion and the resulting two-dimensional character of the e
tation play a significant role.

Comparing our results with x-ray structure determinati
we find good agreement. In both cases we have a supers
ture consisting of two inequivalent ladder types alternat
along thea direction: charge-orderedA ladders and strongly
dimerizedB ladders. A phase with twoA ladders separated
by a B ladder is also correctly found. We can explain the
findings with the analysis given in Sec. III B: the displac
ment of the V sites on theA ladders and of the O sites on th
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A. BERNERT, P. THALMEIER, AND P. FULDE PHYSICAL REVIEW B66, 165108 ~2002!
B ladders cause a combined charge-ordering-spin-Pe
transition.

X-ray structure analysis findsFmm2 symmetry in the
low-temperature phase. In our model this symmetry is re
ized for TC1.T.TC2. However, the phase transition atTC2
obtained for our model in Sec. III C is accompanied by
breaking of this symmetry. It results from the shift of th
rung O ions on the A ladders, as shown in Fig. 5~b!. A low-
temperature spin gap ofD'100 K on these ladders require
a superexchange dimerization of about 0.05 whenD
52JdJ

3/4 from Ref. 12 is used with the experimental valu
for J5440 K. The coupling constant atdCO

0 50.32 is ap-
proximately 0.043 per pm shift of the rung O ion. This co
responds to an actual shift of 1.1 pm of each rung O ion
ladderA.

The intensity of the x-ray scattering for small scatteri
angles is proportional toZ2 where Z is the ionic charge.
Below TC2 only one O ion per two formula units shifts it
position to break theFmm2 symmetry. In addition as esti
mated above these displacements are smaller than the
placements caused by the phase transition atTC1 and below,
where a displacement of 7.46 and 4.26 pm for the V sites
the A ladder is found experimentally. It is therefore we
possible that the scattering peaks resulting from the lo
symmetry cannot be observed within experimental reso
tion. Insofar x-ray structure determization results do not c
tradict our theoretical results for the second transition.

Magnon dispersion, however, should be greatly affec
by a dimerization. The structure which is obtained after
two transitions have taken place is schematically shown
Fig. 8. The calculated magnon dispersion for this struct
should therefore be a good test of the theory. For other s
gested structures it was found that the corresponding mag
dispersion disagrees with experimental results: in the cas
a lattice with zig-zag charge order on all ladders and ass
ing identical exchange alternation on all ladders and a p
sible exchange anisotropy the dispersion along thea direc-
tion does not agree with experiments50. A theoretical model
using charge ordering and different exchange alterna
along all ladders has been considered in Ref. 3. For the s
cluster model proposed in Ref. 18 the magnon dispersi
both in thea andb directions, do not agree with experimen
either.51–53

We therefore calculate the magnon dispersion at a t

FIG. 8. Geometry of initial magnetic Hamiltonian~36!. J6

5J(16d) for the respective ladder.
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perature well belowTC2. In order to do this we use the
spin-dimer representation following Refs. 50,54,55. The i
tial magnetic Hamiltonian is then

H5(
i PA

JA~11~21! jdA!SW i j SW i j 11

1(
i PB

JB~11~21! jdB!SW i j SW i j 111 (
^ i j ,mn&

JIL
i j ,mnSW i j SW mn

~36!

for a geometry andJIL
i j ,mn as shown in Fig. 8. It describes th

pure spin part of Eq.~11! with the effects of lattice distor-
tions and pseudospins included within the effective coupl
constants. The large value ofdB'0.26 atT515 K found in
Ref. 19 corresponds to a large gap in the excitation spect
of the B ladders. UsingDB52JBdB

3/4 for the spin gap12 and
JB552 meV from Ref. 19 we findDB'38 meV. TheB
ladders should therefore not contribute directly to the lo
lying parts of the magnon dispersion. Since we are only
terested in these, we assume that we have an indirect
change coupling betweenA ladders through the virtua
singlet-triplet excitations of theB ladders. This results in an
effective Hamiltonian

H5(
i j g

JA~11~21! jdA!SW i j gSW i j 11g1(
i j g

JaSW i j gSW i 11 j g

1(
i j g

JDSW i j g~SW i 11 j 11g1SW i 11 j 21g!1(
i j g

JcSW i j gSW i j ḡ

~37!

with corresponding geometry and couplings as shown in F
9. This exchange Hamiltonian exhibits manifestly a doubli
of the period along thea axis. Here we also introduced
superexchangeJc in the c direction between layers; it is as
sumed to exist mainly between the V21 sites which lie di-
rectly above each other.19 We therefore haveg561: Along
the c direction the V sites of theA ladder are ordered a
••• –V21–V21–V22–V22–••• as shown in Fig. 10.17–19 Next

FIG. 9. Geometry of effective magnetic Hamiltonian~37!. 1 and
2 denote the two spins of a dimer,JA andJD denote the effective
superexchange between spins in theA ladder via theB ladder for
nearest interladder neighbors and next-nearest interladder n
bors. V21 sites with increased electron density denoted by bla
circles, V22 sites with decreased electron density by white circle
8-12
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MICROSCOPIC MODEL FOR THE STRUCTURAL . . . PHYSICAL REVIEW B 66, 165108 ~2002!
we introduce dimer variables. We denote each dimer wit
the A ladder~see Fig. 9! by coordinatesi j g, which are not
identical with the former coordinates of the spins. As d
noted in Fig. 9 we then have spinsSW i j g1,2. The dimer vari-
ables are then

KW i j g5SW i j g11SW i j g2 ,

LW i j g5SW i j g12SW i j g2 . ~38!

With those, Eq.~37! takes the form

H5
1

4
JA~11dA!(

i j g
KW i j gKW i j g2LW i j gLW i j g

1
1

4
JA~12dA!(

i j g
KW i j gKW i j 11g2LW i j gLW i j 11g

1
1

4
Ja(

i j g
KW i j gKW i 11 j g2LW i j gLW i 11 j g

1
1

4
JD(

i j g
~KW i j g2LW i j g!~KW i 11 j g2LW i 11 j g1KW i 11 j 11g

FIG. 10. Unit cell of low-temperature ordered state. Along theA
ladders one has pairs of V21 sites ~black circles! alternating with
pairs of V22 sites ~white circles! in the c direction. Jc therefore

connects two layersg, ḡ only. For such two layers, dimers on theA
ladders are assumed to lie directly above each other in thec direc-
tion.
16510
n

-

2LW i 11 j 11g!1~KW i j g1LW i j g!~KW i 11 j g1LW i 11 j g

1KW i 11 j 11g1LW i 11 j 11g!1
1

2
Jc(

i j g
KW i j gKW i j ḡ1LW i j gLW i j ḡ .

~39!

As in Ref. 50 we will only use the productsLi j gLmng8 , since
the other terms do not contribute to the dispersion of the s
excitations. We then transform theLW to

LW i j g5
1

A2
~MW i j

11MW i j
2!,

LW i j ḡ5
1

A2
~MW i j

12MW i j
2!. ~40!

Furthermore we assume that the ladder designated bi

11,g) is equivalent to the ladder (i ,ḡ). This corresponds to
a geometry of theA ladders shown in Fig. 10. We therefor
set Li j g5Li 11 j ḡ , and separate the Hamiltonian into tw
parts:

HM152
1

4
@JA~11dA!2Jc#MW i j

1MW i j
1

2
1

4
JA~12dA!MW i j

1MW i j 11
1 2

1

4
JaMW i j

1MW i 11 j
1

2
1

2
JD~MW i j

1MW i 11 j
1 1MW i j

1MW i 11 j 11
1 !,

HM252
1

4
@JA~11dA!1Jc#MW i j

2MW i j
2

2
1

4
JA~12dA!MW i j

2MW i j 11
2 1

1

4
JaMW i j

2MW i 11 j
2

2
1

2
JD~MW i j

2MW i 11 j
2 1MW i j

2MW i 11 j 11
2 !. ~41!

The first term of each Hamiltonian describes an effect
dimer with interaction strengthJA(11dA)6Jc . Its dynami-
cal susceptibility is

uab
6 ~v!5dab~dax1day!

2@JA~11dA!7Jc#

@JA~11dA!7Jc#
22v2

. ~42!

The dynamical RPA susceptibility of coupled dimers witho
anisotropy of the superexchange is given by

x~qW ,v!5@12J~qW !uxx~v!#21uxx~v!, ~43!

whereJ is the exchange term between dimers as given by
last four terms ofHM1 andHM2 . After Fourier transforma-
tion these,J1 for HM1 andJ2 for HM2 are given by
8-13
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A. BERNERT, P. THALMEIER, AND P. FULDE PHYSICAL REVIEW B66, 165108 ~2002!
J6~qW !5
1

2
JA~12dA!cos 2ky

6S 1

2
Jacos~kx2ky!22JDcoskxcoskyD . ~44!

Herekx52pqx /a, ky52pqy /b with a andb being the lat-
tice constants of the high-temperature unit cell. We not
doubling of the unit cell in theb direction as required befor
by Eq.~37!. The spin-wave excitations are obtained from t
poles ofx(qW ,v). With Eqs.~42! and ~44! we obtain

v6
2 5@JA~11dA!7Jc#

22@JA~11dA!7Jc#$JA~12dA!

3cos 2ky6@Jacos~kx2ky!24JDcoskxcosky#%.

~45!

We setJa
eff5Ja24JD andJA5440 K, as used in our previ

ous analysis and obtained from experiment.2 Then we fit the
unknown parametersJa

eff , Jc , and dA to the experimenta
values for three of the four gaps obtained fromv1 andv2 .
These gap values have been observed forT<4.2 K at qx
50, qy5 1

2 , andqx50, qy51.3 Fitting three of the four gaps
of sizes 10.9, 10.1, and 9.1 meV we obtain

Ja
eff50.212 meV,

Jc50.431 meV, ~46!

dA50.0310.

This determines the fourth gap to be 8.14 meV which is
excellent agreement with the experimental value 8.2 m
from Ref. 3. In the model presented here these spin g
result from the assumed dimerization of the charge ordereA
ladders whereas previously the origin of the spin gaps
suggested to lie in an anisotropy of the superexchange.50 The
dispersion ofv6 along thea direction forqy5 1

2 ,1 is shown
in Fig. 11. These curves also agree with experiments.

The low value ofJa
eff which causes the dispersion alon

the a direction is due to an effective coupling of nex
nearest-neighbor ladders. Furthermore,Ja is partly compen-
sated due toJD couplings.

The value forJc , which causes the gap between the tw
modes, corresponds to a hoppingtc'0.021 eV between
neighboring V sites of neighboring layers whenJc54tc

2/U
andU54 eV are used. This is in reasonable agreement w
the value tc50.015 eV found in Ref. 19 from the low
temperature structural data by a Slater-Koster approximat

We can also obtain the approximate dispersion in thb
direction forqx50 as shown in Fig. 12. The maximum is
v'55 meV and agrees nicely with the valuevmax
559.5 meV estimated in Ref. 2 from experimental data.

In this section we have shown that the results of o
analysis in Sec. III agree well with the experimental resu
of x-ray structure determination. Furthermore we have inv
tigated the dispersion of spin excitations in the ordered s
parallel and perpendicular to the chain direction. From co
parison with results of inelastic neutron scattering excha
and dimerization parameters have been obtained. We
16510
a

n
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clude that the additional zone boundary splitting of spin e
citations observed in Ref. 3 is well explained within the i
equivalent ladder model.

V. SUMMARY AND CONCLUSIONS

In this article we provided a theoretical description of t
phase transitions ina8-NaV2O5. In Sec. II we started from a
single band extended Hubbard model describing the hopp
of electrons between V sites. We projected this model o
an effective spin-pseudospin Hamiltonian similar to that
Refs. 27–29. Using parameters obtained from a previ
Slater-Koster analysis and findings of LDA1U we argued
that within the given model a phase transition cannot oc
from Coulomb interactions only: the effective lattice for su
a transition is triangular and its geometric frustration su

FIG. 11. Magnon dispersion along thea direction for qb5
1
2

5Qb
AF ~solid lines! and qb515Qb

ZC ~dashed lines!. Experimental
values from Ref. 3.

FIG. 12. Magnon dispersion along theb direction forqa53.5.
Experimental values from Ref. 3~circles! and Ref. 56~squares!.
Above 20 meV the dispersion of the disordered and strongly dim
ized B ladders becomes important.
8-14
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presses charge order, a distinctive feature which is prese
the observed transition. We therefore constructed a mini
microscopic model based on a spin-pseudospin Hamilton
which incorporates the coupling between charges, spins
the lattice.

In Sec. III we analyzed this model with regard to pha
transitions. We divided the model into two subsystems. E
of it describes the charge degrees of freedom on the rung
half the ladders and the spin degrees of freedom on the o
ladders. For each subsystem we find an instability toward
transition atTC1 which causes ‘‘zig-zag’’ charge orderin
and superexchange dimerization. With this combined sp
Peierls-Ising transition we can explain the anomalous shif
TC1 in a magnetic field. It is reduced from its normal spi
Peierls value due to the influence of the charge ordering.
calculating the free energy atT50 we found that the system
should enter a phase where half of the ladders are ‘‘zig-z
charge-ordered (A ladders!, while the other half (B ladders!
shows a strong superexchange alternation. The reason
this asymmetry lies in a competition between the order
rameters for charge ordering and superexchange dimeriza
due to a shift of the leg O sites on the same ladder. T
explains observations of x-ray structure determination. D
to the strong effect of the one-dimensional Ising chains
can also explain qualitatively the strong dependence of
transition on depletion of Na or substitution of Na with C

By analyzing the coupling between superexchange dim
ization and lattice distortion in the charge-ordered ladders
found that another transition is induced. Charge ordering
creases the coupling between an alternating shift of th
sites on a rung and the superexchange alternation beyon
threshold value of a second transition atTC2. The system
then enters a phase where the charge-orderedA ladders
dimerize and a spin gap opens. Due to the alternation the
sites along theA ladders become inequivalent, such that
have eight inequivalent Na sites as observed
.
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23Na-NMR,5,47 not only six as would be the case in th
Fmm2 symmetry indicated by x-ray structure determinatio

This also helps to explain the discrepancy between m
surements of the critical exponent of the lattice distortion9–11

and of the critical exponent of the spin gap opening:8 the
former is smaller than the latter whereas one would exp
the opposite for a single transition due toD}d lat

3/4. From the
observations of a logarithmic peak in the specific heat atTC1
and the observation of fluctuations by x-ray diffu
scattering11 we conclude that the transition atTC1 is mainly
of 2D Ising character whereas the second transition atTC2,
which opens the spin gap, can be described within a me
field theory. Since the charge ordering is not complete, w
the second phase transition is triggered, the coupling c
stant further increases for decreasing temperatures.
leads to an additional increase of the spin gap and also o
BCS ratio. The conventional BCS ratio does not account
the temperature dependence of the coupling constantgq0

VO .

Within experimental resolution we find agreement w
the x-ray structure determination. The second transit
breaking theFmm2 symmetry comprises only a small shi
of every tenth O site. We also find excellent agreement w
experimental results for the magnon dispersion at a temp
ture well belowTC2.

In conclusion we presented a microscopic model
a8-NaV2O5 which yields two phase transitions close to ea
other. The first is a ‘‘spin-Peierls-Ising’’ transition causin
charge order and superexchange dimerization. The seco
a pure spin-Peierls transition triggered by an increase of
coupling constant due to charge ordering. With this mo
we can explain qualitatively and quantitatively a number
experimental observations, i.e., the existence of two tra
tions, the general structure of the low-temperature phase
anomalous shift ofTC1 in a magnetic field, the anomalou
BCS ratio, the strong dependence of the transition on dop
and the observed low-energy magnon dispersion.
d

r,
w

ev-
st.
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