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Microscopic model for the structural transition and spin gap formation in a’'-NaV,0s5
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We present a microscopic model far'-NaV,0s. Using an extended Hubbard model for the vanadium
layers we derive an effective low-energy model consisting of pseudospin Ising chains and Heisenberg chains
coupled to each other. We find a “spin-Peierls-Ising” phase transition which causes charge ordering on every
second ladder and superexchange alternation on the other ladders. This transition can be identified with the first
transition of the two close-by transitions observed in experiment. Due to charge ordering the effective coupling
between the lattice and the superexchange is enhanced. This is demonstrated within a Slater-Koster approxi-
mation. It leads to a second instability with superexchange alternation on the charge-ordered ladders due to an
alternating shift of the O sites on the rungs of that ladder. We can explain within our model the observed spin
gap, the anomalous BCS ratio, and the anomalous shift of the critical temperature of the first transition in a
magnetic field. To test the calculated superstructure we determine the low-energy magnon dispersion and find
agreement with experiment.
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[. INTRODUCTION field dependence of ;. It is only about 25% of the value
expected for a spin-Peierls transitfd#?> but on the other

The layered oxidex'-NaV,Og has attracted great interest hand, it is much higher than what would be generally ex-
since 1996, when Isobe and Ueda reported a phase transitipected for a structural transitich.
at T=34 K with a spin-Peierls like spin gap formatiomt In this article we explain a number of these above men-
low temperatures the spin gap has a size of abaut tioned features by an analysis of a microscopic model. We
~100 K!~3which yields a BCS ratio &/kgTc~6, much find that the phase transition dt; can be regarded as a
higher than for other organic or inorganic spin-Peierls mate¢ombination of charge ordering on every second ladder and
rials, for which it lies around the canonical BCS-value of 3.5, SUPerexchange alternation on the other ladders, a “spin-

Furthermore, experiments have shown that there are acti€rs-Ising” transition. This also explains the anomalous
ally two transitions, which lie very close to each otA&r. Shift 0f Tc; in a magnetic field. The phase transitionTa,
Both are of second order. The first one B, ~34 K is can be regarded as a spin-Peierls transition on the charge-

sccompanie by  ogartic pel n the specc heat STTEC A0S e crven by e chare arering The
while the second alc;— T¢,~0.3 K is of mean-field char- panying g 9

i i . o the coupling constant of a lattice mode invoking superex-
acter evident from a jump in the specific heat. NMR mea ping g sup

. . “change alternation on the charge-ordered ladders. With in-
surements suggest that the first transition leads to charge Oéfeasing charge ordering for decreasing temperatures the
dering while the second one opens a spin Yap.

- - coupling constant increases until the second phase transition
Measurements of the critical exponents yig8g~0.15  takes place afc,. This second phase transition opens a spin
---0.2 for the critical exponent of the lattice distortiérand gap in agreement with experimental observations. Charge or-
By~0.34 for the critical exponent of the spin gap® ™ gering is not yet complete af.,. The coupling constant
From these values the existence of two transition can also b@erefore continues to increase and due to this the low-
inferred indirectly. Close to the critical point the spin gap  temperature spin gap is larger than what would be expected
due to a lattice distortiord is expected to obeyA<><b\°”4,12 from Ty, i.e., the BCS ratio is enhanced.

corresponding t@,=3/48. This relation is not fulfilled in We test our low-temperature structure against x-ray struc-
a'-NaV,0s, indicating the existence of two separate transi-ture determination and find it to agree within experimental
tions. resolution. Furthermore we calculate the low-energy magnon

For T>T¢; a'-NaV,0Os has equivalent V sitéd°im-  dispersion and find it to agree nicely with experimental re-
plying valence 4.5 . For T<Tc, early *V-NMR measure- sults from inelastic neutron scatterifig.
ments show only two inequivalent sitésvhile x-ray struc- In the following we give an outline of the way our article
ture determination reports three inequivalent $itéSas do  is organized and the rationale behind choosing the models
recent *V-NMR measurement® Recently, new experi- and the contributions that have to be present in the Hamil-
ments found two inequivalent V sites per layer by use oftonian in order to describe the observations mentioned be-
anomalous x-ray scatteriig and high resolution x-ray fore. In the first part of Sec. Il we start from a model that
data?” while another x-ray structure determination found involves only electronic degrees of freedom. It is of the ex-
four inequivalent V sites per layer, two of which have simi- tended Hubbard type including intersite Coulomb repulsion.
lar charge. This is a necessary ingredient for a possible charge ordering

An interesting experimental observation is the magnetidransition. Because the on-site Coulomb interaction U is
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much bigger than the intersite interactions and the hopping |
energies one may project to an effective low energy model

involving only singly occupied V-V rungs that are repre- @ *—@

sented by an pseudospi?’~2°This reduced but still purely P ® ® ®
electronic model is of the Ising type in a “transverse field”
where the latter is given by the intra-rung hopping. If this is | S 0. @O t-< Vb,
sufficiently small the model has a quantum critical point [ S— d——mg
where a zig-zag charge ordered ground state of the single tg i UL

ladder sets in. However, due to the geometric frustration of ¢

the Trellis lattice a 2D charge ordered state does not exist at b @@ @@
finite temperature. To describe thé-NaV,0Os phase transi- ® o o ®

tions it is therefore necessary to include spins and lattice a
distortions as additional degrees of freedom.

This is done in the second part of Sec. Il. For a charge FIG. 1. Hopping matrix elements and Coulomb interactions in
ordering at finite temperature the geometric frustration needshe V layers.
to be removed. For this purpose spin and lattice degrees of

freedom have to be involved such that the spin-Peierls Ising},pe calculationd® The Coulomb interactions are expected
transition mentioned above generates inequivalent laddegg pe small due to the large distance between the V sites of
with charge order appearing only on every second laddeheighporing layers. They are also screened by intermediate O
The derivation and physical background of this extendeqyns However, this interlayer interaction should play a role
Ising spin-Peierls Hamiltonian is given at the end of Sec. ll.for the explanation of the devil's staircase observed in the
_In Sec. lIlA we analyze this Hamiltonian by using Cross- , T_phase diagrarit Therefore our initial Hamiltonian rep-
Fisher theory for the individual ladders and an RPA approachesents an extended one-band Hubbard model at quarter fill-

for the coupled 2D lattice. Sec. IIl B describes in quantitativejng  taking on-site and intersite Coulomb interactions into
detail the spin-Peierls Ising phase transition in the 2D Trellisyccount:

lattice atT, which creates alternating sets of charge ordered
(A) and exchange dimerize@) ladders. In Sec. llIC we
show how the evolving charge order on one type of ladder _

- : . H= >
(A) below T, increases the coupling to an exchange dimer- ;s
ization mode on the same ladder. This leads to a second
transition atTc, immediately belowTc; which is respon-

tR(aiTaaj,,+H.c.)+<% tu(al,aj,+H.c)
L

+ > tu@la,+He)+ X th(al,a,+H.c)

sible for the opening of the spin gap observed in the suscep- mn o
tibility.
In Sec. IV we compare the calculated low temperature
. : . + Vgnin, + V| nin;
structure with experiment. With regards to the x-ray structure %;R R %;L L
determination we argue that within experimental resolution
theory and experiment agree. Using this structure we calcu-
. . . o + V, nin, + uni:n;, . 1
late the dispersion of gapped spin excitations parallel and <§>,L I Z T @

perpendicular to the chain direction. The latter contains in-

formation on the charge ordered structure and allows one to , . ,
extract various experimental exchange constants. We find Here (., denotes pairs of nearest-neighbor vanadium
that an additional splitting of spin excitation modes at zonefxy Orbitals while(,)r and(,),_ denote pairs of next-nearest-
boundary points is very well explained within the inequiva- N€ighbor vanadiund, orbitals along the rungR) or the leg

lent ladder model proposed. Finally Sec. V gives the sum{L)- The first four terms describe the effective hopping of the
mary and conclusions. d electrons between V sitdsandj. This hopping can take

place both via oxygen orbitals and sodium orbitals. The last
four terms describe the intersite and on-site Coulomb repul-
Il. DERIVATION OF THE MODEL HAMILTONIAN sion. These terms connect sites as shown in Fig. 1.

At T>T¢, the system is at quarter filling and the V sites
%re all equivalent® Therefore there is an average of one
electron per rung. The on-stfe®? and the intersite Coulomb
repulsion create a charge transfer gap, causihgNaV,0s

To construct a model Hamiltonian we note that accordin
to LDA +U calculation® the orbitals around the Fermi level
are mostly of vanadiund,, character. They are separated

both from the lower lying oxygep orbitals as well as from . h
the remaining vanadiurd orbitals and the sodiums3orbital to be an insulator. Therefore hopping between rungs takes

which lie energetically higher. This means that we have tdolacg only wrtuaﬂy. Th'?’ enables us to. use an effective
consider only the quarter filled,, orbitals. For a discussion Hamilton operatoH pp which acts on the Hilbert subspage

of charge ordering we restrict ourselves to a 2D model ne®f all states with one electron on each rung. itbe the
glecting hopping matrix elements and Coulomb interactiond ilbert subspace Comp|ementary7RJand.P be the prgjector
between the vanadium layers. The former have been show?Nt0 7> andQ the projector onteQ. An eigenstaté yis}) of

to be negligible both by LDA-U (Ref. 30 and Slater-Koster Hpp satisfies
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Hppl ¢S =[PHP—PHQ(QHQ—E,) *QHP][4{)
=Eo| ¢{P). 2

To calculateH pp we need to know the energi&, which
can be either determined self-consistently or, as for a
Schrieffer-Wolff transformation, set equal to the eigenenergy
Ef" of PHP. In the following we are interested ifipp only
to orderO(t?/E), i.e., to second order in the hopping. In this
case we can neglect the hopping terms@QHQ— E), since
both PHQ andQHP scale witht.
Within the subspacé we use the operators, ., ..
for the electrons in the atomic orbitals. Hereenotes the
rung, the pseudospin variabte= + 3 describes whether the
electron occupies the left-(3) or right (+3) V site of a
rung ando denotes the component of the spin. Using these
operators we define the conditional creation operators
At 1 V(1 —n—\(1—n. —aT
Ajae= (1= Nig) (1= Nig) (1= Ni0)a

iao iao

similar to the operators used in thel model®® We then
obtain forHpp
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HereAY andAY are additional energy differences due to the

local change of occupation numbers with hoppirfg,_sZ and

K, describe the most important interactions between elec-
trons on neighboring V sites. They drive the system to local
whereK, Hg, andtg contain spin operator products. It turns rf:ag;f%?j (:I):apcetrggieg\ggu%ifc?éalnxgﬁasﬁpﬁ):;ﬁegggnOlfete
out to be useful to work with spin and pseudospin operator;% . R ) B 9 N y P
zig-zag” short-range “ordering” within a ladder and no

correlations between ladders the/, AY are given by

+ %L (R T+ RE TR, (9

e

1
B ~r = ~
-5 E Q0o O0,0,Ri a0,
2 olog.a 7T AT AY=V,, AY=0, A}l =2V,

= 1 A - ~ N = U: —_ U:
Ti:_ 2 aiTa o a,a,Qia,o - ALD 0. AL Vi AD 0
2 Jag. 0y 1 1427 1@
. A==V, Alp=-V,. (5
In Eq. (3) S; denotes the spin of the electron on flie rung ) o )
> Assuming that we have local “in-line ordering,” they are
and thez component ofT; corresponds tay, so the pseu- equal to

dospinfi describes the hopping of the electron between the

two V sites of a rung. The first term of E(3) describes the AY=V, —V, Al=2v, -2V,
effective interaction between spins on neighboring rungs.
The second_ term describes the hgpplng of the charge pe— AYL=V|L—2VL, AI\_/DZOv
tween the right and the left vanadium site of a rung. This
hopping also depends on spin-spin interactions. The third AV= oy AU—y
9 . . . L IL » D™ VIL»
term andK,, describe the Coulomb interaction between
charges on neighboring rungs. These interactions are modi- AIUL: —V,, AED:O' (6)

fied due to the interrung hopping; thus they contain spin-spin

interactions.R,_x and RLy also result from the interrung-
hopping which has been projected out in the transfer fro
Eqg. (1) to Eq. (3). Within second order perturbation theor
these terms have the following form:

We now make a mean-field approximation for the spin

r‘Q)perator products contained K and?R. With this we ob-
Y tain an effective pseudospin model for the charge degrees of

freedom K =(K) andtg=(tg) become effective pseudospin
coupling constants. This approximation should be acceptable
since the corrections of the pseudospin part due to spin-spin
interactions are moderate.

2t3 2t?
= +
ST \U+AY—EPP T U+AV—EFP

H

. 1
(Sisj—z>,
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With this approximationHpp becomes the Hamiltonian a)
for a strongly anisotropic pseudospin Heisenberg model in an
“external field” 2tr. We calculate the effective coefficients Kiz
tr, K_, K. assuming thatS;S;, )= —2 along the ladders
and(§i§j)=% between ladders. This assumption is based on
the LDA+U results for the sign of the intra-ladder and in-
terladder exchange constarftaie useAY, AY from Eq.(5) Ib
for the case of local “zig-zag” “ordering” and seEgP to be a
the ground-state energy f6tHP. EJ” is then given by the
expression for the ground-state energy of the Ising chain in a
transverse fieltf represented byi:

— )\0 1 T 1 T 1 T 1 T
2\ (7)

(No—1) - + - +
with A o=V /2tg andE the complete elliptic integral of sec- 1= | L= |
ond kind. From the energies calculated in Ref. 30 by - Sij — . T -
LDA +U for different configurations one obtains Thpr 7Tyt T Sij+ T Si-1
IS HB IS HB HB IS HB IS

b) Subsystem 1 Subsystem 2

[1— o
a

EO: 2(2tR)

E

2V|__V||_:0027 ev. (8) R R
. . . FIG. 2. (a) Lattice geometry if one introduces; andT;; opera-
To find Vg we assume that it can be obtained frafm by tors and represents each rung by a paintThe two subsystems of

. 3 . . . .
scaling byd® with the different distanced of the V sites.  yhe model described by EL1) consisting of Ising1S) pseudospin
Using the values for the parameters from Ref. 19, i.e.gng HeisenbergHB) spin chains.

tR:_0172 eV, tL:_OO49 eV, tD:_OOGZ e\/, t||_

=0.110 eV,V =2tr, andU=4 eV, we find the pseudospins with 1D order along thelirection and no
~ correlation between neighboring ladders. This corresponds to
tg=—0.190 eV, a “zig-zag” ordering of V** and \P* along the ladders.
Thus the system is effectively one dimensional, although
K, =-0.677 eV, there are correlations between next-nearest-neighbor
ladders®®
K ,=0.679 eV, In a’-NaV,0s, we have|K,,|>|K,_|. Therefore there is

no phase transition at finite temperatures within the model

described by Eq(10), provided thattz=0 as assumed here.
K. —0.011 eV (9)  Thisis consistent with our choice af¥, AY. This qualitative
Ly= ™ ' result remains true for other choices for the hopping integrals

K., and K., are smaller than the other parameters pyresulting in d|ﬁererl'cKLz, K, , e.g., those obtained from
more than one order of magnitude and will therefore be neLDA in Ref. 30. Fortr=0 the system is therefore close to a
glected. Thus our model consists of Ising interacti6hs,  quantum critical point with a transition from 1D ordering in
K, and a “transverse field” By the b direction to 2D long-range ordéf.

Next we consider the cadg# 0. We note that the total
HamiltonianH, does not imply a phase transition into an
ordered state at any finite temperature. This is due to the fact
) o __ that the first two terms dfl; do not lead to a phase transition
The resulting geometry is triangular, as can be seen in Figas argued above and that the nonzero transverse field sup-
2(a). Note that the first term is antiferromagnetic and thepresses ordering even more. This result remains qualitatively
sec.ond term is ferromagnetic, resulting in geometrical frusyrye if we include the< ., andK , terms from Eq(9) which
tration for the first two terms of E|10). also suppress ordering. It also remains true if we include a

We first consider the casg;=0. For this case the the small interlayer Ising-like interaction. This demonstrates that
relation between the absolute sizeskof, and K, deter- the phase transitions observedaf-NaV,Os cannot be of a
mines the behavior of the systeflf |K,,|<|K, | the sys- purely Coulombic origin: to understand what happens in this
tem undergoes a phase transition at some finite temperatuneaterial at low temperatures we have to include at least the
into a low-temperature “ferromagnetic” state of the pseu-spin degrees of freedom beyond the mean-field approxima-
dospins with 2D-long range order. This state corresponds ttion used above. Furthermore, we know from Raman spec-
an “in-line” ordering of the electrons, i.e., chains of Vand  troscopy that there is a strong coupling between the charge
V>* alternate along tha direction. distribution on the V sites and the distortion of the systém.

If |[K_,|>|K,_| the system remains disordered at any finiteA change in the position of a V sites implies a change in the
temperature. AT =0 it enters an antiferromagnetic state of positions of the O site on the leg of the neighboring ladder.

KL= —0.027 eV,

Hy= >, K,_ZTiZTjZ+<

P > K TiTH+ > 2tRTY. (10)
i i

LI
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The displacement of the O ions can in turn affect the effec-
tive superexchange interaction as observed from experimen-
tal data in Ref. 19.

Therefore we generalize the Hamiltonian from E8g),
such that it contains lattice degrees of freedom. Such a
Hamiltonian has the following form:

> o>

HISSP:iEj R:_JzTiijiz+1j+iEj 2~tRTin+i2j JijSijSit 1

22 = VOt
+g|s§j: Tijeouij+q§:4 wqi Pyo qjPvo.gi

+2 “’gl?bftla,quNa,qurz quijZJR,quOR,qi :
o) @ FIG. 3. Theq, mode is shown, for which the V ion on one leg
(11 and O ion on neighboring leg move together in thdirection as
. ) ) shown by arrows. This causes charge orderingAdadders due to
Here i numbers the rungs on a ladder, i.e., it denotes thg giaggered change of the V on-site energies and superexchange
(pseUd@Splrl on a chainj denotes the ladder/chain in the giernation orB ladders due to O ion motion. In experimeiRef.
lattice, andeg is a unit vector. We have introduced phonon 19 shifts in thea direction are also observed which are not shown
operatorsbgj , by; for the displacement of neighboring V and here.
O ions(VO) and for the displacement of Na or rung O ions hains. This effecti W& is not i identical t
- B - chains. This effective valu€, , is not necessarily identical to
(Or). u andJ; are given by the “true” value of this Coulombic coupling in the material.

-VO  =VO -Na  =Na -Or =G The spin part of the system behaves similar to a one-

Jij= 1+ui+%,jvi+%,j+ui+%,jvi+%,j+ui+%JVH%’]‘ dimensional system at high temperatutés., we can use a
one-dimensional Heisenberg model for each ladder to de-
XJI(T5 T, scribe it. These terms are contained in the third term of

H,ssp- The magnon dispersion at low temperatures inghe

(T3 T2 ) =381+ F(TF 7], direction is much smaller than in thie direction®® even
though interladder spin-spin coupling has a significant
) 1 . R value® Close to the disordered phase, however, interladder
uij=2 —— - exp(igR;;)Q;(Aq), coupling is reduced due to frustration: as far as interladder
A (MN) spin-spin coupling is concerned the system consists of tri-
angles with one large antiferromagnetic and two smaller fer-
Qj()\a)zbaﬁbqj . (12 romagnetic interactions.

On each ladder spin and pseudospin degrees of freedom
H,ssp essentially describes a spin-Peierls model with adare coupled. This coupling is incorporated into the effective
ditional coupling to a one-dimensional Ising chain in a trans-pseudospin coupling, , and the effective coupling constant
verse field. The first two terms describe the Ising model in aJ;; for the superexchange along the ladder.
transverse field, the third term describes Heisenberg chains A shift of V and neighboring O ions is assumed to cause
where the interaction can be changed by lattice distortion oan effective staggered field in thedirection for the pseu-
charge fluctuations. The fourth term ygsp gives the cou-  dospins on one leg of a ladder described by the fourth term
pling between a lattice distortion and an effective field whichof H,ssp. Such a shift also causes a change in the superex-
leads to charge ordering. The last three terms denote thehange for the neighboring leg of the neighboring laddee
phonon dispersions of the lattice modes included in this=ig. 3) which has to be incorporated into the effective cou-
model. The model has to take into account the followingpling constantl;; .
observations. As has been argued in Ref. 19, a shift of the Na ions in the
At T=0 K there is no correlation between pseudospinsc direction alternating along the ladder direction will cause
of neighboring ladders for the pure Ising interaction casean alternation in the superexchange along the ladder. The
Regarding the Coulomb interactions we may therefore treaséame effect is obtained by an alternating shift of O ions on a
the ladders as independent, settlig =0. The pseudospin rung in theb direction. Such terms are included J3 and
part of the Hamiltoniar{3) for each ladder is then described their significance will be examined in Sec. Il C.
by a one-dimensional Ising model in a transverse field yield- The last three terms dfl,s5p describe the energies of the
ing the first two terms ofH;ssp. The property that the important lattice modes. The spin-Peierls coupling contained
Hamiltonian(10) describes a model close to a quantum criti-in the expression fod;; in Eq. (12) is slightly different from
cal point has to be included id,ssp. Therefore we have to the normal form since it is the shift of the intermediate O
use an effective value foK,, which is close to the value ions or Na ions instead of the V ions, which causes the su-
needed for quantum critical behavior of the pseudospin Isingperexchange dimerization. For parameters we will use
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600 ' ' ' to the superexchange. It describes the coupling between dis-
. —— "in-line” ordering tortion, superexchange dimerization, and charge ordering.
I~ ——— "zig-zag" ordering Here we use a mean-field approximation for the pseudospin

operator products. The term causes a competition between
the spin-Peierls order parameter and charge order parameter

on a ladderK, , will be fitted to properly describe the sys-

tem. As argued above, we must Uég, instead oK, , in Eq.
(11).

In this section we have shown that the charge ordering
mechanism may be described by an effective Ising type low
energy Hamiltonian where thitelectrons in singly occupied
V-V rungs are described by an pseudospin. However due to
the geometric frustration of the 2D Trellis lattice a charge
ordering at finite temperature required the extension of the
Hamiltonian to include spin and lattice degrees of freedom.

: : : : The latter may lift the frustration due to a distortion of the
0 0.2 0.4 0.6 0.8 1 . - . .
28, =n,n_ lattice and thus facilitate a combined charge ordering and
dimerization leading to inequivalent ladd&sB as shown in

FIG. 4. Dependence of superexchanh®n charge ordering. the next section.

Results from cluster calculation for two rungs of the same ladder

with parameterég=0.172 eV,t, =0.049 eV,tp,=0.062 eV,V,

=0.344 eV,Vg=0.398 eV,U=4 eV and superexchange defined lll. PHASE TRANSITIONS

as the singlet-triplet ga}?. “Zig-zag” charge ordering or “in-line”
charge ordering was induced by changing the on-site energies wi
€,=€3= —€,=— €, for “in-line” ordering and ;= —e,=— €3

400 -

JIK]

200 -

Now we analyze the Hamiltonian given by Ed1). We
Rave two types of instabilities to consider based on the third
! . , . . and fourth term. The first type results from the fourth term of
=¢, for “zig-zag” ordering. The inset shows geometry of cluster.

The difference in the behavior of the superexchange between th%q' (11) which describes a coupling between local distortions

two ordering patterns comes from the fact that*tp and V| f”md Ch"?“ge ordering. By dlsto_rtlon th? sys.ter_‘n reduces the
£Vp=0. interaction energy. Due to elastic coupling this is also accom-

panied by an alternating exchange coupling on neighboring
- . ladders. The second type results from the third term in Eq.
tg=—0.190 eV andJ,=0.045 eV for the case without (11) which includes a coupling between lattice and spin de-

charge ordering and no distortion. grees fo freedom leading to an instability of a spin-Peierls
The effective superexchange along a lad#iedefined in  type.
Eq. (12) consists of three partsy denotes the original su- In the following subsection we separate the system into

perexchange for the ladder without charge ordering or distortwo sublattices and first treat each subsystem on its own.
tions. The second pardd f(Tf;, T, 1;) describes the influ- Using RPA we analyze in Sec. Ill B the first type of instabil-
ence of the charge ordering on the superexchange. Froity accompanied by charge ordering and superexchange al-
numerical calculations we know that homogenous charge ofternation. We fit the free parameteys andRLz as to obtain
dering on a laddef causes a drop of the effective superex-the proper value off¢; and the shift ofT¢,; in a magnetic
change which is quadratic i), as can be seen in Fig. 4. field. By analyzing the ground-state energy of different or-
The parabolic form of the curve can be understood fromdered states we find that at low temperatures half the ladders
noting that the spectral weight of pair states with two par-are charge ordered and on the remaining half there is super-
ticles on the same rung or the same leg decreases with dxchange alternation.
—(1+ 8co)(1— 6c0) = 825. Analytic calculations show a In Sec. lll C we examine the influence of charge ordering
similar behavior® Therefore JJf(T7,T7,,;) is approxi- on the second type of instability. The distortions of the
mately proportional to'(jz)2 and the square of the distortion charge-ordered ladders change the coupﬁ%ﬁ _V*_Q* L _\]3’

; ; i i+3,] i+3,
accompanying the charge ordering. If we use the EXPENMENL 4 therefore the spin-lattice interaction. It will be shown

V4

persionwy; and the termJgjf(T T, 1) is omitted, essen-

: ! . ijr it/ _ atio

tially making a mean-field approximation with regard to the

spin operator products for this expression.

Finally, there is the essential contribution A. Separation of the subsystems
The Hamiltonian(11) describes a model consisting of two
-VO -VO =N =N -0 > . .
1407°1 ¥7° £ v, T4 R _V_Qel_ subsy_stems 1 and 2 s.hown in Fighbp Both ;ubsy;tems
it itg Titg it g it ity contain Ising pseudospin chains alternating with Heisenberg
i , spin chains. The Ising pseudospin chains describe the charge

XJo[1+F(Ti;, Tiygp)] distribution on a ladder, and the Heisenberg spin chains de-
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scribe the spin on a neighboring ladder. The degrees of free-

dom on each rungif) are characterized by a pseudos?ﬁjp
on rung (j) which is contained in one subsystem and a spin

§ij contained in the other subsystem. The two subsystems 1
and 2 describe the complete spin-charge dynamics of the
Hamiltonian(11).

Neighboring chains of the same subsystem are coupled by
the lattice dynamics. A change of the superexchange along a
spin chain is obtained, e.g., by a displacement of an O ion on
a leg. Via the elastic coupling this causes a displacement of
the neighboring V sitdsee Fig. 3. Such a local distortion
changes the chemical environment and therefore the on-site
energy of the vanadiund,, orbital. This change in energy

corresponds to a longitudinal field for the pseudospin of that c ox%en Vane:ﬁum Soéum
rung. We assume that this fielf: is proportional to the
displacemendy, of the V site of that rung and write FIG. 5. (a) Alternating Na shift in thec direction schematically
shown by arrows causes superexchange alterngtipilternating
hT=2gsdy . (13)  shift of the rung O ions in thé direction causing superexchange

alternation and inequivalence of the Na sites along the ladder.
The two subsystems are coupled due to the dependence of

the coupling J;; on the charge distribution:{TiZj) and  Heisenberg chains accompanied by charge ordering along the
<Tiz+1j>' J;; describes the coupling of spi@ andéHj in Ising chains. This corresponds to shifts induced by the lattice
one subsystem and this term is contained in one subsysterfodedo with qo=2ke as shown in Fig. 3. Within this mode
while (T7) and(T?, ;;) are operators used in the description the V sites on the chains of theladder shift inc direction.
ordering is characterized by nonze(r'ﬁizj) and(TiZ+1j> and sponding to a staggered Iongitud.inal field for the pseu-
the superexchange couplidg along the ladder is negative. dospins of subsystem 1. The leg O ions onBhladders also
With increasing charge ordering along a ladder the effectivehift in thec direction together with the neighboring V sites
superexchange couplingj; decreases as shown in Fig. 4. of the A ladder. This causes an alternation of the superex-

This may change, though, if we include the effect of latticeChange along thB ladder, corresponding to an alternation of

distortions accompanying the charge ordering. We then hav&i &long the Heisenberg spin chains of subsystem 1. Apply-

to deal with a combination of effects dy as argued above. M9 the results of Cross and Fisher and using RPA for the
We first consider Eq(11) for each of the two subsystems ©ffect of the pseudospin-lattice coupling one obtains
separately and then discuss the combined ordered ground ~5 5 S )
state. We can make a Wigner-Jordan transformation of the wq0=wq0—0.zdgvo(q0)| T = 4disxq,(T), (19
spin operators of a subsystem to obtain spinless fermions . . .
describing the spin degrees of freedom. ket 7/2b be the Whe_re the last term describes t.h?. influence (.)f the I§|ng
Fermi momentum of these spinless fermions wheie the ~ Chains. Heréxy(T) is the susceptibility of the Ising chain
lattice constant in the direction. due_ to a Iongltuc_jlnal field _along the d|_rect|on. Ovo de-
For a single subsystem, e.g., subsystem 1, alternation GC"Pes the coupling of a shift of the V sites on the superex-
the superexchangd; along the Heisenberg chains can bechange of the neighboring ladder via a shift of the O site.
obtained by shifting the Na ions alternatingly in thelirec-

tion or by shifting the O ions on the rungs in thalirection B. The phase transition atTc;
as shown in Fig. 5. Applying the result of Cross and Fiher We know from experiment that the phase transitiof &
we arrive at renormalized phonon frequenciesder2ke : in a’-NaV,Os is accompanied by charge orderfgVe
~> B S therefore first consider Eq15). We can takeg for the qq
®3k. 05~ @2k .0~ 0-28290(2Ke)[*T ™, mode in Fig. 3 directly from the results'th
~ X
w%kF Na— w%kF Na 0.quNa(2k|:)|2T71. (14) ggO: \/zaz F’J =7.884X 109 Ks™ 1/2 (16)
0 my dy

The coupling of a shift of the Na ion to a superexchange

alternation is smaller by a factor of 2, because a shift of thavith dy=6.0768 pm being the square root of the average of

Na site in thec direction affects the superexchange only onthe squared shifts of the V sites on the A ladd#’=0.26

one two-rung cluster whereas a shift of the rung O site in théhe exchange dimerization along the B ladders for layer

b direction affects the superexchange on two neighboring=522 K, andmy the V ion mass. The large exchange

two-rung clusters. dimerizations$*® has been obtained in Ref. 19 from a Slater-
For a single subsystem, e.g., subsystem 1, there is also &woster-approximation for the distorted phase: It is mostly

instability towards superexchange alternation along thelue to the shift of the oxygen atoms along the leg of Bhe
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ladders. We also need to obtaip(T). While this is very
difficult for general values of, it is facilitated considerably
when q=(qg. In this case the effective field for the pseu-
dospins due to the lattice distortion is staggered in the

PHYSICAL REVIEW B56, 165108 (2002

B 1
XqO,A=oc(T):ZeXF{§:8KLZ) (22

and

direction. The Ising chain has an antiferromagnetic coupling

K. ,>0 along theb direction. CalculatinquO(T) means

therefore to calculate the susceptibility of an antiferromag-
netic Ising chain in a transverse field for the application of an

infinitesimal staggered longitudinal field. This is equivalent
to calculating the susceptibility of a ferromagnetic Ising
model in a transverse field for the application of an infini-

qu,)\=0(T): (23

1
tanl‘(zﬁ(ZtR)).

Both expression$22) and (23) are equal to the exact solu-
tion in these limits which implies that thigq  should be a

2(2tR)

tesimal constant longitudinal field. This susceptibility can beréasonable approximation for all valuesifWe can there-

expressed via the pseudospin correlation functioz, T)

Xa(T) = Bllm 2 phoj (N T), (17)

where pfi_; (N, T)=(T{T)(\,T) and B=1kgT is the in-
verse temperatura.= K /4t is the ratio between the pseu-

fore in principle calculatelc; from Eq. (15) knowing g;s,
Wqy» and\ by simply settmgwqo:O.
We can find wg, from measurements of the elastic

constantﬁ?’ There a strong anomaly in thess mode of
a’-NaV,05 was observed at the phase transition tempera-
ture. This mode couples to a zig-zag-like charge ordering and
we therefore identify it with thel, mode of the present cal-

dospin interaction and the transverse field and determines thgilations. Using the high-temperature value for the sound

properties of the Ising chai.=<« corresponds to the Ising
chain without a transverse field,=0 to the paramagnetic
limit.

For an Ising chain in a transverse figi(\,T) can be
written in the form of a Toeplitz determinafit.For largen
acccording to Szeégtheorent' we have

1
pﬁ(k,T)=ZP(>\.T)G”(>\,T), (18)
where expressions fd&?(\,T) andG(\,T) are found in Ref.
42. Some simple limits are given below. To obtq:i(pO(T) we
assume that the asymptotic expresdid8) is correct for all
n. With this assumption summation of the seri&3) yields

G(\,T)

ﬂp( T)T()\T) (19

Xag .\

The approximation is expected to be correct close to the

guantum critical point, i.e., close to=1 atT=0, since then
the susceptibility and the correlation length diverge. How-
ever, we can obtaiP(\,T) andG(A,T) for the case\ =0,
i.e., the pure Ising chain, from R&.as

Gy _..=tanh Btg\). (20)

WhenA =0 we are in the paramagnetic regime and find

— (1_)\2)—3/4:
R

2Bt
G—o=\{tanH Btr(1+)\) Jrexp{(2mBtr) M2
xexd — Btr(1—\)]---}=0.
With these expressions we can calculggg(T) in the limits
A=, 0 and find

(21)

velocity ves=4200 m/s we estimateq = mves/b=279 K,

whereb=3.611 A is the lattice constant in thedirection
for the undistorted lattice.

Wheano is known we obtainn andg, by fitting them to
Tc1=34 K and to the experimental value of the shiftTof;
in a magnetic field. The latter is reduced from its standard
spin-Peierls valu¥ due to the Ising part of the transition.
This is seen as follows. Considering only the spin-Peierls
part of the transition, applying a magnetic field lowers the
transition temperatur@-;(H=0) without a magnetic field
to a valueTH;P. On the other hand, the Ising chain suscep-
tibility qu,x(T) increases with decreasing temperature. This

causes an increase of the critical temperature fight" to
the observed phase transition temperafigg(H)>TH;5"in
a magnetic field.
The expansion foffc; in a magnetic fieldH for a pure
spin-Peierls system4$
=- 0.36(

Due to the influence of the Ising part this expression is
modified to

Te1(H)—Tei(H=0)
Tci(H=0)

_omeH
kgTci(H=0)

2
) . (29

Tc1(H)_T21:_03 ppH :
Te1%(0) ke TE4%(0)
TH Is (9g.)?
> = (0)=0.8 (25
q eﬁ[T01(H)]
in the present case with
0§ el Ter(H) 1= 0f —4dfxq \[Tea(H)]. (26)

For small shifts this leads to
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Tey(H)—Tea(0) 0.36 ( mgH )2 10 ' T~/ '
Tca(0) 1+Tc1(0)a[Tca(0)] | kgTe1(0) E /
(2 8 o 8 12)_8 () // 1
with /
/
6 I _
—_— /
- 49t dxg, A (T)/dT] vy = /
a(T)=- . =
wg —4g|25)(q0’>\(T) ;if 4t /// _
From the experimental result for the shift©§;=34 Kina 5 /
magnetic field in Refs. 4,25,24 we obtaia(Tcy) 2r S A
~0.086 K !. Fitting g;s and\ to these two values we ob- //
tain 0 7
N =0.99850,
-2 1 I L
91s=1.688 K/pm shift of V). (29) 0 0025 NN 0075 01

T

Note that this value fok is close to the value for the ratio )

K, /K. ,~0.997 from Eq.(9). This indicates that geometri-  FIG- 6. Ground-state energy gadF of the ordered system
cal frustration plays an important role. To see how stable thyersus the disordered system depending on the order parameters.

solution is towards a change of the parameters, we evaluate gifies th | f h d f
the dependence dfe, on Ksz vqy andg,. modifies the energy gain resulting from the spin degrees o

freedom due to distortions and it is this effect we have to
consider now. Using the expression for the magnetic energy

ITcy ~1.06, gain from Ref. 12 for the alternating Heisenberg chain we
K, can write down the energy gaih~(T=0) of the ground-
state of the ordered system versus that of the ground-state of
dTey the disordered system. The dimerization parameter of the
Fr —0.14, Heisenberg chaing{M(?) with 5§ (2)= Jg. Q1,2/J from Eq.
° (16) is the order parameter for each of the two subsystems.
dTcy Q=dyvmy/# is the canonical displacement. We find
79 =12 pm. (30
N ~ dF(T=0)=b(Q%+Q%) —Esp(Q1)(1—4(T5)?) — Esp(Qy)
Tc1 Is rather sensitive to small changeskf, or A. This )
sensitivity is due to the fact, that (I\)<<1. It is much less X(1=4TD* —29s(THQ1+(T2)Q2) (32
and the stability therefore much improved compared to the .
result presented in Ref. 29, wheie~0.99986 was sug- with
gested.
Next we include the coupling between the two sub- b—l 2
. . . = s Wq ,
systems. For this we will use the mean-field values for 2 %
(Ti)(Ti}1j)- They are zero &l ¢, and therefore the critical
temperatureTCl remains unchanged in this approximation. Esp(Q1)=0.3134( 8§ (2)48,

But a mean-field approximation is not reliable close to the

critical point of the transition where fluctuations must be

taken into account. We therefore consider the zero tempera- -

ture free energy of different ordered states. For this we geed (T12= 2{1 e 33
the dependence of the superexchadfealong a ladder on
the charge ordering order parame(t@f) on the same ladder.
This is approximately

Here we assumed that* approaches exponentially if a
staggered parallel field,sQ is applied. In Eq(32) Egp de-
notes the energy gain from the spin-Peierls distortions, while
Je_ff:Jij 1_4<-|-_2>2), (31) the terms proportional tg,; denote the energy gain from
charge ordering. The first term stands for the elastic energy
where we neglect a small contribution 3§ from the diag-  of the distortion. Optimizing Eq(32) in 8" ®e[0,1] we
onal hopping in the case of complete charge ordering on theénd a minimum até(l)—o 023, 62)=0 or vice versa with
ladder, i.e., for(T) 3. As argued at the end of Sec. 11 dFE=-0.80 K. Requ|r|n95(1)_5 )=5,, i.e., the equiva-
enters our equatlons in two places. First, it effectlvely|ence of the two subsystems we find;=0.009 with
changeswg  through Jof (T, T7, ;). Since we usedv,  dF=-0.35 K. We have plotted in Fig. &F for &{")
from experiment, this effect is already included. Seco]‘,?JH, =& and 62=0. In the previous calculations we used
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55P=0.26 to obtairg,_, so the first result is more consistent %0 ' ;

with our calculation than the second one and it also has the L A
lower energy. 1.768

From the derivation ofy,s we can obtain the bare corre-
lation length along the Ising chains as

50

1
Eis(T)=— NG’ (34

Ter [K]

At T, we find thaté,,~183 lattice constants. This large
value of £, might offer an explanation for the strong depen- 40
dence ofT¢; on doping. By substituting Na with Ca or de-
pleting the system of Na additional electrons/holes are intro-
duced into the system. This implies double/zero occupancy T
of rungs. They weaken correlations along the Ising chains. A
rough estimate of the critical doping value at which the 4 . . . . .
phase transition temperatufe, is suppressed is-~0.5%. 0 0.2 0.4 0.6 0.8 1
We obtain it by assumingc&,s~1. This value is in qualita- 28co=n,—n_

tive agreement with experiment. Substituting Na by Ca the
transition disappears between 1 and 2.5% ofTeor hole
doping due to Na deficiency the transition disappears b

FIG. 7. Tsp dependence on charge ordering for a spin-Peierls
transition due to alternating shifts of the rung O ions on fe
Cadders in theb direction. Dimerisation of hopping matrix elements

tween 2 and 3% demienéﬁ' for a shift of 1 pm given bys; =0.090 ands; = —0.059.X mark
conditions(i) and(iii) (see text The increase of gp for small 5o
C. The phase transition atT¢, is due to increase of the effectiv® resulting from increase of the

Next we consider the second phase transition observedl®PPINg matrix elements due to the distortion accompanying the
According to Ref. 5 this transition is of the Ginzburg-Landau"/9¢ ordering. The decrease for ladg, is caused by the de-
type. It opens a spin gap and creates a local distortion at thg®ase of the average superexchaiges shown in Fig. 4.

Na sites as observed from the changes of the quadrupolar i ]

electric field tensor. Charge ordering at the V sites start$t, and&tD we can find the superexchange alternation param-
before this transition sets iRef. 5. For these reasons and in eter §; by calculating the superexchange for the inequivalent
order to explain the observation of eight inequivalent Natwo-rung clusters? This gives us an approximate value for
sites in?*Na-NMR (Refs. 5,47 we suggested in Ref. 19 that the spin-lattice coupling. Using it, the parametrizgd tp,

the opening of the spin gap in the system is due to an alteandtg from above, and Eq.14) for the critical temperature
nating shift of the Na ions along the charge-ordefethd-  we find Ts 5co) for a spin-Peierls transition depending on
ders as shown in Fig.(8). A second possibility is an alter- the charge ordering:

nating shift of the rung O ions on th&ladders as shown in
Fig. 5(b)'. . . . . KgTse dco)

By using the hopping matrix elements obtained in Ref. 19 =
for the charge-ordered ladder in layer a we can calculate the

effective superexchangkedependence on the charge orderingWe can estimate the valugg, from the velocityv ., of the

dco on the same ladder. As we did for the undistorted ladders . : o
(che Fig. 4 the superexchange is defined by the singlet-czz mode in Ref. 43. It describes a longitudinal mode along

triplet gap on a two-runa cluster. It is obtained via exacttheb direction as required for the proposed shifts of the rung
Ipiet gap o 9 - O ions withv,,=6500 m/s which yieldsvy,=432 K. For

diagonalization. We know from experiménhat J~440 K . ;

. . given values ofs; and g, we obtain the dependence of the

in the low-temperature phase. This valueJaforresponds to N L D )

an incomplete charge orderin%(): 1(n,—n_)~0.32 on _crlthal temperaturd gpon the chargg o_rderm@CQ as shqwn

the A ladders in agreement with experimént. in F|_g. 7. In the Iow-temg)erature limit the spin gap is ap-
The hopping matrix elements, tp , tr change due to the Proximately given byA(‘Sco)“l-STSF(‘S?:Og- Therefore the

distortion accompanying the charge ordertfighe param- BCS ratio is enhanced by a factor 8&«(Sco)/ Tea-

etrize these changes with(Sco=0)—t(Sco) * Sjar™ Sco, We search for values af; andé,_ for which the follow-

and normalize the prefactors such that the hopping matrixng conditions are fulfilled(i) Without charge ordering the

elements from Ref. 19 for the high temperature undistortedritical temperature for such a transition is below 34 K, since

ladder are obtained ai-o=0 and those for the charge or- the spin gap opens only below the charge ordering tempera-

dered ladder are obtained &¢o= 62. ture. (i) With increasing charge ordering the critical tem-
Due to alternating shifts of the rung O ions or the Na ions perature is required to increase, because an enhanced BCS

the effective hopping along the lég and the effective diag- ratio has been observedii) At §co= 62, the spin gap

onal hoppingt, alternate also. The size of this is given by A(8co)~1.8Ta (62, should be approximately 100 K as

the parametes; _=(ty°—t=°)/(tYP+tP). If we know  found experimentally.

0.6 290 5c0)

.8 . 35
‘J( 5CO) 7TJ( 5co) wéx ( )
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TABLE I. Change of hopping matrix elements for an alternating on effective V-V hopping matrix elements. However, it has
Na shift in thec direction, an alternating V shift in thie direction,  been argued in Ref. 30 that direct hopping between the O
and an alternating shift of rung O ions in thedirection, respec-  sjtes should also contribute to the effective Hamiltonian. It
tively. Shift is by.l pm per site on an otherwise undistorted ladderremains unclear which fraction of the total O-O hopping ma-
The accompanying change of the superexchange has been calay elements obtained in Ref. 30 results from direct hopping
lated as the singlet-triplet gap on a cluster of two neighboring rungs,,q which fraction comes from indirect hopping via the
of a ladder(Ref. 19. neighboring Na site. To investigate the effect of such a hop-
ping on the shifts of the rung O ions we introduced O-O

8= % 2N 5J:% hopping matrix elements according to the Slater-Koster ap-
D+ T 'D- + 0 proximation for into the initial Hamiltonian and calculated

Na shift in the effective V-V hopping matrix elements as before.
¢ the direction 00105 —00135 00035  One findstg=—0.17 eV, {, =0.17 eV, tp=—0.04 eV,
V shift in the t,,=—0.16 eV. Introducing an alternating shift of the rung
b the direction 0.0236 0.0136 00347 © ions in theb direction by 1 pm leads t@ﬁ0.00S and
Rung O shift 5tD~0.1 as given in the fourth row of Table I. The effect
in the b direction 0.0072 —0.0093 —0.0016 especially on the diagonal hopping is much stronger than it is
Rung O shift without inclusion of the direct O-O hopping matrix elements.
in the b direction with However, these values for andt,, are far from those found
too included 0.102 0.003 0.096 by LDA (Ref. 30 andab initio methods'’® One can therefore

conclude that at least within the Slater-Koster method the
contribution of the direct O-O hopping should be small as
The result is found in Fig. 7. The conditiofis—(iii) are  expected for next-nearest-neighbor hopping, although it may
fulfilled for 6, =—0.059, & _=0.090, and with T, help to explain the small differences between the LDA re-
=34 K an effective BCS ratio of 6.05 is found. We therefore sults of Ref. 30 and our results in Ref. 19. The results from
have a spin-Peierls phase transition which is driven bylable | can serve only as an estimate of the values of the
charge ordering on the same ladder. When the first transitiofpin-lattice coupling.
takes place at abolic;=34 K charge ordering sets in on In this section we have investigated how the model
the A ladders. This changes the two-particle correlation funcHamiltonian of Eq(11) leads to two consecutive phase tran-
tions and the effective hoppings so thBip increases as sitions. First afTc; a combined spin-Peierls Ising transition
compared with its value without charge ordering. At someleads to inequivalent exchange dimerized and charge ordered
temperaturel c,<Tc; we haveTsd dco(Teo)]=Te, and a  ladders which removes the geometric frustration of the Trel-
spin-Peierls transition driven by charge ordering takes placdis lattice. The increasing charge order on théadders en-
This is caused by an alternating shift of the O ions on théhances their effective coupling to a dimerization mode con-
rungs of theA ladders, probably together with a small alter- nected with the Na shifts which leads then immediately
nating shift of the Na ions along tha ladders. This also below atT¢, to another dimerization transition on th
causes an inequivalence of the Na sites along the A ladderdders which opens the spin gap.
such that we have eight inequivalent Na sites as observed in
experiment!’ Since this happens befos, attains its final IV. COMPARISON WITH X-RAY DIFFRACTION
value, the spin gap at lower temperatures is larger than what =~ AND NEUTRON SCATTERING EXPERIMENTS
would be expected from the standard BCS ratio @ggl.
In order to see whether the values fﬁlrL and &, are

In the following we compare our results with experimen-

. . . . tal observations. We do this with respect to two types of
plausible, we have investigated the effects of altemat'n%xperiment: x-ray structure determinatiént® and inelastic

shn‘tg of the rung O or the Na. sites on the effective hOp.pin%eutron scattering results for the magnon dispersibwe
matrix elements between V sites on the_laddgrs. For this Wgompute the latter for the calculated structure by using a
use the SIatgr-quter method as described in Ref. 19. Thl%cal-dimer approximation. We do not consider the Raman
results are given in Table I. Those foy and 5, have been g yro5copy experiments here, in which a sharp peak at
obtained for otherwise undistorted Iadde&L. and o, are 65 cmtis observed? This peak might be due to a charge
found to have opposite signs, as assumed above. This can tyansfer excitation for which the interladder Coulomb repul-
understood by noticing that an increase of diagonal hoppingion and the resulting two-dimensional character of the exci-
due to increased hopping via the Na sites goes together wittation play a significant role.
a decrease of the hopping along the legs of the ladder. The Comparing our results with x-ray structure determination
effects of charge ordering distortions and of the shifts of Nawe find good agreement. In both cases we have a superstruc-
or rung O sites on the hopping matrix elements are smallture consisting of two inequivalent ladder types alternating
Therefore we may neglect higher-order effects resulting fronalong thea direction: charge-orderedl ladders and strongly
combinations of the distortions. dimerizedB ladders. A phase with twé ladders separated
The results in the first three rows of Table | are based orby a B ladder is also correctly found. We can explain these
Ref. 19, where we included V-O, V-V, and Na-O hopping findings with the analysis given in Sec. Il B: the displace-
matrix elements in the initial Hamiltonian, projecting thesement of the V sites on tha ladders and of the O sites on the
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FIG. 8. Geometry of initial magnetic Hamiltonia(86). J. FIG. 9. Geometry of effective magnetic Hamiltoniéd¥). 1 and
=J(1%6) for the respective ladder. 2 denote the two spins of a dimel, andJp denote the effective

superexchange between spins in théadder via theB ladder for

B ladders cause a combined charge-ordering-spin-Peierlgarest interladder neighbors and next-nearest interladder neigh-
transition. bors. \,, sites with increased electron density denoted by black

X-ray structure analysis findEmm2 symmetry in the circles, \,, sites with decreased electron density by white circles.
low-temperature phase. In our model this symmetry is real-
ized forTg,>T>Tc,. However, the phase transitionBt,  perature well belowTc,. In order to do this we use the
obtained for our model in Sec. Il C is accompanied by aspin-dimer representation following Refs. 50,54,55. The ini-
breaking of this symmetry. It results from the shift of the tial magnetic Hamiltonian is then
rung O ions on the A ladders, as shown in Fig)5A low-
temperature spin gap df~100 K on these ladders requires _ _nisa& &
a superexchange dimerization of about 0.05 whén : i;« Il (= 1)0n)S Sy 41
=2J63" from Ref. 12 is used with the experimental value

for J=440 K. The coupling constant af2,=0.32 is ap- + Jp(14(-1)169)8; S0+ > IS8,
proximately 0.043 per pm shift of the rung O ion. This cor- icB (ij,mn)

responds to an actual shift of 1.1 pm of each rung O ion on (36)
ladderA.

The intensity of the x-ray scattering for small scatteringfor a geometry andj{"™" as shown in Fig. 8. It describes the
angles is proportional t@? where Z is the ionic charge. Pure spin part of Eq(11) with the effects of lattice distor-
Below T, only one O ion per two formula units shifts its tions and pseudospins included within the effective coupling
position to break th&&mm2 symmetry. In addition as esti- constants. The large value 6§~0.26 atT=15 K found in
mated above these displacements are smaller than the digef. 19 corresponds to a large gap in the excitation spectrum
placements caused by the phase transitiohaatand below, ~ Of the B ladders. Using\g=2Jg383" for the spin gal¥ and
where a displacement of 7.46 and 4.26 pm for the V sites odg=52 meV from Ref. 19 we find\g~38 meV. TheB
the A ladder is found experimentally. It is therefore well ladders should therefore not contribute directly to the low-
possible that the scattering peaks resulting from the lowelying parts of the magnon dispersion. Since we are only in-
symmetry cannot be observed within experimental resoluterested in these, we assume that we have an indirect ex-
tion. Insofar x-ray structure determization results do not conchange coupling betweeA ladders through the virtual
tradict our theoretical results for the second transition. singlet-triplet excitations of th® ladders. This results in an

Magnon dispersion, however, should be greatly affecteffective Hamiltonian
by a dimerization. The structure which is obtained after the
two transitions have taken place is schematically shown in 4y _ i 2 & -

Fig. 8. The calculated magnon dispersion for this structure H HE«/ Jall+(=1) 5A)S”78”+17+% JaSii S+ 1)y
should therefore be a good test of the theory. For other sug-

gested structures it was found that the corresponding magnon +2 J 3 (é ) +3 . )+2 J 3 é_f
dispersion disagrees with experimental results: in the case of iy PRy Ty D Ly Ty Y

a lattice with zig-zag charge order on all ladders and assum- 37)

ing identical exchange alternation on all ladders and a pos-

sible exchange anisotropy the dispersion alongatwirec-  with corresponding geometry and couplings as shown in Fig.
tion does not agree with experimetftsA theoretical model 9. This exchange Hamiltonian exhibits manifestly a doubling
using charge ordering and different exchange alternatiof the period along the axis. Here we also introduced a
along all ladders has been considered in Ref. 3. For the spirsuperexchangéd, in the c direction between layers; it is as-
cluster model proposed in Ref. 18 the magnon dispersionsumed to exist mainly between the,\sites which lie di-
both in thea andb directions, do not agree with experiments rectly above each othéf.We therefore have/= +1: Along
either>1~3 the ¢ direction the V sites of the\ ladder are ordered as

We therefore calculate the magnon dispersion at a tem- - —V,;—Vy;—Vy—V,o—- - - as shown in Fig. 16772 Next
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FIG. 10. Unit cell of low-temperature ordered state. AlongAhe
ladders one has pairs of,Vsites (black circle$ alternating with
pairs of \,, sites (white circles in the c direction. J. therefore
connects two layers, y only. For such two layers, dimers on tAe
ladders are assumed to lie directly above each other i theec-

tion.

we introduce dimer variables. We denote each dimer within
the A ladder(see Fig. 9 by coordinatesj y, which are not 1 1
|dent|cFiI V\./Ith the former coordlrlwzites of the spins. As. de- _ ZJA(1_5A)MEMG+1+ ZJaMﬁM_
noted in Fig. 9 we then have spifS ;.. The dimer vari-

ables are then

With those,

1 . -
H:ZJA(1+5A); Kij‘yKijy_Lij'yLij‘y
Y

Kijy=Sijy1t Sijy2.

I:ijy:éijyl_éjﬂ- (39

Eq(37) takes the form

>

>

1 L. -
+ ZJA(l_ 5,0; KijKij+1,— LijyLij+1y
Y

1 . .
+23a2 KijyKitajy = Lijolivajy
11y

1
+ZJD

% (Kijy=Lij) (Kis1jy= Ciajy+ Kivgj1y

PHYSICAL REVIEW B 66, 165108 (2002
—Lit1j+19) +(Kij,+Lij ) (Kiy 1y, Ligaj,
. ) 1w o o -
+Kit1j+1ytLivajr1y) T E‘]C; Kij,Kij5 T Lij,Lij 5 -
Y

(39

As in Ref. 50 we will only use the products; ,L ,, , since
the other terms do not contribute to the dispersion of the spin

excitations. We then transform theto

Liy=—=(M; =M;). (40)

Furthermore we assume that the ladder designatediby (

+1,y) is equivalent to the laddei (y). This corresponds to
a geometry of theA ladders shown in Fig. 10. We therefore
set Ljj,=Li,1j;, and separate the Hamiltonian into two
parts:

ivT

__E _ YRR VEs
Hu+ == 7[3a(1+ 6a) = JcIM;; Mjj

1

1 I
- Z‘]A(l_ﬁA)MierMier+l_ 2

S
JaMij My

1 N I
_EJD(MJMiilj—i_MiYMitrljJrl):

1 -
HM*:_Z[JA(1+5A)+‘]C]MU’ Mij

i+1j

1 . N
~ 5 I0(MijMi g+ MMy gj50)- (41)

The first term of each Hamiltonian describes an effective
dimer with interaction strengtbis(1+ 85) +J. . Its dynami-
cal susceptibility is

2[IA(1+54)FIc]
[Ja(1+ 80 FI]2—w?

Uzp(©) = 80 Buxt Oay) (42

The dynamical RPA susceptibility of coupled dimers without
anisotropy of the superexchange is given by

X(0,0)=[1= () U @) ] (@), (43)

wherel is the exchange term between dimers as given by the
last four terms oH,,. andH,,_ . After Fourier transforma-
tion theseJ* for Hy,, andJ™ for H,,_ are given by
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L. 1
J7(q)= EJA(l— dp)C0s X,

1
* | 5 Jacos ky—ky) —2Jpcosk,cosky | . (44) 105

Herek,=2mq,/a, ky=2mq,/b with a andb being the lat-
tice constants of the high-temperature unit cell. We note a
doubling of the unit cell in thé direction as required before
by Eq.(37). The spin-wave excitations are obtained from the

poles ofX(ﬁ,w). With Egs.(42) and (44) we obtain

|

mev

El

0% =[Ia(1+ 8p) FII?—[Ia(L1+ 84) FIHIA(L— 5n)

X c0s Xy *[J,cogky—ky) —4Jpcosk,cosk, |}

(45) 0 1 2 3 4 5

We setJ§ﬁ=Ja—4JD andJ,=440 K, as used in our previ- Q

ous analysis and Obtaeif?ed from experim%ﬂl'hen We. fit the FIG. 11. Magnon dispersion along tkedirection for g,= 3
unknown parameterd;”, J., and Sp _to the experimental —QLF (solid line9 and q,=1=QZC (dashed lines Experimental
values for three of the four gaps obtained fram andw_.  \gjues from Ref. 3.

These gap values have been observedTier4.2 K at gy

_ . _ _ 3 e

=0, q,=3, andq,=0, q,= 1> Fitting three of the four gaps  ¢|yde that the additional zone boundary splitting of spin ex-

of sizes 10.9, 10.1, and 9.1 meV we obtain citations observed in Ref. 3 is well explained within the in-
31=0.212 mev, equivalent ladder model.

J.=0.431 meV, (46) V. SUMMARY AND CONCLUSIONS

S.=0.0310 In this article we provided a theoretical description of the
AT ' phase transitions in’-NaV,0s. In Sec. Il we started from a

This determines the fourth gap to be 8.14 meV which is insingle band extended Hubbard model describing the hopping
excellent agreement with the experimental value 8.2 me\wf electrons between V sites. We projected this model onto
from Ref. 3. In the model presented here these spin gapan effective spin-pseudospin Hamiltonian similar to that in
result from the assumed dimerization of the charge ordared Refs. 27-29. Using parameters obtained from a previous
ladders whereas previously the origin of the spin gaps wa$later-Koster analysis and findings of LBAJ we argued
suggested to lie in an anisotropy of the superexchah@ee  that within the given model a phase transition cannot occur
dispersion ofw™ along thea direction forqy= 1,1is shown from Coulomb interactions only: the effective lattice for such

in Fig. 11. These curves also agree with experiments. a transition is triangular and its geometric frustration sup-
The low value of‘]gff which causes the dispersion along

the a direction is due to an effective coupling of next- 60 ' -

nearest-neighbor ladders. Furthermalgjs partly compen-

sated due tdp couplings. 50
The value forJ., which causes the gap between the two

modes, corresponds to a hopping=0.021 eV between 40

neighboring V sites of neighboring layers whég= 4t§/U —
andU=4 eV are used. This is in reasonable agreement with E’ 30
the valuet,=0.015 eV found in Ref. 19 from the low- m
temperature structural data by a Slater-Koster approximation.

We can also obtain the approximate dispersion inlhe
direction forq,=0 as shown in Fig. 12. The maximum is at
w~55 meV and agrees nicely with the value.y
=59.5 meV estimated in Ref. 2 from experimental data.

In this section we have shown that the results of our 0
analysis in Sec. Ill agree well with the experimental results
of x-ray structure determination. Furthermore we have inves-
tigated the dispersion of spin excitations in the ordered state FiG. 12. Magnon dispersion along thedirection for g,=3.5.
parallel and perpendicular to the chain direction. From ComExperimenta| values from Ref. Rircles and Ref. 56(5quare}5
parison with results of inelastic neutron scattering exchang@bove 20 meV the dispersion of the disordered and strongly dimer-
and dimerization parameters have been obtained. We cofired B ladders becomes important.

0 0.25 0.5 0.75
G
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presses charge order, a distinctive feature which is present i#¥Na-NMR >4’ not only six as would be the case in the
the observed transition. We therefore constructed a minimakFmm2 symmetry indicated by x-ray structure determination.
microscopic model based on a spin-pseudospin Hamiltonian This also helps to explain the discrepancy between mea-
which incorporates the coupling between charges, spins arslirements of the critical exponent of the lattice distortioh
the lattice. and of the critical exponent of the spin gap operfiniye

In Sec. Il we analyzed this model with regard to phaseformer is smaller than the latter whereas one would expect
transitions. We divided the model into two subsystems. Eacthe opposite for a single transition dueAe 53 . From the
of it describes the charge degrees of freedom on the rungs observations of a logarithmic peak in the specific hedtat
half the ladders and the spin degrees of freedom on the oth@nd the observation of fluctuations by x-ray diffuse
ladders. For each subsystem we find an instability towards cattering" we conclude that the transition @, is mainly
transition atT¢; which causes “zig-zag” charge ordering Of 2D Ising character whereas the second transitiomat
and superexchange dimerization. With this combined spinwhich opens the spin gap, can be described within a mean-
Peierls-Ising transition we can explain the anomalous shift ofi€ld theory. Since the charge ordering is not complete, when
Te, in @ magnetic field. It is reduced from its normal spin- the second phase transition is triggered, the coupling con-
Peierls value due to the influence of the charge ordering. Byt@nt further increases for decreasing temperatures. This
calculating the free energy @t=0 we found that the system eads to.an additional increase of the_spln gap and also of the
should enter a phase where half of the ladders are “zig-zagBCS ratio. The conventional BCS ratio does not account for

charge-orderedA ladders, while the other half B ladders the temperature dependence of the coupling consgiht
shows a strong superexchange alternation. The reason for Within experimental resolution we find agreement with
this asymmetry lies in a competition between the order pathe x-ray structure determination. The second transition
rameters for charge ordering and superexchange dimerizatidimeaking theFmm2 symmetry comprises only a small shift
due to a shift of the leg O sites on the same ladder. Thi®f every tenth O site. We also find excellent agreement with
explains observations of x-ray structure determination. Duexperimental results for the magnon dispersion at a tempera-
to the strong effect of the one-dimensional Ising chains weure well belowT .
can also explain qualitatively the strong dependence of the In conclusion we presented a microscopic model for
transition on depletion of Na or substitution of Na with Ca. a’-NaV,O5 which yields two phase transitions close to each
By analyzing the coupling between superexchange dimerether. The first is a “spin-Peierls-Ising” transition causing
ization and lattice distortion in the charge-ordered ladders weharge order and superexchange dimerization. The second is
found that another transition is induced. Charge ordering ina pure spin-Peierls transition triggered by an increase of the
creases the coupling between an alternating shift of the @oupling constant due to charge ordering. With this model
sites on a rung and the superexchange alternation beyond the can explain qualitatively and quantitatively a number of
threshold value of a second transition &t,. The system experimental observations, i.e., the existence of two transi-
then enters a phase where the charge-ordéselddders tions, the general structure of the low-temperature phase, the
dimerize and a spin gap opens. Due to the alternation the Nanomalous shift offc; in a magnetic field, the anomalous
sites along theéA ladders become inequivalent, such that weBCS ratio, the strong dependence of the transition on doping,
have eight inequivalent Na sites as observed inand the observed low-energy magnon dispersion.
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