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Stability of a metallic state in the two-orbital Hubbard model

Akihisa Koga, Yoshiki Imai, and Norio Kawakami
Department of Applied Physics, Osaka University, Suita, Osaka 565-0871, Japan
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Electron correlations in the two-orbital Hubbard model at half-filling are investigated by combining dynami-
cal mean field theory with the exact diagonalization method. We systematically study how the interplay of the
intra- and interband Coulomb interactions, together with the Hund coupling, effects the metal–insulator tran-
sition. It is found that if the intra- and interband Coulomb interactions are nearly equal, the Fermi-liquid state
is stabilized due to orbital fluctuations up to fairly large interactions, while the system is immediately driven to
the Mott insulating phase away from this condition. The effects of the isotropic and anisotropic Hund coupling
are also addressed.
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I. INTRODUCTION

Strongly correlated electron systems with multiorbi
bands have attracted current interest. Typical examples
the manganite La12xSrxMnO3

1 and the ruthenate Sr2RuO4,2

where striking phenomena such as the colossal ma
toregistance and the triplet pairing superconductivity w
observed, stimulating intensive theoretical and experime
investigations.3,4 Common physics in the above compoun
is that orbital degrees of freedom together with the Hu
coupling play a key role in realizing novel phenomena at l
temperatures.

Another interesting example is the vanadium oxi
LiV 2O4, where the heavy fermion behavior was observed
low temperatures.5 It has been suggested that the large m
enhancement in this system may originate from geometr
frustration.6–8 More recently, it has been pointed out th
degenerate orbitals are also important to understand
heavy fermion behavior in LiV2O4.9,10

It is thus desirable to discuss how the metallic grou
state is affected by degenerate orbitals and also by cor
tions among them. Although the effects of the orbital deg
eracy have been explored extensively,11–24 the stability of a
metallic state due to orbital fluctuations has not been stud
systematically. In this paper, we study the two-orbital Hu
bard model at half-filling to discuss how the interplay of t
intraband interaction, the interband interaction and the H
coupling affects the stability of a metallic phase against
insulating phase. In particular, by using dynamical me
field theory~DMFT!, we show that orbital fluctuations stab
lize a heavy fermion state when the intra- and interband C
lomb interactions are nearly equal.

This paper is organized as follows: We introduce t
model Hamiltonian and briefly summarize the formulati
based on DMFT in Sec. II. In Sec. III, we then discuss
metal–insulator transition by combining DMFT with the e
act diagonalization method, and clarify how the intra- a
interband couplings effect the stability of the Fermi liqu
phase. The effects of the Hund coupling are addresse
Sec. IV. A brief summary is given in Sec. V.
0163-1829/2002/66~16!/165107~6!/$20.00 66 1651
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II. MODEL AND METHOD

A. Two-orbital Hubbard Hamiltonian

We consider a correlated electron system with twofo
degenerate orbitals, which is described by the followi
Hubbard Hamiltonian:

H5(
^ i , j &
a,s

t i j cias
† cias1U(

ia
nia↑nia↓

1U8 (
i ,s,s8

ni1sni2s81J(
i

Si1•Si2 , ~1!

wherecias
† (cias) creates~annihilates! an electron with spin

s(5↑,↓) and orbital indexa(51,2) at the i th site, and
nias5cias

† cias . The corresponding spin operator is defin
by Sj a5 1

2 (ss8cj as
† tss8cj as8 , wheret is the Pauli matrix.

t i j represents the transfer integral,U and U8 the intraband
and interband Coulomb interaction, andJ is the Hund cou-
pling.

In the following, we will particularly focus on how the
interplay of U, U8, andJ effects the metal-insulator trans
tion.

B. Dynamical mean-field theory

We make use of DMFT,25–28 which has been extensivel
used for the single-band Hubbard model,29–35 the two-band
model,29,36–39 the periodic Anderson model,40–42 etc. This
method has also been applied to the degenerate Hub
model by combining it with the exact diagonalization,19

quantum Monte Carlo simulation,20–23and iterative perturba-
tion theory.24

In the DMFT, the lattice model is mapped to an effecti
impurity model, where local electron correlations are tak
into account precisely. The lattice Green function is th
obtained via self-consistent conditions imposed on the im
rity problem. The treatment is exact ind→` dimensions,
and even in three dimensions, DMFT has successfully
plained interesting physics such as the Mott metal–insula
transition. We introduce here the impurity Anderson Ham
tonian with two orbitals,
©2002 The American Physical Society07-1
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H imp5 (
k,a,s

Ekckas
† ckas1(

as
Ef f as

† f as

1 (
k,a,s

Vk~ckas
† f as1 f as

† ckas!1U(
a

f a↑
† f a↑ f a↓

† f a↓

1U8(
ss8

f 1s
† f 1s f 2s8

† f 2s81JS1•S2 , ~2!

wheref as
† ( f as) creates~annihilates! an electron with spins

in the ath orbital at the impurity site, andSa

5 1
2 (ss8 f as

† tss8 f as8 . Note that the effective parameters
the impurity model, such as the spectrum of host electr
Ek and the hybridizationVk , should be determined self
consistently so that the obtained results properly reprod
the original lattice problem. This will be done explicitly be
low. We focus on the symmetric case with half-filled ban
by settingEf52 1

2 U2U8, for simplicity.
To discuss the stability of the Fermi liquid state in a no

mal metallic phase, we introduce the Green function w
two componentsC†5( f 1

†f 2
†) as

G~t2t8!52^guTC~t!C†~t8!ug&, ~3!

whereT is the time-ordering operator andug& represents the
ground state. In the non-interacting caseU5U85J50, the
Green function,G05G01, is given by

G0
21~z!5z2(

k

Vk
2

z2Ek
. ~4!

When the interactions are introduced, the full Green funct
Gk(z) is written as,

S z2S intra~z!2ek 2S inter~z!

2S inter~z! z2S intra~z!2ek
D , ~5!

whereek is the bare dispersion of the Hubbard model wh
U5U85J50. We have here used the fact that the se
energyS is independent of the momentum ind→` dimen-
sions. Then the diagonal element of the local Green func
is given as

Gloc~z!5
1

N (
k

Gk~z!

5E
2`

` @z2S intra~z!2x#r~x!

~z2S intra~z!2x!22S inter~z!2
dx, ~6!

wherer(x)5(kd(ek2x) is the density of states in the non
interacting case. The lattice structure is not so importan
discuss the metal–insulator transition ind5` dimensions.
We use here the semicircular density of statesr(x)
5(2/pD)A12(x/D)2, which corresponds to an infinite
coordination Bethe lattice. From the Dyson equationG0

21

5G211S, we then obtain the self-consistent equation a
16510
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G0
21~z!5z2S D

2 D 2

Gloc~z!. ~7!

We wish to note that the self-energy does not appear in th
self-consistent equations, allowing us to simplify the ite
tion procedure. Namely, by estimating the diagonal elem
of the local Green function for the Anderson model Eq.~2!
and by using the self-consistent Eqs.~4! and ~7!, we can
discuss Fermi-liquid properties in the system. In the follo
ing, we take the band widthD as the unit of the energy.

III. METAL –INSULATOR TRANSITION

To solve the self-consistent equations in DMFT, we u
the exact diagonalization method. The diagonal elemen
the Green function for the Anderson Hamiltonian Eq.~2! is
given as

G~z!5 K gU f 1↑
1

z1E02H
f 1↑

† UgL 1 K gU f 1↑
† 1

z2E01H
f 1↑UgL

5 f ~z1E0 , f 1↑
† ug&)2 f ~2z1E0 , f 1↑ug&), ~8!

whereE0 is the ground state energy. The functionf (v,uc&)
is given by the following continued fraction,44

f ~v,uc&)[ K cU 1

v2H Uc L 5
^cuc&

v2a12
b1

2

v2a22
b2

2

•••

, ~9!

wherean (bn) is thenth diagonal~subdiagonal! element of
the HamiltonianH tridiagonalized by the Lanczos metho
with the initial vectoruc&. To solve the self-consistent Eq
~4! and ~7! in terms of the obtained Green functionG, we
introduce the following cost functionx2 proposed by Caf-
farel and Krauth29 as

1

nmax11 (
n50

nmax

u@G0
old~ ivn!#212@G0

new~ ivn!#21u2, ~10!

where nmax is chosen sufficiently large, andvn@5(2n
11)p/b̃# is the Matsubara frequency. In terms of the co
jugate gradient method, we determine the parametersEk and
Vk in G0

new by minimizing x2 in Eq. ~10!. To properly con-
verge the iteration in DMFT, we introduce the ‘‘fictitious
inverse temperatureb̃, which is fixed asb̃550 in this paper.
The number of site is set asN56. We note that a carefu
scaling analysis for the fictitious temperature and the num
of sites is necessary only when the system is near the me
insulator transition point. To discuss the stability of th
Fermi liquid state, we define the wave-function renormaliz
tion factor in terms of the self-energy aroundv50,

Z5F12
D Im S~ iv!

Dv G21

, ~11!

which corresponds to the weight of a quasiparticle excitati
7-2
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STABILITY OF A METALLIC STATE IN THE TWO- . . . PHYSICAL REVIEW B 66, 165107 ~2002!
A. Interplay of intra- and interband interactions

Let us first discuss the Fermi liquid properties of a met
lic state in the absence of the Hund coupling (J50), and
clarify how the orbital-degeneracy effects a metal–insula
transition. By making use of the exact diagonalizati
method, we iterate the procedure mentioned above to ob
the results within desired accuracy.

We show the quasiparticle weightZ as a function of the
interband interactionU8 in Fig. 1. In the caseU50, Z de-
creases monotonically with increasingU8, and a metal–
insulator transition occurs aroundUc8;0.9. On the other
hand, whenUÞ0, there appears nonmonotonic behavior
Z, namely, it once increases on the introduction of the in
band Coulomb interaction, has the maximum value in
vicinity of U8;U, and finally leads to a metal-insulato
transition at a critical value ofU8. It is easily understood tha
the large value ofU8 suppresses hopping among site
thereby causing a sharp decrease in the renormalization
tor Z. However, it is somehow unexpected that the maxim
structure appears aroundU;U8, and furthermore is more
enhanced for largerU andU8. We think that this is related to
orbital fluctuations, which may stabilize a normal metal
state aroundU;U8.

In order to observe the above behavior more clearly,
show the contour plot of the quasiparticle weight in Fig.
At U850, where the system is reduced to the single-ba
Hubbard model, we find that the intraband Coulomb inter
tion U induces the metal–insulator transition atUc

FIG. 1. The quasiparticle weightZ as a function of the interband
Coulomb interactionU8, obtained by the exact diagonalization (N
56) within the DMFT.

FIG. 2. The contour plot of the quasiparticle weightZ in the
caseJ50. The bold-dashed line represents the phase bounda
the metal–insulator transition, which is deduced by estimating
values ofU andU8 that giveZ50. The solid circles are the tran
sition points obtained by the linearized DMFT.
16510
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52.9–3.0. Although this critical value is obtained by th
exact diagonalization of a small system (N56), it is com-
parable with other numerical calculations such as the
merical renormalization group (Uc52.94),35 the exact di-
agonalization (Uc52.93),39 the linearized DMFT
(Uc53).43

There are several remarkable features in this phase
gram. We first notice that the value ofZ is not so sensitive to
U8 for a givenU (.U8), except for the regionU;U8. In
particular, the phase boundary indicated by the dashed lin
the upper side of the figure is almost flat for the smallU
region. An important point to be noted is that whenU;U8
the metallic state is remarkably stable against a transitio
the insulator, and persists up to fairly large Coulomb int
actions. Moreover, it becomes immediately unstable, o
the parameters are away from the lineU5U8. This tendency
becomes more conspicuous in the regime of strong corr
tions. These remarkable properties about the metallic ph
around the lineU5U8 are closely related to orbital fluctua
tions, as we will see momentarily in the following.

The second point is that there are two insulating pha
corresponding to the regionsU.U8 andU,U8, which are
separated by the metallic phase for smallU,U8, but are con-
tinuously connected to each other via the region of la
U,U8. For example, let us observe phase transitions w
U54.0 being fixed. WhenU850.0 with U54.0, the system
is in the insulating phase caused by the intraband interac
U. Introducing the interband couplingU8, a phase transition
occurs to the metallic phase, and further increase inU8 in-
duces the second transition to another insulating ph
which is dominated by the interband interactionU8. These
two insulating phases should show different properti
though they can be adiabatically connected to each othe
principle.

B. Critical properties around the phase boundary

To clarify the above characteristic properties around
metal–insulator transition, we exploit a linearized version
the DMFT,43 which provides us with a transparent view
the phase transitions. In this scheme, we introduce a spe
Anderson impurity model connected to onlyone host site,
which corresponds to the model Eq.~2! with k51. This
extreme simplification even provides sensible results as
as low-energy properties near the transition point are c
cerned. Namely, for low-energy excitations around the Fe
surface, the Green function forf-electrons may be approxi
mated by a single pole as

Gloc~z!;
w

z
, ~12!

where the residuew corresponds to the quasiparticle weigh
Recall that forw50 the ground state belongs to an insula
ing phase, while forwÞ0 to a metallic phase. We can thu
determine the metal–insulator transition point from the co
dition w50, as has been done before. By combining
self-consistent Eqs.~4! and ~7!, we iterate the linearized
DMFT. The self-consistent condition imposed on the hybr
ization now reads

of
e
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V5
Aw

2
. ~13!

For the single-band Hubbard model (U850), the critical
value Uc53 was already estimated by the lineariz
DMFT.43

In this simplified model, the metallic ground state is in t
spin singlet state drawn in Fig. 3~a! schematically. Although
the introduction of the interband Coulomb interactionU8
lowers the states~b! and~c! energetically, these states do n
affect the ground-state properties up to a certain crit
value ofU8. In fact, the relevant excitation gap is indepe
dent of U8 in this approximation, and the residue of th
Green function aroundV50 is given as

w536S V

U D 2

, ~14!

via a straightforward calculation. Then the self-consist
Eq. ~13! updates the hybridization via (3/U)V→V in each
iteration process. Therefore, whenU.Uc(53), the effec-
tive hybridizationV vanishes by the iteration, thereby stab
lizing the insulating phase in this region. On the other ha
the hybridization is relevant forU,Uc and thus the metallic
phase is realized. Note that the critical valueUc53 obtained
here is the same as that for the single-band Hubbard mod43

We thus come to the conclusion that the interband Coulo
interaction has little effect on the metal–insulator transitio
which is essentially described by the mechanism for
single-band Hubbard model, as far as the case ofU.U8 is
concerned. This statement is indeed consistent with the
merical results shown in Fig. 2, namely, the phase bound
is rather insensitive to the change inU8 for small U8.

On the other hand, in the special caseU5U8, the nature
of the transition is totally changed in this approximation.
this case, the ground state is formed by three degene
states shown in Fig. 3, and not only spin but also orb
degrees of freedom play an important role. In fact, quant
fluctuations among these states decrease the effective m
making the metallic phase more stable. The critical va
Uc55 estimated by the present scheme agrees with the
merical one in Fig. 2. Also this is consistent with the conc
sion of quantum Monte Carlo simulations,22 which claims
that the ground state in the single~double! orbital Hubbard
model belongs to the insulating~metallic! phase in the case
U5U854.

The present analysis also gives a clear picture for
types of the metal–insulator transitions: the insulating ph
in the upper region of Fig. 2 corresponds to the state of F
3~a!, where the intra-atomic repulsion gives rise to the in

FIG. 3. Three distinct singlet states in the Anderson mod
which is hybridized with only one effective host site. The numb
1, 2 specify the orbital indices.
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lating phase, whereas the insulator in the lower region, c
responding to Figs. 3~b! and 3~c!, is stabilized by the inter-
band interaction. Around the critical point on theU5U8
line, the metallic state sandwiched by these insulating pha
is realized by the competition among almost degenerate
glet states~a!, ~b!, and~c!. In other words, the metallic stat
is stabilized by orbital fluctuations.

IV. EFFECTS OF THE HUND COUPLING

A. Isotropic case

We now discuss the effects of the exchange couplinJ
between orbitals, which plays an important role in real m
terials such as manganites and ruthenates. By perform
similar calculations, we obtain the contour plot of the qua
particle weightZ as shown in Fig. 4. We also plot the value
of Z as a function ofJ in Fig. 5. The Hund couplingJ
(,0) enhances spin correlations between the orbitals, t
renormalizing electrons near the Fermi surface. It is inde
seen in both figures that forU.U8 the quasiparticle weigh
is decreased with the increase ofuJu. On the other hand, the
effect of the Hund coupling is less conspicuous in the reg
U,U8. In the latter region, the interband Coulomb intera
tion dominates electron correlations in the ground state w
J50, which is schematically drawn as Figs. 3~b! or 3~c!. For
these configurations the Hund coupling is irrelevant, wh
explains that the effect ofJ is less important forU,U8.

To make the metal–insulator transition clear, we also c
culate the density of states by means of the exact diago
ization. The results are shown in Fig. 6. WhenU51.0,
J521.0, andU850.0, the system belongs to the metal
phase, as shown in Fig. 4. Introducing the interband coup

l,
s

FIG. 4. The contour plot of the quasiparticle weightZ in the
system with the ferromagnetic Hund coupling between the orbi
J521.0.

FIG. 5. The quasiparticle weightZ as a function ofJ.
7-4
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STABILITY OF A METALLIC STATE IN THE TWO- . . . PHYSICAL REVIEW B 66, 165107 ~2002!
U8, fluctuations between the orbitals are enhanced, wh
assist in stabilizing the quasiparticle states up toU8;1.2.
Further increase inU8 favors the doubly occupied state
the same orbital. Therefore, the electron states around
Fermi surface are pushed away to higher energy regions
seen in the case ofU851.6, and finally a quantum phas
transition occurs from the metallic phase to the insulat
phase. In the insulating phase forU852.0, we can clearly
see the charge gap in the density of states in Fig. 6.

We also investigate the case of the antiferromagnetic
change coupling (J.0). The contour plot in the caseJ
50.7 is shown in Fig. 7. By comparing with the ferroma
netic case, it is seen that electrons are renormalized stro
as shown in Fig. 5. This difference is explained by count
the number of effective degrees of freedom at each site in
presence of the exchange coupling. In the ferromagn
case, the system has a tendency to form theS51 state at
each site, while in the antiferromagnetic case it favors

FIG. 6. The density of states forU850.0,1.2,1.6, and 2.0 ob
tained by the exact diagonalization withd50.01

FIG. 7. The contour plot of the quasiparticle weightZ in the
system with the antiferromagnetic exchange coupling between
orbitalsJ50.7.
16510
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singlet state made of two orbitals. The resulting effect
degrees of freedom give rise to the difference in the stab
of the Fermi liquid state: the metallic state with the ferr
magnetic coupling is more stable than the antiferromagn
case. Note that the situation is similar to the stability of t
metallic state due to orbital fluctuations aroundU;U8 dis-
cussed in the previous section.

B. Anisotropic case

We finally discuss the effects of anisotropy in the Hu
coupling. For this purpose, we introduce the anisotropy
rameterD as,

~S1•S2!D5D~S1
xS2

x1S1
yS2

y!1S1
zS2

z , ~15!

whereD50 corresponds to the Ising-type anisotropy, wh
D51 the isotropic case. In Fig. 8, we show the quasi-parti
weight Z for U51.0 and J521.0. In the ferromagnetic
case, the quasiparticle weightZ is little effected by anisot-
ropy although somewhat nonmonotonic dependence is fo
as a function ofD as shown in the inset. On the contrary, t
anisotropy has a noticeable effect for the antiferromagn
case with smallU8, as seen from Fig. 9, where the aniso
ropy decreases the weightw monotonically with the increase
of D. This difference arises from the fact that thex–y com-
ponents of the exchange coupling bring about quantum fl
tuations more prominently in the antiferromagnetic case t
in the ferromagnetic case, giving rise to the sizable effect
the antiferromagnetic case in the smallU8 region.

he

FIG. 8. The quasiparticle weightZ for the case with anisotropic
exchange coupling:U51.0 andJ521.0. Inset shows the quasipa
ticle weight as a function of the anisotropy parameterD.

FIG. 9. The quasiparticle weightZ as a function ofU8 in the
caseU51.0.
7-5
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V. SUMMARY

We have investigated the stability of a metallic phase
the two-orbital Hubbard model at half-filling by means
dynamical mean-field theory with particular emphasis on
role played by orbital degrees of freedom. By combining
exact diagonalization method with the DMFT, we have d
cussed how the interplay among the intraband and interb
Coulomb interaction together with the Hund coupling affe
the metal–insulator transition. In particular, it has been fou
that the metallic state is remarkably stable, even up toU
;5.0 if the intra- and interband Coulomb interactions a
nearly equal. Also, slight deviation from this condition im
mediately drives the system to the insulating phase. We h
pointed out that orbital fluctuations play a particular role
realize the metallic state aroundU;U8;5.0. The effect of
the exchange coupling has been also discussed. It has
clarified that the effective degrees of freedom at each
play an important role again in stabilizing the metallic sta

In this paper, we have focused on nonmagnetic phase
the model and have discussed the metal–insulator trans
by estimating the renormalization factor of quasiparticles
.
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should be noted here that in the single-band Hubbard mo
a coexistence of the metallic and insulating solution has b
pointed out in some parameter region.35 Although it is diffi-
cult to address this issue by means of the exact diagona
tion with small clusters, it is an interesting and instructi
problem to clarify whether such a coexistence phase per
in the degenerate Hubbard model. Furthermore, possible
stabilities toward other ordered states such as the magn
order, the superconductivity, etc., are to be studied. In p
ticular, the ferromagnetic instability is interesting in conne
tion with ferromagnetism realized in manganite compoun
These problems are now under consideration.
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