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Stability of a metallic state in the two-orbital Hubbard model
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Electron correlations in the two-orbital Hubbard model at half-filling are investigated by combining dynami-
cal mean field theory with the exact diagonalization method. We systematically study how the interplay of the
intra- and interband Coulomb interactions, together with the Hund coupling, effects the metal—insulator tran-
sition. It is found that if the intra- and interband Coulomb interactions are nearly equal, the Fermi-liquid state
is stabilized due to orbital fluctuations up to fairly large interactions, while the system is immediately driven to
the Mott insulating phase away from this condition. The effects of the isotropic and anisotropic Hund coupling
are also addressed.
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I. INTRODUCTION Il. MODEL AND METHOD

A. Two-orbital Hubbard Hamiltonian

Strongly correlated electron systems with multiorbital  \we consider a correlated electron system with twofold
bands have attracted current interest. Typical examples agggenerate orbitals, which is described by the following
the manganite La ,S,MnO,! and the ruthenate SRu0;,>  Hubbard Hamiltonian:
where striking phenomena such as the colossal magne-
toregistance and the triplet pairing superconductivity were

observed, stimulating intensive theoretical and experimental H:“Zj tiiCiTwCiW“LU% MiaiNia|
investigations:* Common physics in the above compounds a0

is that orbital degrees of freedom together with the Hund

coupling play a key role in realizing novel phenomena at low +U" X NiggNige +3> Si-So, (1)
temperatures. hoo! '

Another interesting example is the vanadium oxidewherec/, (c;,,) createannihilate$ an electron with spin
LiV,0,, where the heavy fermion behavior was observed at-(=1,|) and orbital indexa(=1,2) at theith site, and
low temperatures.It has been suggested that the large mas&iaazci’fwciw_ The corresponding spin operator is defined
enhancement in this system may originate from geometricapy Sio= %EM,CJ_TMTM,CJ.M, , Where 7 is the Pauli matrix.
frustration®™® More recently, it has been pointed out that ¢, represents the transfer integrél,and U’ the intraband
degenerate orbitals are also important to understand thgnd interband Coulomb interaction, adds the Hund cou-
heavy fermion behavior in LiyO,.%° pling.

It is thus desirable to discuss how the metallic ground In the following, we will particularly focus on how the
state is affected by degenerate orbitals and also by correldaterplay ofU, U’, andJ effects the metal-insulator transi-
tions among them. Although the effects of the orbital degention.
eracy have been explored extensiVély?* the stability of a
metallic state due to orbital fluctuations has not been studied B. Dynamical mean-field theory
systematically. In this paper, we study the two-orbital Hub-
bard model at half-filling to discuss how the interplay of the
intraband interaction, the interband interaction and the Hun

.°°“p'"?9 affects the stabi_lity of a met"?""c phase _against hethod has also been applied to the degenerate Hubbard
insulating phase. In particular, by using dynamical means o del by combining it with the exact diagonalizatith,

f_ield theory(DMF_T), we show that or.bital fluctqations stabi- quantum Monte Carlo simulatici}; 22and iterative perturba-
lize a heavy fermion state when the intra- and interband Cougjgp, theory?*
lomb interactions are nearly equal. In the DMFT, the lattice model is mapped to an effective
This paper is organized as follows: We introduce theimpurity model, where local electron correlations are taken
model Hamiltonian and briefly summarize the formulationinto account precisely. The lattice Green function is then
based on DMFT in Sec. Il. In Sec. Ill, we then discuss thepbtained via self-consistent conditions imposed on the impu-
metal—insulator transition by combining DMFT with the ex- rity problem. The treatment is exact oh—c dimensions,
act diagonalization method, and clarify how the intra- andand even in three dimensions, DMFT has successfully ex-
interband couplings effect the stability of the Fermi liquid plained interesting physics such as the Mott metal—insulator
phase. The effects of the Hund coupling are addressed itiansition. We introduce here the impurity Anderson Hamil-
Sec. IV. A brief summary is given in Sec. V. tonian with two orbitals,

We make use of DMF#~2which has been extensively
sed for the single-band Hubbard mo&&f® the two-band
0del?®36-3 the periodic Anderson mod&l;#? etc. This
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_ D|?
Himp= 2 EiClarChaot 2 Eiflfas Gol<z)=z—(5) Gioo(2). Y

T N t N We wish to note that the self-energy does not appear in these
ﬂ(;a Vk(Ckaafw’LfaoCkaUE farfarfaifal  self-consistent equations, allowing us to simplify the itera-
o tion procedure. Namely, by estimating the diagonal element
, T + of the local Green function for the Anderson model E2).
+U E fiofiofoe 2o +3S1-S,, (2 and by using the self-consistent Eqg) and (7), we can
77 discuss Fermi-liquid properties in the system. In the follow-
wheref! _(f,.) creategannihilate an electron with spir- N9, We take the band widiD as the unit of the energy.
in the «ath orbital at the impurity site, andS,
=13, f! 7 5fa . Note that the effective parameters in lll. METAL —INSULATOR TRANSITION
the impurity model, such as the spectrum of host electrons
Ey and the hybridizationV,, should be determined self-
consistently so that the obtained results properly reprodu
the original lattice problem. This will be done explicitly be-
low. We focus on the symmetric case with half-filled bands
by settingE{=—3U—U’, for simplicity. <
g

To solve the self-consistent equations in DMFT, we use
Cthe exact diagonalization method. The diagonal element of
fhe Green function for the Anderson Hamiltonian E). is

given as
9>+<9 g>

:f(Z‘FEo,ng»_f(_Z*’Eo-f1T|g>), (8

G(7—1")=—(g|T¥()W'(7')|g) (3) whereE, is the ground state energy. The functibfw,|))
' is given by the following continued fractid,

To discuss the stability of the Fermi liquid state in a nor- G(z)=
mal metallic phase, we introduce the Green function with
two componental= (f1f}) as

fl _ f
Wz—Eg+H !

)
1,

f1Tz+EO—H

whereT is the time-ordering operator ang) represents the

ground state. In the non-interacting caseU’'=J=0, the f(w,|¢>)z< W ! ¢> = (1) , (9
Green functionGy= Gg1, is given by w—H bi
w—al——bz—
V2 w—a,~ —

Go(2)=2- 2 S (@)
wherea, (b,) is thenth diagonal(subdiagonal element of
When the interactions are introduced, the full Green functiorihe HamiltonianH tridiagonalized by the Lanczos method

Gy(2) is written as, with the initial vector| ). To solve the self-consistent Egs.
(4) and (7) in terms of the obtained Green functi@ we
2= 2) — €k —Siel2) introduce the following cost functioy? proposed by Caf-

, (5) farel and Krautf’ as
—Zinted 2) Z— Sina(2) — €k
Nmax
wheree, is the bare dispersion of the Hubbard model when E |[Gg'd(iwn)]*l—[ eWiwg] Y2 (10)
U=U'=J=0. We have here used the fact that the self- Nmaxt 1 7=0
energy, is independent of the momentum dh—o dimen-

sions. Then the diagonal element of the local Green functioP{Vhere Dmf%x is chosen sufficiently large, and[=(2n
is given as +1)#/B] is the Matsubara frequency. In terms of the con-

jugate gradient method, we determine the paramé&gend
V in Gg®" by minimizing x? in Eq. (10). To properly con-

1
Gio2) = N 2 Gy(2) verge the iteration in DMFT, we introduce the “fictitious”
K inverse temperaturg, which is fixed ag3= 50 in this paper.
© [2— 3 (2)— X]p(X) The number of site is set &d=6. We note that a careful
- f intra 5 sdx,  (6) scaling analysis for the fictitious temperature and the number
=#(Z= Zingra(2) =X)“— Zinted 2) of sites is necessary only when the system is near the metal—

_ . . insulator transition point. To discuss the stability of the
wherep(x) =2 y6(ec—Xx) is the density of states in the non- Fermi liquid state, we define the wave-function renormaliza-
interacting case. The lattice structure is not so important tgion factor in terms of the self-energy around=0,
discuss the metal—insulator transition ds-% dimensions.

We use here the semicircular density of stateéx) Alm3(iw)]?
=(2/7D)\1—(x/D)?, which corresponds to an infinite- Z=11=—"3—1| - (13)

coordination Bethe lattice. From the Dyson equati®p®
=G 1+3, we then obtain the self-consistent equation as which corresponds to the weight of a quasiparticle excitation.
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FIG. 1. The quasiparticle weigBtas a function of the interband
Coulomb interactior’, obtained by the exact diagonalizatioN (
=6) within the DMFT.

A. Interplay of intra- and interband interactions

Let us first discuss the Fermi liquid properties of a metal-
lic state in the absence of the Hund couplin=0), and
clarify how the orbital-degeneracy effects a metal—insulato
transition. By making use of the exact diagonalization

method, we iterate the procedure mentioned above to obtaﬁH

the results within desired accuracy.

We show the quasiparticle weightas a function of the
interband interactio®J’ in Fig. 1. In the cas&J=0, Z de-
creases monotonically with increasing’, and a metal—
insulator transition occurs around;~0.9. On the other
hand, whenJ #0, there appears nonmonotonic behavior in
Z, namely, it once increases on the introduction of the inter

band Coulomb interaction, has the maximum value in the

vicinity of U’'~U, and finally leads to a metal-insulator
transition at a critical value df’. It is easily understood that
the large value ofU’ suppresses hopping among sites

PHYSICAL REVIEW B 66, 165107 (2002

=2.9-3.0. Although this critical value is obtained by the
exact diagonalization of a small systeM=£6), it is com-
parable with other numerical calculations such as the nu-
merical renormalization groupUi.=2.94) *° the exact di-
agonalization ,=2.93)3 the linearized DMFT
(U.=3).%3

There are several remarkable features in this phase dia-
gram. We first notice that the value @fis not so sensitive to
U’ for a givenU (>U"), except for the regiotd~U’. In
particular, the phase boundary indicated by the dashed line in
the upper side of the figure is almost flat for the smaill
region. An important point to be noted is that whdn- U’
the metallic state is remarkably stable against a transition to
the insulator, and persists up to fairly large Coulomb inter-
actions. Moreover, it becomes immediately unstable, once
the parameters are away from the lide=U’. This tendency
becomes more conspicuous in the regime of strong correla-

}ions. These remarkable properties about the metallic phase

around the lindJ=U" are closely related to orbital fluctua-
jons, as we will see momentarily in the following.

The second point is that there are two insulating phases
corresponding to the regio$>U’ andU<U’, which are
separated by the metallic phase for smaJU’, but are con-
tinuously connected to each other via the region of large
U,U’. For example, let us observe phase transitions with
U=4.0 being fixed. Whety'=0.0 withU=4.0, the system

is in the insulating phase caused by the intraband interaction
U. Introducing the interband coupliid’, a phase transition
occurs to the metallic phase, and further increas¥ inin-
duces the second transition to another insulating phase,
which is dominated by the interband interactioni. These
two insulating phases should show different properties,

thereby causing a sharp decrease in the renormahzatpn faﬁﬁough they can be adiabatically connected to each other in
tor Z. However, it is somehow unexpected that the maX|mumprinciple

structure appears aroundi~U’, and furthermore is more
enhanced for largdd andU’. We think that this is related to
orbital fluctuations, which may stabilize a normal metallic
state aroundJ~U".

B. Critical properties around the phase boundary

To clarify the above characteristic properties around the

In order to observe the above behavior more clearly, wemetal—insulator transition, we exploit a linearized version of

show the contour plot of the quasiparticle weight in Fig. 2.

the DMFT#3 which provides us with a transparent view of

At U’'=0, where the system is reduced to the single-bandhe phase transitions. In this scheme, we introduce a specific

Hubbard model, we find that the intraband Coulomb interacA

tion U induces the metal—insulator transition &i,

5| -
Insulating phase] L
: - -
U B W 2 ]
: ——Z7=02
——7=04 | T
: ——Z=0.6
1 —8—7=038 | -
: ’ —v—Z7=0.9
0 ‘ 05

FIG. 2. The contour plot of the quasiparticle weightin the

nderson impurity model connected to ontyie host site
which corresponds to the model E() with k=1. This
extreme simplification even provides sensible results as far
as low-energy properties near the transition point are con-
cerned. Namely, for low-energy excitations around the Fermi
surface, the Green function fdrelectrons may be approxi-
mated by a single pole as

w
Gloc( z)~ ;v (12)
where the residugs corresponds to the quasiparticle weight.
Recall that forw=0 the ground state belongs to an insulat-
ing phase, while foww#0 to a metallic phase. We can thus
determine the metal—insulator transition point from the con-

caseJ=0. The bold-dashed line represents the phase boundary défition w=0, as has been done before. By combining the
the metal—insulator transition, which is deduced by estimating theself-consistent Eqs(4) and (7), we iterate the linearized

values ofU andU’ that giveZ=0. The solid circles are the tran-
sition points obtained by the linearized DMFT.

DMFT. The self-consistent condition imposed on the hybrid-
ization now reads
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FIG. 3. Three distinct singlet states in the Anderson model, et wd |
which is hybridized with only one effective host site. The numbers —=—7=038]| |
1, 2 specify the orbital indices. 4 7709
4
Jw
V=—-. (13 — Co
2 FIG. 4. The contour plot of the quasiparticle weightin the

. " system with the ferromagnetic Hund coupling between the orbitals
For the single-band Hubbard moddlU(=0), the critical Jy=—1.0. g Ping

value U.=3 was already estimated by the linearized

43 . . . .
DMFT™ . o lating phase, whereas the insulator in the lower region, cor-
In th|s simplified mode], thg metallic grom_md state is in theresponding to Figs.(®) and 3c), is stabilized by the inter-
spin singlet state drawn in Fig(® schematically. Although  pang interaction. Around the critical point on thé=U"
the introduction of the interband Coulomb interactibll  jine the metallic state sandwiched by these insulating phases
lowers the stategb) and(c) energetically, these states do not s reglized by the competition among almost degenerate sin-

affect the ground-state properties up to a certain criticalyjet stateqa), (b), and(c). In other words, the metallic state
value ofU’. In fact, the relevant excitation gap is indepen-ig stabilized by orbital fluctuations.

dent of U’ in this approximation, and the residue of the

Green function aroun¥ =0 is given as \V. EEFECTS OF THE HUND COUPLING

2

, (14) A. Isotropic case

w= 36

U We now discuss the effects of the exchange coupling

via a straightforward calculation. Then the self-consistenf®tween orbitals, which plays an important role in real ma-
Eq. (13) updates the hybridization via (3JV—V in each terials such as manganites and ruthenates. By performing
iteration process. Therefore, whéh>U_(=3), the effec- similar calculations, we obtain the contour plot of the quasi-
tive hybridizationV vanishes by the iteration, thereby stabi- Particle weightZ as shown in Fig. 4. We also plot the values
lizing the insulating phase in this region. On the other hand®f Z @s a function ofJ in Fig. 5. The Hund coupling]

the hybridization is relevant fdd <U, and thus the metallic (<0) enhances spin correlations between the orbitals, thus
phase is realized. Note that the critical valuig=3 obtained renormalizing electrons near the Fermi surface. It is indeed
here is the same as that for the single-band Hubbard nfddel S€€N in both figures that f&y>U" the quasiparticle weight
We thus come to the conclusion that the interband Coulomts decreased with the increase|df. On the other hand, the
interaction has little effect on the metal—insulator transition &ff€Ct ,Of the Hund coupling is less conspicuous in the region
which is essentially described by the mechanism for th¢d<U’. In the latter region, the_lnter_band Coulomb interac-
single-band Hubbard model, as far as the casepfU’ is tion dominates electron correlations in the ground state when
concerned. This statement is indeed consistent with the ni-= 0. Which is schematically drawn as FiggbBor 3(c). For
merical results shown in Fig. 2, namely, the phase boundar{j'€S€ configurations the Hund coupling is irrelevant, which
is rather insensitive to the changeliH for smallU"’. explains that the effect of is less important foJ <U".

On the other hand, in the special case-U’, the nature To make the metal—insulator transition clear, we also cal-
of the transition is totally changed in this approximation. Inculate the density of states by means of the exact diagonal-
this case, the ground state is formed by three degeneratgdtion. The res,ults are shown in Fig. 6. Wheh=1.0,
states shown in Fig. 3, and not only spin but also orbitad=—1.0, andU’=0.0, the system belongs to the metallic
degrees of freedom play an important role. In fact, quantunPhasev as shown in Fig. 4. Introducing the interband coupling

fluctuations among these states decrease the effective mass, .

making the metallic phase more stable. The critical value e U=1.0,U=00
U.=5 estimated by the present scheme agrees with the nu- 08 Igf(l).g, gjf(l).g 1
merical one in Fig. 2. Also this is consistent with the conclu- ' —
sion of quantum Monte Carlo simulatiofswhich claims 7 0.6l |
that the ground state in the singléouble orbital Hubbard
model belongs to the insulatingnetallic phase in the case 0.4 |
U=U'=4.

The present analysis also gives a clear picture for two 0.2 . . s
types of the metal—insulator transitions: the insulating phase -3 2 Jl 0 !
in the upper region of Fig. 2 corresponds to the state of Fig.
3(a), where the intra-atomic repulsion gives rise to the insu- FIG. 5. The quasiparticle weiglzt as a function ofl.
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FIG. 8. The quasiparticle weiglz for the case with anisotropic
' 1 exchange couplind =1.0 andJ= —1.0. Inset shows the quasipar-
U=1.6 ticle weight as a function of the anisotropy parameter

—-—‘JMJL‘MJM‘“JLM“-‘—— singlet state made of two orbitals. The resulting effective
' degrees of freedom give rise to the difference in the stability
U'=2.0 of the Fermi liquid state: the metallic state with the ferro-
.l J | L.
-2 0 2
®

magnetic coupling is more stable than the antiferromagnetic
case. Note that the situation is similar to the stability of the

FIG. 6. The density of states fdy'=0.0,1.2,1.6, and 2.0 ob-
tained by the exact diagonalization witt+0.01

_p(w)

4 metallic state due to orbital fluctuations aroudd-U"’ dis-

-4 . . .
cussed in the previous section.

B. Anisotropic case

We finally discuss the effects of anisotropy in the Hund

U’, fluctuations between the orbitals are enhanced, whicﬁOUp“ng' For this purpose, we introduce the anisotropy pa-

assist in stabilizing the quasiparticle states upUto~1.2. rameterA as,

Further increase itJ’ favors the doubly occupied state in

the same orbital. Therefore, the electron states around the (S1°S)A=A(SIS+YS) +S.S5, (15
Fermi surface are pushed away to higher energy regions, as

seen in the case dii’'=1.6, and finally a quantum phase
transition occurs from the metallic phase to the insulatin
phase. In the insulating phase for =2.0, we can clearly
see the charge gap in the density of states in Fig. 6.

We also investigate the case of the antiferromagnetic e
change coupling J>0). The contour plot in the casé
=0.7 is shown in Fig. 7. By comparing with the ferromag-
netic case, it is seen that electrons are renormalized strong|
as shown in Fig. 5. This difference is explained by counting
the number of effective degrees of freedom at each site in th
presence of the exchange coupling. In the ferromagneti
case, the system has a tendency to form $kel state at
each site, while in the antiferromagnetic case it favors th

whereA =0 corresponds to the Ising-type anisotropy, while
IN=1the isotropic case. In Fig. 8, we show the quasi-particle
weight Z for U=1.0 andJ=—1.0. In the ferromagnetic
case, the quasiparticle weightis little effected by anisot-
)Yopy although somewhat nonmonotonic dependence is found
as a function ofA as shown in the inset. On the contrary, the
anisotropy has a noticeable effect for the antiferromagnetic
ase with smalU’, as seen from Fig. 9, where the anisot-
ropy decreases the weighttmonotonically with the increase
Gf A. This difference arises from the fact that they com-
Bonents of the exchange coupling bring about quantum fluc-
tuations more prominently in the antiferromagnetic case than
§n the ferromagnetic case, giving rise to the sizable effect on
the antiferromagnetic case in the smdll region.

=07 7 038

0.4

1 1 1
0'20 0.5 1 1.5

FIG. 7. The contour plot of the quasiparticle weightin the
system with the antiferromagnetic exchange coupling between the FIG. 9. The quasiparticle weigt# as a function ofU’ in the
orbitalsJ=0.7. caseU=1.0.
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V. SUMMARY should be noted here that in the single-band Hubbard model
We have investioated the stability of a metallic phase in® coexistence of the metallic and insulating solution has been
g Y P pointed out in some parameter regibrAlthough it is diffi-

Ejhenatlvr\rl]?(;glrl:nnggrtﬁg%a{ge(r)r:o%i[[hat :%E:!:Pgr:yhgs?sgi (t)r: cult to address this issue by means of the exact diagonaliza-
Y . y P phasis Sion with small clusters, it is an interesting and instructive
role played by orbital degrees of freedom. By combining the

: o . ._problem to clarify whether such a coexistence phase persists
exact d|agonallzgt|0n method with th(_a DMFT, we h:_:xve dis in the degenerate Hubbard model. Furthermore, possible in-
cussed how the interplay among the intraband and interban abilities toward other ordered states such as the magnetic
Coulomb interaction together with the Hund coupling affects 9

the metal—insulator transition. In particular, it has been foun rder, the superconductivity, etc., are to be studied. In par-
that the metallic state is remarkably stable, even ufJto icular, the ferromagnetic instability is interesting in connec-

50 if the intra- and interband Coulomb interactions ar tion with ferromagnetism realized in manganite compounds.

nearly equal. Also, slight deviation from this condition im_eThese problems are now under consideration.
mediately drives the system to the insulating phase. We have
pointed out that orbital fluctuations play a particular role to
realize the metallic state aroutdi~U’~5.0. The effect of
the exchange coupling has been also discussed. It has beenWe would like to thank M. Suminokura for useful discus-
clarified that the effective degrees of freedom at each sitsions. This work was partly supported by a Grant-in-Aid
play an important role again in stabilizing the metallic state.from the Ministry of Education, Science, Sports, and Culture
In this paper, we have focused on nonmagnetic phases of Japan. A part of computations was done at the Supercom-
the model and have discussed the metal—insulator transitigputer Center at the Institute for Solid State Physics, Univer-
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