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Quantum field theory of hyper-Raman scattering in piezoelectric crystals
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The existing theories of hyper-Raman scattering are based on the semiclassical theory of the interaction of
electromagnetic radiation with matter. For this reason, a quantum field theory of hyper-Raman scattering of
near infrared light by piezoelectric crystals is presented. We establish a unified theoretical framework to
describe hyper-Raman scattering of light by nonpolar modes and longitudinal or transverse polar modes. An
additional mechanism is found for hyper-Raman scattering from polar modes. In this framework, we derive an
analytical, temperature-dependent expression of the hyper-Raman scattering intensity of light. Our theory
explains two distinct peaks of hyper-Raman scattering from the split polar modes.
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[. INTRODUCTION classical theory, the light field is described classically while
the medium is described quantum mechanically within the
Raman scattering of light is a powerful tool for determin- framework of the perturbation approximation. A standard,
ing the properties of elementary excitations in sofidsRa-  full quantum mechanical treatment of hyper-Raman scatter-
man scattering involves a two-photon process, in which dang seems not to exist. Hyper-Raman scattering of light has
photon incident upon solids disappears by creating or annisecome a powerful tool fofi) determining the properties of
hilating one or several quasiparticles and then another phasome elementary excitations in crystalline media iy
ton emerges with an energy somewhat different from that omeasuring the second-order nonlinear optical coefficients of
the incident photon. However, Raman scattering of light cargrystalline media.
ries several inherent shortcomingél) Some excitation The existing semiclassical theories of hyper-Raman scat-
modes are inactiye in_ first-order Raman scattgring which i”tering from crystals possess the following deficienci@s.
volves one quasiparticle, while the cross section of seconGrpgre s no unified theoretical framework to describe hyper-

order Raman scattering which inv_olves two quasipgrfticles i??aman scattering of light by nonpolar modes and longitudi-
very weak.(2) The Raman scattering spectrum exhibited byrTaI or transverse polar modés,) The fourth-order perturba-

a material is not related to the second-order nonlinear optic lon theory is used(iii) The theories depend on concrete

properties of the material. A typical example of the Second_models of the electron-lattice interactiafiv) The quantum

order nonlinear optical properties is second-harmonic gen- : .
eration, which involves a three-photon process in which twomany-body effects of light and crystal are not considefey.

incident photons with the same frequenay are coupled The explanation of the physkI:aI mechanism i? r|10t ir:nuitive.f
nonlinearly into a third photon with double frequency 2 Therefore, we need to develop a quantum field theory o

To remedy the above difficulties, at the same time severdlYP€r-Raman scattering of light by crystals to remedy these
author§~" proposed the idea of hyper-Raman scattering ogeflm_enmes. We _malnly consider hyper-_Raman s_cattenng of
light. Hyper-Raman scattering is a three-photon process iHght in the near infrared spectrum of piezoelectric crystals.
which a second-order nonlinear medium can convert two inWe establish a unified theoretical framework to describe
cident photons of frequency into one scattered photon at hyper-Raman scattering of light by nonpolar modes and lon-
the frequency @+ w,, where w, is the frequency of an gitudinal or transverse polar modes. The physical mechanism
elementary excitation of the medium. The first experiment orfor nonpolar-mode scattering results from the coupling of the
hyper-Raman scattering was carried out with liquid samplesrystal electrons with the lattice vibrations, and it is trans-
in the year 196%.Subsequently, the selection rules and lightlated in polarizability theory by the deformation of the elec-
intensity expressions for hyper-Raman scattering wergronic wave functions which depend on the nuclear param-
obtained®° In the year 1978, hyper-Raman scattering waseters. An additional physical mechanism is found for polar-
employed to investigate the exciton-polariton dispersiormode scattering, which stems from the electric-dipole
curves of CuCH A recent panorama of hyper-Raman scat-moments of polar modes. In this framework, we derive an
tering is reviewed in Ref. 12. In particular, this referenceanalytical, temperature-dependent expression of the hyper-
treats hyper-Raman scattering by polar modes. Mordé&kaman scattering intensity of light. Our theory produces two
recently™ Savasta and Girlanda presented a microscopidistinct peaks of hyper-Raman scattering from longitudinal
theory of hyper-Raman scattering in semiconductors to exand transverse polar modes.
plain the experiment in Ref. 11. The existing theories of The remainder of this paper is organized as follows. Sec-
hyper-Raman scattering are based on the semiclassictibn Il presents the quantum theory of the noninteracting
theory of the interaction of electromagnetic radiation withsystem. In Sec. lll, the author employs the third-order per-
matter. In the classical theory, hyper-Raman scattering fronturbation theory to describe the interaction of light with the
molecules may be considered as the result of modulation dafrystal. In Sec. IV, we derive the Hamiltonian for hyper-
the hyperpolarizability by molecular vibrations. In the semi- Raman scattering. In Sec. V, the author finds the expression
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of the hyper-Raman scattering intensity of light. A discussionrwhereuv represents the set of quantum numbers necessary to

is given in Sec. VI. specify the ions. The wave function of the crystal is the
product ®,(o,r;9)=¢,(0,r;9)x,(s) and its energy is the
Il. QUANTUM THEORY OF THE NONINTERACTING sum Eq: E+E,.
SYSTEM Now we introduce the indek to symbolize thath elec-
tron bonded to théth ion, i.e.,k=ji. The electronic Hamil-

The model system under study consists of an incidenfynian is written as
light field and a piezoelectric crystal. Let us define three
conditions for the incident light. The first condition is that 52 1 e?
the incident light field is a quasimonochromatic field of a Ho=—> v+ >
central frequencyw. The second condition is that the fre- K 2me 87€o ki [y X

quencies of the incident light are far lower than the electroniGyneres; is the reduced Planck’s constant, is the electronic

is that the frequencies of the incident light are much higheg, the sum means excluding=k’. For the electron-ion in-
than the ionic vibrational frequencies of the crystal, which lieieraction we put

in the far infrared spectrum. In order to meet the latter two

conditions, the frequencies of the incident light must be in

the near infrared spectrum. When the latter two conditions Hel-ion:; V(ry,s). (©)

are met, the incident light can avoid the intrinsic absorption

from the electrons and phonons of the crystal and will suffedf in the last equation we set the instantaneous displacements
only the intrinsic scattering by the crystal. s of the ions to be zero, Eq1) will become

, @

A. Adiabatic approximation (HertHerion) ¢(0,1;0)=E,¢,(0,r;0), (4)

The crystal consists of a periodic arrangemeritigfrimi- ~ S° tha’FITZ, gives the energy qf the electron_s when the ions are
tive cells in a volumeV. There are basis atoms in each cell. I €quilibrium. The electronic wave functiorg(o,r;s) that
An atom is made up of an ion and the valence electrond€Pend on the ionic parameters are deformed relative to
bonded to the ion. The position of théh ion is determined  #1(,1;0). Under the one-electron approximation, the wave
by the vectorX;, where the ion index combines the cell function of the many-electron system is then separated into

J )

indexn and the position indekof the basis atom in the cell, the form
i.e.,j=nl. If 5 represents the instantaneous displacement of
the jth ion from its equilibrium positiorR;, then X;=R; e (o r;9=f(]] Bon (1c+9), (5)
+s;. The spin and spatial coordinates of an election k
bonded to an ion are denoted by;; andx;; . Letr; denote  \yheref(o) is the spin function of the electrons. The space

the relative position vector of theth electron from the equi-  ;nction of a single electron obeys the Hartree equation
librium position of its nucleus; then we havg =R;+r;; .

The HamiltoniarH ¢ of the crystal in the absence of external 52 e (1)

fields consists of the kinetic energy of all electrons and all ~5m V2+V(r,s)— 4—f —’dr’ dpn(r,9)
ions and the energy associated with all the interactions be- e meo ) |r—r’|

tween these particle$]c=Hg+Hiont Herion- The eigen- = £pn(9) bpn(1,9), (6)

functions and eigenvalues oH. are represented by
®y(o,r;s) andE,, whereq represents the set of quantum wherep(r) stands for the charge density of electrons. This
numbers necessary to specify the crystakignifies the set equation describes an electron in a periodic potential consist-
of electronic spin coordinates,denotes the set of electronic ing of the potential of the lattice ions and the Coulomb in-
spatial coordinates, argithe set of ionic coordinates. In the teraction of the Hartree approximation, so thigh(r,s) is a
adiabatic(Born-Oppenheimgrapproximation we can adopt Bloch function that depends on the ionic parameterandn
a Schralinger equation for the electrons are the wave vector and band index of a Bloch electron.
Since the spin does not explicitly appear further, we shall
(HeitHerion) @(0,1;9 =[E,+ U (s)]e,(a,r;8), (1)  neglect the electronic spin coordinates, so thafp,n,} rep-
[esents the set of quantum numbers necessary to specify the

wherel represents the set of quantum numbers necessary Gectronic state. The energy of the electrons &

specify the electrons and the electronic wave functigns

contain the ionic displacements as parametergs) con- = Zkepn (0):

tains no constant term abostand serves as the potential

energy of the ions. Sincg,(s) depends slightly on the elec- B. Second quantization of the vibrational

tronic states, we can reasonably suppose that the ions move and electromagnetic field

in the electronic ground state,. If Hi,=Hion+U, (9 One needs to introduce the wave veaidn the Brillouin

stands for the effective Hamiltonian of the ions, the move-zone, which takes values. Each vibration frequeney;(q)
ment of the ions follows the equatidty ,x,(S) =E,x,(9), of the lattice represents a normal mode, which is labeled by
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the two indicesy andj. Herej is the branch index of normal 12 et e
modes and will run from 1 to!@ Now we use a direct lattice  A(T1)= % Negew, SlBalET Fau(he ],
vectorR,, to locate thenth cell and introduce a set of normal (13

coordinategQ,(q)} by

whereg,; and g, are the orthogonal unit polarization vec-

1 iq-R tors perpendicular tk. w,=c|k|/\/e is the photon frequency
Snia= 2 T—=C1(A)Q, (eI, (7 in the crystal is the linear dielectric function of the crystal,
%) Nm| . . . .

andc is the velocity of light in vacuum. The photon opera-
where the indexx=1,2,3 distinguishes the three rectangulartors obey the Bose equal-time commutation relations and
components, the(qy) are the orthonormal eigenvectors of have the explicit time dependence,, (t)=a,(0)
lattice vibrations, andn, is the mass of théth basis ion. If X exp(—iwt) and af,(t)=a/, (0)exp{wt). The Hamil-
one introduces a reduced dynamical mafaix”'(q), inthe tonian of the electromagnetic field is converted into the
harmonic approximation one can obtain the secular equatiorfdamiltonian of the system of noninteracting photons

. (14)

R |
ayay + >

o’ Qe (@)= 2 DI (@& (). ® Hi=2 foy
1"’

The normal modes are made up of three acoustic branchgse eigenstaten) and eigenvalueg,, of H, can be easily
and 3¢ —1) optical branches. Only the optical phonons par-acquired as follows:

ticipate in hyper-Raman scattering. The optical vibrations of

a crystal fall into two distinct categories, i.e., polar modes 1

and nonpolar modes. Polar modes carry electric-dipole mo- =11 { (af,)™ ]0), (15

ments and so are active in infrared absorption, whereas non- Kk | VN !

polar modes carry no electric-dipole moments and so are

infrared inactive. The lattice vibrations are second quantized 1

if we let En=% ﬁwk Ny + E , (16)
Q,(q)= ﬁ( ) 1/2(b +bt ) 9 wheren={n,,} represents the set of quantum numbers nec-

g8 20, q WA essary to specify the photon state ang=0,1,2 . ...

Whereb;] andbg, are the creation and annihilation operators
of thejth branch phonons with wave vectpr obey the Bose I1l. INTERACTION OF LIGHT WITH CRYSTAL
equal-time commutation relations., and have the explicit time |f the crystal and the electromagnetic field were not inter-
dependence bg,(t)=bg(0)exd—im(@)t] and b{(t)  acting, the total system would have a Hamiltontg=H.
=b/,(0)exdiw(q)t]. Then the second-quantized Hamil- +H,  which has the eigenstates,(r,s) = ,(r,9) x,(9|n)
tonian of lattice vibrations is acquired as and the eigenvalues,=E,+E, +E,, wherea={1vn} rep-
resents the set of quantum numbers necessary to specify the
(10) noninteracting system. In fact, there is an interaction be-
tween the two subsystems, which is described by the Hamil-
tonianH, . Now, the total system is determined by the Sehro
dinger equation

1
Hi*on=% fiw,(q)| by b+ 5 |-
Equation(10) represents the Hamiltonian of the system of
noninteracting phonons. The eigenstdtesand eigenvalues
E, of H},, can be easily acquired as follows: v

(bg) @ ||0), (11)

vy=11
W

1
Vug,!

Let the «th particle (electron or ion in the crystal have a
chargeq, and a massn,, whose position vector is denoted

12 by r, and whose momentum operator is given ﬁy
Vot 2/ (12) =—iAV,. The interaction Hamiltonian between the electro-

) magnetic field and the crystal is obtained from the minimal
where|0) is the vacuum state,={vy} represents the set of electromagnetic coupling principle a#l,=H®+H®,

guantum numbers necessary to specify the vibrational statgyhere

E,=> hw,(q)
Q

andvg,=0,1,2....
The electromagnetic field in a piezoelectric crystal is q .
- - - (1) — :
characterized by a single vector potenfialwhich meets the HO=-> AP, (18
Coulomb gaug&/ - A=0. In terms of the creation and anni- o
hilation operatorsaﬂ:)\ anda,, of linearly polarized photons 2
with wave vectork and polarization index =1 or 2, the H(2)=E iAz(r ) (19)
vector potential of the electromagnetic field is expanded as ¢ 2m, ‘
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The inter_action Hamiltonian may be considered as a small @)1 E E (ylH‘”la’)(a’|H(1)Ia>(a|H(1)|,8)
perturbation. cy (1) E_E

We shall suppose that at the initial instartO, the sys- “rBa'zp BT
temis in an eigenstaté'ﬁ(r,s)=go,o(r,s)xvo(s)|n0), where el (Ey~Ept/h_q el (E,~Eath_q
lo Symbolizes the electronic ground statg, denotes the _ . = _
state of lattice vibrations in the absence of electromagnetic (Bp=Ea)(Bp=E,)) (Ep=Eu)(Ex—E,)
field, and|ng)=|{n,}) represents the state of incident pho- ol (E,—E)thi _ 1 ol (E,—Eth _ q
tons. The perturbatiohl, is applied at=0", which causes — .
the system to make a transition from the initial stétg to a (E.—E)(E,—E,) (E,—E.)(E,—E,)
series of eigenstate¥ ,. Therefore, the general solution of (22)

IEq. (17 is a "I}S%Ef“p?'pos'“on of the e|genst2:;u_’§s(!t) In comparison with the term conserving the energy
—Eaca_(_t)\lfae_ o s well k_nown that|c,(1)| 1S the =E,, the three terms of Eq22) with E,,—E, in the
probability of finding the system in the state described by th‘:‘aeno,minators are negligible. This is callg((jat%le roytating-wave

i (2) - . . ) . -
seta at the instant. H'“) has no effects on the three-photon approximation. Putting Eq22) into Eq. (21), and since the

process being considered. The transition probability due 1@, gest contribution to the value of the integral is from the
H® will be calculated in the perturbation theory of quantuminterval surroundingE,=E, we find the transition prob-
’y 1

mechanics in the following. Thes(-1)-order transition am-  apjlity per unit time for the three-photon process as
plitude to any final state is determined by

@y 1
(s+1) _ W(3):2_7T 2 M
ih#;} cO(y|HD )l E BV (20) h a7 o2p Ep—Eg

’2
‘ p(E,Q)). (23

"IH® (1)
wheres=0,1,2 ... andc{¥’=4,,. In the last equation we ><<a [HPa)(a]H15)
can neglect the time dependencedf) becausé,, already Es—Eq

includes the energy of th? light field. If the energy spe_ctrumHere, the states and o’ are intermediate states or virtual
E, of th_e systfrln 2vvere dlsc_rete, t_he%(l)—order ransition  giates. The state differs from the initial statg3 by a single
probab|I|ty.|c(ys ) to a unique final statey would be a  photon; the stater’ differs from the staten by a single
good physical quantity. _ photon too; for the same reason, the final statdiffers from

As we assumed, the energy spectrum of the system is fhe staten’ by a single photon; consequently, the final state
quasicontinuous photon spectrum near a particular erf€rgy may differ from the initial one by three photons. Inasmuch as
of the electron subsystem. The transition occurs not on & the frequency region considered there are no electronic
unique eigenstate of the system but on a set of quasicontingransitions between the initial and final states, in the final
ous eigenstates whose energies are nearly equal to the state¥, the crystal is also in its electronic ground stage
initial-state energyE ;. The density of states of the system However, electronic transitions between the initiéihal)
per unit energy in the vicinity oE ,=E; is equal to the state and the intermediate states are permitted. Therefore, in
density of photonic states per unit energy around the energine intermediate stat?, or ¥ ,., ¢, represents an elec-
E=%w, per unit solid angle around the direction of wave tronic excited state. The energy is not conserved in transi-
vector k, which is signified byp(E,()), where the solid tions from the initial state to the intermediate ones, Eg;,
angle(Q) indicates the direction of wave vectkr Instead of  #E .y -

|c$* V|2, we need to introduce thes¢ 1)-order transition The probability for three-photon transitions given by Eq.
probability per unit time toward a set of quasicontinuous(23) involves the matrix element ¢*) between two states.
eigenstates, which is then calculated by To treat these matrix elements, we may separate the ions
from the electrons in the interaction Hamiltoni&éb8) and
write
W<S+1>=rlf [ D(1)]2p(E,Q)dE, . (21)
e N Z(r)e N
. . . . . (G S )ep — - NP
w1 contains all the information about the interaction of H Mo %: AXji) - pj EJ: m, A(X))-Py, (24

light with matter in an §+ 1)-photon procesw is essen- A
tial in describing the problem of infrared light absorption, wherep;; represents the momentum operator of an eledtron
but it can be omitted because the frequencies of the incidemjonded to an iofj, |5j is the momentum operator of théh
light are much higher than the crystal vibrational frequen-ion, andz,(r) is the net charge number of thén basis ion,
cies.w® is fundamental in the treatment of Brillouin and which depends on the coordinates of all electrons because
Raman scattering of light, while it can be put aside becauséhe valence electrons participate in the chemical bonding
we are concerned only with hyper-Raman scattering of lightamong atoms. The wavelength of a near infrared light wave
The perturbation theory of the third order allows a three-is about 30000 A, and this is much larger than a typical
photon indirect transition process originating fro#t"). By  lattice constant5 A, say. The variation of the potential
solving Eq.(20) with the initial conditions:(f“)(O):O, the  vector A in the dimensions of an atom and a cell can be
transition amplitude for the three-photon process can be ageglected. Therefore, we may replace the arguments of the
quired as potential vectoA in Eq. (24) by the equilibrium position&;
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of the ions. This is called the dipole approximation. TherebyEq. (28) under the dipole approximation. Since the crystal

the interaction Hamiltonia24) becomes being investigated has a negligible effect on optical rectifi-
cation, an obverse three-photon process involves the simul-
e. Z(re, taneous annihilation of two fundamental-frequency photons

M= _ . = —p.+—"pP
H = 2 AR)) 2. mep“Jr m Pi|, (29 and then the creation of a double-frequency photon. We have
marked the system’s initial state g8)=|1o)|vo)|ng), Where
Ino)=|{ni\}). For spontaneously hyper-Raman scattering of
. » . light, the system’s initial state should contain no double-
The probability g‘gr three-photon transitions involves theeqency photons. This requirement is naturally satisfied for
matrix element oH™’ between two states. If we employ EQ. 5 qyasimonochromatic incident light. The transition prob-

(5), we may acquire a general relation between the matrix i in Eq. (23) is not zero only if the system's final state
elements of the position vector of an electron and of its MO o the form|y)=115)]0")|n"), where

mentum operator

where the summation oveis on the electrons bonded to the
ion j.

~ . |n” :|n _1,n ’ /_1,n " r/+1,... (30)
(orlPde) =M ogn pnlevinde), (20 7= M= Liea =L+ 1, ..
B ) i signifies the photonic eigenstate in the system’s final state,
where wp/ ' pn = (&p/n; ~8p,n /% IS the Bohr transition  the modeg, k/\' refer to fundamental-frequency photons,

frequency. The conservation of energy requires thatnd the modé&”\" refers to double-frequency photons. The
@pin! pyn= = k- We can also derive a general relation be-fundamental-frequency photons in different modes have ap-

tween the matrix elements of the displacement vector of aRroximately the same frequenay.

ion and of its momentum operator, The final state may be reached through transitions from
the initial state to two intermediate staté$) The action of

<Xv’|ﬁ>j|Xv>:iiwkml<Xv’|Sj|Xv>- (27 the annihilation operatoa,, on the initial statd 8) yields
_ o _ _ the first intermediate stater)=|1)|v)|n) where|n)=|n,,

Under the dlpqle approximation, for thiéh atom in the crys- —~1n4y/, ...). The energy difference between the initial

tal we may write: and intermediate states is calculated as

B Z'gl)eﬁj: iwy e ri+zi(nes |, EpEa=E~E+E, ~E,+fio= (w0 w),
I e |

where the— sign corresponds to the annihilation of a photonWhere ‘OIOZ(E'_EIO)”L is the electronic transition fre-
and the+ sign to its creation. The expression in bracketsquency and the vibrational energy difference is omitted be-
obviously represents the dipole moment operator ofjthe ~ Cause|E,—E, [<#i(w,— ). (2) The action of the annihi-
atom. It is more convenient to introduce the electronic dipoldation operatora,:,. on the intermediate stafer) leads to
moment operator of th¢gth atom bym;=—eX;r;; and the the second intermediate stafer’)=|1")[v’)|n’) where
ionic dipole moment operator of thgth atom by M; In"}=|n,— 1Ny —1,...) and next the action of the cre-
=Z,(r)es;. Putting Eq.(13) into Eq. (25 and utilizing the  ation operatos,,,, on the intermediate state’) gives rise
relation E= —dA/dt, the interaction Hamiltoniari25) re- g the final stately). The energy difference between the
duces to initial and intermediate states is found aS;—E,:
~—h(w,o—2w). On the other hand, we must consider an
HO=-> E(R))-(m;+M)), (28)  inverse three-photon process, which consists of the annihila-
j tion of a double-frequency photon and then the simultaneous
creation of two fundamental-frequency photons. The contri-
bution of the inverse three-photon process to the transition
hwy |12 _ _ probability in Eq.(23) is null because the system’s initial
E(R)=—2 i(ZV ) (—ap ek Ri+al, e Rig, . state|B)=|1o)|vo)|ng) contains no double-frequency pho-
K €o€ 29 tons. Nevertheless, the inverse three-photon process makes
(29 the same contribution as the obverse three-photon process to
Equation(28) tells us that the Hamiltonian of interaction of the hyperpolarizability of a crystal to be introduced in the
light with a crystal consists of photon-electron and photon-following.
phonon interactions. In line with the above analyses, the matrix elements of the
third-order perturbation in Eq23) are evaluated as follows:

where the electric fiel&E(R;) is given by

IV. HAMILTONIAN FOR HYPER-RAMAN SCATTERING
(VH®]a’) (@' [HD]a)(alHD|B)

The probability for three-photon transitions given by Eq. 2 E._E
(23) can give all the details of hyper-Raman scattering of “*Ba'+p Ep=Ear B e
light by crystals. To expound these details, we need to derive =(n"|(v"[H3p|vo)|No), (31)

the Hamiltonian for hyper-Raman scattering. Hyper-Raman
scattering corresponds to indirect transitions of three photonshere we have introduced the interaction Hamiltonik
due to the interaction Hamiltoniad "), which is given by for three-photon indirect transitions, which is defined by
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s E 2(10/E(Ry) - (m;+M))|a’ )@’ |E(R;) - (M) +M; )] )@l E(Rj») - (M M) 1)

, (32
i« 12 (w,10—2w) (0,0~ )

where the prefactor 2 accounts for the two equal contributions from the obverse and inverse three-photon processes. The triad
E(R))E(R;/)E(Rj») contains only theal,,x,,am,akA and alhal,x,akw terms. In calculating the summation over the inter-

mediate statesr and o', we can employ the closure relations for the vibrational eigensiates and for the photonic
eigenstates,n’, for example,

; lv)(v]=1, 2 In)(n|=1. (33

Consequently, the interaction Hamiltonighy, can be cast into the standard form,

=——.2" P& (0,9:E(R)E(R;E(R;»), (34)

wherePl(Jz)J,,(w,s) is a third-rank tensor and represents the hyperpolarizability due to virtual transitions of the valence electrons

in the electromagnetic field. The hyperpolarizabilﬁéf,)j,,(w,s) accounts for the bonding among the three atpms, andj”
through valence electrons and contains all the information of a lattice of interacting ions. \Whér j”, the hyperpolariz-
ability Pf]zj)(w,s) reduces to the second-order nonlinear atomic polarizability. In what follows, we consider only the bonding of

the atom) = nl with the nearest-neighbor atorjis=nl’ andj”=nl". In other words, we consider only the bonding among the
atoms in the same cell.
The hyperpolarizability is defined by

E <|O|(m +M; )|| ><| |(m]/+M )||><||(m]”+M ")||0>

(00— 20) (w0~ )

p2)

Pjijn(@,9)=

(39

As shown, the wave functions of valence electrons depend

The hyperpolarizability originates from a simple physical onl the |0n|g fcf:oordmates A][thoug:h the rlnatrlx elﬁment in-
mechanism. Under the influence of the electromagnetic field/?!VeS tWo II erentl states of a va ert1)ce electron, the integra-
the charge center of the electron shell of an atom shifts relaiON OVer valence electrons in E7) brings a nonzero con-
tive to that of its nucleus and hence an electric dipole motrlbutlon to the matrix element. Thereby, the matrix element
ment P2, (©,9):E(R)E(R;) is induced in the two bond- (1 |m |I) depends on the ionic displacemestand so does
ing at(;JmJSj and |’ thicrjl interacts with thej”th atom the hyperpolanzablllt}P, .(w,9). Since the acoustic modes
through the electric, fielE(R, ) do not participate in hyper Raman scattering, the ionic dis-
e placements here refer to the optical vibrations.

The hyperpolarizabilityDEjz,)j,,(w,s) can be expanded in a
power series 08,

This subsection concerns hyper-Raman scattering of light
by nonpolar modes. It is well known that nonpolar modes J(Jz)],,(s) ,(|2,)|,,(0)+ 51Pf12 J,,( ), (38
carry no ionic dipole momentsl; . Nonpolar-mode scatter-
ing is due to the electronic dipole momem§in Eq.(35), so

(2) 1/2

that the ionic dipole moments!; in Eq. (35 are omitted. PJJ J”(S) N~ E Bjj "7y Sy

The PI(IZ)J"(w s) in this case is given by

A. Hyper-Raman scattering of light by nonpolar modes

1
+§l§2 SqlB”’J”HJZSJZ—’— (39)

STTORE, CLARELY ||><||m,~||o>

i
(@10~ 20) (0,0~ ) Here P{’),(0) is the hyperpolarizability in the equilibrium

36
(36) configuration of the IattlceélP(Z,) »(S) is the variation in the

It is desirable to explicitly express the matrix element of thehyperpolanzabllltyP]] (9 due to deformation of the elec-
electronic dipole moment operator of tith atom between {rgnic wave functions andjjj»j, and By ;. are the

the electronic states and!, fourth- and fifth-rank tensors computed at the equilibrium
positions of the ions. In Eq39), the first-order term gives

e(r,9dr.  (37) rise to a one-phonon hyper-Raman scattering; the secc_md-
order term leads to a two-phonon hyper-Raman scattering.

wimin= [ et ~eS 1,
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We shall keep only the first-order term. Owing to translation )

symmetry, the expansion coefficieBl; o/ nir,n,1, is a func- PLU.a)= 2 P00 =9VNeZ&(a)T, /72w

tion only of the relative cell indicesn,=n;—n, i.e., " (43)

Bninir,ni7,n,1, = Biirim, (Nz). When the ionic displacemensgs ) ) o )
. 1 Here £,(q) is a unit polarization vector of optical mode

are given by Eq(7) with j being an optical branch index of Q,(q) andz, is the effective charge number of optical mode
normal modes, the hyperpolarizability increme‘}iPJ(jZ,)j,,(s) J {jefined b)J/

can be rewritten as follows:

Zia(a) Ty
_ iq. Z T,= —_—,
51Pr(12|,)n|',n|"(s):N l% 7’(1?/|~(J’Q)QJ(Q)eq Rn, ij(Q) J ”Z%” /_ml
(40) (44)
T _2 w2<|,|mjr||><||mju||0>
. I/l//_ .
'P(ﬁ?ervQ):nzl m V2B, ()@ ()€ P, ' (00— 20) (0~ )
2'1

Under the decoupling approximation we have introduced the
whereRn2= Rn,—Rq. It is more useful to introduce a quan- effective charge number of théth basis ion by Z/

tity 'p(IZ)U,q)ZEH,I,,»p(lzl?,lﬁ(],q), which is the electronic _=<|O|Z,||0) and because of translational invariarite,. is

component of the hyper-Raman tensor. independent of the cell indices’ andn”. By Eq. (44) we

have also introduced a tensdr, associated with thgth

mode. The effective charge numbkgrdefined in this way is

. . zero for all nonpolar modegP{?)(J,q) is the ionic compo-
There are two mechanisms responsible for hyper-Ramapent of the hyper-Raman tensor. Note that the matrix element

scattering of light by polar modes. In mathematical terms 1o|M;|1") or (15/Z/]1") does not vanish becaugk(r) de-

the first mechanism is due to the interaction HamiltonianpendS on the coordinates of all electrons.

(28) without M; . Therefore, the theory developed in Sec. A polar mode that carries electric-dipole moments gener-

IVA also applies to the first mechanism of hyper-Ramanates a macroscopic electric field in the crystal. The electric

scattering of light by polar modes. In physics, the firstfie|d modifies the hyperpolarizability of the crystal and

mechanism results from the coupling of the crystal electrongherepy  produces a  hyperpolarizability — increment
with the lattice vibrations, and it is translated into polariz- 5,P?)
ii

- . . =,(9). This is the second-order nonlinear electro-optic
ability theory by the deformation of the electronic wave ] (s) P

functions which depend on the ionic displacements. N WWeﬁect or the Pockels effect. Therefore, the second mecha-
unctions ch depend on the lonic displacements. No ism of hyper-Raman scattering arises from the second-order
need to establish a quantum theory to interpret the seco

mechanism of hyper-Raman scattering of light by polar onlinear electro-optic effect produced by the macroscopic

modes. The starting point of the theory is that, when Weelectrlc field related to a polar mode.

consider the polar vibrations of the lattice, the electrons of
the crystal move in an equilibrium configuration of the lat-

tice. Therefore, we employ the electronic wave functions, The above two subsections can be united into a general
which do not depend on the ionic displacements, i.e.case when the hyper-Raman active modes may be nonpolar
¢,(r,0). Since polar modes carry electric-dipole moments,modes or polar modes. The total variation in the hyperpolar-

which are characterized by the ionic-dipole momeits, izability among three atomg j’, andj” due to optical vi-

now in Eq.(35) we should keep only one ionic-dipole mo- prations of a lattice is given byP!:),,(s)= 8P, (9)

ment M; and two electronic-dipole moments; . In this +52Pj(1.2,).,,(s), where the second term is absent for nonpolar

method, one derives an additional variation in the hyperpoi”nodes. It will be helpful to introduce the total variation in
larizability due to the electric-dipole moments of polar

modes, the hyperpolarizability of thath cell by

B. Hyper-Raman scattering of light by polar modes

C. A general case

@ .9 (rol M [ )< [my [y (i fmjfig) PP(9)=>, P2 ()
52ijrju(5)—h—22 - e T
' (00— 20)(w,p— ) 1)
41 :
=N PA(,q)Q, (e, (45
Then, the development of the theory is parallel to the Y

formulation established in Sec. IV A. Using the expressior\Nherep(Z)U,q):'p(12)(],q)+fp(22)(]’q) is the total hyper-
M;=2Z(r)es; and the expressiof7) of 5 in Eq.(41), we can  Raman tensor. The Hamiltonian for hyper-Raman scattering

also castészjz,)j,,(s) in the form of Eq.(40): is defined by

A

(42) Y (46)

. 2
62Pf12,1)n,,'n|”(s)=N‘1% PR 0.a)Q,(q)ed R, Hie=—3 > 1 oP(9:E(R)E(RE(R),
J
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where the prime on the summation symbol mearsl, exp —E, /kgT)
j’=nl", andj"=nl". p(vg)= : : (50)
We may replace the arguments of the electric figldh Trexp(—Hji /kgT)

Ej(t]égg)q%;)hﬁ]t(gr;t I(ch:n\(/jeﬁgoer?% eV\g)](T)?eggie@S)ug)sr“- wherekg is the Boltzmann constant and Tr denotes the trace.
. . « ) .
Q,(q) and the expressiof29) for E(R,), the Hamiltonian Hion andE, are given by Eqs(10) and(12), respectively. If

Hpg for hyper-Raman scattering is second quantized belowwe take the thermal average over all the initial stdtes
with weight factorsp(v,), EQ. (49) becomes

o= 20 2 Vianr (kK0 @i g BrBi W= 3 p(ooI(0" Huelug)Ing o E, Q).
’ vo

AN (51)
In the following, k” and w,=c|k"|/\/e, represent the wave
vector and frequency of a second-harmonic photepg
V2, g\ 32 stands for the hyper-Raman scattering probability of a

> (2\/6 ) second-harmonic photon per unit time into a unit solid angle
,(0) €261 0 around the directiok”. We have to evaluate the density of
X’P(Z)(J,q):eﬁk,;q VBB, (49 statesp(E,{) per unit energy around the enerfyper unit

’ solid angle around the directidkd’, since thisp appears in

Eq. (51). Employing the relatiolrE=7% w,, we acquire

—af\ap, &k —gr)(by+bT g ), 47

2ﬁwk+kr¢qwkrwk

V(KK qy)=—i

where V}, ,(k,k";q7) = —Vy,/(k,k’;—0q,J) and the minus

and plus signs correspond to the Stokes and anti-Stokes scat- p(E,Q)= (V18733 ) €322 (52)
tering events respectively, ande, denote the relative per- ' 272
mittivities of the crystal at the fundamental frequeney or The HamiltonianH,r for hyper-Raman scattering as

wy and the double frequencyy /<4, respectively. The given by Eq.(47) describes all possible scattering events of a
Hamiltonian Hr given by Eq.(47) describes the obverse quasimonochromatic incident light. For simplicity, we now
process of two correlated fundamental photons scattered Rpnsider a particular scattering configuration, in which an
an optical phonon into a second-harmonic photon and théhcident plane light wave propagates along a wave vector
related inverse process. Since the incident light is a quasimqgith a polarization indexx, a scattering optical vibration
nochromatic field, we have to make sums over all possiblgyave travels along a wave vectqrwith a branch indey,
modesk\, k'\', andqy. Notice that the two fundamental and hence the scattered second-harmonic light runs along a
photons have the same polarization indewhile the polar-  \ave vectork”=2k+q with a polarization index’. Fur-
ization index\" of the second-harmonic photon may be dif- ther, one makes a prescription that the polarization vestor

ferent from that of the incident photons. of the incident plane light is along theth Cartesian coordi-
nate while the polarization vectog.,, of the scattered
V. HYPER-RAMAN SCATTERING INTENSITY OF LIGHT second-harmonic light points to ti&th one. Consistent with

this scattering configuration, we abolish the sums in (Ed)
As we said, the transition probability per time unit for a and obtain the Hamiltonian for a particular hyper-Raman
three-photon process given by Eg3) contains all the infor-  scattering event as
mation about the interaction of light with matter in the three-
photon process. Substituting E@1) into Eq. (23) one gets HhR=VW(k,k;q])(agkm'}\,akkakk—aEXaEXaZK,q,\,)
an explicit expression of the transition probability
X (bg+b" ), (53

2m where Eq.(48) reduces to
W(3)27|<n [(v"[Hzplvo)no)Pp(E. Q). (49

] Zﬁwzkiqwﬁ vz ho\%2 )
S Vi (kkia)) = =i Plas. ).
In this section we shall use E¢49) to calculate the hyper- wJ(Q)Ezfi 2Veq
Raman scattered intensity of light. To this end, the Hamil- (54)
tonianH3, in Eq. (49) is replaced with the HamiltoniaH g
for hyper-Raman scattering as given by KE4j7). The state Since we have idealized the incident laser light as a

lvo) in Eqg. (49) is a pure many-mode number state given bysingle-mode laser light, the corresponding eigenstate of the
Eg. (11) and therefore far from thermal equilibrium. How- Hamiltonian of the light field reads
ever, the crystal is in a thermal equilibrium state character-
ized by a certain temperature before the system makes 1 +on

L . e = = —_— [N
transitions. The crystal in thermal equilibrium must occupy [no) =[N \/F(ak)\) |0), (55
every eigenstatv ) with a definite probability. The distri- k-
bution of probability over eigenstates obeys Boltzmann'swhere the photon numbaer,, >1. Obviously the photonic
law, initial state contains no double-frequency photons, such that

165101-8
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a,ny|Ng) = 0. After the system makes transitions, the photo- Ve tiwh

w3
nic eigenstate is specified byn"y=a/, |nn—2). The 1,R*dQ = 16725, a0 ( )[P(azczﬁu'q“()]z
phononic eigenstate in the system’s initial state is written as T CTe1€0w,(d
lvo)=|vg g - - -), which is still given by Eq(11). Af- b +1 fora Stokes line,
ter the system makes transitions, the phononic eigenstate xdai_Y
takes the form vy for an anti-Stokes line.
(59)
[v")= |quil!vq’1’ s ) As the reduced Planck constatappears in the above ex-

pression, hyper-Raman scattering of light is a quantum ef-
égct. Equation59) shows that the distance dependence of the
intensity |, is an inverse square law. The intenslitycorre-
e'sponds to a scattered second-harmonic light analyzed in the

us with all the elements necessary for the calculation of thé direction, which is induced by an incident radiation polar-
hyper-Raman scattering probability of second-harmonic phOI_ZGd in thea direction. The intensity,s of a Stokes line of

tons per unit time into an infinitesimal solid angle around ~ FAUENCYw, =2w—w,(q) is associated with an optical pho-
the directionk”: non creation in hyper-Raman scattering. The intenisityof

an anti-Stokes line of frequenay,=2w+ w,(q) is associ-

ated with an optical phonon annihilation in hyper-Raman
1 scattering. The temperature dependencd ,gfis different
[7>£¥2)B(],q)|0]2 from that ofl,,. By taking account of the expressidh7)

a
for the mean phonon numbey, , we thus obtain

where the plus and minus signs refer to the Stokes and an
Stokes scattering events, respectively.
The formula(51) and the subsequent expressions provid

\/f—zwg Ny —

16772056168wj(q) Miex

WhRdQ =

4
exd —hw,(q)/ksT].  (60)

v_q,+ 1 for a Stokes line,

xXdQy — (56)

2w+ wj(q)
Uy for an anti-Stokes line. loall2s=

20— w,(q)

Equation(60) gives the ratio of the intensities of the Stokes
The second-harmonic photons suffering from hyper-Rama@nd anti-Stokes lines for a definite temperature.
scattering have the frequencies= 2w+ ,(q), where the The hyper-Raman scattering of light mentioned above is
minus and plus signs refer to the Stokes and anti-Stokespontaneous. As known, the spontaneously Raman scattering
lines, respectively, is the mean value of the phonon num- intensity of light is directly proportional to the intensity of
bervg, in an active optical modey defined by an incident light. However, as shown in E&9), the spon-
taneously hyper-Raman scattering intensity of light is di-
rectly proportional to the square of the incident intensjy
— 1 It is interesting to inspect the hyper-Raman scattering spec-
Uq/_exqﬁwj(q)/kBT]_l' ) trum of light by polar modes. A polar vibration mode that
carries electric-dipole moments produces a lattice polariza-
_ ) ) . tion, and again the polarization generates a macroscopic
We have introduced the intensity of the incident plane waveyeciric field. The polar-vector representation is threefold de-
by generate for the cubic symmetry groups. The effect of the
macroscopic field in cubic crystals is to lift the group-
theoretical degeneracy of polar modes, producing a nonde-
:nk%ﬁ“’k ° (58) generate longitudinal vibration, which lies at a higher fre-
0 Vo e quency than the doubly degenerate transverse vibrations. The
modes thus produce two distinct peaks in the hyper-Raman
@) _ spectrum. The simplest cubic piezoelectric crystals possess
The componenP 7, 5(J,q) of a hyper-Raman tensor associ- the zinc blende structure like GaP, which has a single three-
ated with an active mode characterizes the ability of a crystajy|q polar mode. The above results deduced from @)
to scatter a second-harmonic light and so is completely deggree well with the known experimental resdftddowever,

termined by the crystal properties. ~ the variation of Eq(60) with temperature will be verified in
One usually observes the hyper-Raman scattering interyn experiment®

sity 1, of light at a large distanc® from a crystal. The
w,rd() given by Eq.(56) also expresses the number of
second-harmonic photons hyper-Raman scattered per time
unit into an infinitesimal solid anglé() around the direction The earlier theories of hyper-Raman scattering possess the
k”. By multiplying Eq. (56) by % w,, we obtainl,R*dQ following shortcomings(1) the theories are semiclassical in
=hw,WhrdQ. 1,R?dQ) represents the energy of second-nature,(2) fourth-order perturbation theory is used, af®
harmonic light scattered per second into a solid artfle  the theories lack universality. In contrast our theory pos-
around the directiok” and is acquired as sesses the following advantagé$) We present a quantum

VI. SUMMARY AND DISCUSSION
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field theory of hyper-Raman scattering of light by crystals.theory applies to isotropic piezoelectric crystals. For uniaxial
Our theory can also be generalized to molecular md@ja. and biaxial piezoelectric crystals some correction is made.
We employ third-order perturbation theory. Now we explainUniaxial and biaxial crystals are birefringent crystals. When
why our theory is so much simpler than a semiclassicah beam of polarized light travels in an arbitrary direction
theory. In the semiclassical theory, the interaction of lightthrough a birefringent crystal it is split into two perpendicu-
with a crystal is only a photon-electron interaction but therelarly polarized components with different velocities. This
is an electron-phonon interaction, so that hyper-Raman sca#lso applies to scattered light. In the biaxial case the basic
tering is a four-photon process. In the first process, an incipolar modes are all nondegenerate by group theory and the
dent photon creates a virtual electron-hole pair. In the seconehacroscopic electric field cannot produce any additional
process, the electrofr hole emits or absorbs a phonon. In mode splittings.
the third process, another incident photon creates the second Now we summarize the approximations made in the
virtual electron-hole pair. In the fourth process, the secondpresent paper. The author initially assumes that the incident
harmonic photon arises in the recombination of the pairs. Ifight is a quasimonochromatic field of central frequengy
the semiclassical theory, the scattering process in a crystal ishich is consistent with quantum field theory. In quantum
represented by means of four electronic transitions inducetleld theory, the electromagnetic field is a many-mode field
by photons and phonons, which requires the use of fourthand the quantized Hamiltonian of the field contains a sum
order perturbation theory. In our theory, the Hamiltonian ofover all such modes. However, in Sec. V the author idealizes
the interaction of light with a crystal consists of photon-the incident laser light as a single-mode laser light. In this
electron and photon-phonon interactions but there is nease, the sum in the Hamiltonian can be abolished and the
electron-phonon interaction, so that hyper-Raman scatteringalculation is much simpler. In Sec. IlI, the author uses the
is a three-photon process. In the first process, an incidergddiabatic approximation to separate the motion of valence
photon creates a virtual electron-hole pair and another incielectrons from that of lattice ions. Afterwards, the one-
dent photon emits or absorbs a phonon. In the second pr@lectron approximation is employed to solve the Sdhnger
cess, the second photon creates the second virtual electropguation of the many-electron system and the harmonic ap-
hole pair. In the third process, the second-harmonic photoproximation is utilized to reduce the coupled motion of lat-
arises in the recombination of the pairs. In our theory, theice ions. In Sec. lll, we use the rotating-wave approximation
scattering process in a crystal is represented by means @ find the transition probability per unit time in a three-
three electronic transitions induced by photons and phononghoton process and use the dipole approximation to derive
which requires the use of only third-order perturbationthe effective interaction Hamiltonian of light with a crystal.
theory. Our theory is independent of any concrete model oWithin these constraints all the calculations have been car-
electron-phonon interaction and therefore has a certain gemied out correctly, but these constraints on the theory have to
erality. (3) We establish a unified theoretical framework to be kept in mind.
describe hyper-Raman scattering of light by nonpolar modes To sum up, we have established a quantum field theory of
and longitudinal or transverse polar modes. In this framehyper-Raman scattering of light by piezoelectric crystals.
work, photons and phonons are described by seconddur theory can produce an additional physical mechanism of
guantized field theory while electrons are depicted by classihyper-Raman scattering of light by polar modes, which
cal quantum mechanics, because electrons play an auxiliagrises from the second-order nonlinear electro-optic effect of
role. By comparison our theory possesses a clear physicaolar modes. We have developed a unified theoretical frame-
picture and is strongly systematic. work to describe hyper-Raman scattering of light by nonpo-
The properties of the scattered radiation of principal in-lar modes and longitudinal or transverse polar modes. In this
terest are the frequency, polarization, and intensity. The deramework, we find the ratio of the intensities of the Stokes
termination of frequency depends on the frequencies of thand anti-Stokes lines for hyper-Raman scattered light and
incident laser light and the hyper-Raman active mode. Muclobserve two distinct peaks of hyper-Raman scattering from
of the detailed work in the present paper concerns the interthe split polar modes.
sity of the scattered light. However, we never touch upon the
polarization of the scattered light. In general the polarization ACKNOWLEDGMENTS
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