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Localization from conductance in few-channel disordered wires
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We study localization in two- and three-channel quasi-one-dimensidil systems using multichain
tight-binding Anderson models with nearest-neighbor interchain hopping. In the three-chain case we discuss
the cases of both free and periodic boundary conditions between the chains. The finite disordered wires are
connected to ideal leads and the localization length is defined from the Landauer conductance in terms of the
transmission coefficients matrix. The transmission and reflection amplitudes in properly defined quantum
channels are obtained froBimatrices constructed from transfer matrices in Bloch wave bases for the various
quasi-1D systems. Our exact analytic expressions for localization lengths for weak disorder reduce to the
Thouless expression for 1D systems in the limit of vanishing interchain hopping. For weak interchain hopping
the localization length decreases with respect to the 1D value in all three cases. In the three-channel cases it
increases with interchain hopping over restricted domains of large hopping.

DOI: 10.1103/PhysRevB.66.155434 PACS nuni®er73.23-b, 72.10-d, 72.15.Rn

[. INTRODUCTION tance steps corresponding to increasing valuésiaofEq. (3)
are clearly observetiA further interesting feature of these
A wire is a topologically one-dimensional system whoseexperiments is that they offer the possibility of realizing
width, of the order of the square root of the cross-sectionaphysically not only purely one-dimensional systemd (
areaA, is much smaller than its length i.e., JA<L. Ina  =1) but also few-channel systemdl€2,3,...) such as
thin wire the motion of electrons in the transverse directionthose studied below. We recall that recent discussions of
is quantized. The corresponding transverse eigenstates belawany-channel mesoscopic systems have been essentially re-
the Fermi level define a finite numbedg \2A/N, (with A stricted to the cas&l>1" i.e., real(metallic wires whose
the Fermi wavelength of quantum channels for the trans- widths are much larger than the Fermi wavelength.
mission of electrons across the wire. The starting point of the The behavior of the conductance in a disordered wire de-
present work is the Landauer two-probe conductancgends strongly on its length relative to the localization length
formulat2 L.. In an infinitely long disordered wire of a given cross
section all eigenstates are expected to be localized just like in
the truly one-dimensional case. Thoufegalso see Ref. )6
indeed showed that fdr>L., where

2¢e? o
9=~ Tr(tt"), )

which describes current transport in a disordered wire. Here

t is the so-called transmission matrix of thechannel sys-
tem:

L.~NI, (4)

| being the mean free path, the conductance should fall off

tyy tp ot gy exponentially ase™ "¢, which is a clear manifestation of

t localization. On the other hand, on the scales of lengths in
N _ (2)  the domain

tha the o taw I<L<L.=NI, (5)

An incoming wave from channglof an ideal lead at one end
of the disordered wir¢of lengthL) has a coefficienlltij|2 for  the eigenstates appear as being delocalized. In fact, it was
transmission into channelof the lead at the other end. shown latef that for lengths in the range of E¢5) there
The correctness of the description of the conductance ifremains a numbeN s~NI/L of independent ballistic chan-
terms of transmission channels has received striking experiels leading to a metallic Ohm’s law behavior for the con-
mental confirmatiohin the special case of perfectly trans- ductancel). Such a diffusive quasimetallic domain does not
mitting channels, where E@1) reduces to exist for truly one-dimensional systems whdrg=Lq.~I.
DorokhoV? developed a detailed scaling analysi$localiza-
tion in a multichannel wire, in which he calculatéd in
terms of a phenomenological mean free path entering as in-
33ut via Ohm’s law at short scales. His final result, which is

2e?
g= TN' 3

These studies relate to quantum point contacts in the form
narrow conducting two-dimensional strips whose width, an
hence the number of discrete transmitting channels, may be

varied by varying externally applied gate voltages. Conduc- L.=(N+D)I, (6)

alid for weak disorder, is
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which coincides with4) for N>1 and suggests that isnot  systems, respectively. The two chain Anderson model con-

directly proportional to the number of channels for few chan-sists of parallel linear chains &f, disordered sites eadbf

nel systems. In particular, for one-dimensional systems igpacinga=1 and length.=N, a) connected at both ends to

yields semi-infinite idealnondisorderedleads. It is defined by the
L.=2l. @) tight-binding Schrdinger equation which we write in the

matrix form
We recall that Eq(7) coincides with the result obtained long
ago by Thouless from kinetic transport theory. The same oLttt E—eq, —h ot

result also follows from the quantum series composition law ( 2 2 )=( “h  E- ( 2>, tS)

for conductanceg=t|? for one-dimensiona(1D) conduc- Pn+1™ Pn-1 €an/ | @n

tors, assuming Ohm’s law to be valid at short length sciles. whereo!, denote the wave-function amplitudes at sitesn
;DiglélgeLOt—hEr hag‘ljyv‘\’/"heic?lo?g tg‘;‘r:]‘;ogrg’;’)?e'cgamgrzmms the chain, andh is a constant matrix element for an electron

c -2 ; . —>22c - to hop transversally between a siteon chain 1 and its

=2I[1-(1/m)] " obtained by DorokhoV in a different nearest-neighbor site on chain 2. The site energies,, are

scaling treatment. : . ) .
. andom variables associated with the sitesmi<N, of the
Shortly before the development of the scaling theory 01{jisordered chairi, and ¢;,,=0 on the semi-infinite ideal

localization for 1D conductorsThouless derived his well- chains defined by the sites>N, and m<1, respectively.

:(ennov'zlr? ir?n:Ii/itl(I?lt-%)i(r?cri?nssﬁge;?rc;]g?n ?g?r\]/f/légk Iggilzgt:on.rhe above energies, includirif) are measured in units of the
9 9 9 ' _constant hopping rate along the individual chains.

The purpose of the present work is to derive similar exact The coupled three-chai\(=3) Anderson model is de-
microscopic expressions for the localization length in quaSiTined in a sFiJmiIar way by a set of tight-binding Sékinger
one-dimensional few-channel systems, specifically for two- quations, whose actual form depends, however, on inter-

and three chain systems for weak disorder. This study is oEhain boundary conditions. For free boundary conditions,

interest in several respects. For example, via the dependen\(lzv%ich correspond to arranging the parallel equidistant chains

of the localization length on the energy across the energy " siane. the tiaht-bindina equations are
bands of the pure systems, it provides a first-principles quan- P ' 9 g€q

tum proof of the fact that all states in the quasi-one- 1oLl E—s —h 0 1
dimensional systems are localized. It is also relevant for ex- Pn+1 <P271 n (Pg
perimental situations, e.g., for discussing the quasimetallic| #n+1 7 ®n-1 | = —h E—ean —h ®n |,
domain in few-channel systems which are encountered in\ ¢35, 1+ ¢35 4 0 —h  E-—ej, ¢
semiconducting microstructurésor may be fabricated arti- (9
gglg\lllg,. as in the quantum point contact system dISCusse(\j/vith the sites in the disordered sections of length N, a

and in the semi-infinite ideal chain sections labeled in the
chain systems for modeling few channel wires. In Sec. I gSame way as in the two-chain case. On the other hand, in the

we describe our methodology for studying the localization¢@S€ Of periodic boundary conditions which correspond to
length. This consists in constructing successively transfer‘-a_qu'd'Stant I|_nea_r chains on a cylindrical surface the Schro
and transmission-reflection matrices for the tight-bindingdlnger equation Is

systems by generalizing well-known methods for 1D sys- 1
tems. It further relies on general results concerning the exis- ‘Pgﬂ

In Sec. Il A we define the tight-binding two- and three-

tena| [(ETewm  ho o o

tence and the properties of a Lyapunov expon@mierse Cn1t 903—1 = —-h E—eon —h (Pﬁ
localization length describing the asymptotic exponential \ @3, +¢3_; “h —h  E—sg,/ \ o0
decay of the conductancéEq. (1)] in multichannel (10)

systems? In Sec. Il we present the details of our calcula-
tions leading to the final analytic expressions for the transfer As discussed in Sec. |, a quasi-one-dimensional wire is
and scattering matrices for the two- and three-channel wiredescribed by a collection of independent channels for wave
for weak disorder. For the cadé=3, we obtain different transmission. Microscopic models for two- and three-channel
results for open and periodic boundary conditions, whichwires are obtained from the systems of tight-binding equa-
correspond to packing the chains on a plane and on a cylirtions (8)—(10) by diagonalizing the interchain coupling terms
drical surface, respectively. The final analytic expressions foin the equations describing the ideal leads. This indeed leads
the averaged transmission- and reflection-coefficients and fap independent quantum channels for the leads defined by
localization lengths are discussed in Sec. IV. For clarity’'samplitudes bases
sake some details of these calculations are relegated to an
Appendix. . .
[ e | i
n _U an 1
Il. FEW-CHANNEL WIRES AND. LOCALIZATION : .
A. Anderson models in channel bases in which the nonrandom parts of the matrices on the right-
We describe two- l=2) and three- =3) channel hand side of Eqs(8)—(10) are diagonal. For the multichain
wires by Anderson models for two- and three-coupled chairsystem above we obtain, respectively:
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(wﬁ)zo(wﬁ) 0:1(1 1) U o 110
pi " oed) Tl —1) 9”§=(U”)’1‘P§,U”=1 o 1],
(8a) n h 1 -1 -1
(109
. [ E —=h\. E-h 0 _ _
0 0= | E —h —h
—h E 0 E+h (0!7)71 —h E —h 0"
-h —-h E
. X 1 —v2 1 | o E+nh o
(9a) 0 0 E+h
E —-h O E—-v2h O 0 - d0 hilel
~ ~ Note thatU, andU’ are unitary, whileU” is not.
urf —h E -—hjUu'= 0 E 0 ’ Finally, in the channel bases defined by E@a—(10a
0 —-h E 0 0 E+v2h the tight-binding equation&)—(10) read, respectively,
|
E-h l( +&5n) 1( )
—N—z& & ~(&op—E€
(wﬁﬂwﬁl): 22 (wﬁ) -
Unert i 1 1 el
5(&2n—&1n) E+h—5(e1ntean)
2 2
1 V2 1
E_‘/ih_Z(gln+282n+83n) Z(83n_81n) _Z(Sln_282n+83n)
¢§+1+¢§71 ‘/2 1 ‘/2 ¢§
'r/’g+1+'7[’gfl = Z(S3n_31n) E_§(81n+83n) Z(San_aln) ‘r/’g
'//n+1+'r/fn—1 1 \/Z 1 n
_Z(Sln_282n+83n) Z(83n_81n) E+‘/2h_Z(81n+282n+83n)
(9b)
1 1
E_2h_§(£1n+82n+83n) _§(Sln_83n) _5(82n_83n)
¢§+1+¢§—1 1 1 1 lﬂé
¢g+1+¢g—l = _5(281n_82n_83n) E+h_§(281n+83n) §(82n_83n) lpg , (10b
‘/’n+1+‘/’nfl 1 1 llbn
§(Sln_282n+83n) §(8ln_83n) E+h_§(282n+83n)

which constitute our starting point for deriving transmission-decreasdéLyapunov exponentof the conductancgEqg. (1)]
and reflection matrices of the disordered wires in Sec. Ill. Itfor large L.** The transmission matrix in Eq2) will be
is seen that the similarity transformation of the disorder mafound by constructing a transfer matrix which transforms

trices by thel) matrices leads to interchannel coupling in the Propagating waves in the multichannel legdefined by Eqs.
disordeiled sections, AIN<N, Ping (8a)—(10a)] on the left side of the disordered wire into cor-

responding propagating waves on the right side. The transfer
B. Localization from conductance matrix for the wire of lengthL is expressed, as usual, as a
product ofN, transfer matrices for small sectionsenclos-
In Sec. IV we will calculate the localization length in the ing only thenth site of each one of the channels. The calcu-
above multichannel wire models from the rate of exponentialation of the localization length rests on theorems of
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Oseledet® and of Tutubalin and Vistéf on the properties of plitudes across a whole disordered wire of lengthwhich

products of a large number of random matrices. Indeed, emwe then cast in the form of scattering equations in order to

ploying these properties Johnston and Kidnghowed that identify microscopic scattering matricéSmatrice$ in terms

the Lyapunov exponent exists for the conductan¢&q.(1)]  of elements of the transfer matrices. We recall that the trans-

and is a self-averaging quantity referred to as the inversér matrix method is well known in the study of one-

localization length. It is defined by the relation dimensional disordered systefs?! Here we generalize and
adapt it in the case of few-channel quasi-1D systems.

1 1
7 L. T NILITQC 2N, (Ing), (1D A. Transfer matrices
where(- --y denotes averaging over the disordiee., the ran- Transfer matriceX,,,, X/,, andX/, for thin slices includ-

dom site energies in the Anderson madélit follows that ~ ing a single siten per chain of the quasi-1D systems de-
the asymptotic distribution of the conductance is log normalscribed by Eqs(8b)—(10b) are defined by rewrtiting these
equations, respectively, in the forms

Ill. DETAILED ANALYSIS 1 1
ni1 n
As indicated above the transmission matrices of the form Ir/,ﬁ - (/,ﬁ_l
of Eq. (2) for the quasi-1D disordered systems above will be y2 =Xon K (12
obtained from transfer matrices for wavefunction amplitudes “Zl 2"
defined from Eqs(8b)—(10b), respectively. The construction ¥ n-1
of these transfer matrices proceeds in two steps. First we will o "
define transfer matrices for thin slices enclosing only one site ”Il "
n of each chain in a disordered wire, in a Bloch plane wave ¢ Pn—1
basis. Next the transfer matrix of a whole wire of length 2 -y 2 v =% X 1
=N, a will be obtained as a product of the transfer matrices ,ﬂﬁ ~Tn ﬁil , n="n:Ans (13
for the N_ individual slices composing the wire. We will W2 w2
express it analytically to lowest order in the effect of a weak ”;l 3"
disorder. Finally we obtain the form of the tight-binding ¥ n-1
equations describing the transfer of Bloch wave am-where
|
E-h—pu, -1 n
% 1 0 0 0 14
on— vy 0 E+h—p, —-1| (14
0 0 1 0
Mn:%(81n+82n)1 Vn:%(szn_sln)r (1439
E-v2h—pu, -1 4 0 T 0
1 0 0 0 0 0
- v, 0 E—-7, -1 v, 0
Xr/1= n n n , (15)
0 0 1 0 0 0
T 0 v, 0 E+v2h—pu, -1
0 0 0 1 0
! 1 ’ ‘/2
Mn:Z(81n+282n+83n)1 Vn:Z(83n_81n)a
(15a

1 1
Té:_Z(sln_ZSZn"’sSn): 77rl1:§(83n+81n)v
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E-2h—u; -1 vy 0 T 0
1 0 0 0 0
. a” 0 E+h—-g -1 -7 0
X;Z " " " 1 (16)
0 0 1 0 0
B 0 . 0 E+h-6, -1
0 0 0 1 0
[
2 cosk,=E, (18a

1 1
pn=7z(emteantesn), M=3(2emtea), 6,
2 cosky=E+v2h

1 . -
=—(2epnt+€3n), for the three-channel system with free boundary conditions,
3 ; ~, .
whose leads are described By, and, finally,
1 1 —E_
V::_g(sln_‘?Bn)a T;:_g(SZn_SBn)y (163 ZCOSkl_E 2h, (18b)

2 cosk,=2 coskz=E+h

for the three-channel model with periodic lateral boundary
conditions. The eigenfunctions in the leads at endfgyb-
The study of disordered wires in terms of reflection andtained from Eqs(12) and(13) and(17) and(18) are of the

transmission properties of plane waves requires a determin&'M

tion of plane wave bases in which the transfer matrices for | grink; (19

slicesn in the leads are diagonal. Such bases are provided by Yn € '

the Bloch wave solutions for the leads, which are defined byyhere we choose the wave numbkysj =1,2,3, to be posi-
tive, O<k;=r, so that these functions correspond to plane

1 1
a;1= - §(281n_82n_83n)a ﬁnzg(gln_282n+83n)-

W eiiklﬁ’i waves traveling from left to right and from right to left,
~ 1 ekl respectively.
Xoo| 727 | = tikz“’zl'— ) 17 The transfer matrices for single site slices in H4®) and
‘/Zjnvt fik ‘fni (13) for the leaddi.e., fore;,=0, n<1 orn>N) are diago-
Uno1+ e "2y g nalized in the bases of the Bloch plane wave stétés The

diagonalization matrices which are formed by the eigenvec-
tors of Egs.(17) and(18), are of the form

U e My L
o1 ey . A A ik ik
o | V- eey? | o == v A O A 1 (eJ e J) 0
o vy | 7| e, | Yo Ko Ko “\o A 7 Jaisink\ 1 1)
Ui, e 3y . _
,}ygf“ eiikswﬁ,“ for the two-channel quasi-1D model, and
| | 1o AL O O
~ ~ ~ 1
whereXqo, X4, andXg denote the transfer matrices for the - A A oA
v=| O A, O], (21

leads given by Eqs(14)—(16) with &;,=&,,=&3,=0, re-
spectively. The wave numbeks are defined in terms of the O O A,

energyE by the eigenvalues of Eq¢17) and (18), respec- A
tively. By solving for the eigenvalues we obtain, succes-with A; defined as in Eq(20), for the three-channel models.

sively, The wave numberk; are defined by Eq(17g for the N
=2 case and by Eq$183 and(18b) for theN= 3 case with
2 cosk;=E—h, free and periodic boundary conditions, respectively. After
(179 finding the inverses o¥, andV and performing the similar-
2 Cosp=E+h ity transformations oKg,, X/, andX by V, andV, respec-

tively, we obtain the desired transfer matrices in the Bloch
wave representation of the disordered wires. In the two-
2 cosk,=E—v2h, channel case we find

for the two-channel system,
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efl+ia,,) e May, —ie'keb, —jekep,
% e —iefa,, e kiy1-iay,) ie'kab,, ie 'kep, 22
on— Vo onVvo _ieiklbn _iefiklbn eik2(1+ia2n) iefik2a2n ’
ielk1b,, ie kip, —ie2a,, e k(1-ia,,)
where
a _81n+82n a €int e
"™ 4 sink; © “?" 4 sink, ’
(229
€2n~ €1n
b,=

4[sink, sink,

are real quantities, and, andk, are defined by Eq.173. For the three-channel systems we write the final transfer matrices

X/ andX, in terms of a generic matrix

eki(1+iay,) ie kg, ie'kec,, ie ke ielksg, ie ksg,
—iea,, e *i(l—-iay,)  —iec, —ie kg, —ie'ksg, —ie kg,
. ielkf, ie”kaf e'*2(1+iby,) ie”'kah,, ie'sd,, ie”ksd,
— o o o B _ o o . (23
n —ielkaf, —ie kaf, —ie2b,, e *2(1—ib,,)  —ielad, —iekad, 23
ieip, ie kip, ielkzq, ie k2q, e*3(1+iag,) ie ksay,
—ie'kip, —ie kip, —ielkeq), —ie7*2q, —ie™sa;, e ks(1-iay,)
|
where_gln, asn, bon, Chy Ons fry Aoy Pos and_c_|n are real _ Ean— Ean 2610~ Eon— Ean
quantities. In the case of free boundary conditions we obtain dyi=—0z-—, _——,
6 sink; 6+/sink; sink,

X[ =V~X/V=Z, with

€1nt2eo,t €3, e1nt2eo, T €3,

U= o ., AT 5 .
in 8 sink, 3n 8 sinky
_&intes V2(e1n—€3n)

2= "7 sink, ’ Ch= (24

" 8sinky sink,’

—q :_‘/2(81”_83"1) g,=p _ &~ 28t &3p
v 8\/sinkzsink3’ o &/W '

Herek,, k,, andk; are defined by Eq(183. On the other
hand, for periodic boundary conditions we fin&ﬁ
=V~ IX"V=Z, where

d

a _81n+82n+33n a _282n+83n
in 6sink;, ' 7" 6sink, ’
b _281n+83n co= €1n™ €3n
2n— f n— - - '
6 sink; 6+/sink; sink,
€2n~ €3n
On= —— (25

6/sink; sink,

—&1nt 28— €3y _€3n" €1n

Pn= 6+/sink, sink, =76 sink, °

wherek; andk,=ks are now given by Eq(18b). Note, in
particular, the diagonalization of the transfer matrices for the
leads in the plane wave bases shown in Eg8) and (23).
Finally, we determine the transfer matrices for the disor-
dered wires of lengti. =N, a in terms of the transfer matri-
ces of the individual thin slices. As shown by iteration of
the transfer equationgl7) and (18) rewritten in the Bloch
wave basis above, the matrix transferring an incoming wave
at siten=0 just outside a disordered wire to the siig
+1 just beyond its other end is given by a product of transfer
matrices of the form

(26)

Where\?n and\?,_ stand for the three pairs of transfer matrices
Xon XoL X5, X[ and X", X!", respectively, which are associ-
ated with the wire models above.

We shall evaluate the transfer matrices of the disordered
wires for weak disorder to linear order in the random site
energies. On the other hand, for our explicit calculations of
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averages over the disorder below, we assume the site engjt a zeroth-order diagonal matrig® independent of the site
gies to be independent gaussian random variables with zeghergiegtransfer matrix of the leadisind a matrix which is
mean values, and correlation linear in the energies;, . By inserting Eq(28) into Eq.(26)
we obtain, to first order,
<8in8jm>:8(2)5i,j5m,n- (27)

In this case the site energies corresponding to different slices
nin Eq.(26) are uncorrelated so that it is indeed sufficient to
restrict the expansion of the latter expressions to first order in
the site energies for determining averages to oaﬁerThe

transfer matrice§(n given by Egs(22) and(23) are sums,

N
?L:(Q(O))NH_ 2 (?(@)m_l?%)(?(o))NL_er... ]
m=1

(29

Next we insert the slice matrice&® and Y(¥) from Egs.

A “1 (22) and(23) for our various quasi-1D systems, and obtain,
Yo=Y O+y (28)

successively,
|
ia;me*u,  iagme st —ibpefew,, —ibpe ke,
. N N N e Mool —iagefis,  —iagme 'kl ibge*ev,, ibpeewd;
XOL:d|age' 1ML e 1Kq L,e' 2L e LY) L)+ E . ik ) ik % . ik . ik ,
m=1 | —ibye"wy, —ibne 1w, iayne2u, ia,me” '“2s;
ibne*w,  ibpe fwi,  —ia,ne*es, —ia e keul
(30)
for the two-channel case. Here
Sj:ei(NL—Zm-%—l)kj' uj:ei(NL—l)kj,
. . . . 31
Uij:el(NL_m)ki_l(m_l)kj, Wij=el(N'—_m)ki+l(m_l)ki, (
wherek; andk, are defined by Eq173);
| =diag /i e=TkiNe gikeNi g=ikaNL gikaNi g=iksNL)
; ik ; —ikq ok 0 aik L amiky X P i a—ikg %
ia;me'“tu,y iagme” "“1sy iC e 2wy, iche "3, igme3wg, igme” "33,
—iayefts; —iayme fwy  —ice*w,  —icpe ewl; —igne*vs  —igme *ewd,
.\ N if e wy,  ifpe kWi, ibome*eu,  ibomeResy  idge*ewg,  idge ke,
o1 | —ifge®wy, —ifpewi, —ibyge*es, —ibynekeud  —ide*vg, —idge kewd, |
ipme vz ippe Ml igneaw,s  igme w3 iagme™sus iagme” '3s}
; ik ; —ikqyp* ; ik ; —ikgyp ik ; ikga* ; —ikgy %
—ipn€ iz —ipme Wiy —igueew,s —iqme 2wy, —iagne3sy;  —iagye su3
(32)
|
for the three-channel case with free boundary conditions Pt
wherek,, k,, andks in definitions(24) and (31) are given S=l... | (33
e r-—
by Eg. (189; the transfer matrixX{ for the three-channel t
model with periodic boundary conditions is given by Eq.
(32), using defInItIOI’]S{.25.). of the slice parametees,,, 8zm,  where
b,m, andc,,; and definition(18b) of the wave numberk,,
k,, andks.
t t
I ¥ ¥
B. Scattering matrices trr=| ty tyn ], (34

The scattering of plane wavdseflection and transmis-
sion) at and between the two ends of the random quasi-1D
systems is governed by ttf&matrix, and
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r r e notation above for transmission and reflection matrix ele-
S ments, we denote the amplitudes at sjtesandj,n—1, re-
o=l ra Tz (39 spectively, asa n—1 and a; ,_, since they correspond to
amplitudes belng transferred by theslice and propagating
. in thek; and —k; directions, respectively. The transforms of
Heret " (t; ") andr; " (r;; ) denote the transmitted and P ¥

. . . the amplitude vectors
reflected amphtudes |n channelwhen there is a unit flux p

incident from the left(right) in channelj. Left to right and

right to left directions are denoted by and —, respectively. (/;i
The S matrix expresses outgoing wave amplitudes in terms i "
of ingoing ones on either side of the quasi-1D disordered l/l”.‘l
wire via the scattering relatioh's*! :

0 " | s and

o) -\ (36 :

J

Herel and!’ (0 and 0) denote ingoingloutgoing ampli- Yo+
tudes at the left and right sides of the disordered region, l/{%

respectively. It follows from current conservation that, e.g.,

for a unit flux which is incident from the right in channiel . :
are thus rewritten, respectively, as

one has
N ‘fﬁ N
E . 2-|—|rj_i+|2)=1. (37 n-1 a1n-1
= - +
w1 1/ =| ayp-1
Likewise, one also has 1//,2,‘,1 8n-1
| : :
> (G P+ 1A =1 (379 and
j=1
J U1 a;
n n
Our task is now to derive microscopic realizations of $he g ar
matrix in terms of transfer matricé80) and(32) describing A " 1+“
o ; : WL o =| a (39
transfer of Bloch waves across finite quasi-1D disordered ntt 2n
systems. Let us remark that this may not always be possible % 82

as is seen here in the case of the three channel periodic
model. Indeed, in this case we are able to identify prope
transmission and reflection amplitudes obeying symmetry re,
lations (37) and (373 only when assuming the random site _
energies on chains 1 and 2 to be identical,

[Jsmg a similar notation for wave amplitudes transferred
from n=0 to n=N, across a disordered wire of length

N, a, the wave transfer equations in the Bloch representa-
tion, obtained by iterating Eq$12) and(13), read

€1n= €2n» n:1,2, A .NL, (38) aIrL airo
rather than allowing the energies at all pairs of sites of the ap, - a o
quasi-1D system to be uncorrelated, as in By). In the al, =XoL alo (40)
absence of the correlatidB8), the obtained transport ampli- a" a_’
tudes cannot be identified as actual reflection and transmis- 2L 2,0
sion amplitudes of Bloch waves. and
If the amplitude at theth site in a channgl corresponds N 4
to a Bloch wavey!,=e'" i [Eq. (19)] then thej,n andj,n aL 10
—1 components of wave amplitude vectors, al+,L al+,o
a ~ | a
: =0 20 (41)
l/lj i,L i,O
A as) a3
Nt a3, a3

whereX,, is given in Eq.(30) and VY, stands forX; andX|
in Eq. (32) with parameters defined by Eqd.8a and (24)
and(18b) and(25), respectively.

(with W=V, or V), being transferred by theth slice, have

valuesae'”kJ and 0, respectively; on the other hand¢¢I

e " then thej,n andj,n—1 components of the above
vectors are 0 and’e ""ki. Hence, in accordance with our

In order to derive theS matrices for our two- and three-
channel wire models we first rewrite Eq40) and(41) in the

155434-8
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forms of equations involving outgoing amplitudes on the left Yy Yi3 Y5 O 0
side and incoming ones as the right side, as in B6). In Yoo Yor Yor -1 0 0
the notation of Eqs(40) and(41) we have, e.g., foN=3, 21 23 735
. Y31 Y3 Y 0 0 0
al, ay, Bam| o (45)
¥ - Ya1 Yaz Ygs 0O =1 O
(H=| azo|, (")=|az|, Ve Yer Y o o o
a+ as 51 53 55
3,0 3L
Yer Ygz Ygs O 0o -1
- +
a{,O a1+,L The Smatrices for the two- and three channel cases are then
(O)=| 20|, (0= Zar | (420 given byS=A,'B, and5=A; 'B;, respectively. After in-
430 azL verting A, and A; we finally obtain, successively for the
and so we rearrange Eqg0) and (41) in the form two- and three-channel cases,
~ [0} L~ [ S S X -X
A2,3 O’) — BZ,3< r (43) 1 2 44 24
O3 04 —Xg2 Xz
where the pairs of matrices, andB, andA; andB; corre- . 1| X0+ X5105 Xz0+Xzds — 65  — g
spond to two- and three-channel cases, respectively. UsingS= 5 XS X0 .
the notation f(OL)ijEXij and (\?L)”—EY” for the matrix el- e 4376
ements in Eqs(30) and (32), respectively, we find X310+ X167 X330+ Xp307 —67  — g
+ X418 + X430
_X12 _X14 1 0 (46)
- —Xp —X 0 0 where
Aol xy —Xa 0 1)
% 3 0=XoXaa=XoaXap,  01= XoaXa1— XaaX21,
—Xa2 —Xa4 00
02= X24X 43~ X4aX23,
A Xy, Xog —1 0 03=X42X01= Xg1X02,  04= XX 37— X92X 43,
B,= , 44 _
o “4 85 =XaXea— X1Xaa, (47)
Xog Xg3 0 -1 0= X12Xo4— XooX14, 677 Xg2X34— X32X44,

—Yi, =Y =Yg 1 0 O 0= X32X24— X29X34,
~Y2 —Ya Y 0 0 O are second order subdeterminantsgf ;
N Y, —Yas —Yz 0 1 O
Ag= , -
s - Y42 - Y44 - Y46 0 0 0 AS: ( AS:I. AS3> ’ (48)
—Ys, —Yss —Ysg 0 O 1 S S
Y62 - Y64 YGG O O O Where
—B1Y21= BaYar—B7Ye1r —B1Yoz— BaYaz—B71Yezs —B1Yo5—BaYas— B7Yes
“ 1
S, = N BoYort BsYart BsYer  BoYost BsYast BsYes  B2Yost BsYast BgYes (483
—B3Y21= BeYar—BoYer —B3Y2z—BeYaz—BoYez —B3Yos—BsYas— BoYes
YA +YoA 1+ YA+ YerAr YisA+YosA 1+ Y304+ Yo7 YisA+YosA1+ YasAy+ YesAg
“ 1
SZ:K Y318 = Y0185 = Y4185 Ye1hg  Y33A = Yo385— Y4sAs— Yozl  YasA —YosAr— YysAs— YesAs (48b

Y514+ Y2183+ Y486+ Ye1do  YeaA+ YosAz+ Y386+ Yeaho  YosA+ YosAz+ Y586+ YesAg
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B Ba B+ The results for the averaged transmission coefficients are
~ 1 used for obtaining the length of the exponential localization
S3=x B2 —PBs —PBs, (489 from Egs.(11) and (1). Our exact quantum expressions of

B3 Bs Bo localization lengths for weak disorder reduce to the well-

known Thouless expression for a 1D chain in the limit of
—A; A, —Ay vanishing interchain couplingh(-~0). It is useful, before
94:_ A, Ag Ag |, (480 presenting our results, to briefly recall the derivation of

Thouless’ result from the transfer matrix approattror a

A3 —As —A single disordered chain of lengththe localization length is

which involve subdeterminants of second ordeiYof given by
=Y46Y64— Y44Y 66, =YeoYas— Ya2Yes, 1 .
B1=YaeYea— Yaa¥e6, B2=Ye2Ya6~ Ya2Ye6 o= lim (2N~ In[t]?), (49)
B3=Ye2Y14—Y12Ys4, L
where [t|?=|t™"|?=|t* *|? is the transmission coefficient
Ba=Y2uY¥66— YeaY26:, Bs=Y2Ys6— Ye2Y 26, . ] i -
A e eI which is related to the two-dimensional transfer matrigs
Bs=Y25Y64— YeoYo4, (489 (in the Bloch wave representatipfor thin sections enclos-

ing thenth site by®
B7=YaaY 26— Y2a¥ 16, Bg=Ya2Y26— Y22Y 16,

1 (.
9= Y24Y 42— Y22V 4a; = n[ll Xn) . (50)
~ B 22
as well as third order subdeterminants A&f which result
from the minors of various elements: This relation follows by transforming th® matrix for scat-
R . tering states into a transfer matrix whose 22 element is
A=min(Az)zs, Ap=min(Az)ys, 1t~ . Expanding the transfer matrix for the whole chain,
o A R Hsilf(n, to first order in the uncorrelated site energies and
Az=min(Ag)zs, As=min(Ag)as, As=min(Az)ss, performing the average in E¢49), using Eq.(27), yields
. . . (48f)
Ag=min(Az)ss, A7=MiN(Ag)es, Ag=mMIN(Az)gs, 1 1 ¥
L_CZE_M' E=2 cosk, (51)

Ag:min(Ag)GG, A:detAg

which may be related to Thouless’ expression for the local-
ization length in a tight-binding chain with a rectangular dis-
tribution of site energies of widthw, centered at zero

. - . 2 .
sions for the two- and three-channel quasi-1D systems "qwtzaan?e‘ Indeed, by identifyingep with the second moment,
terms of characteristic quantum channel wave numbers anty /12, of the rec’tangular distribution E¢61) reduces ex-
of the tight-binding quantities in the transfer matriqgg) ~ actly to Thouless’ formula, see E(5.16, p. 31 of Ref. 3.
and (32) for weak disorder. Identification of these expres- FOr convenience of the following discussion for two- and
sions with Eqs(33)—(35) yields the transmission- anf reflec- three-chan_nel syste_rr_ls, the exp_I|C|t forms of _th_e transmission
tion matrices for these quasi-1D disordered models under thH@nd reflection coefficients obtained by identifying tBena-

roviso that the symmetrv relatidiEas. (37) and (37a] are  UiX [Egs. (33)—(35)] successively with Eqs46) and (48),
gbe\ged. y y kg (37) (378l (489—(48d), and replacing the transfer matrix elements en-

tering in these expressions by their explicit forms in Egs.
(30)—(32) are given in the Appendix.

The partial matriceéj ,j=1,2,3,4 in Eq.(48) clearly corre-
spond to reflection and transmission matrices in B8).
Matrices(46) and (48) (483—(48d), are Smatrix expres-

IV. RESULTS AND DISCUSSION

The results for the transmission- and reflection-matrices A. Two-channel wires
of two- and three-channel tight-binding wires are applied in ) . . .
this section for finding the averaged transmission and reflec- BY @veraging the partial transmission- and reflection co-

tion coefficients associated with the various channels, foffficients given by EqstA1)—(A4) over the disorder, using

weak disorder. These results allow us, in particular, to explic EdS-(228 and(27), we obtain, successively,

ity check the symmetry propertyEqg. (37)] in the two- )
channel case, as well as in the three-channel case with free ~ . Nigg
boundary conditions. On the other hand, in the three-channel (Jtu %=1~ 8
case with periodic boundary conditions we show that Eq.

(37) is obeyed if one restricts the disorder to a correlated site

energy disorder with identical site energidgsgs. (38)] on (ty |D=1—
chains 1 and 2 and independent random energies on chain 3. 8

1
Sk, | sink, sinkz) . 52

Need[ 1 s
sirfk, = sink; sink,

| o
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It Br=(ta P oy (-1 e[ —
21 /A21 T/ 8 sink, sink, w/ sir? k1 sink, sinks ~ sinky sink,)’
(61)
N&g
<|rll | > Sl?k (55) <|t__|2>:1— L€o 4 n 4 n
22 32 \sirfk, sink,sink;  sink; sinky/’
. (62
9 Npeg
(Ira2 )= 8 sirfk, ’ 56
(1t =1~ | o+ e+
N, &2 s b/ 32 \|sinfks sink;sinky  sink,sinks/’
2 2\ 63
<|r12 | > <|r | > Ssinklsinkz' (57) ( )
2
Expressiong52)—(57) are consistent with the symmetry re- <|t"|2):<|t”|2>: 2N_eg (64)
lations[Egs. (37)] resulting from current conservation. 12 21 32 sink, sink,’
The inverse localization length for weak disorder is ob-
tained by expandingll) to lowest order in the random site 0, 0 3NL8(2)
energies using Eqs$1) and (52)—(54). It is given by (Itis 1=tz [9)= 32 sink, sink;’ (65
1 1 a%( 1 1 )2 ON, 62
—=—=_—| =+t = 58 — =2\ /42 — LE0
L. Lo 32\sink; sink, (58) (Itzg [9=(Its2 | >_Wzsink3’ (66)
for energiesk restricted to the Bloch bands=h+ 2 cosk; )
andE= —h+2 cosk,. This exact expression for weak disor- (r 1D = 3N &g 67
der reveals three important properties. 32sirfk; ky’
(1) It proves miscoscopically that all states in the Bloch
energy bands of two-channel quasi-1D disordered systems . 4NLa§
are localized. (Ir2 %= 3257k, (68)
(2) In the absence of interchain hoppiny= 0) it reduces
to the localization lengthEqg. (51)] for a 1D chain described 3N &2
by the Anderson model. For weak interchain hopping Eq. (Irzz7 1= TR (69
(58) becomes 32sirrks
2
1 _ b [, ¥ : =) g, (10
Lo skl 1 7ar (113 cof k)+0O(h%) |, 12 21 ") 35 5ink, sink,’
(59 32
which is valid for energies sufficiently close to the band cen- (Iriz 12y={Ir3;"| )W (71)
ter of theh=0 energy bandE=2 cosk. This shows that a 1 3
weak interchain hopping enhances localization in compari- 2
son to the purely 1D case, i.d.o.<&. (Irys 12={lr5, % (72)

(3) For large interchain hopping rates, i.gh|>|E| 323|nk2smk3
(where E is of the order of the fermi energywe have

Again, expression$61)—(72) obey the current conservation
sinky = \/1—h%4,|h|/2<1, which yields . 4 )

property[Eq. (37)] for the three channel case: the reduction

of the intrachannel transmission coefficients due to scattering
(60) by the disordered wire is exactly compensated by the occur-

rence of inter-channel transmissions and by reflections.

where&,=£3/8 is the 1D localization lengtfEq. (51)] at the (11|):o(rl;hzr:3\(/gsf(é%<):al|zat|on length we obtain, from Egs.
band center. Thus at large hopping rategh |h|<2) local- R ’
ization is also enhanced in comparison to 1D localization. 1 &2 1 4 1 1 4

L. 64|sik, 3Pk, sifks 3 sink, sink,

+ 4 + 2
3 sink, sinkg  sink; sinks)’

1 e 1 1 4
L 24-h? §&a-h%

B. Three-channel wires

1. Free boundary conditions

(73
The evaluation of the disorder averages of the

transmission- and reflection-coefficients in E¢a5) and  wherek,, k,, andk; are defined by Eq18a. Like Eq. (58)

(A6), using Eq.(27) and the explicit expressions in Egs. this expression is exact to ordeﬁ for weak disorder. It

(A7)—(A9) with the tight-binding parameterfEq. (24)] demonstrates that the eigenstates in the Bloch bands of the

yields, to orders3, three-channel quasi-1D system with free boundary condi-
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tions are localized. It too reduces to the Thouless re¢§&igjt The explicit second-order expressions for the averaged
(51)] in one dimensional for vanishing interchain hopping.transmission- and reflection-coefficients obtained from Egs.
For small values ofh|, in particular for|h|<1 for E—~0, (A5)—(A9) and(25), for random gaussian site energ[éx.

Eq. (73) reduces to (27)] in the presence of the correlatipgq. (38)] are
1 &2 2 1 1 Nee3[ 5
—= + +5 += u 1H=1- . ——
L. 8sirfk, 1+ S K, 1 COS? k COF kz (It =1 36 |sirfk; * sink; sink,)’ (79)
Need/ 5 4
+O(h4)}, (74 — 2\ (2 g LP0
<|t22 | > <|t33 | > 1 S|n2 k2+ Slﬂz k2
and for large valuesh®>E?/2), restricted tgh|<2, it be- 4
comes -
* sink; sink2>’ (80)
! gg—l -2 -2 ——2 -2
L. 8 2—h? (79) (It [2y=(Itar [ =(Itez [9)=(Its1 |
which shows, in particular, thdt. is increased with respect ~ 2NL8§ 1
to the 1D value at the band centéjp) for |h| (in units of the ~ 36 sink,sink,’ (82)
interchain hopping rajeless than 1. Thus the domain of
interchain hopping rates in which E/3) leads to localiza- , ) 2N 83 1
tion lengths | th is defined b (5 tay 82
ion lengths larger thag is defined by (Itzg [9=(Itzz [9)= 36 sirtk,’ (82
|E|<v2|h|<v2, (76) 5
o ONigg 1 83
2. Periodic boundary conditions (Iraa’%)= 36 sirfk,’ ®3
We first note that in this case th® matrix constructed 5N s2 1
from the transfer matriX| in Sec. Il is unitary[i.e., Egs. (Iron 12y={lr35 %)= 3L6 0 SR (84)
(37) and(37a are verified only in the case where E¢B8) is SI Kz
obeyed, i.e., when chains 1 and 2 have identical random site SR =(ry 1= (s +|2)= = )
energies while the random site energies on chain 3 are arbi- 12
trary. This may be readily seen by expressing the averages of NLSO 2
the transmission- and reflection-coefficients in Eg&) and =36 sink.sink
(A6) to second order in the site energies in terms of the sink; sink,
averages of EQYA7)—(A9) assuming that site energies be- 1
longing to sitean+# n on the same chain or on different ones (Irs 12={|rs" |2>_ , (85)
are uncorrelated i.e(gimejn)=0. In this way we find 36 S'n2 ka
3 The inverse localization length associated with the conduc-
iJZ:l (<|ti}_ 2>+<|ri}+|2>)=3+2N._[((cﬁ>+(fﬁ) tance[Eqg. (1)] obtained from Eqs(78)—(81), is
' o 1 &5 5 14 8 o6
—2(cafn)) +((di) +(an) L.~ 216\ siPk, " siPk, " sink sink,)’ &®
—2(dnGn)) + ((g) + (P2 wherek; andk, are defined by Eq(18h). This expression

which proves localization in periodic three-channel systems,

~2(gnPa))]. 77) reduces again to the 1D res(iiq. (51)] for h=0. For small
Now, for this relation to be compatible with current conser-h it is (with E=2 cosk)
vation we require ) he 0
1 €9 7
=f_ . d,= d , 78 — col2 k) 8
Cn n n=0n an gn=Pn ( ) Lc 8SII"Fk anzk (7)

%Tf?||ggn\1,vgﬁﬂ£glo(g§)5)i gfo}!:;)r\’\i’g;::::;?esﬁgu;lg'regi? i?]r?he which shows enhanced localization for weak interchain hop-
chains 1 and 2. Only under this condition does $matrix ping. On the other hand fdh|2|E| Eq. (86) becomes
for the periodic 3-channel system represent a true scattering 1 583 1
matrix. i == 516 1—h2" (88)

We note that(78) and (38) may also be obtained as the ¢
condition of simplecticity of a transfer matrix for periodic which leads to increased localization lengths> ¢y, for
multichannel systems of the form of that defined in Refs. 18h?<22/27. Thus the domain where the localization length in
This latter condition is thus an alternative expression of curthe periodic three-channel system is larger than the 1D value
rent conservation. is defined by
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E|<|h|<0.9G6... . 89
El<lni (89 |X12|2:E aymazn COSAM—n)ky,

Our exact microscopic results for two- and three-channel mh
systems indicate that in all cases a weak interchain hopping
decreases the localization length from its 1D value. For X4 2=|X422= 2, by, cogm—n)(ky—ky),
strong interchain hopping a similar decrease persists in the mn
two-channel case while in the three-channel cases the local-
ization length increases with respect to the 1D result over Ir 1" [2=> ajmain cos Am—n)ky,
restricted domains of hopping parameters defined by Egs. mn
(76) and (89). This suggests the possible existence of quasi-

metallic domains for the three-channel systems in some |r1_2+|2=2 byb, cos(m—n)(k; +ky),
ranges of length scales lying between their localization mn
lengths and the 1D localization lengfbf the order of the (Ad)
mean free path (Ref. 10], in the considered ranges of large |r2‘1+|2= 2 b,b, cogm—n)(k;+ky),
m,n

hopping. In contrast, we recall that for many-channel random
wires (N>1) the metallic domain exists over a wide range
of mesoscopic lengths defined by E§). |r2’2*|2=2 aymaon COS AM—nN)K,.
If one wishes to extend the above studies of localization mn
lengths based on Eqél) and(11) to quasi-1D systems with _
larger numbers of scattering channels one will generally have 2. Three-channel wires
to resort, e.g., to numerical transfer matrix methods. These The identification of Eq(480 with the transmission ma-
techniques together with the difficulties inherent to their apix i~ in Eq. (34) yields
plication are reviewed in Ref. 18.

|t__ 2:|181|2 |t__ 2:|B4|2 |t__ 2:|B7|2
APPENDIX L T e L
For briefness’ sake we only discuss explicit expressions . B2l .y, |Bsl? ., |Bsl?
for transmission amplitudet; ~ and reflection amplitudes Itor | :—|A|z, |t :_|A|2 o Ites :_|A|2 '
rﬁ* relating to outgoing waves to the left of the disordered (A5)
sample in the scattering equati@®6) [se (33) and (42)]. 5 ) )
|t77|2:|183| |t77 2:|BG| |t77 2:|BQ|
1. Two-channel wires 3 |A|2 , % |A|2 ’ % |A|2 '
Identification of Eqs(33) and (46) yields Similarly, tpe reflection amplitudessi]+ are obtained by
identifying S; in Eq. (489 with Eq. (35). For analyzing the
I |X4q? e | X542 reflection coefficients for weak disorder it suffices to find the
It |°= [8]2 Itz |°= [8]2 amplitudes to linear order in the site energies. Such linear

(A1) contributions are associated wify terms having a zeroth
order contribution(of modulus ong From Egs.(489 and
(486 we thus obtain

ra P=1Yal? Ir 12=1Yad?  [rag'[2=1Yad?,
and, to lowest order in the random site energies, using Egs. " 2 2 2 e %
(47) and (30), o P=1Yadl®  Ir2"12=1Yad?  Iras[2=[Yad?,

|X42| z

|t__ |X22|2
|5|2 ' 22

2= o
Eis

|t2_1_ |2:

Irin P=1Xad? 1o [2=1Xad?, 42 2 42 2 42 2
(A2) Iras 1=1Yedl?  Ira [7=1[Yed® Iras [°=[Yed*.
[ 12=1Xad% |1 [2=Xugl?. The explicit expressions of thgg;|? and|A|? in Egs. (A5)
o ] o [defined in Egs(48e and (48f)] and of the reflection coef-
From the definition of5 in Eq. (47) and the explicit form of  ficients (A6) in terms of the transfer matrix elements in Eq.

the elements;; in Egs.(30) and(31), we obtain (32) are given by
Np 5
|6]2=1+ m;:l [a1ma@in+ 8omdon |Ba]*=1+ % [@smasn+Dbomban
+2b,,b, cogm—n)(k;— k)], +2dpq, cogm—n)(kz—ka) ],

|B5|2=1+ > [Aymdin+ Agmd
|X22|2:1+;1 aimAin |X44|2:1+;1 aymdzn ° xR

(A3) +29mpn cogm—n)(ks—ky)],
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|:39|2:1+§1 [alma1n+b2mb2n |r2_2+|2:%1 bZmen COSZ(m—n)kz,
+2c,,f,codm—n)(k,—ky)], 2y .
(A7) Irss | =~ azma@zn COS AM—n)Kks,
[B2f?= 2 fmfn cogm—n)(ky—ko),
Iriz" 7= 2 e cogm=n)(ky-+ky),
|Bal?= 25 ey codm—n)(k;—ky),
Ir1a"1?= 2 gngn cosm—n)(ky +ka),
[Bal?= 2, PmPn cOgm—n)(k; — k),
|r2‘1+|2=mZn fofncogm—n)(k;+ky), (A9)
[B7/2= 2 gngn cosm—n)(ky—ka),
Irza|?= 2 dwdy cogm—n)(kz+ks),
|Bol?= 2, @ty cotm—n)(kz—ks),
Ira1” 7= 2, PPy cogM—n) (K +ka),
|Bel*= 2 dndy cogm—n)(kz—ks),
’ Iraz|?= 2 am@ln cogm—n)(kz+ks),
|A|2:1+%1 [@1m@1n+ @3mAzn+ Domban+29mPy where the double summations run frem=1 tom=N, and
’ n=1 ton=N, . The site-dependent tight-binding parameters
X cogm—n)(ks—k,)+2d,g,cogm—n)(kz—Kk,) a,j, asj, by, cjd, ;:IJ- ,dfjb, %J ;o# z?nd ql:i in (’;he abO\(/je
expressions are defined by Eg4) for free boundary condi-
+2¢nmfycodm—n)(kz—ky)], (A8)  tions and by Eq(25) for periodic boundary conditions. Like-
wise the wave numberk,, k,, andks; are given by Egs.

|r’*|2=2 aiasn, (;Sa) and by(18b) for free and periodic boundary condi-
11 Im%ln
mn tions, respectively.
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