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Localization from conductance in few-channel disordered wires

J. Heinrichs*
Institut de Physique, B5, Universite´ de Liège, Sart Tilman, B-4000 Lie`ge, Belgium

~Received 4 June 2002; published 31 October 2002!

We study localization in two- and three-channel quasi-one-dimensional~1D! systems using multichain
tight-binding Anderson models with nearest-neighbor interchain hopping. In the three-chain case we discuss
the cases of both free and periodic boundary conditions between the chains. The finite disordered wires are
connected to ideal leads and the localization length is defined from the Landauer conductance in terms of the
transmission coefficients matrix. The transmission and reflection amplitudes in properly defined quantum
channels are obtained fromS matrices constructed from transfer matrices in Bloch wave bases for the various
quasi-1D systems. Our exact analytic expressions for localization lengths for weak disorder reduce to the
Thouless expression for 1D systems in the limit of vanishing interchain hopping. For weak interchain hopping
the localization length decreases with respect to the 1D value in all three cases. In the three-channel cases it
increases with interchain hopping over restricted domains of large hopping.
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I. INTRODUCTION

A wire is a topologically one-dimensional system who
width, of the order of the square root of the cross-sectio
areaA, is much smaller than its lengthL, i.e., AA!L. In a
thin wire the motion of electrons in the transverse direct
is quantized. The corresponding transverse eigenstates b
the Fermi level define a finite number,N}A2A/lF ~with lF
the Fermi wavelength!, of quantum channels for the tran
mission of electrons across the wire. The starting point of
present work is the Landauer two-probe conducta
formula1,2

g5
2e2

h
Tr~ t̂ t̂1!, ~1!

which describes current transport in a disordered wire. H
t̂ is the so-called transmission matrix of theN-channel sys-
tem:

t̂5S t11 t12 ¯ t1N

t21 ¯ ¯ ¯

¯ ¯ ¯

tN1 tN2 ¯ tNN

D . ~2!

An incoming wave from channelj of an ideal lead at one en
of the disordered wire~of lengthL! has a coefficientut i j u2 for
transmission into channeli of the lead at the other end.

The correctness of the description of the conductanc
terms of transmission channels has received striking exp
mental confirmation3 in the special case of perfectly tran
mitting channels, where Eq.~1! reduces to

g5
2e2

h
N. ~3!

These studies relate to quantum point contacts in the form
narrow conducting two-dimensional strips whose width, a
hence the number of discrete transmitting channels, ma
varied by varying externally applied gate voltages. Cond
0163-1829/2002/66~15!/155434~14!/$20.00 66 1554
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tance steps corresponding to increasing values ofN in Eq. ~3!
are clearly observed.3 A further interesting feature of thes
experiments is that they offer the possibility of realizin
physically not only purely one-dimensional systemsN
51) but also few-channel systems (N52,3, . . . ) such as
those studied below. We recall that recent discussions
many-channel mesoscopic systems have been essential
stricted to the caseN@1,4 i.e., real~metallic! wires whose
widths are much larger than the Fermi wavelength.

The behavior of the conductance in a disordered wire
pends strongly on its length relative to the localization len
Lc . In an infinitely long disordered wire of a given cros
section all eigenstates are expected to be localized just lik
the truly one-dimensional case. Thouless5 ~also see Ref. 6!
indeed showed that forL.Lc , where

Lc;Nl, ~4!

l being the mean free path, the conductance should fall
exponentially ase2L/Lc, which is a clear manifestation o
localization. On the other hand, on the scales of lengths
the domain

l ,L,Lc5Nl, ~5!

the eigenstates appear as being delocalized. In fact, it
shown later7 that for lengths in the range of Eq.~5! there
remains a numberNeff;Nl/L of independent ballistic chan
nels leading to a metallic Ohm’s law behavior for the co
ductance~1!. Such a diffusive quasimetallic domain does n
exist for truly one-dimensional systems whereLc[L1c; l .
Dorokhov8 developed a detailed scaling analysis9 of localiza-
tion in a multichannel wire, in which he calculatedLc in
terms of a phenomenological mean free path entering as
put via Ohm’s law at short scales. His final result, which
valid for weak disorder, is

Lc5~N11!l , ~6!
©2002 The American Physical Society34-1
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which coincides with~4! for N@1 and suggests thatLc is not
directly proportional to the number of channels for few cha
nel systems. In particular, for one-dimensional system
yields

L1c52l . ~7!

We recall that Eq.~7! coincides with the result obtained lon
ago by Thouless10 from kinetic transport theory. The sam
result also follows from the quantum series composition l
for conductancesg5utu2 for one-dimensional~1D! conduc-
tors, assuming Ohm’s law to be valid at short length scale11

On the other hand, we note that for two-channel systems~6!
yields Lc[L2c53l which is comparable to the resultL2c
52l @12(1/p)#21 obtained by Dorokhov12 in a different
scaling treatment.

Shortly before the development of the scaling theory
localization for 1D conductors.9 Thouless derived his well
known analytic expression for the quantum localizati
length in a tight-binding linear chain for weak disorder13

The purpose of the present work is to derive similar ex
microscopic expressions for the localization length in qua
one-dimensional few-channel systems, specifically for tw
and three chain systems for weak disorder. This study i
interest in several respects. For example, via the depend
of the localization length on the energy across the ene
bands of the pure systems, it provides a first-principles qu
tum proof of the fact that all states in the quasi-on
dimensional systems are localized. It is also relevant for
perimental situations, e.g., for discussing the quasimeta
domain in few-channel systems which are encountered
semiconducting microstructures14 or may be fabricated arti
ficially, as in the quantum point contact system discus
above.

In Sec. II A we define the tight-binding two- and thre
chain systems for modeling few channel wires. In Sec. I
we describe our methodology for studying the localizat
length. This consists in constructing successively trans
and transmission-reflection matrices for the tight-bind
systems by generalizing well-known methods for 1D s
tems. It further relies on general results concerning the e
tence and the properties of a Lyapunov exponent~inverse
localization length! describing the asymptotic exponenti
decay of the conductance@Eq. ~1!# in multichannel
systems.15 In Sec. III we present the details of our calcul
tions leading to the final analytic expressions for the trans
and scattering matrices for the two- and three-channel w
for weak disorder. For the caseN53, we obtain different
results for open and periodic boundary conditions, wh
correspond to packing the chains on a plane and on a c
drical surface, respectively. The final analytic expressions
the averaged transmission- and reflection-coefficients and
localization lengths are discussed in Sec. IV. For clarit
sake some details of these calculations are relegated t
Appendix.

II. FEW-CHANNEL WIRES AND. LOCALIZATION

A. Anderson models in channel bases

We describe two- (N52) and three- (N53) channel
wires by Anderson models for two- and three-coupled ch
15543
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systems, respectively. The two chain Anderson model c
sists of parallel linear chains ofNL disordered sites each~of
spacinga51 and lengthL5NLa) connected at both ends t
semi-infinite ideal~nondisordered! leads. It is defined by the
tight-binding Schro¨dinger equation which we write in the
matrix form

S wn11
1 1wn21

1

wn11
2 1wn21

2 D 5S E2«1n 2h

2h E2«2n
D S wn

1

wn
2D , ~8!

wherewm
i denote the wave-function amplitudes at sitesm on

the chaini, andh is a constant matrix element for an electro
to hop transversally between a siten on chain 1 and its
nearest-neighbor siten on chain 2. The site energies« im are
random variables associated with the sites 1<m<NL of the
disordered chaini, and « im50 on the semi-infinite idea
chains defined by the sitesm.NL and m,1, respectively.
The above energies, includingE, are measured in units of th
constant hopping rate along the individual chains.

The coupled three-chain (N53) Anderson model is de
fined in a similar way by a set of tight-binding Schro¨dinger
equations, whose actual form depends, however, on in
chain boundary conditions. For free boundary conditio
which correspond to arranging the parallel equidistant cha
on a plane, the tight-binding equations are

S wn11
1 1wn21

1

wn11
2 1wn21

2

wn11
3 1wn21

3
D 5S E2«1n 2h 0

2h E2«2n 2h

0 2h E2«3n

D S wn
1

wn
2

wn
3
D ,

~9!

with the sites in the disordered sections of lengthL5NLa
and in the semi-infinite ideal chain sections labeled in
same way as in the two-chain case. On the other hand, in
case of periodic boundary conditions which correspond
equidistant linear chains on a cylindrical surface the Sch¨-
dinger equation is

S wn11
1 1wn21

1

wn11
2 1wn21

2

wn11
3 1wn21

3
D 5S E2«1n 2h 2h

2h E2«2n 2h

2h 2h E2«3n

D S wn
1

wn
2

wn
3
D .

~10!

As discussed in Sec. I, a quasi-one-dimensional wire
described by a collection of independent channels for w
transmission. Microscopic models for two- and three-chan
wires are obtained from the systems of tight-binding eq
tions~8!–~10! by diagonalizing the interchain coupling term
in the equations describing the ideal leads. This indeed le
to independent quantum channels for the leads defined
amplitudes bases

S ]

cn
i

]

D 5Û21S ]

wn
i

]

D ,

in which the nonrandom parts of the matrices on the rig
hand side of Eqs.~8!–~10! are diagonal. For the multichain
system above we obtain, respectively:
4-2
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S cn
1

cn
2D 5Û0S wn

1

wn
2D , Û05

1

&
S 1 1

1 21D ,

~8a!

Û0S E 2h

2h E D Û05S E2h 0

0 E1hD ,

S cn
1

cn
2

cn
3
D 5Û8S wn

1

wn
2

wn
3
D , Û85

1

2 S 1 & 1

& 0 2&

1 2& 1
D ,

~9a!

Û8S E 2h 0

2h E 2h

0 2h E
D Û85S E2&h 0 0

0 E 0

0 0 E1&h
D ,
n
. I
a

he

e
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S cn
1

cn
2

cn
3
D 5~Û9!21S wn

1

wn
2

wn
3
D , Û95S 1 1 0

1 0 1

1 21 21
D ,

~10a!

~Û9!21S E 2h 2h

2h E 2h

2h 2h E
D Û9

5S E22h 0 0

0 E1h 0

0 0 E1h
D .

Note thatÛ0 and Û8 are unitary, whileÛ9 is not.
Finally, in the channel bases defined by Eqs.~8a!–~10a!

the tight-binding equations~8!–~10! read, respectively,
S cn11
1 1cn21

1

cn11
2 1cn21

2 D 5S E2h2
1

2
~«1n1«2n!

1

2
~«2n2«1n!

1

2
~«2n2«1n! E1h2

1

2
~«1n1«2n!

D S cn
1

cn
2D , ~8b!

S cn11
1 1cn21

1

cn11
2 1cn21

2

cn11
3 1cn21

3
D 5S E2&h2

1

4
~«1n12«2n1«3n!

&

4
~«3n2«1n! 2

1

4
~«1n22«2n1«3n!

&

4
~«3n2«1n! E2

1

2
~«1n1«3n!

&

4
~«3n2«1n!

2
1

4
~«1n22«2n1«3n!

&

4
~«3n2«1n! E1&h2

1

4
~«1n12«2n1«3n!

D S cn
1

cn
2

cn
3
D

~9b!

S cn11
1 1cn21

1

cn11
2 1cn21

2

cn11
3 1cn21

3
D 5S E22h2

1

3
~«1n1«2n1«3n! 2

1

3
~«1n2«3n! 2

1

3
~«2n2«3n!

2
1

3
~2«1n2«2n2«3n! E1h2

1

3
~2«1n1«3n!

1

3
~«2n2«3n!

1

3
~«1n22«2n1«3n!

1

3
~«1n2«3n! E1h2

1

3
~2«2n1«3n!

D S cn
1

cn
2

cn
3
D , ~10b!
s

r-
sfer
a

u-
of
which constitute our starting point for deriving transmissio
and reflection matrices of the disordered wires in Sec. III
is seen that the similarity transformation of the disorder m

trices by theÛ matrices leads to interchannel coupling in t
disordered sections, 1<N<NL .

B. Localization from conductance

In Sec. IV we will calculate the localization length in th
above multichannel wire models from the rate of exponen
-
t
-

l

decrease~Lyapunov exponent! of the conductance@Eq. ~1!#
for large L.15 The transmission matrix in Eq.~2! will be
found by constructing a transfer matrix which transform
propagating waves in the multichannel leads@defined by Eqs.
~8a!–~10a!# on the left side of the disordered wire into co
responding propagating waves on the right side. The tran
matrix for the wire of lengthL is expressed, as usual, as
product ofNL transfer matrices for small sectionsn enclos-
ing only thenth site of each one of the channels. The calc
lation of the localization length rests on theorems
4-3
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Oseledec16 and of Tutubalin and Vister17 on the properties of
products of a large number of random matrices. Indeed,
ploying these properties Johnston and Kunz15 showed that
the Lyapunov exponentg exists for the conductance@Eq. ~1!#
and is a self-averaging quantity referred to as the inve
localization length. It is defined by the relation

g[
1

Lc
52 lim

NL→`

1

2NL
^ ln g&, ~11!

where^¯& denotes averaging over the disorder~i.e., the ran-
dom site energies in the Anderson model!.18 It follows that
the asymptotic distribution of the conductance is log norm

III. DETAILED ANALYSIS

As indicated above the transmission matrices of the fo
of Eq. ~2! for the quasi-1D disordered systems above will
obtained from transfer matrices for wavefunction amplitud
defined from Eqs.~8b!–~10b!, respectively. The constructio
of these transfer matrices proceeds in two steps. First we
define transfer matrices for thin slices enclosing only one
n of each chain in a disordered wire, in a Bloch plane wa
basis. Next the transfer matrix of a whole wire of lengthL
5NLa will be obtained as a product of the transfer matric
for the NL individual slices composing the wire. We wi
express it analytically to lowest order in the effect of a we
disorder. Finally we obtain the form of the tight-bindin
equations describing the transfer of Bloch wave a
15543
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plitudes across a whole disordered wire of lengthL, which
we then cast in the form of scattering equations in order
identify microscopic scattering matrices~Smatrices! in terms
of elements of the transfer matrices. We recall that the tra
fer matrix method is well known in the study of one
dimensional disordered systems.19–21Here we generalize and
adapt it in the case of few-channel quasi-1D systems.

A. Transfer matrices

Transfer matricesX̃0n , X̃n8 , andX̃n9 for thin slices includ-
ing a single siten per chain of the quasi-1D systems d
scribed by Eqs.~8b!–~10b! are defined by rewrtiting thes
equations, respectively, in the forms

S cn11
1

cn
1

cn11
2

cn
2
D 5X̃0nS cn

1

cn21
1

cn
2

cn21
2
D , ~12!

S cn11
1

cn
1

cn11
2

cn
2

cn11
3

cn
3

D 5ỸnS cn
1

cn21
1

cn
2

cn21
2

cn
3

cn21
3

D , Ỹn[X̃n8 ,X̃n9 , ~13!

where
X̃0n5S E2h2mn 21 nn 0

1 0 0 0

nn 0 E1h2mn 21

0 0 1 0

D , ~14!

mn5 1
2 ~«1n1«2n!, nn5 1

2 ~«2n2«1n!, ~14a!

X̃n85S E2&h2mn8 21 nn8 0 tn8 0

1 0 0 0 0 0

nn8 0 E2hn8 21 nn8 0

0 0 1 0 0 0

tn8 0 nn8 0 E1&h2mn8 21

0 0 0 0 1 0

D , ~15!

mn85
1

4
~«1n12«2n1«3n!, nn85

&

4
~«3n2«1n!,

~15a!

tn852
1

4
~«1n22«2n1«3n!, hn85

1

2
~«3n1«1n!,
4-4



X̃n95S E22h2mn9 21 nn9 0 tn9 0

1 0 0 0 0 0

an9 0 E1h2hn9 21 2tn8 0

0 0 1 0 0 0 D , ~16!
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bn9 0 2nn9 0 E1h2un9 21

0 0 0 0 1 0
nd
in
fo
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mn95
1

3
~«1n1«2n1«3n!, hn95

1

3
~2«1n1«3n!, un9

5
1

3
~2«2n1«3n!,

nn952
1

3
~«1n2«3n!, tn952

1

3
~«2n2«3n!, ~16a!

an952
1

3
~2«1n2«2n2«3n!, bn95

1

3
~«1n22«2n1«3n!.

The study of disordered wires in terms of reflection a
transmission properties of plane waves requires a determ
tion of plane wave bases in which the transfer matrices
slicesn in the leads are diagonal. Such bases are provide
the Bloch wave solutions for the leads, which are defined

X̃00S cn,6
1

cn21,6
1

cn,6
2

cn21,6
2

D 5S e6 ik1cn,6
1

e6 ik1cn21,6
1

e6 ik2cn6
2

e6 ik2cn21,6
2

D , ~17!

Ỹ0S cn,6
1

cn21,6
1

cn,6
2

cn21,6
2

cn,6
3

cn21,6
3

D 5S e6 ik1cn,6
1

e6 ik1cn21,6
1

e6 ik2cn,6
2

e6 ik2cn21,6
2

e6 ik3cn,6
3

e6 ik3cn21,6
3

D , Ỹ0[X̃08 ,X̃09 ,

~18!

whereX̃00, X̃08 , andX̃09 denote the transfer matrices for th
leads given by Eqs.~14!–~16! with «1n5«2n5«3n50, re-
spectively. The wave numberski are defined in terms of the
energyE by the eigenvalues of Eqs.~17! and ~18!, respec-
tively. By solving for the eigenvalues we obtain, succe
sively,

2 cosk15E2h,
~17a!

2 cosk25E1h

for the two-channel system,

2 cosk15E2&h,
15543
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2 cosk25E, ~18a!

2 cosk35E1&h

for the three-channel system with free boundary conditio
whose leads are described byX̃08 , and, finally,

2 cosk15E22h,
~18b!

2 cosk252 cosk35E1h

for the three-channel model with periodic lateral bounda
conditions. The eigenfunctions in the leads at energyE ob-
tained from Eqs.~12! and ~13! and ~17! and ~18! are of the
form

cn,6
j ;e6 inkj , ~19!

where we choose the wave numberskj , j 51,2,3, to be posi-
tive, 0<kj<p, so that these functions correspond to pla
waves traveling from left to right and from right to lef
respectively.

The transfer matrices for single site slices in Eqs.~12! and
~13! for the leads~i.e., for « in50, n,1 or n.N) are diago-
nalized in the bases of the Bloch plane wave states~19!. The
diagonalization matrices which are formed by the eigenv
tors of Eqs.~17! and ~18!, are of the form

V̂05S Â1 Ô

Ô Â2
D , Âj5

1

A2i sinkj
S eik j e2 ik j

1 1 D , ~20!

for the two-channel quasi-1D model, and

V̂5S Â1 Ô Ô

Ô Â2 Ô

Ô Ô Â3

D , ~21!

with Âj defined as in Eq.~20!, for the three-channel models
The wave numberskj are defined by Eq.~17a! for the N
52 case and by Eqs.~18a! and~18b! for theN53 case with
free and periodic boundary conditions, respectively. Af
finding the inverses ofV̂0 andV̂ and performing the similar-
ity transformations ofX̃0n , X̃n8, andX̃n9 by V̂0 andV̂, respec-
tively, we obtain the desired transfer matrices in the Blo
wave representation of the disordered wires. In the tw
channel case we find
4-5



X̂0n[V̂0
21X̃0nV̂05

eik1~11 ia1n! ie2 ik1a1n 2 ieik2bn 2 ie2 ik2bn

2 ieik1a1n e2 ik1~12 ia1n! ieik2bn ie2 ik2bn

2 ieik1b 2 ie2 ik1b eik2~11 ia ! ie2 ik2a
, ~22!

ices

J. HEINRICHS PHYSICAL REVIEW B 66, 155434 ~2002!
S n n 2n 2n

ieik1bn ie2 ik1bn 2 ieik2a2n e2 ik2~12 ia2n!

D
where

a1n5
«1n1«2n

4 sink1
, a2n

«1n1«2n

4 sink2
,

~22a!

bn5
«2n2«1n

4Asink1 sink2

,

are real quantities, andk1 andk2 are defined by Eq.~17a!. For the three-channel systems we write the final transfer matr
X̂n8 and X̂n9 in terms of a generic matrix

Ẑn5S eik1~11 ia1n! ie2 ik1a1n ieik2cn ie2 ik2cn ieik3gn ie2 ik3gn

2 ieik1a1n e2 ik1~12 ia1n! 2 ieik2cn 2 ie2 ik2cn 2 ieik3gn 2 ie2 ik3gn

ieik1f n ie2 ik1f n eik2~11 ib2n! ie2 ik2b2n ieik3dn ie2 ik3dn

2 ieik1f n 2 ie2 ik1f n 2 ieik2b2n e2 ik2~12 ib2n! 2 ieik3dn 2 ie2 ik3dn

ieik1pn ie2 ik1pn ieik2qn ie2 ik2qn eik3~11 ia3n! ie2 ik3a3n

2 ieik1pn 2 ie2 ik1pn 2 ieik2qn 2 ie2 ik2qn 2 ieik3a3n e2 ik3~12 ia3n!

D , ~23!
ta

the

or-
-

ave

fer

es
i-

red
ite
of
wherea1n , a3n , b2n , cn , gn , f n , dn , pn, andqn are real
quantities. In the case of free boundary conditions we ob
X̂n85V̂21X̃n8V̂[Ẑn with

a1n5
«1n12«2n1«3n

8 sink1
, a3n5

«1n12«2n1«3n

8 sink3
,

b2n5
«1n1«3n

4 sink2
, cn5 f n5

&~«1n2«3n!

8Asink1 sink2

, ~24!

dn5qn5
&~«1n2«3n!

8Asink2 sink3

, gn5pn5
«1n22«2n1«3n

8Asink1 sink3

.

Herek1, k2 , andk3 are defined by Eq.~18a!. On the other
hand, for periodic boundary conditions we findX̂n9

5V̂21X̃9V̂[Ẑn where

a1n5
«1n1«2n1«3n

6 sink1
, a3n5

2«2n1«3n

6 sink2
,

b2n5
2«1n1«3n

6 sink2
, cn5

«1n2«3n

6Asink1 sink2

,

gn5
«2n2«3n

6Asink1 sink2

, ~25!
15543
in dn5
«3n2«2n

6 sink2
, f n5

2«1n2«2n2«3n

6Asink1 sink2

,

pn5
2«1n12«2n2«3n

6Asink1 sink2

, qn5
«3n2«1n

6 sink2
,

wherek1 and k25k3 are now given by Eq.~18b!. Note, in
particular, the diagonalization of the transfer matrices for
leads in the plane wave bases shown in Eqs.~22! and ~23!.

Finally, we determine the transfer matrices for the dis
dered wires of lengthL5NLa in terms of the transfer matri
ces of the individual thin slicesn. As shown by iteration of
the transfer equations~17! and ~18! rewritten in the Bloch
wave basis above, the matrix transferring an incoming w
at site n50 just outside a disordered wire to the siteNL
11 just beyond its other end is given by a product of trans
matrices of the form

ŶL5 )
n51

NL

Ŷn , ~26!

whereŶn andŶL stand for the three pairs of transfer matric
X̂0n ,X̂0L ,X̂n8 ,X̂L8 andX̂n9 ,X̂L9 , respectively, which are assoc
ated with the wire models above.19

We shall evaluate the transfer matrices of the disorde
wires for weak disorder to linear order in the random s
energies. On the other hand, for our explicit calculations
4-6
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averages over the disorder below, we assume the site e
gies to be independent gaussian random variables with
mean values, and correlation

^« in« jm&5«0
2d i , jdm,n . ~27!

In this case the site energies corresponding to different sl
n in Eq. ~26! are uncorrelated so that it is indeed sufficient
restrict the expansion of the latter expressions to first orde
the site energies for determining averages to order«0

2. The

transfer matricesŶn given by Eqs.~22! and ~23! are sums,

Ŷn5Ŷ~0!1Ŷn
~1! . ~28!
on

l
q

-
-1

15543
er-
ro

es

in

of a zeroth-order diagonal matrixŶ(0) independent of the site
energies~transfer matrix of the leads! and a matrix which is
linear in the energies« jn . By inserting Eq.~28! into Eq.~26!
we obtain, to first order,

ŶL5~Ŷ~0!!NL1 (
m51

NL

~Ŷ~0!!m21Ŷm
~1!~Ŷ~0!!NL2m1¯ .

~29!

Next we insert the slice matricesŶ(0) and Ŷm
(1) from Eqs.

~22! and ~23! for our various quasi-1D systems, and obta
successively,
X̂0L5diag~eik1NL,e2 ik1NL,eik2NL,e2 ik2NL!1 (
m51

NL S ia1meik1u1 ia1me2 ik1s1* 2 ibmeik2w21 2 ibme2 ik2v21*

2 ia1meik1s1 2 ia1me2 ik1u1* ibmeik2v21 ibme2 ik2w21*

2 ibmeik1w12 2 ibme2 ik1v12* ia2meik2u2 ia2me2 ik2s2*

ibmeik1v12 ibme2 ik1w12* 2 ia2meik2s2 2 ia2me2 ik2u2*
D ,

~30!

for the two-channel case. Here

sj5ei ~NL22m11!kj , uj5ei ~NL21!kj ,
~31!

v i j 5ei ~NL2m!ki2 i ~m21!kj , wi j 5ei ~NL2m!ki1 i ~m21!kj ,

wherek1 andk2 are defined by Eq.~17a!;

X̂L85diag~eik1NL,e2 ik1NL,eik2NL,e2 ik2NL,eik3NL,e2 ik3NL!

1 (
m51

NL S ia1meik1u1 ia1me2 ik1s1* icmeik2w21 icme2 ik2v21* igmeik3w31 igme2 ik3v31*

2 ia1meik1s1 2 ia1me2 ik1u1* 2 icmeik2v21 2 icme2 ik2w21* 2 igmeik3v31 2 igme2 ik3w31*

i f meik1w12 i f me2 ik1v12* ib2meik2u2 ib2me2 ik2s2* idmeik3w32 idme2 ik3v32*

2 i f meik1v12 2 i f me2 ik1w12* 2 ib2meik2s2 2 ib2me2 ik2u2* 2 idmeik3v32 2 idme2 ik3w32*

ipmeik1w13 ipme2 ik1v13* iqmeik2w23 iqme2 ik2v23* ia3meik3u3* ia3me2 ik3s3*

2 ipmeik1v13 2 ipme2 ik1w13* 2 iqmeik2w23 2 iqme2 ik2w23* 2 ia3meik3s3* 2 ia3me2 ik3u3*

D ,

~32!
for the three-channel case with free boundary conditi
wherek1 , k2 , andk3 in definitions~24! and ~31! are given

by Eq. ~18a!; the transfer matrixX̂L9 for the three-channe
model with periodic boundary conditions is given by E
~32!, using definitions~25! of the slice parametersa1m , a3m ,
b2m , andcm ; and definition~18b! of the wave numbersk1 ,
k2 , andk3 .

B. Scattering matrices

The scattering of plane waves~reflection and transmis
sion! at and between the two ends of the random quasi
systems is governed by theS matrix,
s

.

D

Ŝ5S r̂ 21 t̂22

t̂11 r̂ 12D , ~33!

where

t̂775S t11
77 t12

77
¯

t21
77 t22

77
¯

] ] ]

D , ~34!

and
4-7
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r̂ 675S r 11
67 r 12

67
¯

r 21
67 r 22

67
¯

] ] ]

D . ~35!

Here t i j
11(t i j

22) and r i j
21(r i j

12) denote the transmitted an
reflected amplitudes in channeli when there is a unit flux
incident from the left~right! in channelj. Left to right and
right to left directions are denoted by1 and2, respectively.
The S matrix expresses outgoing wave amplitudes in ter
of ingoing ones on either side of the quasi-1D disorde
wire via the scattering relations11,21

S 0
08 D5ŜS I

I 8 D . ~36!

Here I and I 8 ~0 and 08) denote ingoing~outgoing! ampli-
tudes at the left and right sides of the disordered reg
respectively. It follows from current conservation that, e.
for a unit flux which is incident from the right in channeli
one has

(
j 51

N

~ ut i j
22u21ur j i

21u2!51. ~37!

Likewise, one also has

(
j 51

N

~ ut j i
11u21ur j i

12u2!51. ~37a!

Our task is now to derive microscopic realizations of theS
matrix in terms of transfer matrices~30! and~32! describing
transfer of Bloch waves across finite quasi-1D disorde
systems. Let us remark that this may not always be poss
as is seen here in the case of the three channel per
model. Indeed, in this case we are able to identify pro
transmission and reflection amplitudes obeying symmetry
lations ~37! and ~37a! only when assuming the random si
energies on chains 1 and 2 to be identical,

«1n5«2n , n51,2, . . .NL , ~38!

rather than allowing the energies at all pairs of sites of
quasi-1D system to be uncorrelated, as in Eq.~27!. In the
absence of the correlation~38!, the obtained transport ampl
tudes cannot be identified as actual reflection and trans
sion amplitudes of Bloch waves.

If the amplitude at thenth site in a channelj corresponds
to a Bloch wavecn

j 5einkj @Eq. ~19!# then thej,n and j,n
21 components of wave amplitude vectors,

Ŵ21S ]

cn
j

cn21
j

]

D
~with Ŵ[V̂0 or V̂), being transferred by thenth slice, have
valuesaeinkj and 0, respectively; on the other hand ifcn

j

5e2 inkj then thej,n and j,n21 components of the abov
vectors are 0 anda8e2 inkj . Hence, in accordance with ou
15543
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notation above for transmission and reflection matrix e
ments, we denote the amplitudes at sitesj,n and j,n21, re-
spectively, asaj ,n21

1 and aj ,n21
2 since they correspond to

amplitudes being transferred by then slice and propagating
in thekj and2kj directions, respectively. The transforms
the amplitude vectors

S ]

cn
j

cn21
j

]

D
and

S ]

cn11
j

cn
j

]

D
are thus rewritten, respectively, as

Ŵ21S cn
1

cn21
1

cn
2

cn21
2

]

D [S a1,n21
1

a1,n21
2

a2,n21
1

a2,n21
2

]

D
and

Ŵ21S cn11
1

cn
1

cn11
2

cn
2

]

D [S a1,n
1

a1,n
2

a2,n
1

a2,n
2

]

D . ~39!

Using a similar notation for wave amplitudes transferr
from n50 to n5NL across a disordered wire of lengthL
5NLa, the wave transfer equations in the Bloch represen
tion, obtained by iterating Eqs.~12! and ~13!, read

S a1,L
1

a1,L
2

a2,L
1

a2,L
2

D 5X̂0LS a1,0
1

a1,0
2

a2,0
1

a2,0
2

D ~40!

and

S a1,L
1

a1,L
2

a2,L
1

a2,L
2

a3,L
1

a3,L
2

D 5ŶLS a1,0
1

a1,0
2

a2,0
1

a2,0
2

a3,0
1

a3,0
2

D , ~41!

whereX̂0L is given in Eq.~30! andŶL stands forX̂L8 andX̂L9
in Eq. ~32! with parameters defined by Eqs.~18a! and ~24!
and ~18b! and ~25!, respectively.

In order to derive theS matrices for our two- and three
channel wire models we first rewrite Eqs.~40! and~41! in the
4-8
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forms of equations involving outgoing amplitudes on the l
side and incoming ones as the right side, as in Eq.~36!. In
the notation of Eqs.~40! and ~41! we have, e.g., forN53,

~ I ![S a1,0
1

a2,0
1

a3,0
1
D , ~ I 8![S a1,L

2

a2,L
2

a3,L
2
D ,

~O![S a1,0
2

a2,0
2

a3,0
2
D , ~O8![S a1,L

1

a2,L
1

a3,L
1
D , ~42!

and so we rearrange Eqs.~40! and ~41! in the form

Â2,3S O
O8 D5B̂2,3S I

I 8 D , ~43!

where the pairs of matricesÂ2 andB̂2 andÂ3 andB̂3 corre-
spond to two- and three-channel cases, respectively. U
the notation (X̂0L) i j [Xi j and (ŶL) i j [Yi j for the matrix el-
ements in Eqs.~30! and ~32!, respectively, we find

Â25S 2X12 2X14 1 0

2X22 2X24 0 0

2X32 2X34 0 1

2X42 2X44 0 0

D ,

B̂25S X11 X13 0 0

X21 X23 21 0

X31 X33 0 0

X41 X43 0 21

D , ~44!

Â35S 2Y12 2Y14 2Y16 1 0 0

2Y22 2Y24 2Y26 0 0 0

2Y32 2Y34 2Y36 0 1 0

2Y42 2Y44 2Y46 0 0 0

2Y52 2Y54 2Y56 0 0 1

2Y62 2Y64 2Y66 0 0 0

D ,
15543
t

ng

B̂35S Y11 Y13 Y15 0 0 0

Y21 Y23 Y25 21 0 0

Y31 Y33 Y35 0 0 0

Y41 Y43 Y45 0 21 0

Y51 Y53 Y55 0 0 0

Y61 Y63 Y65 0 0 21

D . ~45!

TheSmatrices for the two- and three channel cases are t
given by Ŝ5Â2

21B̂2 and Ŝ5Â3
21B̂3 , respectively. After in-

verting Â2 and Â3 we finally obtain, successively for th
two- and three-channel cases,

Ŝ5
1

d S d1 d2 X44 2X24

d3 d4 2X42 X22

X11d1X21d5 X13d1X23d5 2d5 2d6

1X41d6 1X43d6

X31d1X21d7 X33d1X23d7 2d7 2d8

1X41d8 1X43d8

D ,

~46!

where

d5X22x442X24X42, d15X24X412X44X21,

d25X24X432X44X23,

d35X42X212X41X22, d45X42X232X22X43,

d55X42X142X12X44, ~47!

d65X12X242X22X14, d75X42X342X32X44,

d85X32X242X22X34,

are second order subdeterminants ofX̂0L ;

Ŝ5S Ŝ1 Ŝ3

Ŝ2 Ŝ4
D , ~48!

where
Ŝ15
1

D S 2b1Y212b4Y412b7Y61 2b1Y232b4Y432b7Y63 2b1Y252b4Y452b7Y65

b2Y211b5Y411b8Y61 b2Y231b5Y431b8Y63 b2Y251b5Y451b8Y65

2b3Y212b6Y412b9Y61 2b3Y232b6Y432b9Y63 2b3Y252b6Y452b9Y65

D ~48a!

Ŝ25
1

D S Y11D1Y21D11Y41D41Y61D7 Y13D1Y23D11Y43D41Y63D7 Y15D1Y25D11Y45D41Y65D7

Y31D2Y21D22Y41D52Y61D8 Y33D2Y23D22Y43D52Y63D8 Y35D2Y25D22Y45D52Y65D8

Y51D1Y21D31Y41D61Y61D9 Y53D1Y23D31Y43D61Y63D9 Y55D1Y25D31Y45D61Y65D9

D ~48b!
4-9
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Ŝ35
1

D S b1 b4 b7

2b2 2b5 2b8

b3 b6 b9

D , ~48c!

Ŝ45
1

D S 2D1 2D4 2D7

D2 D5 D8

2D3 2D6 2D9

D , ~48d!

which involve subdeterminants of second order ofŶL ,

b15Y46Y642Y44Y66, b25Y62Y462Y42Y66,

b35Y62Y442Y42Y64,

b45Y24Y662Y64Y26, b55Y22Y662Y62Y26,

b65Y22Y642Y62Y24, ~48e!

b75Y44Y262Y24Y46, b85Y42Y262Y22Y46,

b95Y24Y422Y22Y44;

as well as third order subdeterminants ofÂ3 which result
from the minors of various elements:

D15min~Â3!24, D25min~Â3!25,

D35min~Â3!26, D45min~Â3!44, D55min~Â3!45,
~48f!

D65min~Â3!46, D75min~Â3!64, D85min~Â3!65,

D95min~Â3!66, D5detÂ3 .

The partial matricesŜj , j 51,2,3,4 in Eq.~48! clearly corre-
spond to reflection and transmission matrices in Eq.~33!.

Matrices~46! and ~48! ~48a!–~48d!, areS-matrix expres-
sions for the two- and three-channel quasi-1D systems
terms of characteristic quantum channel wave numbers
of the tight-binding quantities in the transfer matrices~30!
and ~32! for weak disorder. Identification of these expre
sions with Eqs.~33!–~35! yields the transmission- anf reflec
tion matrices for these quasi-1D disordered models under
proviso that the symmetry relation@Eqs.~37! and ~37a!# are
obeyed.

IV. RESULTS AND DISCUSSION

The results for the transmission- and reflection-matri
of two- and three-channel tight-binding wires are applied
this section for finding the averaged transmission and refl
tion coefficients associated with the various channels,
weak disorder. These results allow us, in particular, to exp
itly check the symmetry property@Eq. ~37!# in the two-
channel case, as well as in the three-channel case with
boundary conditions. On the other hand, in the three-cha
case with periodic boundary conditions we show that E
~37! is obeyed if one restricts the disorder to a correlated
energy disorder with identical site energies@Eqs. ~38!# on
chains 1 and 2 and independent random energies on cha
15543
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The results for the averaged transmission coefficients
used for obtaining the length of the exponential localizat
from Eqs. ~11! and ~1!. Our exact quantum expressions
localization lengths for weak disorder reduce to the we
known Thouless expression for a 1D chain in the limit
vanishing interchain coupling (h→0). It is useful, before
presenting our results, to briefly recall the derivation
Thouless’ result from the transfer matrix approach.19 For a
single disordered chain of lengthL the localization length is
given by

1

Lc
52 lim

NL→`

~2Nl !
21^ lnutu2&, ~49!

where utu25ut22u25ut11u2 is the transmission coefficien
which is related to the two-dimensional transfer matricesX̂n
~in the Bloch wave representation! for thin sections enclos-
ing thenth site by19

1

t22 5S )
n51

NL

X̂nD
22

. ~50!

This relation follows by transforming theS matrix for scat-
tering states into a transfer matrix whose 22 elemen
1/t22. Expanding the transfer matrix for the whole cha
Pn51

NL X̂n , to first order in the uncorrelated site energies a
performing the average in Eq.~49!, using Eq.~27!, yields

1

Lc
[

1

j
5

«0
2

8 sin2 k
, E52 cosk, ~51!

which may be related to Thouless’ expression for the loc
ization length in a tight-binding chain with a rectangular d
tribution of site energies of widthW, centered at zero
mean.13 Indeed, by identifying«0

2 with the second moment
W2/12, of the rectangular distribution Eq.~51! reduces ex-
actly to Thouless’ formula, see Eq.~6.16!, p. 31 of Ref. 3.

For convenience of the following discussion for two- a
three-channel systems, the explicit forms of the transmiss
and reflection coefficients obtained by identifying theS ma-
trix @Eqs. ~33!–~35!# successively with Eqs.~46! and ~48!,
~48a!–~48d!, and replacing the transfer matrix elements e
tering in these expressions by their explicit forms in Eq
~30!–~32! are given in the Appendix.

A. Two-channel wires

By averaging the partial transmission- and reflection
efficients given by Eqs.~A1!–~A4! over the disorder, using
Eqs.~22a! and ~27!, we obtain, successively,

^ut11
22u2&512

NL«0
2

8 S 1

sin2 k1
1

2

sink1 sink2
D , ~52!

^ut22
22u2&512

NL«0
2

8 S 1

sin2 k2
1

2

sink1 sink2
D , ~53!
4-10
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^ut12
22u2&5^ut21

22u2&5
NL«0

2

8 sink1 sink2
, ~54!

^ur 11
21u2&5

NL«0
2

8 sin2 k1
, ~55!

^ur 22
21u2&5

NL«0
2

8 sin2k2
, ~56!

^ur 12
21u2&5^ur 21

21u2&5
NL«0

2

8 sink1 sink2
. ~57!

Expressions~52!–~57! are consistent with the symmetry re
lations @Eqs.~37!# resulting from current conservation.

The inverse localization length for weak disorder is o
tained by expanding~11! to lowest order in the random sit
energies using Eqs.~1! and ~52!–~54!. It is given by

1

Lc
[

1

L0c
5

«0
2

32S 1

sink1
1

1

sink2
D 2

~58!

for energiesE restricted to the Bloch bandsE5h12 cosk1
andE52h12 cosk2. This exact expression for weak diso
der reveals three important properties.

~1! It proves miscoscopically that all states in the Blo
energy bands of two-channel quasi-1D disordered syst
are localized.

~2! In the absence of interchain hopping (h50) it reduces
to the localization length@Eq. ~51!# for a 1D chain described
by the Anderson model. For weak interchain hopping E
~58! becomes

1

L0c
5

«0
2

8 sin2 k F11
h2

4 sin2 k
~113 cot2 k!1O~h4!G ,

~59!

which is valid for energies sufficiently close to the band ce
ter of theh50 energy band,E52 cosk. This shows that a
weak interchain hopping enhances localization in comp
son to the purely 1D case, i.e.,L0c,j.

~3! For large interchain hopping rates, i.e.,uhu@uEu
~where E is of the order of the fermi energy! we have
sink1,2.A12h2/4,uhu/2<1, which yields

1

Lc
.

«0
2

2

1

42h2 5
1

j0

4

42h2 , ~60!

wherej05«0
2/8 is the 1D localization length@Eq. ~51!# at the

band center. Thus at large hopping rates~with uhu,2) local-
ization is also enhanced in comparison to 1D localization

B. Three-channel wires

1. Free boundary conditions

The evaluation of the disorder averages of t
transmission- and reflection-coefficients in Eqs.~A5! and
~A6!, using Eq.~27! and the explicit expressions in Eq
~A7!–~A9! with the tight-binding parameters@Eq. ~24!#
yields, to order«0

2,
15543
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^ut11
22u2&512

NL«0
2

32 S 3

sin2 k1
1

6

sink1 sink3
1

4

sink1 sink2
D ,

~61!

^ut22
22u2&512

NL«0
2

32 S 4

sin2 k2
1

4

sink2 sink3
1

4

sink1 sink2
D ,

~62!

^ut33
22u2&512

NL«0
2

32 S 3

sin2 k3
1

6

sink1 sink3
1

4

sink2 sink3
D ,

~63!

^ut12
22u2&5^ut21

22u2&5
2NL«0

2

32 sink1 sink2
, ~64!

^ut13
22u2&5^ut31

22u2&5
3NL«0

2

32 sink1 sink3
, ~65!

^ut23
22u2&5^ut32

22u2&5
2NL«0

2

32 sink2 sink3
, ~66!

^ur 11
21u2&5

3NL«0
2

32 sin2 k1
, ~67!

^ur 22
21u2&5

4NL«0
2

32 sin2 k2
, ~68!

^ur 33
21u2&5

3NL«0
2

32 sin2 k3
, ~69!

^ur 12
21u2&5^ur 21

21u2&
2NL«0

2

32 sink1 sink2
, ~70!

^ur 13
21u2&5^ur 31

21u2&
3NL«0

2

32 sink1 sink3
, ~71!

^ur 23
21u2&5^ur 32

21u2&
2NL«0

2

32 sink2 sink3
. ~72!

Again, expressions~61!–~72! obey the current conservatio
property@Eq. ~37!# for the three channel case: the reducti
of the intrachannel transmission coefficients due to scatte
by the disordered wire is exactly compensated by the oc
rence of inter-channel transmissions and by reflections.

For the inverse localization length we obtain, from Eq
~11!, ~1!, and~61!–~66!,

1

Lc
5

«0
2

64S 1

sin2 k1
1

4

3

1

sin2 k2
1

1

sin2 k3
1

4

3 sink1 sink2

1
4

3 sink2 sink3
1

2

sink1 sink3
D , ~73!

wherek1 , k2 , andk3 are defined by Eq.~18a!. Like Eq. ~58!
this expression is exact to order«0

2 for weak disorder. It
demonstrates that the eigenstates in the Bloch bands o
three-channel quasi-1D system with free boundary con
4-11
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tions are localized. It too reduces to the Thouless result@Eq.
~51!# in one dimensional for vanishing interchain hoppin
For small values ofuhu, in particular for uhu!1 for E→0,
Eq. ~73! reduces to

1

Lc
5

«0
2

8 sin2 k2
F11

h2

sin2 k2
S 11

1

2
cos2 k21

1

4
cot2 k2D

1O~h4!G , ~74!

and for large values (h2@E2/2), restricted touhu,2, it be-
comes

1

Lc
.

«0
2

8

1

22h2 , ~75!

which shows, in particular, thatLc is increased with respec
to the 1D value at the band center (j0) for uhu ~in units of the
interchain hopping rate! less than 1. Thus the domain o
interchain hopping rates in which Eq.~73! leads to localiza-
tion lengths larger thanj0 is defined by

uEu!&uhu,&, ~76!

2. Periodic boundary conditions

We first note that in this case theS matrix constructed
from the transfer matrixX̂L9 in Sec. III is unitary@i.e., Eqs.
~37! and~37a! are verified# only in the case where Eq.~38! is
obeyed, i.e., when chains 1 and 2 have identical random
energies while the random site energies on chain 3 are a
trary. This may be readily seen by expressing the average
the transmission- and reflection-coefficients in Eqs.~A5! and
~A6! to second order in the site energies in terms of
averages of Eqs.~A7!–~A9! assuming that site energies b
longing to sitesmÞn on the same chain or on different on
are uncorrelated i.e.,^« im« jn&50. In this way we find

(
i , j 51

3

~^ut i j
22u2&1^ur i j

21u2&!5312NL@~^cn
2&1^ f n

2&

22^cnf n&!1~^dn
2&1^qn

2&

22^dnqn&!1~^gn
2&1^pn

2&

22^gnpn&!#. ~77!

Now, for this relation to be compatible with current cons
vation we require

cn5 f n , dn5qn and gn5pn , ~78!

and from definition~25! it follows that the equalities~78! are
fulfilled with Eq. ~38! i.e., for identical site energies in th
chains 1 and 2. Only under this condition does theS matrix
for the periodic 3-channel system represent a true scatte
matrix.

We note that~78! and ~38! may also be obtained as th
condition of simplecticity of a transfer matrix for period
multichannel systems of the form of that defined in Refs.
This latter condition is thus an alternative expression of c
rent conservation.
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The explicit second-order expressions for the avera
transmission- and reflection-coefficients obtained from E
~A5!–~A9! and ~25!, for random gaussian site energies@Eq.
~27!# in the presence of the correlation@Eq. ~38!# are

^ut11
22u2&512

NL«0
2

36 S 5

sin2 k1
1

8

sink1 sink2
D , ~79!

^ut22
22u2&5^ut33

22u2&512
NL«0

2

36 S 5

sin2 k2
1

4

sin2 k2

1
4

sink1 sink2
D , ~80!

^ut12
22u2&5^ut21

22u2&5^ut13
22u2&5^ut31

22u2&

5
2NL«0

2

36

1

sink1 sink2
, ~81!

^ut23
22u2&5^ut32

22u2&5
2NL«0

2

36

1

sin2 k2
, ~82!

^ur 11
21u2&5

5NL«0
2

36

1

sin2 k1
, ~83!

^ur 22
21u2&5^ur 33

21u2&5
5NL«0

2

36

1

sin2 k2
, ~84!

^ur 12
21u2&5^ur 21

21u2&5^ur 13
21u2&5^ur 31

21u2&

5
NL«0

2

36

2

sink1 sink2

^ur 23
21u2&5^ur 32

21u2&5
2NL«0

2

36

1

sin2 k2
, ~85!

The inverse localization length associated with the cond
tance@Eq. ~1!# obtained from Eqs.~78!–~81!, is

1

Lc
5

«0
2

216S 5

sin2 k1
1

14

sin2 k2
1

8

sink1 sink2
D , ~86!

wherek1 and k2 are defined by Eq.~18b!. This expression
which proves localization in periodic three-channel system
reduces again to the 1D result@Eq. ~51!# for h50. For small
h it is ~with E52 cosk)

1

Lc
.

«0
2

8 sin2 k F11
h2

2 sin2 k S 11
70

27
cot2 kD G , ~87!

which shows enhanced localization for weak interchain h
ping. On the other hand foruhu@uEu Eq. ~86! becomes

1

Lc
.

5«0
2

216

1

12h2 , ~88!

which leads to increased localization lengths,Lc.j0 , for
h2,22/27. Thus the domain where the localization length
the periodic three-channel system is larger than the 1D va
is defined by
4-12
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LOCALIZATION FROM CONDUCTANCE IN FEW- . . . PHYSICAL REVIEW B 66, 155434 ~2002!
uEu!uhu,0.906 . . . . ~89!

Our exact microscopic results for two- and three-chan
systems indicate that in all cases a weak interchain hop
decreases the localization length from its 1D value. F
strong interchain hopping a similar decrease persists in
two-channel case while in the three-channel cases the lo
ization length increases with respect to the 1D result o
restricted domains of hopping parameters defined by E
~76! and ~89!. This suggests the possible existence of qua
metallic domains for the three-channel systems in so
ranges of length scales lying between their localizat
lengths and the 1D localization length@of the order of the
mean free pathl ~Ref. 10!#, in the considered ranges of larg
hopping. In contrast, we recall that for many-channel rand
wires (N@1) the metallic domain exists over a wide ran
of mesoscopic lengths defined by Eq.~5!.

If one wishes to extend the above studies of localizat
lengths based on Eqs.~1! and~11! to quasi-1D systems with
larger numbers of scattering channels one will generally h
to resort, e.g., to numerical transfer matrix methods. Th
techniques together with the difficulties inherent to their a
plication are reviewed in Ref. 18.

APPENDIX

For briefness’ sake we only discuss explicit expressi
for transmission amplitudest i j

22 and reflection amplitudes
r i j

21 relating to outgoing waves to the left of the disorder
sample in the scattering equation~36! @se ~33! and ~42!#.

1. Two-channel wires

Identification of Eqs.~33! and ~46! yields

ut11
22u25

uX44u2

udu2 , ut12
22u25

uX24u2

udu2
,

~A1!

ut21
22u25

uX42u2

udu2 , ut22
22u25

uX22u2

udu2
,

and, to lowest order in the random site energies, using E
~47! and ~30!,

ur 11
21u25uX21u2, ur 12

21u25uX23u2,
~A2!

ur 21
21u25uX41u2, ur 22

21u25uX43u2.

From the definition ofd in Eq. ~47! and the explicit form of
the elementsXi j in Eqs.~30! and ~31!, we obtain

udu2511 (
m,n51

NL

@a1ma1n1a2ma2n

12bmbn cos~m2n!~k12k2!#,

uX22u2511(
m,n

a1ma1n , uX44u2511(
m,n

a2ma2n ,

~A3!
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uX12u25(
m,n

a1ma2n cos 2~m2n!k1 ,

uX24u25uX42u25(
m,n

bmbn cos~m2n!~k12k2!,

ur 11
21u25(

m,n
a1ma1n cos 2~m2n!k1 ,

ur 12
21u25(

m,n
bmbn cos~m2n!~k11k2!,

~A4!

ur 21
21u25(

m,n
bmbn cos~m2n!~k11k2!,

ur 22
21u25(

m,n
a2ma2n cos 2~m2n!k2 .

2. Three-channel wires

The identification of Eq.~48c! with the transmission ma
trix t̂22 in Eq. ~34! yields

ut11
22u25

ub1u2

uDu2
, ut12

22u25
ub4u2

uDu2
, ut13

22u25
ub7u2

uDu2 ,

ut21
22u25

ub2u2

uDu2
, ut22

22u25
ub5u2

uDu2
, ut23

22u25
ub8u2

uDu2 ,

~A5!

ut31
22u25

ub3u2

uDu2
, ut32

22u25
ub6u2

uDu2
, ut33

22u25
ub9u2

uDu2 .

Similarly, the reflection amplitudesr i j
21 are obtained by

identifying Ŝ1 in Eq. ~48a! with Eq. ~35!. For analyzing the
reflection coefficients for weak disorder it suffices to find t
amplitudes to linear order in the site energies. Such lin
contributions are associated withb j terms having a zeroth
order contribution~of modulus one!. From Eqs.~48a! and
~48e! we thus obtain

ur 11
21u25uY21u2, ur 12

21u25uY23u2, ur 13
21u25uY25u2,

ur 21
21u25uY41u2, ur 22

21u25uY43u2, ur 23
21u25uY45u2,

~A6!

ur 31
21u25uY61u2, ur 32

21u25uY63u2, ur 33
21u25uY65u2.

The explicit expressions of theub j u2 and uDu2 in Eqs. ~A5!
@defined in Eqs.~48e! and ~48f!# and of the reflection coef-
ficients ~A6! in terms of the transfer matrix elements in E
~32! are given by

ub1u2511(
m,n

@a3ma3n1b2mb2n

12dmqn cos~m2n!~k32k2!#,

ub5u2511(
m,n

@a1ma1n1a3ma3n

12gmpn cos~m2n!~k32k1!#,
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ub9u2511(
m,n

@a1ma1n1b2mb2n

12cmf n cos~m2n!~k22k1!#,
~A7!

ub2u25(
m,n

f mf n cos~m2n!~k12k2!,

ub4u25(
m

cmcn cos~m2n!~k12k2!,

ub3u25(
m,n

pmpn cos~m2n!~k12k3!,

ub7u25(
m,n

gmgn cos~m2n!~k12k3!,

ub6u25(
m,n

qmqn cos~m2n!~k22k3!,

ub8u25(
m,n

dmdn cos~m2n!~k22k3!,

uDu2511(
m,n

@a1ma1n1a3ma3n1b2mb2n12gmpn

3cos~m2n!~k32k4!12dmqn cos~m2n!~k32k2!

12cmf n cos~m2n!~k22k1!#, ~A8!

ur 11
21u25(

m,n
a1ma1n ,
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