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Origin and properties of the wetting layer and early evolution of epitaxially strained thin films

Helen R. Eisenberg* and Daniel Kandel†

Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel
~Received 15 January 2002; published 30 October 2002!

We showed that a wetting layer in epitaxially strained thin films, which decreases with increasing lattice
mismatch strain, arises due to the variation of nonlinear elastic free energy with film thickness. We calculated
how and at what thickness a flat film becomes unstable to perturbations of varying size for films with both
isotropic and anisotropic surface tension. We showed that anisotropic surface tension gives rise to a metastable
enlarged wetting layer. The perturbation amplitude needed to destabilize this wetting layer decreases with
increasing lattice mismatch. We also studied the early evolution of epitaxially strained films. We found that film
growth is dependent on the mode of material deposition. The growth of a perturbation in a flat film is found to
obey robust scaling relations. These scaling relations differ for isotropic and anisotropic surface tension.
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I. INTRODUCTION

The growth of epitaxially strained thin films, in whic
there is lattice mismatch between the substrate and the
is of major importance in the fabrication of semiconduc
and optoelectronic devices. The lattice mismatch gener
strain in the deposited film, which can cause film instabil
unfavorable to uniform flat film growth. The strained film
can relax either by the introduction of dislocations or by t
formation of coherent~dislocation-free! islands on the film
surface via surface diffusion. These coherent islands can
organize to create periodic arrays which can be utilized
create quantum dot structures of electronic significance.
derstanding and predicting strained thin-film evolution is i
portant for the improved fabrication of semiconductor d
vices.

Early film growth tends to occur via coherent island fo
mation as there is an energy barrier to the introduction
dislocations. Dislocations occur at island edges once isla
reach a certain size, since the large stress at island e
provides a pathway for dislocation formation.1 We only con-
sider dislocation-free films, since many experiments show
absence of dislocations~see, e.g., Refs. 1 and 2! especially in
early film evolution.

The current work sheds light on the following two pro
lems: First, it has been observed experimentally t
dislocation-free flat films of less than a certain thickness~the
critical wetting layer! are stable to surface perturbation
while thicker films are unstable.2–10 The thickness of the
wetting layer is substance dependent and decreases wit
creasing lattice mismatch strain,6–10 «5(as2af)/af , where
as andaf are the substrate and film lattice constants. Abo
the critical wetting layer, three-dimensional 3D coherent
lands form. Despite considerable effort, the physics of
critical wetting layer is poorly understood. Namely, why
there a critical, stable wetting layer and what controls
thickness? As in most cases heteroepitaxial growth is d
below the roughening transition, how does anisotropic s
face tension affect the thickness of the critical wetting lay
The second question we address is how does continuous
terial deposition affect the early evolution of thin films?

Previous work about the existence and nature of the c
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cal wetting layer can be split into two categories: tho
which looked at the dynamic stability of a flat film to sma
perturbations,11,12 and those which looked at whether a fl
film is energetically favorable to a film with fully formed
faceted islands.13–16

The research in the first category addressed substa
with isotropic surface tension. In these works physical p
rameters~lattice mismatch or surface tension! which differ
between the substrate and film were smoothly varied over
substrate-film interface in order to avoid nonanalyticitie
The effect of such smoothing was to create a wetting lay
While the choice of a smoothing length of the order of
lattice parameter is physically reasonable, none of th
works gave a physical explanation for the smoothing of m
terial parameters over the interface or tried to physically c
culate the smoothing length or form of the transition.

The research in the second category typically used ph
cally motivated methods in order to determine the free
ergy of a flat film of varying thickness. Tersoff13 and Roland
and Gilmer16 both used empirical potential methods to det
mine the chemical energy of flat films of Ge/Si~001!.
Tersoff13 then compared this chemical potential with that
bulk strained Ge in order to determine whether it is pref
able to form islands and to predict a wetting layer of 3 M
Roland and Gilmer16 saw some evidence of clustering
thicker films in molecular-dynamics simulations. Daruka a
Barabási14 used an expression for the free energy of a
film of varying depths, which fits the results of the earli
works,13,16 in order to compare the energies of flat films a
films with fully faceted islands, whose energies were cal
lated using continuum elasticity. They saw a wetting lay
which increased with decreasing lattice mismatch. Wa
et al.15 usedab initio methods in order to determine the fo
mation energy of flat films of varying depths of InAs
GaAs~100!. They compared this energy with that of a thinn
film with fully faceted islands whose energies were calc
lated using continuum elasticity. All the above works did n
study the issue of when a flat film becomes unstable to sm
monolayer perturbations or the dynamics of growth.

In this paper we show that the variation of nonlinear el
tic free energy with film thickness can give rise to a wetti
layer, which decreases with increasing lattice misma
©2002 The American Physical Society29-1
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HELEN R. EISENBERG AND DANIEL KANDEL PHYSICAL REVIEW B66, 155429 ~2002!
strain. We show how and at what depth a flat film becom
unstable to perturbations of varying size for films with bo
isotropic and anisotropic surface tension. This provide
more realistic estimate of critical wetting-layer thickne
than the studies described above, for films in which isla
grow from small surface perturbations rather than being
mediately nucleated on the flat film. This mode of grow
has been seen in many experimental systems,7–9,17especially
for films with small lattice mismatch,«,2.5%. As discussed
below, we study the evolution of these small perturbatio
and observe island faceting. We show that anisotropic
face tension gives rise to a metastable enlarged wetting la
The perturbation amplitude needed to destabilize this wet
layer decreases with increasing lattice mismatch.

The effects of material deposition on early thin-film ev
lution was addressed by Chiu and Gao,11 who looked at the
evolution of strained films with isotropic surface tensi
when material deposition is constant in the direction perp
dicular to the film surface, corresponding to liquid pha
epitaxy. In the present paper we look at thin-film grow
when material deposition is constant in the direction perp
dicular to the film surface, and when deposition is at a ste
rate in they direction ~vertical to the interface between th
film and the substrate!, corresponding to any directed dep
sition ~e.g, molecular-beam epitaxy!. The latter is a much
more common method of material deposition in strained fi
growth. We found that the type of evolution seen depends
the direction of material deposition. When the deposition
constant in the verticaly direction, the film evolves accord
ing to the linear evolution equation, even after the surfac
no longer a sine function and cusp formation occurs. Wh
deposition is constant and perpendicular to the surface, c
formation is slowed down at very high deposition rates a
the surface shows signs of reaching a steady-state morp
ogy. We also studied thin-film evolution for faceting film
and found robust scaling laws for film growth.

The paper is organized as follows. In Sec. II we formul
the problem. In Sec. III we present the general results
linear stability analysis. In Sec. IV we describe how we c
culated the variation of the nonlinear elastic free energy o
flat film with film thickness. It is this variation which give
rise to the wetting layer. Calculations were carried out us
a ball-and-spring model in order to determine general qu
tative behavior. Section V describes the results of the
merical simulations of thin-film evolution without materia
deposition, and in particular the metastability of the wetti
layer. Section VI describes the results of the numerical sim
lations of thin-film growth with material deposition. Some
the results on thin-film growth without deposition and a br
description of the ball-and-spring model for calculating t
free energy of a flat film appear in our earlier paper.18

II. PROBLEM FORMULATION

We model the evolution of a thin film on a substrate us
continuum theory. The lattice mismatch between the film a
the substrate creates a strain in the film,«. Both the substrate
and the film are assumed to be elastically isotropic with
same elastic constants. The surface of the solid is ay
15542
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5h(x,t) and the film is in they.0 region with the film-
substrate interface aty50. The system is modeled to b
invariant in thez direction, and all quantities are calculate
for a section of unit width in that direction. This is consiste
with plane strain where the solid extends infinitely in thez
direction and hence all strains in this direction vanish, i
exz5eyz5ezz50. We assume there is no material mixin
between the substrate and the film.

All the results mentioned in this paper relate to vicin
surfaces with a very small miscut angle in thez direction~see
Fig. 1!. Experimentally, surfaces often have such a sm
miscut, as it is very difficult to grow a perfect facet. In su
surfaces there is no finite-energy barrier for the formation
an infinitesimal perturbation on the surface, since such a
turbation involves only step motion and bending, and
nucleation of new steps. For a faceted surface with no mis
in the z direction there is a finite-energy barrier for the fo
mation of an infinitesimal perturbation associated with nuc
ation of step pairs.

The continuum approximation in the lateral direction~the
x-z plane! is valid, as the film is infinite in thez direction and
the smallest lateral surface features we study have width
tens of atoms. However, in the verticaly direction the films
we study are sometimes only a few monolayers thick. Is
continuum model valid for such a film? Can inherently d
crete system properties, such as the change in free ener
a monolayer is added, be interpolated to films of a noninte
number of monolayers?

FIG. 1. Perturbations of vicinal and fully faceted surfaces. T
dotted lines represent the cross sections taken in thex-y plane
which are shown in the bottom graphs. The figure shows that nu
ation of new steps is needed in order to perturb a facet, but no
order to perturb a surface vicinal in thez direction.
9-2
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ORIGIN AND PROPERTIES OF THE WETTING LAYER . . . PHYSICAL REVIEW B66, 155429 ~2002!
First, consider fully faceted films. As can be seen in F
1, there is a qualitative difference between films with integ
and noninteger numbers of monolayers, and so discrete
tem properties cannot be interpolated to films with a non
teger number of monolayers. Hence for such films c
tinuum models are not expected to give accurate results
accurately model fully faceted film growth, the discrete n
ture of the steps needs to be taken into account using a
istic models and simulations. Modeling large systems in s
a manner is currently beyond computational capabiliti
However, as can be seen in Fig. 1, the above argument
not apply to vicinal surfaces. In this case a perturbat
changes the morphology in a smooth manner without
nucleation of steps. Therefore it is possible to estimate
properties of films with a noninteger number of monolay
by interprolating the results of films of integer numbers
monolayers. Thus, a continuum model should adequately
scribe thin-film growth behavior for slightly vicinal surface

We assume that surface diffusion is the dominant m
transport mechanism. Gradients in the chemical poten
produce a drift of surface atoms with an average velocityv,
given by the Nernst-Einstein relation

v52
Ds

kBT

]m

]s
, ~1!

where Ds is the surface diffusion coefficient,s is the arc
length,T is the temperature,kB is the Boltzmann constant
and m is the chemical potential at the surface, i.e., it is t
increase in free energy when an atom is added to the s
surface at the point of interest. Taking the divergence of
surface current produced by the atom drift gives an exp
sion for the surface movement,19

]h

]t
5

DshV

kBT

]

]x

]m

]s
, ~2!

whereh is the number of atoms per unit area on the so
surface andV is the atomic volume.

In the continuum approximationm5VdF/dh, whereF is
the free energy of the solid anddF/dh is the functional
derivative ofF. The free energy is composed of elastic a
surface terms:

F5Fel1E dx gA11~]h/]x!2, ~3!

where g is the surface tension andFel is the elastic free
energy including any elastic contributions to the surface t
sion.

In general the elastic free energy can be written asFel

5Fel
(0)1dFel , whereFel

(0) is the elastic free energy of a zero
strain reference state. The elastic free energy can be wr
in terms of the elastic free-energy density,f v , as Fel
5*dxdy fv . f v is expanded as a power series in the stra
f v5 f v

(0)1s i j
(0)ei j 1

1
2 ci jkl ei j ekl1•••, where f v

(0) is the free-
energy density in the zero-strain reference state,s i j

(0) is the
stress in the reference state, andci jkl are the elastic coeffi-
cients of the material. In linear elasticity theory, deform
tions are assumed to be small and so terms of third order
15542
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higher are neglected. The stress-strain relationship is g
by s i j 5] f v /]ei j , which under linear elasticity gives
Hooke’s law:

s i j 5s i j
(0)1ci jkl ekl . ~4!

We now briefly describe the equations which need to
satisfied in order to completely determine the equilibriu
stress and strain in an elastic body. An elastic solid m
satisfy the equations of mechanical equilibrium at eve
point in its interior~see, e.g., Ref. 20!:

] js i j 1j i50, ~5!

wherej i is an external force on the solid. The solid must a
satisfy the equations of equilibrium at its surface,

s i j nj5Ti
n , ~6!

wheren is the exterior normal, andTn is the external force
acting on the unit area surface element with normaln. As the
strainsei j are not independent but are linked via the d
placements of the elastic body, they must also satisfy
equations of compatibility:

]k] lei j 1] i] jekl5] j] leik1] i]kejl . ~7!

Equations~5!–~7! along with the stress-strain relationship
~4! give us a system of equations, which are sufficient for
complete determination of the equilibrium stress and str
in an elastic body.

For the system we study, external body forces~e.g., grav-
ity! are neglected. Hence Eq.~5! becomes

] js i j 50 for y,h~x!. ~8!

Our system has periodic boundary conditions in thex direc-
tion and is infinite in the negativey direction. We shall as-
sume that the forces on the upper surface due to sur
tension~as given by Marchenko and Parshin21! are negligible
in comparison to the forces due to the mismatch stress. T
assumption is fulfilled as long asg/R!M«, whereR is the
radius of curvature of the surface andM is the plane strain
modulus. For typical values ofg, M, and«, this condition is
satisfied whenR is larger than the lattice constant. As typic
surface features have length scales of the order of 100
this assumption is valid. Hence the boundary conditions
given by

s i j nj50 at y5h~x!,

s i j →0 when y→2`. ~9!

We now return to our discussion on the determination
the elastic free energy of both the reference state and
perturbed state. For each value ofx, our reference state cor
responds locally to aflat film of thicknessh(x) constrained
to have the lateral lattice constant of the substrate, i.e.,Fel

(0)

5*dx*2`
h(x)dy fv

(0)@h(x),y#, wheref v
(0)@h(x),y# is the elastic

free-energy density of a flat film of thicknessh(x) with the
9-3
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HELEN R. EISENBERG AND DANIEL KANDEL PHYSICAL REVIEW B66, 155429 ~2002!
substrate lateral lattice constant. We calculate the correc
to the elastic free energy of the perturbed state,dFel , using
linear elasticity theory.

When looking at the stability of a strained flat film o
thicknessC, the obvious first choice for a reference state
that of a flat film of thicknessC constrained to have th
lateral lattice constant of the substrate. For later calculati
we must fully define the reference state and hence nee
know its stresss i j

(0)(C,y) and free-energy densityf v
(0)(C,y).

One simple approach to calculate these quantities would
to use linear elasticity with the unstressed film as a refere
state. In linear elasticity a flat film of any thickness co
strained to have the substrate lateral lattice constant and
to move in they direction is in equilibrium and has th
elastic free-energy density of an infinitely strained film
Hence such a calculation does not predict anyC or y depen-
dence ins i j

(0) and f v
(0) , except for a step function at th

film-substrate interface. For example, in the case of pl
strain where the mismatch strain is uniaxial~i.e., exz5eyz

5ezz50,exy50,exx5«), linear elasticity givess i j
(0)5M«

and f v
(0)5M«2/2, where M is the plane strain modulus

Therefore, variation of the elastic free energy and stress
flat film with film height is a nonlinear phenomenon, and
model outside of linear elasticity theory must be used
calculate them. As will be shown in Sec. III, small variatio
in the reference free-energy density with film thickness
crucial in predicting wetting-layer thickness, and a referen
free-energy density which has no variation with film thic
ness will lead to thin films that have no wetting layer.

The disadvantage of our choice of the reference stat
that the dependence ofh on x leads to lateral variations of th
reference state. As a result, the reference stress does no
isfy the condition of mechanical equilibrium. However, th
needed corrections vanish in the limita/l→0, wherea is
the length scale over which stress varies in they direction
andl is the lateral length of typical surface structures. T
is because in this limit there are no lateral variations in
reference stress. As typical experimental islands havel
;100 nm, and asa is of the order of the lattice constant~see
below!, the corrections to the reference stress are small
have been ignored.

Though linear elasticity cannot be used to calculate pr
erties associated with the reference state, it can still be u
to find the correction to the elastic free energy of the p
turbed state,dFel . For convenience we work in terms of th
reference elastic free energy per unit length in thex direc-
tion, f el

(0)@h(x)#[*2`
h(x)dy fv

(0)@h(x),y#, instead of the free
energy per unit volume. According to linear elasticity theo
dFel5*dx*2`

h(x)dy@s i j
(0)ei j 1

1
2 ci jkl ei j ekl#. In terms of the

stress tensor, we find

Fel5E dx fel
(0)1E dxE

2`

h(x)

dyF1

2
Si jkl s i j skl

2
1

2
Si jkl s i j

(0)skl
(0)G , ~10!
15542
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where we have used the inverted Hooke’s lawei j

5Si jkl @skl2skl
(0)#. Si jkl are the compliance coefficients o

the material.
Using Eqs.~3! and ~10! we arrive at an expression fo

dF/dh:

dF

dh
5g̃~u!k1

d fel
(0)

dh

1F1

2
Si jkl s i j skl2

1

2
Si jkl s i j

(0)skl
(0)GU

y5h(x)

1E
2`

h(x)

dy
]

]h F1

2
Si jkl s i j skl2

1

2
Si jkl s i j

(0)skl
(0)G ,

~11!

where k is surface curvature,u is the angle between th
normal to the surface and they direction, andg̃(u)5g(u)
1]2g/]u2 is the surface stiffness. The integrand in Eq.~11!
is the change in the linear elastic free-energy density as
surface profile changes infinitesimally. Followin
Sokolnikoff,20 we now show that this term is of orderdh in
the absence of external surface or body forces and so ca
neglected. When the surface profile changes, the strain in
body changes fromei j to ei j 1ei j8 , whereei j8 is of orderdh.
The elastic free-energy density can be written asf v1D f v
5 1

2 ci jkl (ei j 1ei j8 )(ekl1ekl8 ), and the change in elastic free
energy density is D f v5ci jkl ei j ekl8 1 1

2 ci jkl ei j8 ekl8 . Using
Hooke’s law ~4!, the definition of strain, and Eq.~5!, we
rewrite D f v asD f v5] j (s i j ui8)1j iui81 1

2 ci jkl ei j8 ekl8 . The to-
tal change in the elastic free energy is* D f vdxdy

5*Ti
nui8ds1*j iui8dxdy1* 1

2 ci jkl ei j8 ekl8 dxdy, where the first
term on the right-hand side is an integral over the film s
face. To obtain this we used Eq.~6!. In the absence of exter
nal surface or body forces the first two terms on the rig
hand side of the above equation vanish, and we are left w

the equation* D f vdxdy5* 1
2 ci jkl ei j8 ekl8 dxdy. ei j8 is of order

dh, and hence the integrand in Eq.~11!, D f v /dh, is of order
dh. Therefore the last term in Eq.~11! can be ignored for
infinitesimal changes to the solid surface and we have

dF

dh
5g̃k1

d fel
(0)

dh
1H 1

2
Si jkl s i j skl2

1

2
Si jkl s i j

(0)skl
(0)GU

y5h(x)

.

~12!

As the above equation givesdF/dh at the solid surface,
all variables in the equation are also given at the surface
particulars i j

(0)(h,y5h) is taken as the stress at the surface
a flat solid of heighth(x) and hence must vanish whenh
<0, since then the film is absent.d fel

(0)(h)/dh is determined
by calculating how the reference elastic free energy of
solid changes as monolayers are added to the solid sur
Whenh<0, d fel

(0)/dh50, as the substrate is completely r
laxed. In principle, Eq.~12! should also contain derivative
of g with respect toh. However, we believe that the variatio
of surface tension withh away from a step dependence is d
to elastic effects. Since we included all elastic contributio
9-4
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ORIGIN AND PROPERTIES OF THE WETTING LAYER . . . PHYSICAL REVIEW B66, 155429 ~2002!
in the zero-strain elastic free energy, we modeledg as a step
function, taking the value of the substrate surface tension
h<0 and the film surface tension forh.0. Thus all partial
derivatives ofg with respect to surface height vanish a
were omitted from Eq.~12!.

Equations~2! and~12! form a complete model of surfac
evolution. In order to solve this model, the chemical pote
tial @given by Eq.~12!# for a given surface must be found
and so the linear elastic free-energy density at the solid
face,f v

l in5 1
2 Si jkl s i j skluy5h(x) must be calculated. For an iso

tropic solid under plane strain with zero force boundary c
ditions the above expression simplifies considerably to g
f v

l in5(sxx1syy)
2uy5h(x)/2M , whereM is the plane strain

modulus. Hence we must determine the stress at the su
of the film. This is done by finding the stress which satisfi
both the linear elasticity equations@the equations of compat
ibility ~7! and equilibrium~8!# and the boundary condition
~9!.

For an isotropic solid under plane strain, finding the str
which satisfies the linear elasticity equations and the bou
ary conditions can be reduced to finding the stress funct
W, which satisfies the boundary conditions~9! and the bihar-
monic equation~see, e.g., Timoshenko and Goodier22 or
Mikhlin23!:

D2W5D~DW!5
]4W

]x4
12

]4W

]x2]y2
1

]4W

]y4
50, ~13!

with sxx5]2W/]y2, sxy52]2W/]x]y, and syy
5]2W/]x2.

In order to model the early evolution of faceted island
and to study the effect of an anisotropic form of surfa
tension on the wetting layer, we used the cusped form
surface tension given by Bonzel and Preuss,24 which shows
faceting in a free crystal:g(u)5g0$11busin@pu/(2u0)#u%,
whereb'0.05 andu0 is the angle of maximumg. The value
of g0 was taken as 1 J/m2 in the substrate and about 75%
that in the film ~as is the case for Ge/Si!. This ensures a
wetting layer of at least one monolayer. We considere
crystal which facets at 0°,645°, and690° with u05p/8.
The cusp gives rise tog̃5`. However, a slight miscut of the
low-index surface along thez direction leads to a rounding o
the cusp, which can be described by

g~u!5g0F11bAsin2S p

2u0
u D1G22G , ~14!

where, for example,G5500 corresponds to a miscut angl
Du'0.1°. As mentioned earlier all the results in this pap
relate to surfaces with a very small miscut angle in thz
direction.

III. LINEAR STABILITY ANALYSIS

In this section we carry out a linear stability analysis
Eq. ~2! against a sinusoidal perturbation of wave numbek,
similar to that carried out in Ref. 25 for an infinitely thic
stressed film. We thus look for a height profile of the for
h(x,t)5C1d(t)sinkx, which solves Eq.~2! to first order in
15542
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d. To calculate the linear elastic energy we find the solutio
of Eq. ~13!, which satisfy the boundary conditions~9!. sxy

(0)

vanishes because the film is hydrostatically strained,
syy

(0)50 since in the reference state the force perpendicula
the surface vanishes. Hence the only nonzero componen
the reference stress issxx

(0)(h,y). Stress functions of the form

W5sxx
(0)~h,y!y2/21~A1By!ekysin~kx! ~15!

satisfy the biharmonic equation. This gives stresses of
form

sxx5k@2B1~A1By!k#ekysin~kx!1sxx
(0)~h,y!,

syy52k2~A1By!ekysin~kx!,

sxy52k@B1~A1By!k#ekycos~kx!.

To first order ind the stresses that satisfy the biharmon
equation and the boundary conditions are given by

sxx52dke2kCsxx
(0)~C,C!@21~y2C!k#ekysin~kx!

1sxx
(0)~h,y!,

syy5dk2e2kCsxx
(0)~C,C!~y2C!ekysin~kx!,

sxy5dke2kCsxx
(0)~C,C!@11~y2C!k#ekycos~kx!.

At the surface these stresses take the forms

sxx522dksxx
(0)~C,C!sin~kx!1sxx

(0)~C,C!

1d sin~kx!dsxx
(0)/dhuh5C ,

syy50,

sxy5dksxx
(0)~C,C!cos~kx!.

Note that all the derivatives in the Taylor expansions used
this analysis are with respect toh, the reference film thick-
ness and not with respect toy, the depth within the referenc
film. This is because in calculating the chemical potential
are interested in how the free energy of the film changes
material is added or removed from the film surface, i.e., h
the free-energy of the film changes as the film thickn
changes and not how the free energy density of the fi
varies within the film.

Using the above stresses in Eq.~12!, we obtain the ex-
pression

dF

dh
5g̃k1

d fel
(0)

dh
1

1

2M
~sxx1syy!

22
1

2M
~sxx

(0)1syy
(0)!2

5d sin~kx!H d2f el
(0)

dh2
22k

@sxx
(0)~C,C!#2

M
1g̃0k2J

1
d fel

(0)

dh
~C,C!, ~16!
9-5
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HELEN R. EISENBERG AND DANIEL KANDEL PHYSICAL REVIEW B66, 155429 ~2002!
whereg̃05g̃(u50). Combining the above equation with th
evolution Eq.~2! gives the following equation ford(t):

dd

dt
5Kk2H 2k2g̃012k

@sxx
(0)~C,C!#2

M
2

d2f el
(0)

dh2 J
h5C

d,

~17!

where K5DshV2/kBT. Each term in the brackets in thi
equation has a simple physical significance. The first term
a surface-tension term. Surface tension acts to reduce su
curvature,k, and so this term is negative, thereby reduc
the perturbation amplitude, and is linear ink;k2. The sec-
ond term in this equation is a mismatch stress term. Reg
of high stress have large chemical potential, and so at
tend to detach from these regions and attach to region
small chemical potential. In a mismatch stressed solid,
leys or cusps are regions of high stress, hence mat
moves from the valleys to the hills of a perturbed surfa
increasing perturbation amplitude. The contribution of t
term is propotional to the density of valleys, which is line
in k. The last term is a reference state term. Ifd2f el

(0)/dh2

.0 it costs more energy to add a monolayer to a flat fi
than is gained by removing a monolayer, and hence it c
energy to perturb a film. Thus, positived2f el

(0)/dh2 stabilizes
a flat thin film, whereas negatived2f el

(0)/dh2 leads to an in-
stability. Obviously this reference state term is present e
if the film is flat and hence is independent ofk.

Equation ~17! implies that the flat film is stable at a
perturbation wavelengths as long as

@sxx
(0)~C,C!#4

M2
<g̃0

d2f el
(0)

dh2 U
h5C

, ~18!

and the equality holds at the critical wetting-layer thickne
where perturbations of wave number k

5@sxx
(0)(C,C)#2/(M g̃0) are marginal.g̃0 is positive if u50

is a surface seen in the equilibrium free crystal.26 As men-
tioned earlier,g̃0→` at a perfect facet and is large and po
tive on a surface with a small miscut, as is the case for m
of the materials used in epitaxial films. Therefore, a linea
stable wetting layer of finite thickness can exist only
d2f el

(0)/dh2.0. Note that for the wetting layer to have
finite rather than an infinite thickness,d2f el

(0)/dh2 must de-
crease to a value less than the left-hand side of Eq.~18! as
the thickness of the film increases.sxx

(0)(C,C) depends lin-
early on the lattice mismatch«, and hence the left-hand sid
of Eq. ~18! is proportional to«4, while the right-hand side o
Eq. ~18! is proportional to«2 due to the dependence off el

(0)

on lattice mismatch. Therefore, ifd2f el
(0)/dh2.0, the thick-

ness of the wetting layer increases with decreasing lat
mismatch and diverges in the limit«→0.

Note that the maximum thickness of a flat film which
stable to infinitesimal perturbations is given by Eq.~18!
when the equality holds. A film slightly thicker is unstable
perturbations of wavelengthl52pM g̃0/@sxx

(0)(C,C)#2. For
films which are nearly perfect facets with small misc
angles these wavelengths are larger than the typical sa
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size and so practically such perturbations will never occ
However as will be explained in Sec. V, the film can
nonlinearly unstable to smaller-wavelength perturbations o
nonzero amplitude at physically reasonable waveleng
Hence the inequality in Eq.~18! is only useful in predicting
the stability of films with large miscut angles or above t
roughening temperature. At small miscut angles the stab
of the film to large perturbations will predict its maximum
thickness. This issue is discussed in more detail in Sec.

IV. CALCULATION OF THE NONLINEAR ELASTIC FREE
ENERGY OF A FLAT FILM

As can be seen from both Eq.~12! and Eq. ~18!, the
dependence of the nonlinear elastic free energy of a flat
f el

(0)(h) on film thickness,h, is vital in order to determine
both wetting-layer thickness and thin-film evolution. Th
free energy depends strongly on the mismatch stresss i j

(0) ,
and its dependence on they coordinate. As a result of the
sharp interface between the substrate and the film, we ex
s i j

(0) to behave as a step function ofy with small corrections
due to elastic relaxation. If we ignore these small correctio
the resulting free energyf el

(0)(h) is proportional to film thick-
ness, and its second derivative vanishes. Hence accordin
Eq. ~18!, the thickness of the critical wetting layer vanishe
The correction due to elastic relaxation is therefore
tremely important. As discussed earlier, this correction v
ishes within linear elasticity theory. This led som
investigators27 to claim that the variation in free energy ove
the interface was due to nonelastic effects, e.g., fi
substrate material mixing over the interface. However,
claim that this is not necessary, since nonlinear elasticity
explain the corrections to the step-function form of the fr
energy.

The nonlinear elastic free energy of the reference st
f el

(0)(h), is calculated for a solid with a flat surface of heig
h. Hence in order to calculated fel

(0)/dh, we determinef el
(0)

for flat solids of heightsh1d/2 and h2d/2, and use the
estimated fel

(0)/dh5@ f el
(0)(h1d/2)2 f el

(0)(h2d/2)#/d. Ideally,
first-principles, substance-specific calculations should be
formed in order to evaluatesxx

(0)(h,y) and f el
(0)(h), and we

intend to carry out such calculations. However, the qual
tive general behavior off el

(0)(h) can be obtained from much
simpler models which have the advantage of being able
separate universal elastic effects from substance-specific
fects due to the different types of bonds present at the in
face of a real system. We calculatedsxx

(0)(h,y) and f el
(0)(h)

for two-dimensional networks of balls and springs of varyi
lattice type and spring constants. In these calculationsd is
one monolayer, andf el

(0)(h) is calculated at film thicknesse
of integer numbers of monolayers from no film up to 1
monolayers of film. Values off el

(0)(h) for film heights of
fractional monolayers are interprolated from the values c
culated at integer monolayer heights.

In the ball-and-spring model the balls are connected
springs that obey Hooke’s law. Note that this does not im
that the stress-strain relationship of the ball-and-spring n
work is linear~a discussion of this point can be found in Re
9-6
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ORIGIN AND PROPERTIES OF THE WETTING LAYER . . . PHYSICAL REVIEW B66, 155429 ~2002!
28!. The natural spring length has a step variation over
interface, and the balls are placed on a lattice with the s
strate lattice constant. Thus balls in the substrate are
nected by springs of their natural length, whereas balls in
film are connected by springs that have undergone a hy
static transformation strain and have length larger than t
natural length by a factor of 11e, wheree is the homoge-
neous strain in the film. The network was then allowed
relax, with the film free to move in they direction, and pe-
riodic boundary conditions were applied in thex direction to
ensure that the system boundaries in this direction were fi
to the natural substrate length.

We calculated the mismatch stresssxx
(0) within the relaxed

film and at the film surface. We also calculated the dep
dence of mismatch surface stresssxx

(0)(h,h) and the nonlinear
elastic free energyf el

(0)(h) on varying film thicknesses,h. We
carried out these calculations for various two-dimensio
networks of balls and springs with varying spring constan
An example of the ball-and-spring model on a fcc-like latti
is shown in Fig. 2.

Simulations showed that while individual atoms were fr
to move in thex direction, they actually moved only in they
direction. The relaxation in they direction depended on th
film thickness and on the depth of the atom in the lattice
was independent ofx. In general balls at depth of more tha
3 ML into the substrate experienced no stress. The st
experienced by balls close to the interface depended on
lattice type, spring constants, and ball position within t
monolayer. A few monolayers into the film, balls expe
enced the stress of an infinite thickness film,M«. At the film
surface balls showed large relaxation. Figure 3 shows
example of the mismatch stress,sxx

(0)(h,y), in a typical fcc-
like lattice.

Note that the springs in a simple square lattice could re
completely in they direction. Therefore, for such a lattice th
relaxation is independent of spring depth within the film
film thickness, andf el

(0)(h) varies linearly with film thick-
ness. Hence for a square latticed2f el

(0)(h)/dh250. Only
when diagonal bonds, such as those in a fcc lattice, w
present did the springs show depth-dependent relaxa

FIG. 2. Example of a fcc-like lattice. The circles represent ba
The curvy lines are springs of spring constantk1, and the dashed
lines represent springs of spring constantk2.
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such as that described above. The inability of the spring
completely relax due to the presence of diagonal bonds
a necessary condition forf el

(0)(h) to vary nonlinearly with
film height. In such incompletely relaxed films the nonline
dependence off el

(0) on h arises from the elastic relaxation a
the surface and its coupling to the relaxation at the fil
substrate interface. A similar effect should occur in real s
tems due to surface reconstruction, for example.

A typical behavior ofd fel
(0)/dh is shown in Fig. 4, where

it is seen thatf el
(0)(h) indeed depends on the thicknessh.

Moreover, the model predicts thatd2f el
(0)/dh2.0 and de-

creases with increasing film thickness, and therefore acc
ing to the inequality~18! and the discussion following it
there should be a linearly stable wetting layer, whose thi
ness is finite and increases with decreasing lattice misma

While the detailed dependence ofd fel
(0)(h)/dh on film

.

FIG. 3. Mismatch-induced stress,sxx
(0)(h,y)/M«, in a typical

fcc-like lattice. The film is 8-ML thick and the substrate is 10-M
thick. hml is the thickness of one monolayer.

FIG. 4. Variation with film thickness of the elastic free energy
a relaxed ball-and-spring system,d fel

(0)/dh, as a function of film
thicknessh. The free energy is normalized to the infinite film line
elastic energy density,12 M«2. hml is the thickness of one mono
layer.
9-7
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HELEN R. EISENBERG AND DANIEL KANDEL PHYSICAL REVIEW B66, 155429 ~2002!
thickness close to the substrate-film interface@<3 ML# var-
ied between different networks, it showed the same gen
behavior. In all systemsd2f el

(0)(h)/dh2 showed exponentia
decay with a decay length of about a monolayer from
interface. The dimensionless quantity (2/M«2)(d fel

(0)/dh)
was independent of lattice mismatch sign or magnitu
d fel

(0)/dh increased with film thickness. As the film thickne
increasesd fel

(0)/dh asymptotically approaches the elas
free-energy density of an infinite film,M«2/2, as expected.

The results of both Tersoff13 and Wanget al.15 show simi-
lar behavior suggesting that the fundamental form off el

(0)(h)
which gives rise to the wetting layer is due to universal el
tic effects and that the specifics of the system only cha
the details of how thick that wetting layer will be.

We can explain the increase ofd fel
(0)/dh with film thick-

ness intuitively.d fel
(0)/dh is the change in the free energy

a film as a monolayer is added. When a monolayer is ad
to a thick film the contribution to the free energy from th
surface atoms and the interface remains the same and
energy added is effectively that of a monolayer in the ‘‘bul
of the film. Atoms in the bulk of a thick film are more con
strained than those in a thin film where the atoms are r
tively free to move and relax. When a monolayer is added
a thin film the energy change is in between that of the c
strained thick-film bulk atoms and the relaxed surface ato
Hence more free energy is needed to add a monolayer
thick film andd fel

(0)/dh increases with film thickness.
For the calculations used later in this paper we used

function

d fel
(0)~h!/dh5

M«2

2
@120.05 exp~2h/hml!# for h.0,

~19!

and d fel
(0)(h)/dh50 for h<0. hml is the thickness of one

monolayer. In previous works11,12,27 on the physics of the
wetting layer it was assumed that the reference state en
variation is a smooth function ofh, mainly in order to avoid
nonanalyticities at the interface. In contrast, our refere
state energy variation behaves as a step function of the
face height with a small but important correction.

The deviations in the mismatch stress~averaged over the
surface monolayer! at the film surfacesxx

(0)(h,h) from a step
function, sxx

(0)(h,h)5M« when h.0, was shown to be
small (,5%) but dependent on spring constants and lat
type ~see Fig. 5!. As variations insxx

(0)(h,h) only slightly
alter the wetting-layer thickness predicted from Eq.~18!, we
decided to use the step-function form of mismatch stress

Combining the behavior ofd fel
(0)/dh from Eq. ~19! with

the inequality~18!, we obtained an expression for the line
stability wetting-layer thickness,hc :

hc /hml5max$1,ln@ g̃0 /~40M«2hml!#%. ~20!

Thus, the wetting-layer thickness increases with decrea
lattice mismatch, as observed in experiments.
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V. NUMERICAL SIMULATIONS OF THIN-FILM GROWTH

As explained at the end of Sec. III, for systems with sm
mismatch and/or small vicinality~miscut angle! one has to
go beyond linear stability in order to understand their evo
tion. To this end we carried out numerical simulations of t
evolution of the strained film. The evolution Eq.~2! given by
Mullins,19 which is derived from the Nernst-Einstein relatio
~1!, includes derivatives of the chemical potential,m, along
the surface. This chemical potential is defined as the cha
in free energy when an atom is added to the surface. C
tinuum theory assumes that the free-energy change when
surface is changed by an infinitesimal amount is proportio
to this chemical potential (m5VdF/dh). However, when
we solved the evolution equation by directly calculating t
chemical potential from Eq.~12! at points along the film
surface we experienced numerical instabilities.

We have come up with the following solution to this pro
lem. The Nernst-Einstein equation can be derived by con
ering material of atomic volume moving along the solid su
face. When material jumps between neighboring atom
sites, it must cross a free-energy barrier ofDF65Ed1(F6

2F0)/2, whereEd is the potential barrier for diffusion,F6

is the free energy of the film after material has been mov
and F0 is the free energy of the film before material
moved. The positive and negative signs stand for forw
and backward jumps, respectively. This leads to the follo
ing equation for material velocity along the surface:

v5vae2Ed /kBT@e2(F12F0)/2kBT2e2(F22F0)/2kBT#

5
Ds

a
@e2(F12F0)/2kBT2e2(F22F0)/2kBT#, ~21!

wherev is the attempt rate anda is the jump length. When
(F12F0) and (F22F0) are small, this equation gives th
Nernst-Einstein relation~1!.

We solved Eq. ~21! using the following numerical
scheme. For every two adjacent points on the surface,
surface height of the left point was changed by6dh and of
the right point by7dh so as to give a transfer of material o

FIG. 5. Variation of mismatch-induced stress at the film surfa
sxx

(0)(h,h)/M«, for varying film thickness,h. The lattice is fcc-like
~see Fig. 2!. The dashed lines with circles denotesxx

(0)/M« of atoms
at the top of a monolayer. The solid lines with circles deno
sxx

(0)/M« of atoms at the bottom of a monolayer. The solid lin
without circles represent the averages ofsxx

(0)/M« over a mono-
layer. The spring constants which were used are~a! k151 andk2

51 and~b! k151 andk255.
9-8
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ORIGIN AND PROPERTIES OF THE WETTING LAYER . . . PHYSICAL REVIEW B66, 155429 ~2002!
atomic volume backwards and forwards along the surfa
respectively. The change in surface free ener
*dx gA11(]h/]x)2, was calculated for this material tran
fer. The change in the elastic free energy was calcula
at each point using the integral of Eq.~12!, dF

56$(d fel
(0)/dh)1@ 1

2 Si jkl s i j skl2
1
2 Si jkl s i j

(0)skl
(0)#uy5h(x)%dh.

The linear elastic energy was calculated by solving the
harmonic Eq.~13! with the boundary conditions~9!. This
was done by solving a boundary integral equation in term
the complex Goursat functions, the details of which can
found in the paper of Spencer and Meiron.29

The stability of thin films

According to Eq.~20!, anisotropic surface tension great
enlarges the linearly stable wetting-layer thickness. Does
conclusion survive beyond linear stability analysis? Whe
linearly stable flat film is perturbed strongly so that the s
face orientation in some regions is far from theu50 direc-
tion, the local surface stiffness in these regions is mu
smaller than theu50 stiffness. This tends to destabilize th
linearly stable film. Indeed, we carried out numerical sim
lations ~using the procedure described above! that showed
that films thinner than the linear wetting layer were unsta
to perturbations greater than a certain critical amplitude~see
Fig. 6!. Hence films thinner than the linear wetting-lay
thickness aremetastable. When large perturbations were a
plied, faceted islands developed in the film, which underw
ripening at later stages of the evolution.

We carried out simulations for films perturbed by rando
perturbations and by perturbations of a single wavelen
The critical perturbation amplitude,dc , depends on the
wavelength of the perturbation,l, taking its minimal value

dc
m5min

l

dc~l! ~22!

FIG. 6. Evolution of a randomly perturbed film, in which pe
turbations were larger than the critical perturbation amplitude. L
tice mismatch in this film is 4%. The initial film surface is shown
a thin solid line. The dashed line shows the film surface at a l
time. The linear wetting-layer thickness is shown as a thick so
line.
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at l/ l o;10250, wherel o52go /M«2. dc
m in monolayers is

plotted as a function of lattice mismatch in Fig. 7. The line
wetting-layer thickness forG5500, M51.531011 N/m2,
andhml55 Å is also shown for comparison.

dc
m was found to be proportional to«22. The«22 depen-

dence is expected for an infinite film as in this case the e
lution equations@Eq. ~2! together with Eq.~12!# can be made
spatially dimensionless by scaling all lengths byl 0. Hence
all perturbations of sized/ l 0 and with the same dimension
less wave numberkl0 will evolve identically.

dc
m was largely independent of cusp smoothnessG, unlike

the linear wetting-layer thickness which depended stron
on G. The evolution of a large perturbation was identical f
G→` and a perfect cusp in the surface tension, wher
Long et al.30 showed that the linear stability analysis for th
two cases predicted very different evolution. Both these
servations suggest that unlike the linear wetting-layer thi
ness the critical perturbation amplitude can be used in p
dicting the outcome of experimental thin-film growth. Th
mean-square amplitude of the random perturbation neede
destabilize thin films was also shown to be largely indep
dent ofG and was proportional to«22.

When the lattice mismatch is small,dc
m is much larger

than the linear wetting-layer thickness~see Fig. 7!. Hence,
flat films thinner than the linear critical thickness are sta
at small lattice mismatch. As the linear critical thickness
small lattice mismatch is very large, we expect the film
first become unstable to misfit dislocations. This is inde
seen in experiments.8,9

At intermediate lattice mismatch,dc
m is of the order of a

few monolayers. Hence we expect such a film to beco
unstable as perturbations of this amplitude are physic
likely. In this regime films should develop growing perturb

t-

r
d FIG. 7. Variation of the minimal critical perturbation amplitud
dc

m , and linear wetting-layer thickness,hc , with lattice mismatch,
«. The minimal critical perturbation amplitude,dc

m/hml , is repre-
sented by the solid line. The linear wetting-layer thickness,hc /hml ,
is represented by the dashed line. The dotted line shows the si
one monolayer,hml , for comparison.
9-9
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HELEN R. EISENBERG AND DANIEL KANDEL PHYSICAL REVIEW B66, 155429 ~2002!
tions at wavelengths given byl/ l o;10250. This corre-
sponds to wavelengths of a few hundred nanometers.
typical wavelength decreases as lattice mismatch increa
agreeing with experiment.6,8 As « increases,dc

m decreases in
this regime from about 10 ML to approximately 1 ML, an
we expect the thickness of the film needed to support s
perturbations to correspondingly decrease. Such a tren
seen in experiments.6–9 In order to compare quantitativ
wetting-layer thickness and its lattice mismatch depende
with experiments we will have to carry out first-principle
substance-specific calculations to evaluatef el

(0)(h). However,
the general qualitative trends predicted here agree with
perimental observations.

Looking at Fig. 7 we see that at intermediate lattice m
match the critical perturbation amplitude,dc

m , and the linear
wetting-layer thickness are of the same order of magnit
~several monolayers!. This could mean that we have to als
consider the linear wetting-layer thickness with its stro
dependence on the surface miscut angle when deci
whether or not a thin film will be unstable. However, th
infinitesimal perturbations needed to perturb the linear w
ting layer occur at wavelengthl5(2p/M«2)g̃0, whereas
the typical wavelength at which critical amplitude perturb
tions first appear in the film isl;10(2/M«2)g0. Using ex-
pression~14!, the ratio between these two wavelengths
approximately equal toG. For physical values ofG the linear
wetting-layer perturbations will have wavelengths of the
der of 100mm which is larger than the typical sample siz
whereas the wavelength which corresponds to the mini
critical perturbation is much smaller (;100 nm). Therefore,
physical thin films should first become unstable when
film thickness is large enough to support perturbations lar
than the critical perturbation amplitude.

For very large mismatch, a perturbation smaller than
monolayer is sufficient in order to destabilize the linea
stable wetting layer. Therefore, in practice, the wetting la
is a single monolayer in this case.

VI. EARLY EVOLUTION OF THIN FILMS WITH
MATERIAL DEPOSITION

We carried out our calculations with two different types
material deposition: The first type is deposition at a ste
rate in the verticaly direction, corresponding to any directe
deposition~e.g., molecular-beam epitaxy!. The evolution Eq.
~2! then becomes

]h

]t
5

DshV

kBT

]

]x

]m

]s
1VD , ~23!

whereVD is the material deposition rate.
The second type is deposition, constant in the direct

perpendicular to the film surface, corresponding to liqu
phase epitaxy, for example. Early growth with this method
deposition has been studied by Chiu and Gao.11 In this case
the evolution equation becomes

]h

]t
5

DshV

kBT

]

]x

]m

]s
1

VD

ny
, ~24!
15542
is
es,

h
is

ce

x-

-

e

ng

t-

-

s

-
,
al

e
er

a

r

y

n

f

where ny is the y component of the normal vector to th
surface.

We performed linear stability analysis in order to obta
the analytical early evolution equation of a perturbed th
film. This analysis is valid for both types of material dep
sition. Under steady deposition, Eq.~17! becomes

dd

dt
5KF2k4g̃012k3M«22k2

d2f el
(0)~C1VDt !

dh2 Gd,

~25!

where we have assumed the reference state mismatch s
is given by a step function,sxx

(0)(h,h)5M« when h.0,
and sxx

(0)(h,h)50 whenh,0. Using the general form~ob-
tained from the ball-and-spring model! of d2f el

(0)/dh2

.x(M«2/2hml)exp(2h/hml), wherex is a constant, gives the
following solution for perturbation growth:

d~ t !5d0exp„K$~2k4g̃012k3M«2!t1k2x~M«2/2VD!

3exp~2C/hml!@exp~2VDt/hml!21#%…. ~26!

Note that in linear stability analysis a perturbation in an
finite film decays whenk.2M«2/g̃0 and grows exponen
tially when k,2M«2/g̃0.

For isotropic surface tension, numerical computatio
showed that whenk* ,k,2M«2/g̃0, with k* '0.875
32M«2/g̃0, both methods of deposition lead to cusp form
tion in the surface valleys. The cusps initially evolve acco
ing to the linear evolution Eq.~26! and then slow and reac
a steady-state morphology. Spencer and Meiron29 observed
such steady states in infinitely thick stressed films. Howe
when k,k* , surface evolution depends on the method
material deposition. When deposition is constant in the v
tical y direction increasingly sharp cusps form in the surfa
valleys@see Fig. 8~a!#, which continue to grow exponentially
In contrast when deposition is constant perpendicular to
surface at very high deposition rates cusp formation
slowed@see Fig. 8~b!# and the surface shows signs of reac
ing a steady-state morphology as fork.k* .

This can be seen in Fig. 9. The plot~shown as squares in
the figure! starts as a graph of constant positive slope rep
senting an exponentially growing perturbation as predic

FIG. 8. Film evolution at very high deposition rates (VD

51200 nm/s) when surface tension is isotropic.k50.75

32M«2/g̃0. ~a! Deposition is constant in the verticaly direction.
~b! Deposition is constant perpendicular to the film surface.
9-10



p
m
n

n
n
o
h
o

ht
al
g
tw

n
u
m

ult

ile
n
h

rg
t

vo-
r
an

t at
at
any
an
ue

a-
and

the
-

r

n

in
ve

m-
-

en
ro

im
e.

r

nd
e
ua-

e

ORIGIN AND PROPERTIES OF THE WETTING LAYER . . . PHYSICAL REVIEW B66, 155429 ~2002!
by linear analysis. However this growth slows and the gra
approaches the flat line representative of a steady-state
phology. Note that in comparison when deposition is co
stant in the verticaly direction ~shown as circles in Fig. 9!,
the film evolves according to the linear evolution equatio
Under deposition perpendicular to the film surface, whe
cusp begins to form, material is deposited more rapidly
the steep cusp slope, hence slowing cusp formation. W
deposition is constant vertically it only effects surface ev
lution indirectly by raising the average surface heig
Though deposition rates of this magnitude are not gener
used in experiment it is nevertheless physically interestin
observe the difference in surface evolution between the
growth methods.

When the deposition is constant in the verticaly direction,
the film evolves according to the linear evolution equatio
even after the surface is no longer a sine function and c
formation occurs. This can be seen in Fig. 10 which co
pares results from the numerical simulation with the res
predicted by the linear evolution Eq.~26!. Figure 8 shows a
very clear cusp formation in the surface morphology, wh
for the same time Fig. 10 shows the sharp cusp growing o
slightly faster than predicted by linear analysis. This slig
deviation is expected as the stress in a cusp valley is la
than in a sine valley hence accelerating perturbation grow

FIG. 9. Film evolution at very high deposition rates (VD

51200 nm/s) when surface tension is isotropic. The line repres
the linear evolution equation, the circles represent the results f
the numerical simulation when deposition is constant in they direc-
tion, and the squares represent the results from the numerical s
lation when deposition is constant perpendicular to the surfack

50.7532M«2/g̃0. The parameters used here areDs53.599
310213 m2/s, V51.38310229 m3, h51.7431019 m22, T

5700 K, k5108 m21, g05g̃051, «52%, M51.6731011, x
51, C50.75 ML, andhml52 nm. Note the deviation from the
linear stability analysis results when deposition is perpendicula
the surface.
15542
h
or-
-

.
a
n
en
-
.
ly
to
o

,
sp
-
s

ly
t
er
h.

When the surface tension is anisotropic the surface e
lution is very different from that predicted by the linea
analysis. As can be seen in Fig. 10, a perturbation in
isotropic film decays until the film surface reaches a heigh
which the film is linearly unstable to perturbations at th
wavelength. No matter how large the deposition rate, at
given time a perturbation in a thin film is always smaller th
a perturbation of the same initial size in an infinite film d
to the finite time spent in the linear wetting layer.

When surface tension is anisotropic, initially the perturb
tion amplitude decreases as the surface facets. The rate
amplitude of the decrease are independent of eitherC or VD .
The film then grows or decays depending on whether
perturbation amplituded(t) is larger or smaller than the criti
cal perturbation amplitudedc(k,h), at h5VDt1C. When
d0.dc(k,h5C) the perturbation grows immediately afte
faceting. Whend0,dc(k,h5C) the perturbation initially
decays though it will start to grow again if the depositio
brings the film surface to a height at whichd(t).dc(k,h
5VDt1C).

We now turn to characterize the evolution of the film
terms of all the relevant physical variables. There are fi
independent variables that can effect the evolution:VD , C, k,
t, and«. In addition, there are four relevant constant para
eters:hml , K, g̃0, andM. We can replace the five indepen
dent variables by the dimensionless variablesVDt/hml ,
C/hml , Kg̃0k4t, KM«2k3t, andKM«2k2t/hml . The idea is

ts
m

u-

to

FIG. 10. Film growth when surface tension is isotropic a
deposition is constant in they direction. The symbols represent th
numerical simulation results and the lines the linear evolution eq

tion values.k50.7532M«2/g̃0. The parameters used are the sam
as those in Fig. 9.
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that the description of the evolution of a film with isotrop
surface tension becomes simpler in terms of these variab
This becomes clear when we look at how a perturbation
thin film grows in relation to the growth of a perturbation
the same initial size in an infinite film. Quantitatively, this
described by the relative perturbation height,dR
5d(t,C)/d(t,C5`). As can be seen from Eq.~26!, dR de-
pends only on three of the five independent dimension
variables:

dR5FexpKk2x
M«2

2VD
G exp~2C/hml!@exp~2VDt/hml!21#.

~27!

This can be summarized in the scaling law

dR~VD ,C,k,t,«!5dR~VDt/hml ,C/hml ,KM«2k2t/hml!,
~28!

which implies thatdR depends only on three of the five sca
ing variables. The manifestation of this scaling behavior
data collapse. For example, whenVD50 andC is fixed, all
the curves ofdR(t) for different values ofk and« fall onto a
single curve if plotted as a function ofk2«2t rather thant.

Does this scaling law survive beyond linear analysis?
looked for scaling when deposition was constant in the v
tical y direction for both isotropic and anisotropic surfa
tension. As mentioned earlier when surface tension is iso
pic the film continued to evolve according to the linear ev
lution Eq. ~26! long after it left the linear regime and henc
the scaling relation~28! also held.

Growth under anisotropic surface tension is very differ
from that given by the linear evolution Eq.~26!, and hence
the scaling relation~28! does not hold. Does this mean th
the physics of anisotropic surfaces is more complicated
depends on all five independent variables? It turns out
answer to this question is ‘‘no’’ to a good approximation.
To see this we define five generalized dimensionless v
ables: VDt/hml , C/hml , Kg̃0k4t, KM«2k3t, and
Kg̃0

p1q/211M 2p2q/2«22p2qkpt/hml
q/214 . When p52 and q

526 we regain the dimensionless variables governing
linear evolution equation. We found numerically that in t
case of anisotropic surface tension,dR approximately obeys
the scaling law:

dR~k,VD ,«,t,C!5dR~VDt/hml ,C/hml ,Kg̃0
p1q/211M 2p2q/2

3«22p2qkpt/hml
q/214! ~29!

with p;2.37 andq;26.5. Again,dR depends only on three
of the five scaling variables, which implies data collap
This relation was very robust. We verified it for differentG,
variation of k of an order of magnitude, variation of« by
100%, and deposition rates of between 0 and 120 000
Figures 11 and 12 show this scaling in the form of d
collapse whenC52 ML. Data collapse whendR is plotted
against a variable proportional to the third scaling variable
Eq. ~29! can be seen in Fig. 11. Here there is no depositi
k varies by over an order of magnitude, and« by 100%. As
can be seen the data collapse is not exact but holds to a
15542
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approximation. Figure 12 shows data collapse whendR is
plotted against variables proportional to the first and th
scaling variables in Eq.~29!. Deposition rates vary by six
orders of magnitude,k varies by over an order of magnitude
and« by 100%. Data collapse is shown by all curves fallin
onto a single surface.

The scaling relationship~29!, however, only held when
the initial perturbationd0 was larger than the critical pertur
bation at that wave number,k, and initial film height,C, i.e.,

FIG. 11. Scaling of relative perturbation height for differe
k (k5831025M /g0→231023M /g0) and « («54%→7.5%)
with zero deposition.p52.37 andq526.5. Note that the variable
used to plot this graph (2g00.04q/M )kp«22p2qt is proportional to

the scaling variableKg̃0
p1q/211M 2p2q/2«22p2qkpt/hml

q/214 .

FIG. 12. Scaling of relative perturbation height for differentk
(k5831025M /g0→231023M /g0), « («54%→7.5%), andVD

(VD50,0.12,1.2,12,120,1200,12 000,120 000 Å/s!. p52.37
and q526.5. Note that the variables used to plot this gra
(2g00.04q/M )kp«22p2qt and VDt are proportional to the scaling

variablesKg̃0
p1q/211M 2p2q/2«22p2qkpt/hml

q/214 andVDt/hml .
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for d0.dc(k,C). This is probably because whend0
.dc(k,C) perturbations of a thin film and of an infinite film
evolve similarly. Both perturbations initially decay whil
faceting and then continue to grow. On the other hand, w
dc(k,`),d0,dc(k,C) a perturbation of a thin film decay
whereas an infinite-film perturbation facets and grows.
this regime scaling laws were not found. Whend0
,dc(k,`) the perturbation decays in both the thin and in
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