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Origin and properties of the wetting layer and early evolution of epitaxially strained thin films
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We showed that a wetting layer in epitaxially strained thin films, which decreases with increasing lattice
mismatch strain, arises due to the variation of nonlinear elastic free energy with film thickness. We calculated
how and at what thickness a flat film becomes unstable to perturbations of varying size for films with both
isotropic and anisotropic surface tension. We showed that anisotropic surface tension gives rise to a metastable
enlarged wetting layer. The perturbation amplitude needed to destabilize this wetting layer decreases with
increasing lattice mismatch. We also studied the early evolution of epitaxially strained films. We found that film
growth is dependent on the mode of material deposition. The growth of a perturbation in a flat film is found to
obey robust scaling relations. These scaling relations differ for isotropic and anisotropic surface tension.
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[. INTRODUCTION cal wetting layer can be split into two categories: those
which looked at the dynamic stability of a flat film to small

The growth of epitaxially strained thin films, in which perturbationg!!? and those which looked at whether a flat
there is lattice mismatch between the substrate and the filnfilm is energetically favorable to a film with fully formed
is of major importance in the fabrication of semiconductorfaceted island$>-*6
and optoelectronic devices. The lattice mismatch generates The research in the first category addressed substances
strain in the deposited film, which can cause film instabilitywith isotropic surface tension. In these works physical pa-
unfavorable to uniform flat film growth. The strained film rameters(lattice mismatch or surface tensjowhich differ
can relax either by the introduction of dislocations or by thebetween the substrate and film were smoothly varied over the
formation of coherentdislocation-fre¢ islands on the film substrate-film interface in order to avoid nonanalyticities.
surface via surface diffusion. These coherent islands can selfhe effect of such smoothing was to create a wetting layer.
organize to create periodic arrays which can be utilized towvhile the choice of a smoothing length of the order of a
create quantum dot structures of electronic significance. Unlattice parameter is physically reasonable, none of these
derstanding and predicting strained thin-film evolution is im-works gave a physical explanation for the smoothing of ma-
portant for the improved fabrication of semiconductor de-terial parameters over the interface or tried to physically cal-
vices. culate the smoothing length or form of the transition.

Early film growth tends to occur via coherent island for-  The research in the second category typically used physi-
mation as there is an energy barrier to the introduction otally motivated methods in order to determine the free en-
dislocations. Dislocations occur at island edges once islandsrgy of a flat film of varying thickness. Tersbtfand Roland
reach a certain size, since the large stress at island edgaad Gilmet® both used empirical potential methods to deter-
provides a pathway for dislocation formatibie only con-  mine the chemical energy of flat films of Ge(®1).
sider dislocation-free films, since many experiments show affersoff-> then compared this chemical potential with that of
absence of dislocatiorisee, e.g., Refs. 1 and &specially in  bulk strained Ge in order to determine whether it is prefer-
early film evolution. able to form islands and to predict a wetting layer of 3 ML.

The current work sheds light on the following two prob- Roland and Gilméf saw some evidence of clustering in
lems: First, it has been observed experimentally thathicker films in molecular-dynamics simulations. Daruka and
dislocation-free flat films of less than a certain thickngse ~ Barabai'* used an expression for the free energy of a flat
critical wetting layey are stable to surface perturbations, film of varying depths, which fits the results of the earlier
while thicker films are unstabfel® The thickness of the works!*®in order to compare the energies of flat films and
wetting layer is substance dependent and decreases with ifilms with fully faceted islands, whose energies were calcu-
creasing lattice mismatch strain!® e = (as—a¢)/a¢, where lated using continuum elasticity. They saw a wetting layer,
as anda; are the substrate and film lattice constants. Abovewnhich increased with decreasing lattice mismatch. Wang
the critical wetting layer, three-dimensional 3D coherent is-et al'® usedab initio methods in order to determine the for-
lands form. Despite considerable effort, the physics of themation energy of flat fiims of varying depths of InAs/
critical wetting layer is poorly understood. Namely, why is GaAg100. They compared this energy with that of a thinner
there a critical, stable wetting layer and what controls itsfilm with fully faceted islands whose energies were calcu-
thickness? As in most cases heteroepitaxial growth is donkated using continuum elasticity. All the above works did not
below the roughening transition, how does anisotropic surstudy the issue of when a flat film becomes unstable to small
face tension affect the thickness of the critical wetting layermonolayer perturbations or the dynamics of growth.

The second question we address is how does continuous ma- In this paper we show that the variation of nonlinear elas-
terial deposition affect the early evolution of thin films? tic free energy with film thickness can give rise to a wetting

Previous work about the existence and nature of the crititayer, which decreases with increasing lattice mismatch
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strain. We show how and at what depth a flat film becomes vicinal surface perturbed vicinal surface
unstable to perturbations of varying size for films with both
isotropic and anisotropic surface tension. This provides a
more realistic estimate of critical wetting-layer thickness
than the studies described above, for films in which islands
grow from small surface perturbations rather than being im-
mediately nucleated on the flat film. This mode of growth
has been seen in many experimental systets’ especially

for films with small lattice mismatch; <2.5%. As discussed
below, we study the evolution of these small perturbations
and observe island faceting. We show that anisotropic sur-
face tension gives rise to a metastable enlarged wetting laye!
The perturbation amplitude needed to destabilize this wetting
layer decreases with increasing lattice mismatch.

The effects of material deposition on early thin-film evo-
lution was addressed by Chiu and Gaayho looked at the
evolution of strained films with isotropic surface tension
when material deposition is constant in the direction perpen- n monolayers n+1/2 monolayers
dicular to the film surface, corresponding to liquid phase
epitaxy. In the present paper we look at thin-film growth y y
when material deposition is constant in the direction perpen-
dicular to the film surface, and when deposition is at a stead)
rate in they direction (vertical to the interface between the
film and the substrajecorresponding to any directed depo-
sition (e.g, molecular-beam epitaxyThe latter is a much X
more common method of material deposition in strained film £ 1. perturbations of vicinal and fully faceted surfaces. The

growth. We found that the type of evolution seen depends ORotted lines represent the cross sections taken inxtyeplane
the direction of material deposition. When the deposition iSsyhich are shown in the bottom graphs. The figure shows that nucle-
constant in the vertica} direction, the film evolves accord- ation of new steps is needed in order to perturb a facet, but not in
ing to the linear evolution equation, even after the surface isrder to perturb a surface vicinal in thedirection.
no longer a sine function and cusp formation occurs. When
deposition is constant and perpendicular to the surface, CUSPh(xt) and the film is in they>0 region with the film-
formation is slowed down at very high deposition rates andy pstrate interface at=0. The system is modeled to be
the surface shows signs of reaching a steady-state morphGhyariant in thez direction, and all quantities are calculated
ogy. We also studied thin-film evolution for faceting films, o 5 section of unit width in that direction. This is consistent
and found robust scaling laws for film growth. with plane strain where the solid extends infinitely in the
The paper is organized as follows. In Sec. Il we formulategjrection and hence all strains in this direction vanish, i.e.,
the problem. In Sec. lll we present the general results ogxz:e ,—e,—0. We assume there is no material mixing
linear stability analysis. In Sec. IV we describe how we Ca"betweén the substrate and the film.
culated the variation of the nonlinear elastic free energy of a A the results mentioned in this paper relate to vicinal
flat film with film thickness. It is this variation which gives g rfaces with a very small miscut angle in thdirection(see
rise to the wetting layer. Calculations were carried out using:ig_ 1). Experimentally, surfaces often have such a small
a ball-and-spring model in order to determine general qualimiscyt, as it is very difficult to grow a perfect facet. In such
tative behavior. Section V describes the results of the nugtaces there is no finite-energy barrier for the formation of
merical simulations of thin-film evolution without material 5., infinitesimal perturbation on the surface, since such a per-
deposition, and in particular the metastability of the wetting,rpation involves only step motion and bending, and no
layer. Section VI describes the results of the numerical simup, cleation of new steps. For a faceted surface with no miscut
lations of thin-film growth with material deposition. Some of i, the 7 direction there is a finite-energy barrier for the for-
the results on thin-film growth without deposition and a brief ,ation of an infinitesimal perturbation associated with nucle-
description of the ball-and-spring model for calculating thegtion of step pairs.
free energy of a flat film appear in our earlier paffer. The continuum approximation in the lateral directiohe
x-z plane is valid, as the film is infinite in the direction and
the smallest lateral surface features we study have widths of
tens of atoms. However, in the verticaldirection the films
We model the evolution of a thin film on a substrate usingwe study are sometimes only a few monolayers thick. Is the
continuum theory. The lattice mismatch between the film anccontinuum model valid for such a film? Can inherently dis-
the substrate creates a strain in the filmBoth the substrate crete system properties, such as the change in free energy as
and the film are assumed to be elastically isotropic with thea monolayer is added, be interpolated to films of a noninteger
same elastic constants. The surface of the solid iy at number of monolayers?

fully faceted surface perturbed faceted surface

X

Il. PROBLEM FORMULATION
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First, consider fully faceted films. As can be seen in Fig.higher are neglected. The stress-strain relationship is given
1, there is a qualitative difference between films with integetby oj;=0f,/de;;, which under linear elasticity gives
and noninteger numbers of monolayers, and so discrete syktooke’s law:
tem properties cannot be interpolated to films with a nonin-
teger number of monolayers. Hence for such films con- aij= oD+ Cijew . (4)
tinuum models are not expected to give accurate results. To
accurately model fully faceted film growth, the discrete na- We now briefly describe the equations which need to be
ture of the steps needs to be taken into account using atorsatisfied in order to completely determine the equilibrium
istic models and simulations. Modeling large systems in sucltress and strain in an elastic body. An elastic solid must
a manner is currently beyond computational capabilitiessatisfy the equations of mechanical equilibrium at every
However, as can be seen in Fig. 1, the above arguments gwint in its interior(see, e.g., Ref. 20
not apply to vicinal surfaces. In this case a perturbation
changes the morphology in a smooth manner without any djoij+£&=0, (5)
nucleation of steps. Therefore it is possible to estimate the ) ) )
properties of films with a noninteger number of monolayersWh?refi IS an extgrnal force on t_he sollq. The solid must also
by interprolating the results of films of integer numbers ofSatisfy the equations of equilibrium at its surface,
monolayers. Thus, a continuum model should adequately de-
scribe thin-film growth behavior for slightly vicinal surfaces. oijn; =T, (6)

We assume that surface diffusion is the dominant mass . . n
transport mechanism. Gradients in the chemical potentia‘f\'heren Is the exterior normal, and’” is the external force

produce a drift of surface atoms with an average velooity, atC“F‘g on the umtta_reda surfzce teltt)arrsent vxi!thkngrm_aﬁlstr:he di
given by the Nernst-Einstein relation strainse;; are not independent but are linked via the dis-

placements of the elastic body, they must also satisfy the
D¢ du equations of compatibility:

T kaT 75" 1)

v=
&k¢9|eij +(9iajek|:t9](9|eik+ &i&ke“ . (7)
where D¢ is the surface diffusion coefficiens is the arc

length, T is the temperatureks is the Boltzmann constant, Equations(5)—(7) along with the stress-strain relationships

(4) give us a system of equations, which are sufficient for the

and w is the chemical potential at the surface, i.e., it is the s L :
increase in free energy when an atom is added to the SoliBomplete c_ietermlnatlon of the equilibrium stress and strain
n an elastic body.

surface at the point of interest. Taking the divergence of thé For th d | body f
surface current produced by the atom drift gives an expres- or the system we study, external body forées., grav-
sion for the surface movemettt, ity) are neglected. Hence E(h) becomes

oh DgnpQ 9 du @ djoi;=0 for y<h(x). (8)

gt kgT dx ds’ Our system has periodic boundary conditions in xhdirec-
gtion and is infinite in the negative direction. We shall as-
sume that the forces on the upper surface due to surface
tension(as given by Marchenko and Parstinare negligible
in comparison to the forces due to the mismatch stress. This
assumption is fulfilled as long ag R<Me, whereR is the
radius of curvature of the surface aMlis the plane strain
modulus. For typical values of, M, ande, this condition is
satisfied wherR is larger than the lattice constant. As typical
F:Fel"_f dx yy1+(ah/ox)?, (3)  surface features have length scales of the order of 100 nm
this assumption is valid. Hence the boundary conditions are
where vy is the surface tension anfél is the elastic free given by
energy including any elastic contributions to the surface ten-

where 7 is the number of atoms per unit area on the soli
surface and) is the atomic volume.

In the continuum approximatiop= () 6F/éh, whereF is
the free energy of the solid anéF/sh is the functional
derivative ofF. The free energy is composed of elastic and
surface terms:

sion. aijn;=0 at y=h(x),

In general the elastic free energy can be writtenFgg
=F®+ 6F,,, whereF? is the elastic free energy of a zero- o;j—0 when y— —. 9)
strain reference state. The elastic free energy can be written
in terms of the elastic free-energy densitf,, as Fq, We now return to our discussion on the determination of
= [dxdyf,. f, is expanded as a power series in the strainthe elastic free energy of both the reference state and the
f,= fgou_gi(jo)eij +3Cijeieat wheref(? is the free-  perturbed state. For each valuexpfour reference state cor-

energy density in the zero-strain reference staff) is the ~ responds locally to éat film of thicknessh(x) constrained
stress in the reference state, angl, are the elastic coeffi- to have the lateral lattice constant of the substrate, F.%),
cients of the material. In linear elasticity theory, deforma-=fdx/"®dyf%[h(x),y], wheref(?[h(x),y] is the elastic
tions are assumed to be small and so terms of third order arfdee-energy density of a flat film of thicknekéx) with the
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substrate lateral lattice constant. We calculate the correctiowhere we have used the inverted Hooke's |aay
to the elastic free energy of the perturbed state,,, using =Sijk|[0'k|—0'(k(|))]. S are the compliance coefficients of
linear elasticity theory. the material.

When looking at the stability of a strained flat film of  Using Egs.(3) and (10) we arrive at an expression for
thicknessC, the obvious first choice for a reference state iséF/h:
that of a flat film of thicknes<C constrained to have the
lateral lattice constant of the substrate. For later calculations oF ~ df(etl))
we must fully define the reference state and hence need to %_Y( 6) s+ dh
know its stressr{(C,y) and free-energy densif{”(C,y).
One simple approach to calculate these quantities would be + ESy o — Esi. (0) (0)
to use linear elasticity with the unstressed film as a reference 2 JIM I ST
state. In linear elasticity a flat film of any thickness con-

y=h(x)

. - h(x) J|1 1
strained to have thg supstrgte .Iateral.lgtt!ce constant and free +j dY%{ESjklo'ija'kl_ ESjkIUi(jO)O'(k?) ,
to move in they direction is in equilibrium and has the —o
elastic free-energy density of an infinitely strained film. (11)

Hence such a calculation does not predict @gr y depen- . _
dence ingi(jO) and £, except for a step function at the Where « is surface curvatureg is the angle between the
v ! . . ~
film-substrate interface. For example, in the case of planélorgwlI o the surface and thedirection, andy(6)= y(6)
strain where the mismatch strain is uniaxiak., e,,=e,, 1J°¥/d6" is the surface stiffness. The integrand in Exfl)
=e,,~0,e,,=0,6=¢), linear elasticity giveS(ri(jO)= Me Is the change in the linear elastic free-energy density as the
; . surface rofle changes infinitesimally.  Followin

and f’(JO):MSZ./Z’. where M is the plane strain modulus. okolnikoff%0 we now shc?w that this term is >(/)f ordeéh in ’
Therefore, variation of the elastic free energy and stress of o absenc'e of external surface of body forces and so can be
fr:qa;(;gnovxg; df'em:)fhﬁ:}geh;rlseg;%?: mf:éoehe:g:tezgnhsgg ?neglected. When the surface profile changes, the strain in the

y y ody changes frong;; to g;; + €, wheree]; is of ordersh.

calculate them. As will be shown in Sec. Ill, small variations -, " | i free-energy density can be writtenfas Af,
in the reference free-energy density with film thickness are

crucial in predicting wetting-layer thickness, and a reference _ 2Cijia (€ +e‘.j)(ef"+£k'l and th? annge ,ln,elastlc.free-
free-energy density which has no variation with film thick- & 9Y density i AT, =Cij &€+ 3Ciji €€~ Using
) A . Hooke’s law (4), the definition of strain, and Ed5), we

ness will lead to thin films that have no wetting layer. e AT Af =9 (o U+ Eu +Lcel e The to-

The disadvantage of our choice of the reference state i%e;’vmﬁ v 88 Uh I(T'lui) fg'ui ZC'Jk'eii?k'A'f de do
that the dependence bfon x leads to lateral variations of the ac a,lnge in the e ast1|c re,e /energy b Af,dx .y
reference state. As a result, the reference stress does not satd Ti Ui ds+J ujdxdy+ [ 5Cij € e dxdy, where the first
isfy the condition of mechanical equilibrium. However, the term on the right-hand side is an integral over the film sur-
needed corrections vanish in the linait\ —0, wherea is  face. To obtain this we used E@®). In the absence of exter-
the length scale over which stress varies in yheirection ~ hal surface or body forces the first two terms on the right-
andX is the lateral length of typical surface structures. Thishand side of the above equation vanish, and we are left with
is because in this limit there are no lateral variations in thehe equationf Afvdxdy=f%cijk|ei’j ey dxdy. ei’j is of order
reference stress. As typical experimental islands have sh, and hence the integrand in E41), Af,/ésh, is of order
~100 nm, and aa is of the order of the lattice constafsee  sh. Therefore the last term in E¢1l) can be ignored for

below), the corrections to the reference stress are small anghfinitesimal changes to the solid surface and we have
have been ignored.

Though linear elasticity cannot be used to calculate prop-sF . df® (1 1 © ()
erties associated with the reference state, it can still be useggy, = Y« an_ + ES;H Gij0ki— Esiikl Tij Okl

to find the correction to the elastic free energy of the per- y=h(x)
turbed stategF,,. For convenience we work in terms of the (12
reference elastic free energy per unit length in xhdirec- As the above equation givesF/sh at the solid surface,

tion, f{P[h(x)]=r"%dyf’[h(x),y], instead of the free 4|l variables in the equation are also given at the surface. In
energy per Hmt volurgwe. Aclcordmg to linear elasticity theory, particularoi(jo)(h,yz h) is taken as the stress at the surface of
5FeI:def—(s)i)dy[(Ti(j e +3ciejeql. In terms of the 4 fiat solid of heighth(x) and hence must vanish whén
stress tensor, we find <0, since then the film is absentf(?(h)/dh is determined
by calculating how the reference elastic free energy of the
oo 1 solid changes (E(l)? monolayers are added to the solid surface.
_ (0) AN P Whenh=<0, dfg’/dh=0, as the substrate is completely re-
Fe'_j dx e +J dxﬁw dy[Zsﬂk'U”ak' laxed. In princiToIIe, Eq(12) should also contain derivatives
of v with respect tdh. However, we believe that the variation
B S O () (10) of surfa_ce tension V\_/ith away from a step dependence_z is (_Jlue
2 DK T to elastic effects. Since we included all elastic contributions
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in the zero-strain elastic free energy, we modejess a step 5. To calculate the linear elastic energy we find the solutions

function, taking the value of the substrate surface tension foof Eq. (13), which satisfy the boundary conditio8). a&?,)

h=0 and the film surface tension fbr>0. Thus all partial vanishes because the film is hydrostatically strained, and

derivatives ofy with respect to surface height vanish and a(y‘;)zo since in the reference state the force perpendicular to

were omitted from Eq(12). the surface vanishes. Hence the only nonzero component of
Equations(2) and(12) form a complete model of surface the reference stressi§?(h,y). Stress functions of the form

evolution. In order to solve this model, the chemical poten-

tial [given by Eq.(12)] for a given surface must be found, W= 0)(h,y)y?/2+ (A+ By)e“sin(kx) (15)

and so the linear elastic free-energy density at the solid sur-

face,f!j“:%sijklgijgk”y:h(x) must be calculated. For an iso- satisfy the biharmonic equation. This gives stresses of the

tropic solid under plane strain with zero force boundary conform

ditions the above expression simplifies considerably to give

"= (gt Tyy) 2ly=neo/2M , whereM is the plane strain To=kK[2B+(A+By)k]esin(kx) + o{P(h.y),
modulus. Hence we must determine the stress at the surface

of the film. This is done by finding the stress which satisfies oyy=—KA(A+By)e“sin(kx),

both the linear elasticity equatiofithe equations of compat-

ibility (7) and equilibrium(8)] and the boundary conditions oxy=—K[B+(A+ By)k]eYcogkx).

9.

For an isotropic solid under plane strain, finding the stress To first order ins the stresses that satisfy the biharmonic
which satisfies the linear elasticity equations and the boundequation and the boundary conditions are given by
ary conditions can be reduced to finding the stress function,

W, which satisfies the boundary conditioi® and the bihar- To= — ke KCa9)(C,C)[ 2+ (y— C)k]eWsin(kx)
monic equation(see, e.g., Timoshenko and Goodfeor )
Mikhlin%): +toy(hy),
Waiaw W W W 0 s ayy=dk?e e )(C,C)(y—C)e sin(kx),
= = —+ —+ =0,

4 2 9,2 4
X oxtaym oy oy = ke ke 0(C,C)[ 1+ (y— C)k]e“cog k).
With o= PWIdy?,  oy,=—3d*W/dxdy, and oy
= JPW/ 9x2.

In order to model the early evolution of faceted islands, . () . ()
and to study the effect of an anisotropic form of surface Txx= 20K (C,C)SIN(kx) + 05 (C, C)
tension on the wetting layer, we used the cusped form of +5sin(kx)da{®/dh|_c,
surface tension given by Bonzel and Pretfsshich shows
faceting in a free crystaly(6) = yo{1+ B|sin=0/(260)]]},
whereB~0.05 andd, is the angle of maximuny. The value
of y, was taken as 1 J/fnin the substrate and about 75% of -~ (0)
that in the film (as is the case for Ge/SiThis ensures a Ty = 0K (C,C)cogkx).

wetting layer of at least one monolayer. We considered yote that all the derivatives in the Taylor expansions used in
crystal which facets at 0°£45°, and+90° with 6y=7/8.  tnjs analysis are with respect tp the reference film thick-

At the surface these stresses take the forms

ayy=0,

¥(0)=7o +G2|, (14)

The cusp gives rise tg=oc. However, a slight miscut of the ness and not with respect yothe depth within the reference
low-index surface along thedirection leads to a rounding of film. This is because in calculating the chemical potential we
the cusp, which can be described by are interested in how the free energy of the film changes as
material is added or removed from the film surface, i.e., how
1+,3\/sin2(l6 the free-energy of the film changes as the film thickness
26, changes and not how the free energy density of the film
varies within the film.
where, for exampleG=500 corresponds to a miscut angle,  ysing the above stresses in H32), we obtain the ex-
A#~0.1°. As mentioned earlier all the results in this paperyression
relate to surfaces with a very small miscut angle in the
direction. SF .~ df® 1
%Z‘yK—i—W—F m(oxx—kayy)

1
2— m(0§3)+0§3))2
I1l. LINEAR STABILITY ANALYSIS
2@ [6@c,0)12 -

In this section we carry out a linear stability analysis of = §sin(kx) el _ +70k?
Eq. (2) against a sinusoidal perturbation of wave numker 2 M
similar to that carried out in Ref. 25 for an infinitely thick )
stressed film. We thus look for a height profile of the form " df_e|(c C) (16)
h(x,t) =C+ §(t)sinkx, which solves Eq(2) to first order in dh 777
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wherey,=y(6=0). Combining the above equation with the Size and so practically such perturbations will never occur.

evolution Eq(Z) gives the fo”owing equation foﬁ(t) However as will be explained in Sec. V, the film can be
nonlinearly unstable to smaller-wavelength perturbations of a
ds 5 [o)(C,C)]? dzf(ﬁ’) nonzero amplitude at physically reasonable wavelengths.
— =Kk —kZyo+2k—= -—° , Hence the inequality in Eq18) is only useful in predicting
dt M dh? h=C the stability of films with large miscut angles or above the

17 roughening temperature. At small miscut angles the stability

where K =D, 70%ksT. Each term in the brackets in this of the film to large perturbations will predict its maximum

. . . S ; .thickness. This issue is discussed in more detail in Sec. V.
equation has a simple physical significance. The first term is

a surface-tension term. Surface tension acts to reduce surface

curvature,x, and so this term is negative, thereby reducing|yv. CALCULATION OF THE NONLINEAR ELASTIC FREE

the perturbation amplitude, and is linear#n-k2. The sec- ENERGY OF A FLAT FILM

ond term in this equation is a mismatch stress term. Regions

of high stress have large chemical potential, and so atoms AS can be seen from both E¢1l2) and Eq.(18), the
tend to detach from these regions and attach to regions éfependence of the nonlinear elastic free energy of a flat film
small chemical potential. In a mismatch stressed solid, valfci'(h) on film thicknessh, is vital in order to determine
|eyS or cusps are regions of h|gh stress, hence materiaoth Wetting-layer thickness and thin-film evolution. This
moves from the valleys to the hills of a perturbed surfacefree energy depends strongly on the mismatch stﬂéﬁé
increasing perturbation amplitude. The contribution of thisand its dependence on tlyecoordinate. As a result of the
term is propotional to the density of valleys, which is linearsharp interface between the substrate and the film, we expect
in k. The last term is a reference state termd#®/dh? o to behave as a step function pfvith small corrections

>0 it costs more energy to add a monolayer to a flat filmdue to elastic relaxation. If we ignore these small corrections,
than is gained by removing a monolayer, and hence it costie resulting free energft?(h) is proportional to film thick-
energy to perturb a film. Thus, positiaéf(?)/dh? stabilizes ness, and its second derivative vanishes. Hence according to
a flat thin film, whereas negativ#?f9/dh? leads to an in- EQ. (18), the thickness of the critical wetting layer vanishes.
stability. Obviously this reference state term is present evedhe correction due to elastic relaxation is therefore ex-

if the film is flat and hence is independent of tremely important. As discussed earlier, this correction van-
Equation (17) implies that the flat film is stable at all ishes within linear elasticity theory. This led some
perturbation wavelengths as long as investigator$’ to claim that the variation in free energy over
the interface was due to nonelastic effects, e.g., film-
[0')((?((C,C)]4 _ dzfé?) sul:_)strate mgtgrial mixing over the interfa_lce. Howe\_/gr, we
5 Yo . (18 clalm_that this is not necessary, since no_nlmear elasticity can
M dh h=C explain the corrections to the step-function form of the free
energy.

and the equality holds at the critical wetting-layer thickness, The nonlinear elastic free energy of the reference state,

Wher(eo perzturbzitions of - wave .r.1um.ber K= $0)(hy, is calculated for a solid with a flat surface of height
=[5 (C,C)]/(Myo) are marginaly, is positive if 6=0  h Hence in order to calculatef9/dh, we determinef(9

is a surface seen in the equilibrium free cry3fahs men-  for fiat solids of heightsh+&/2 andh—&/2, and use the
tioned earlier;y,— at a perfect facet and is large and posi- estimated fQ/dh=[f(h+ 5/2)— fO(h— 5/2)]/ 5. Ideally,
tive on a surface with a small miscut, as is the case for mosirst-principles, substance-specific calculations should be per-
of the materials used in epitaxial films. Therefore, a linearlyformed in order to evaluatef(g)(h,y) and fg(f)(h), and we
stable wetting layer of finite thickness can exist only if intend to carry out such calculations. However, the qualita-
d*f{)/dh*>0. Note that for the wetting layer to have a tive general behavior of®)(h) can be obtained from much
finite rather than an infinite thickness?f{)/dh? must de-  simpler models which have the advantage of being able to
crease to a value less than the left-hand side of(E8).as  separate universal elastic effects from substance-specific ef-
the thickness of the film increases{?(C,C) depends lin- fects due to the different types of bonds present at the inter-
early on the lattice mismatch, and hence the left-hand side face of a real system. We calculated?’(h,y) and f{(h)
of Eq. (18) is proportional tae*, while the right-hand side of for two-dimensional networks of balls and springs of varying
Eq. (18) is proportional toe? due to the dependence bﬁ‘,)) lattice type and spring constants. In these calculati®is
on lattice mismatch. Therefore, @f{?/dh?>0, the thick- one monolayer, ané{%)(h) is calculated at film thicknesses
ness of the wetting layer increases with decreasing latticef integer numbers of monolayers from no film up to 10
mismatch and diverges in the limit—0. monolayers of film. Values of9(h) for film heights of
Note that the maximum thickness of a flat film which is fractional monolayers are interprolated from the values cal-
stable to infinitesimal perturbations is given by H48)  culated at integer monolayer heights.
when the equality holds. A film slightly thicker is unstable to  In the ball-and-spring model the balls are connected by
perturbations of wavelength= ZWM}Ol[ai‘i (C,C)]?. For springs that obey Hooke’s law. Note that this does not imply
films which are nearly perfect facets with small miscutthat the stress-strain relationship of the ball-and-spring net-

angles these wavelengths are larger than the typical sampleork is linear(a discussion of this point can be found in Ref.
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FIG. 2. Example of a fcc-like lattice. The circles represent balls. 210 -8 -6 4 2 0 2 4 6 8 10
The curvy lines are springs of spring constant and the dashed yh
lines represent springs of spring constipt

FIG. 3. Mismatch-induced stress{2(h,y)/Me, in a typical

28). The natural spring length has a step variation over th cc-like lattice. The film is 8-ML thick and the substrate is 10-ML
| pring 9 P hick. hy, is the thickness of one monolayer.

interface, and the balls are placed on a lattice with the sub-

strate lattice constant. Thus balls in the substrate are CORY,ch as that described above. The inability of the springs to

nected by springs of their natural length, whereas balls in thgympjetely relax due to the presence of diagonal bonds was
film are connected by springs that have undergone a hydrgg necessary condition fdrfe?)(h) to vary nonlinearly with

static transformation strain and have length larger than theiﬁIm height. In such incompletely relaxed films the nonlinear

natural length by a factor of £e, wheree is the homoge dependence of?’ on h arises from the elastic relaxation at
neous strain in the film. The network was then allowed to . . . '

. ) : ST the surface and its coupling to the relaxation at the film-
relax, with the film free to move in thg direction, and pe-

riodic boundary conditions were applied in thelirection to substrate interface. A similar effect should occur in real sys-

O ' E&ams due to surface reconstruction, for example.
ensure that the system boundaries in this direction were fixe A tvpical behavior ofdf©/dh is shown in Fia. 4. where
to the natural substrate length. yp el g. 4,

We calculated the mismatch stres$) within the relaxed it is seen thatf(h) indeed depend(so)on ghe hickness
film and at the film surface. We also calculated the depenMoreover,.th.e modgl pr.edlcts. thaf'fe)/dh*>0 and de-
dence of mismatch surface strezég)(h,h) and the nonlinear C'€ases W't.h Increasing film th|ckne§s, anq therefore acpord—
lastc ee eneof 1) on varyg i hicknesse we 110 1 ety i e Seussin flours
gzi\r/:/i?kguotf g‘;lssea%?jlcsu;raigggswﬁ?r: \)/;r;/(i)nugs Stg?ng'cmoilstfnquess is finite and increases with decrez(a;mg lattice m!smatch.
An example of the ball-and-spring model on a fcc-like lattice While the detailed dependence df’(h)/dh on film
is shown in Fig. 2.

Simulations showed that while individual atoms were free 1.00
to move in thex direction, they actually moved only in the
direction. The relaxation in thg direction depended on the
film thickness and on the depth of the atom in the lattice but 2 df{
was independent of In general balls at depth of more than e dn
3 ML into the substrate experienced no stress. The stress
experienced by balls close to the interface depended on the 0.99 -
lattice type, spring constants, and ball position within the
monolayer. A few monolayers into the film, balls experi- ®  Ball and spring simulation
enced the stress of an infinite thickness filvhg . At the film —— 100713l g
surface balls showed large relaxation. Figure 3 shows an

example of the mismatch stresg)(h,y), in a typical fcc- 008 LI I IR R N
like lattice. 0 2 4 6 8 10
Note that the springs in a simple square lattice could relax h/hml

completely in they direction. Therefore, for such a lattice the

relaxation is indepen(gent of spring depth within the film or £ 4. variation with film thickness of the elastic free energy of

film thickness, andf{’(h) varies linearly with film thick- 5 relaxed ball-and-spring systemf{?/dh, as a function of film
ness. Hence for a square lattic8f((h)/dh?=0. Only  thicknessh. The free energy is normalized to the infinite film linear
when diagonal bonds, such as those in a fcc lattice, werelastic energy densityMe2. h,, is the thickness of one mono-
present did the springs show depth-dependent relaxatioayer.

155429-7



HELEN R. EISENBERG AND DANIEL KANDEL PHYSICAL REVIEW B66, 155429 (2002

thickness close to the substrate-film interffee3 ML] var- @ . ®)
ied between different networks, it showed the same genera B e e ' pm T
behavior. In all systems?f{{)(h)/dh? showed exponential ~ & g £ /
decay with a decay length of about a monolayer from theg~ ST ‘
interface. The dimensionless quantity N&#?)(df)/dh) & o /
was independent of lattice mismatch sign or magnitude.
df9/dh increased with film thickness. As the film thickness ;o]  *v++-eeee I I ST
increasesdf{)/dh asymptotically approaches the elastic 0 2 4 6 8 10 0z 4 6 8 10
free-energy density of an infinite filnM e2/2, as expected. Wh,, Wh,,

The results of both Tersdffand Wanget al® show simi- FIG. 5. Variation of mismatch-induced stress at the film surface,

lar behavior suggesting that the fundamental forni$i(h) o®(h,h)/Me, for varying film thicknessh. The lattice is fcc-like

which gives rise to the wetting layer is due to universal elastsee Fig. 2 The dashed lines with circles denatf)/Me of atoms

tic effects and that the specifics of the system only changgt the top of a monolayer. The solid lines with circles denote

the details of how thick that wetting layer will be. o@IMe of atoms at the bottom of a monolayer. The solid lines
We can explain the increase df{)/dh with film thick-  without circles represent the averagesddf)/Me over a mono-

ness intuitively.d f{)/dh is the change in the free energy of layer. The spring constants which were used @je; =1 andk,

a film as a monolayer is added. When a monolayer is added 1 and(b) k;=1 andk,=5.

to a thick film the contribution to the free energy from the
surface atoms and the interface remains the same and tNeNUMERICAL SIMULATIONS OF THIN-FILM GROWTH

energy added is effectively that of a monolayer in the “bulk” As explained at the end of Sec. lll, for systems with small

Otf the ]:'jln:h Atotrr?s |n.the ?#_Ik ?If a thr:Ck f'ltrr? ar::- more con—l mismatch and/or small vicinalitymiscut angl¢ one has to
strainéd than those in a thin iim where he atoms are rela beyond linear stability in order to understand their evolu-

gvtek:i);nf;i?ri tt%;ngxgrg;dcﬂﬁ;évi\ghﬁqnbaetr\?vcér;ﬂ?%g: Ef?ﬁgi%;‘ﬁon. To this end we carried out numerical simulations of the
strained thick-film bulk atoms and the relaxed surface atom evolution of the strained film. The evolution @) given by

Hence more free energy is needed to add a monolayer tosf\/lullins,19 which is derived from the Nernst-Einstein relation
S (0) h o . &), includes derivatives of the chemical potential, along

thick film anddfe, /.dh increases W!th f||_m thickness. the surface. This chemical potential is defined as the change
For the calculations used later in this paper we used the, ..o energy when an atom is added to the surface. Con-

function tinuum theory assumes that the free-energy change when the
surface is changed by an infinitesimal amount is proportional
Me? to this chemical potential = 6F/sh). However, when
df{(h)/dh= — [1-0.05exg—h/hy)] for h=0, we solved the evolution equation by directly calculating the

(19 chemical potential from Eq(12) at points along the film
surface we experienced numerical instabilities.

) ) We have come up with the following solution to this prob-
and df()(h)/dh=0 for h=<0. hlnzﬂz;s the thickness of one o The Nernst-Eir?stein equation ca% be derived by (E)onsid-
monolayer. In previous works**"on the physics of the ering material of atomic volume moving along the solid sur-
wetting layer it was assumed that the reference state energy.o \when material jumps between neighboring atomic
variation is a smooth function df, mainly in order to avoid sites, it must cross a free-energy barrierAdt . = E4+ (F .
nonanalyticities at the interface. In contrast, our reference_ Fo)/2, whereE, is the potential barrier for diffusiorf .

state energy variation behaves as a step function of the SU the free energy of the film after material has been moved,

face height with a small but important correction. and Fy is the free energy of the film before material is

The deviations in the mismatch stzg(sweraged over the  yoved. The positive and negative signs stand for forward
surface mo(rgg)layerat the film surfacer,,’(h,h) from a step  5ng packward jumps, respectively. This leads to the follow-
function, o,;'(h,h)=Me when h>0, was shown to be g equation for material velocity along the surface:

small (<5%) but dependent on spring constants and lattice

type (see Fig. 5 As variations ina&?()_(h,h) only slightly b= wae EalkeT e~ (F+ ~Fo)/ZeT _ o~ (F~Fo)2ksT]
alter the wetting-layer thickness predicted from ELB), we
decided to use the step-function form of mismatch stress. Ds. ¢ _ “(F__
=_> (FL—Fp)/2kgT _ o= (F_—Fg)/2kgT
Combining the behavior of {©/dh from Eq. (19) with qle e —e o, (D)

the inequality(18), we obtained an expression for the linear

stability wetting-layer thicknesd,: wherew is the attempt rate anais the jump length. When
(F,—Fp) and F_—F,) are small, this equation gives the

~ ) Nernst-Einstein relatiol).
he/Mmi=max1,In[yo/(40Me“hp) 1} (20 We solved Eq.(21) using the following numerical

scheme. For every two adjacent points on the surface, the

Thus, the wetting-layer thickness increases with decreasingurface height of the left point was changedbyh and of

lattice mismatch, as observed in experiments. the right point by+ sh so as to give a transfer of material of
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FIG. 6. Evolution of a randomly perturbed film, in which per- 0

turbations were larger than the critical perturbation amplitude. Lat-
tice mismatch in this film is 4%. The initial film surface is shown as
a thin solid line. The dashed line shows the film surface at a later
time. The linear wetting-layer thickness is shown as a thick solid FIG. 7. Variation of the minimal critical perturbation amplitude,
line. 52‘, and linear wetting-layer thickness,, with lattice mismatch,

£. The minimal critical perturbation amplitudél/h,,, is repre-
e'sen'[ed by the solid line. The linear wetting-layer thicknaggh,,, ,

is represented by the dashed line. The dotted line shows the size of
one monolayer, , for comparison.

0.00 0.02 0.04 e 0.06 0.08 0.10

atomic volume backwards and forwards along the surfac
respectively. The change in surface free energy
fdx y\/1+(dh/dx)?, was calculated for this material trans-
fer. The change in the elastic free energy was calculategt)\no,v 10— 50, wherel ;=2y,/M&2. 8™ in monolayers is
at each point using the integral of Eql2), 6F  pigited as a function of lattice mismatch in Fig. 7. The linear
=+ {(dfQ7dn) +[3SjuTijoa—3Sjo Vo ly—nxdh.  wetting-layer thickness foiG=500, M=1.5x 10** N/m?,
The linear elastic energy was calculated by solving the biandh,,=5 A is also shown for comparison.
harmonic Eq.(13) with the boundary condition$9). This 50" was found to be proportional o~ 2. Thee ™2 depen-
was done by solving a boundary integral equation in terms oflence is expected for an infinite film as in this case the evo-
the complex Goursat functions, the details of which can beution equation§Eq. (2) together with Eq(12)] can be made
found in the paper of Spencer and Meirdn. spatially dimensionless by scaling all lengths lgy Hence
all perturbations of sizé/l, and with the same dimension-
less wave numbekl, will evolve identically.
) . ) . 57 was largely independent of cusp smoothn@ssinlike
According to Eq.(20), anisotropic surface tension greatly the Jinear wetting-layer thickness which depended strongly
enlarges the linearly stable wetting-layer thickness. Does thign . The evolution of a large perturbation was identical for
conclusion survive beyond linear stability analysis? When a5_,o and a perfect cusp in the surface tension, whereas
linearly stable flat film is perturbed strongly so that the sur-| gng et al3° showed that the linear stability analysis for the
face orientation in some regions is far from the-0 direc- o cases predicted very different evolution. Both these ob-
tion, the local surface stiffness in these regions is mucheryations suggest that unlike the linear wetting-layer thick-
smaller than the&#=0 stiffness. This tends to destabilize the ness the critical perturbation amplitude can be used in pre-
linearly stable film. Indeed, we carried out numerical simu-gjcting the outcome of experimental thin-film growth. The
lations (using the procedure described abpteat showed mean-square amplitude of the random perturbation needed to
that films thinner than the linear wetting layer were unstablejestabilize thin films was also shown to be largely indepen-
to perturbations greater than a certain critical amplit(8#  4ent of G and was proportional te 2.
Fig. 6. Hence films thinner than the linear wetting-layer \yhen the lattice mismatch is smab™ is much larger
thickness arenetastableWhen large perturbations were ap- ihan the linear wetting-layer thicknessge Fig. 7. Hence,
plied, faceted islands developed in the film, which underwenfo; fiims thinner than the linear critical thickness are stable
ripening at later stages of the evolution. at small lattice mismatch. As the linear critical thickness at
We carried out simulations for films perturbed by randomg 41 |attice mismatch is very large, we expect the film to

perturbations and by perturbations of a single wavelengthg ot pecome unstable to misfit dislocations. This is indeed
The critical perturbation amplitudeg., depends on the ¢oan in experimenf&

wavelength of the perturbation, taking its minimal value

The stability of thin films

At intermediate lattice mismatct®' is of the order of a
few monolayers. Hence we expect such a film to become
ST=mins,(\) (22 unstable as perturbations of this amplitude are physically

N likely. In this regime films should develop growing perturba-
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tions at wavelengths given by/l,~10-50. This corre- (a
sponds to wavelengths of a few hundred nanometers. This
typical wavelength decreases as lattice mismatch increases
agreeing with experimefi As ¢ increasesg;' decreases in
this regime from about 10 ML to approximately 1 ML, and
we expect the thickness of the film needed to support suchz Sady
perturbations to correspondingly decrease. Such a trend i< 2] L T Cosss
seen in experimenfs® In order to compare quantitative
wetting-layer thickness and its lattice mismatch dependence 35 0 o & o 10 150 0. 30 o 20 40 60 0 100 oo 140
with experiments we will have to carry out first-principles, x| x/h
substance-specific calculations to evaldéi’é(h). However,
the general qualitative trends predicted here agree with ex- FIG. 8. Film evolution at very high deposition rate¥
perimental observations. =1200 nm/s) when surface tension is isotropi&=0.75
Looking at Fig. 7 we see that at intermediate lattice mis-X2Me?/y,. (a) Deposition is constant in the verticgldirection.
match the critical perturbation amplitudé’, and the linear ~(b) Deposition is constant perpendicular to the film surface.
wetting-layer thickness are of the same order of magnitude )
(several monolayeysThis could mean that we have to also Whereny is the y component of the normal vector to the
consider the linear wetting-layer thickness with its strongSurface. _ N o _
dependence on the surface miscut angle when decidin% We performed linear stablhty ana_IyS|s in order to obta|_n
whether or not a thin film will be unstable. However, the the analytical early evolution equation of a perturbed thin
infinitesimal perturbations needed to perturb the linear wetfilm. This analysis is valid for both types of material depo-
ting layer occur at wavelength=(27r/Msz)3/0, whereas sition. Under steady deposition, Ed.7) becomes

the typical wavelength at which critical amplitude perturba-

~
—
o
o 2

;\IDt)/hml

—1t=0s
----1=0.37s

(It

S b b o v 2 &
,
(h(t)-VDl)/hml
L N T S -

'ml

2£(0)
tions _first appear in t_he film i5 ~10(2M&2) y,. Using ex- _ d_‘S: K| —k%y+ 2k3M82_k2M ,
pression(14), the ratio between these two wavelengths is dt dh?
approximately equal t&. For physical values d& the linear (25

wetting-layer pertgrbe}tions will have wave!engths of thg O™\where we have assumed the reference state mismatch stress
der of 100m which is Iarge_r than the typical sample size, ; given by a step functiong{?(h,h)=Me when h>0,
whereas the wavelength which corresponds to the minima 46 @(h M =0 whenh<0 GX. th | f b
critical perturbation is much smaller{100 nm). Therefore, an T () when - Using the genera2 (%r)rto 5
physical thin films should first become unstable when the@ined grom the ball-and-spring modelof d*fe/dh
film thickness is large enough to support perturbations largef" X(M&/2hm) €xp(=h/hy,), wherey is a constant, gives the
than the critical perturbation amplitude. following solution for perturbation growth:
For very large mismatch, a perturbation smaller than a o~ S 5 )
monolayer is sufficient in order to destabilize the linearly (1) = Soexp(K{(— Kk yo+2kMe )t +k“x(Me*/2Vp)
;table wetting layer. Therefpre, in practice, the wetting layer X exp( — Clhm)[eXp — Vpt/hy) — 11)). (26)
is a single monolayer in this case.
Note that in linear stability analysis a perturbation in an in-
VI. EARLY EVOLUTION OF THIN FILMS WITH finite film decays wherk>2Me2/7, and grows exponen-
MATERIAL DEPOSITION tially when k<2M &2/,

We carried out our calculations with two different types of For isotropic surface tension, ~numer|cal computations
material deposition: The first type is deposition at a steadyghowed that whenk* <k<2M e?lyo, with k*~0.875
rate in the verticay direction, corresponding to any directed X 2Me?/y,, both methods of deposition lead to cusp forma-
deposition(e.g., molecular-beam epitaxylhe evolution Eq. tion in the surface valleys. The cusps initially evolve accord-
(2) then becomes ing to the linear evolution Eq26) and then slow and reach
a steady-state morphology. Spencer and Métabserved
such steady states in infinitely thick stressed films. However
when k<k*, surface evolution depends on the method of
. _ . material deposition. When deposition is constant in the ver-
whereVyp, is the material deposition rate. , __ ftical y direction increasingly sharp cusps form in the surface

The second type is deposition, constant in the direction;gjeys[see Fig. &)], which continue to grow exponentially.
perpendicular to the film surface, corresponding to liquidin contrast when deposition is constant perpendicular to the
phase_e_:pltaxy, for examplg. Early gr_ovvth with this _methOd Ofsurface at very high deposition rates cusp formation is
deposition has been studied by Chiu and Galo. this case slowed[see Fig. &)] and the surface shows signs of reach-
the evolution equation becomes ing a steady-state morphology as for k*.

This can be seen in Fig. 9. The plahown as squares in
_ = , (24) the figure starts as a graph of constant positive slope repre-
ot kgT dx ds ny senting an exponentially growing perturbation as predicted

dh DsnpQd 9 du
ot kgT ox s

+Vp, (23

dh DgnQ) 9 ‘9M+VD
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FIG. 9. Film evolution at very high deposition rate¥/
=1200 nm/s) when surface tension is isotropic. The line represents 0.01

the linear evolution equation, the circles represent the results from 0 . 1
the numerical simulation when deposition is constant inytdeec- Time(s)

tion, and the squares represent the results from the numerical simu-
lation when deposition is constant perpendicular to the surface.
=0.75x2M¢e?/y,. The parameters used here abe=3.599
X108 m?s, 0=1.38<10"2°m?, 5=174x10"m™2, T
=700 K, k=10 m™%, y,=9,=1, £=2%, M=1.67x10", x
=1, C=0.75 ML, andh,,,=2 nm. Note the deviation from the
linear stability analysis results when deposition is perpendicular to
the surface.

FIG. 10. Film growth when surface tension is isotropic and
deposition is constant in thedirection. The symbols represent the
numerical simulation results and the lines the linear evolution equa-
tion valuesk=0.75x2M 82/;/0. The parameters used are the same
as those in Fig. 9.

When the surface tension is anisotropic the surface evo-
lution is very different from that predicted by the linear

by i vsis. H thi th sl dth analysis. As can be seen in Fig. 10, a perturbation in an
y linéar analysis. However this growth slows and the grapl'fsotropic film decays until the film surface reaches a height at

approaches the flat _Iine repres_;entative of a stee}d'y-st.ate MQfhich the film is linearly unstable to perturbations at that
phology. Note that in comparison when deposition is Con'Wavelength. No matter how large the deposition rate, at any

tsrt]anlf.lm the lvertlcay dlge_ctlotn (fr:\ovl\_/n as cwcllef_ In F'g')(’i. given time a perturbation in a thin film is always smaller than
€ fiim evolves according 1o the finear evoiution equaton., perturbation of the same initial size in an infinite film due

Under de_position perpendiqulay to the film surface, vyhen %o the finite time spent in the linear wetting layer.
E#Sp tbegms to folrm, rr;latenal IIS dgposned ;nore trgp|dl\)/vr?n When surface tension is anisotropic, initially the perturba-
€ steep cusp slope, hence slowing cusp formation. &tion amplitude decreases as the surface facets. The rate and
deposition is constant vertically it only effects surface evo'amplitude of the decrease are independent of efherV
D .

ITurtllgn r:ngtlaregg')t/'ogyraigflglgthtzemzvi'r?%i ::gfﬁgte gﬁ'egrgtliThe film then grows or decays depending on whether the
ug positl ! gnitu 9 erturbation amplitudé(t) is larger or smaller than the criti-

used in experiment it is nevertheless physically interesting t al perturbation amplitude,(k,h), at h=Vpt+C. When

observe the difference in surface evolution between the tw%O> 5.(k,h=C) the perturbation grows immediately after
growth methods.

When the deposition is constant in the vertigalirection, ]:jaecce;nsg.th\(/)\ijhehnﬁojviﬁcgté?t:tc?) rt:vs gearltiﬁrﬁatt;loen dlglt:)i%on
the film evolves according to the linear evolution equation, Y g g 9 p

even after the surface is no longer a sine function and cus ”\?gf:g? film surface to a height at whiak{t)> 5(k,h
formation occurs. This can be seen in Fig. 10 which com- P . . . -
We now turn to characterize the evolution of the film in

pares results from the numerical simulation with the resu“%erms of all the relevant physical variables. There are five

predicted by the linear evolution E(R6). Figure 8 shows a . : o
very clear cusp formation in the surface morphology, Wh”eltndepéendlent(;/c?:!ablii that canfeffectlthe e}{/OIUt\qf" f K,
for the same time Fig. 10 shows the sharp cusp growing only ande. In addition, there are four relevant constant param-

slightly faster than predicted by linear analysis. This slighteters:hmi, K, o, andM. We can replace the five indepen-
deviation is expected as the stress in a cusp valley is largélent variables by the dimensionless variablst/hy,,
than in a sine valley hence accelerating perturbation growthC/h,, Kyok*t, KMe2k’t, andKMe2k?t/h,,,. The idea is
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that the description of the evolution of a film with isotropic 1.0
surface tension becomes simpler in terms of these variables.
This becomes clear when we look at how a perturbation in a
thin film grows in relation to the growth of a perturbation of
the same initial size in an infinite film. Quantitatively, this is 09
described by the relative perturbation heightdg ]
=4(t,C)/ 5(t,C==). As can be seen from E26), 5 de-
pends only on three of the five independent dimensionless
variables: SR x—ema% keBx10° M,
5 08 —e—e=a% ke2axto*mp,
S5r=| expKKZy = exp( — Clhy)[exp — Vpt/hy) —11. ome% keaxt0” My,
2Vp 1| —x—e=a% k=810 M,
(27 —+—e=6% k=18x10" My,
—— F={ On =1.8 x -3
This can be summarized in the scaling law 07 TUTESR K180 W,
—8—g=7.5% k=2.8 x10 M/yo
8r(Vp ,C.k,t,e)=6r(Vpt/hym,Clhy KM e?k?t/h,,), , : , : :
(29 0.00 0.01 0.02
L . . 2y,0.0414 42
which implies thatsg depends only on three of the five scal- ST KTt
ing variables. The manifestation of this scaling behavior is M
data collapse. For example, wheig =0 andC is fixed, all FIG. 11. Scaling of relative perturbation height for different
the curves obg(t) for different values ok ande fallonto a  k (k=8x10"°M/y,—2x10"3M/y,) and & (e=4%—7.5%)
single curve if plotted as a function &f<?t rather thart. with zero depositionp=2.37 andq= —6.5. Note that the variable

Does this scaling law survive beyond linear analysis? Waused to plot this graph (2,0.04/M)kPe 2P~ % is proportional to
looked for scaling when deposition was constant in the verthe scaling variabl& y§* %2 1M ~P~ %2 =2~ APt/ pd/2+4
tical y direction for both isotropic and anisotropic surface
tension. As mentioned earlier when surface tension is isotrog
pic the film continued to evolve according to the linear evo-
lution Eq. (26) long after it left the linear regime and hence
the scaling relatiori28) also held.

Growth under anisotropic surface tension is very differen
from that given by the linear evolution E(6), and hence
the scaling relatior{28) does not hold. Does this mean that
the physics of anisotropic surfaces is more complicated an
depends on all five independent variables? It turns out th
answer to this question isnb’ to a good approximation.
To see this we define five generalized dimensionless vari-
ables: Vpt/h,, Clhy,  Kyok*, KMe%k%, and
Kyt a2+ 1N ~P=a2g ~2p=dkpt/hd2+4  \When p=2 and q
=—6 we regain the dimensionless variables governing the
linear evolution equation. We found numerically that in the
case of anisotropic surface tensiaiy, approximately obeys
the scaling law:

pproximation. Figure 12 shows data collapse widgnis
plotted against variables proportional to the first and third
scaling variables in Eq(29). Deposition rates vary by six
orders of magnitudek varies by over an order of magnitude,
bnde by 100%. Data collapse is shown by all curves falling
onto a single surface.

The scaling relationshig29), however, only held when
the initial perturbation, was larger than the critical pertur-
Bation at that wave numbeék, and initial film heightC, i.e.,

Sr(k,Vp ,&,t,C) = 6x(Vpt/hpy ,Clhpy KB T2 Im —p-a2
X g~ 2P~ AKPt/h 324 (29

with p~2.37 andg~ —6.5. Again,dg depends only on three

of the five scaling variables, which implies data collapse.
This relation was very robust. We verified it for differe@t
variation ofk of an order of magnitude, variation af by
100%, and deposition rates of between 0 and 120000 A/s.
Figures 11 and 12 show this scaling in the form of data FIG. 12. Scaling of relative perturbation height for differdnt
collapse wherC=2 ML. Data collapse wheidy is plotted  (k=8x10"M/yq—2X 10 3M/y,), & (¢ =4%—7.5%), andVp,
against a variable proportional to the third scaling variable in(vV,=0,0.12,1.2,12,120,1200,12 000,120 000 )Afs=2.37
Eqg. (29) can be seen in Fig. 11. Here there is no depositionand q=—6.5. Note that the variables used to plot this graph
k varies by over an order of magnitude, andy 100%. As  (2700.04/M)kP=~2P~% and V;,t are proportional to the scaling
can be seen the data collapse is not exact but holds to a goedriablesk y5* ¥2*1\M ~P~ 42 =2P=dkPt/h%2*4 and Vpt/hyy, .
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for 6> 6:(k,C). This is probably because whe#@, nite films. Whendg, is small enough the scaling law28)
> 8.(k,C) perturbations of a thin film and of an infinite film derived from the linear evolution equation are regained.
evolve similarly. Both perturbations initially decay while
faceting and then continue to grow. On the other hand, when
O¢(K,2) < 59< 6.(k,C) a perturbation of a thin film decays
whereas an infinite-film perturbation facets and grows. In We would like to thank J. Tersoff, B.J. Spencer, and V.I.
this regime scaling laws were not found. Whe#fy Marchenko for interesting discussions relating to matter con-
< 8.(k,») the perturbation decays in both the thin and infi- tained in this paper.
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