
PHYSICAL REVIEW B 66, 155411 ~2002!
Optomagnetic composite medium with conducting nanoelements

L. V. Panina, A. N. Grigorenko, and D. P. Makhnovskiy
Department of Communication, Electronic and Electrical Engineering, University of Plymouth, Drake Circus,

Plymouth, Devon PL4 8AA, United Kingdom
~Received 24 April 2002; published 8 October 2002!

A type of metal-dielectric composites has been proposed that is characterized by a resonancelike behavior of
the effective permeabilitymeff in the infrared and visible spectral ranges. This material can be referred to as an
optomagnetic medium. It consists of conducting inclusions in the shape of nonclosed contours or pairs of
parallel sticks with length of 50–100 nm embedded in a dielectric matrix. The analytical formalism developed
is based on solving the scattering problem for considered inclusions with impedance boundary condition,
which yields the current and charge distributions within the inclusions. The magnetic properties originated by
induced currents are enhanced by localized plasmon modes, which make an inclusion resonate at a much lower
frequency than that of the half-wavelength requirement at microwaves. It implies that microstructure can be
made on a scale much less than the wavelength and the effective permeability is a valid concept. The presence
of the effective magnetic permeability and its resonant properties lead to unusual optical effects and open
interesting applications. In particular, the condition for Brewster’s angle becomes different resulting in reflec-
tionless normal incidence from air~vacuum! if the effective permeability and permittivity are the same. The
resonant behavior of the effective permeability of the proposed optomagnetic medium could be used for
creation of optical polarizes, filters, phase shifters, and selective lenses.

DOI: 10.1103/PhysRevB.66.155411 PACS number~s!: 78.67.2n, 75.75.1a, 41.20.2q, 42.70.2a
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I. INTRODUCTION

Metal-dielectric composites, in which small metal pa
ticles are embedded into dielectric host, present an exci
area of study. The overall electric, magnetic, and opti
properties are not governed by the behavior of the raw
terials. A vast amount of literature exists on this topic. In t
limit of high metal concentration, the percolation across
connected clusters results in critical dielectric1 and magnetic2

responses, strong local field fluctuation,3 and enhancement o
transport4,5 and optical6,7 nonlinearities. In the limit of di-
luted composites, individual metal inclusions contribute
the effective electromagnetic properties; however, small m
tallic scatters may show completely different behavior
compared with bulk metals. In both cases, the effective p
mittivity «eff and permeabilitymeff can be tuned to values no
easily possible in natural materials.

Recent advances in microfabrications make possible
ation of composite materials with constituents of differe
forms and sizes down to nanoscales.8,9 This offers a way to
engineer various dielectric and magnetic metamateri
since the effective parameters«eff andmeff are determined by
microstructure. Composites containing rings, helix onV par-
ticles exhibit resonancelike behavior of both the permittiv
and permeability in overlapping frequency bands,10,11 which
is quite unusual in nature. In a medium of three-dimensio
array of intersecting wires the propagation modes hav
dispersion characteristic similar to that in a neutral plas
with negative«eff below the plasma resonance somewhere
the gigahertz range.12,13 It was further shown that the com
posites built of two-dimensional arrays of split copper ring14

and wires have a range of frequencies over which both
permittivity and permeability are negative in microwaves15

These materials have generated a considerable intere
they offer a possibility to realize a negative index of refra
0163-1829/2002/66~15!/155411~17!/$20.00 66 1554
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tion n. Many surprising effects are possible in these so-ca
left handed materials theoretically predicted by Veselag16

which would be of great importance for communications a
electronics. These include reversed Doppler and Cheren
effects and a reversed Snell’s angle, which could resul
lenses without limitations on the resolution by wavelength17

So far, the concept of negative refraction has been predi
and proven at microwave frequencies. In the experiment
deflection of a beam of microwave radiation by a pris
made of wire-and-ring material negative refraction ang
were found,18 which correspond to the negative indexn ap-
propriate to Snell’s law. The transmission spectra measu
in these materials also confirm the concept of negativen.15

An immediate question is whether left-handed materi
can be realized at optical frequencies.~We exclude from con-
sideration photonic crystals where it is difficult to assign
effective equivalentn and where the phenomenon of neg
tive refraction has been recently predicted near nega
group velocity bands.19! On one hand, negative dielectri
constant is natural for metals below the plasma resona
that falls above visible frequencies. For example, silv
would be a good choice for negative permittivity at optic
frequencies since the resistive part is very small. On
other hand, quite rigid limitations exist with respect to t
permeability at high frequencies. There is a widespread
lieve that the concept of permeability has no physical me
ing at optical frequencies and onward, as was proven
atomic magnetism~see, for example, Ref. 20!. The aim of
this paper is to elucidate the implications related to hig
frequency magnetic properties and to demonstrate t
metal-dielectric composites with nanoinclusions can hav
considerable magnetic activity at optical frequencies.

We consider two types of metal-dielectric composit
with inclusions forming different current contours: two-wir
contour and a single ring with a gap~see Fig. 1!. The math-
©2002 The American Physical Society11-1
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ematical formalism developed is based on a modified
tenna theory, which provides a bridge between the mic
wave methods using distributed parameters and the op
description based on plane waves and surface plasmons
show that the magnetic properties at optical frequencies
be generated by localized plasmon modes. The theory
dicts resonancelike behavior of the effective permeabi
over certain frequency range in the infrared and visible p
of spectrum in such composites. The negative values ofmeff
are possible past the resonance; however, high volume
tions are needed to realizemeff,0 since the magnetic dipol
interaction strongly reduces the resonance peaks. Neve
less, other unusual optical effects can be realized in the p
ence of somemeff noticeably different from unity~which do
not require negativemeff). In particularly, the condition unde
which there is no reflected waves~Brewster’s angle!
changes. In the casemeff5«eff a normal incidence from ai
~vacuum! gives no reflection. This effect known at micro
waves could be useful for optical filters and isolators.

The phenomenon of nontrivial permeability at optical fr
quencies can be named optomagnetism~and the area of study
is then referred to as optomagnetics! in order to distinguish it
from the magnetic field influence on light propagati
known as magnetooptics. The proposed optomagnetic

FIG. 1. Composite medium with effective permeability at op
cal frequencies. A possible polarization of the electromagnetic w
associated with induced magnetic properties is indicated. In~a!, a
system of nanowires grown on a substrate is shown, in which
parallel wires form a constituent element. The spacing in the pa
wires is much smaller than the distance between the pairs. In~b!, a
nanoring composite is shown.
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dium is foreseen to find a variety of applications in opti
and optoelectronics. The resonance properties of the e
tive permeability at optical frequencies can be exploited
the production of tuneable narrow bandwidth optical filte
~either on reflection or on absorption!. The presence of per
meability may be used in optoelectronic interferometers
measure phase shifts induced by magnetic fields and is li
to result in a new generation of all optical sensors. The
pendence of permeability dispersion upon carrier concen
tion inside the inclusion and external parameters could
used for creation of tuneable optical elements.

Natural ferromagnetic behavior tails off completely at g
gaherz frequencies. In the case of ferrite materials with f
magnetic sublattices, there exists so-called exchange m
of magnetic excitations with eigenfrequencies in the infrar
but their intensity is very small. Then, only the electro
movement under the Lorentz force would contribute tomeff
at optical frequencies. In this case, there appears a prob
of using a concept of permeability in the averaged mac
scopic Maxwell equations. The situation is different for com
posite materials containing nanosized metal inclusions.
effective permeability is obtained by averaging the magne
moments of closed currents in metal inclusions and can h
quite high values as a result of the resonance interactio
the incident electromagnetic wave with plasmons confin
inside the inclusion~localized plasmon modes!. The resonant
frequency is lowered considerably allowing the resonance
occur at wavelength of the exciting light much larger th
the inclusion size~at microwaves, there would be a hal
wavelength requirement for resonance! and the effective pa-
rameters are still a valid concept. Near resonance, the
rents in the inclusions are enhanced and large magn
moments are generated. That may either enhance~paramag-
netic effect! or oppose~diamagnetic effect! the incident field
and the effective permeability exhibits a resonant behav
Considering a diluted system with a small volume conc
tration p!1 of the current contours and calculatingmeff by
summation over independent magnetic moments give
dispersion of the effective permeability withmeff.1 below
the resonance andmeff goes to negative values past the res
nance. However, the interaction between the inclusi
~taken into account within the effective medium theory21,22!
decreases considerably the values ofmeff near the resonanc
and for realistic concentrations (p,0.1) alwaysmeff.0. The
considered system has also the effective permittivity«eff .
For ring-inclusions, the value of«eff is reduced due to geom
etry. For two-wire contours, the permittivity is essential f
the light polarization with the electric field along the wire
@see Fig. 1~a!#; however, the resonance frequency for«eff is
shifted towards higher frequencies with respect to that
meff , which makes it possible to realize the conditionmeff
'«eff in both cases.

The paper is organized as follows. Section II starts w
the description of proposed optical effects due to existenc
substantialmeff . In Sec. III we discuss in more detail th
limitations on the concept of permeability at high freque
cies. Section IV formulates how to determine the effect
parameters in the considered composites. In Sec. V,
mathematical formalism for calculation of the current dist
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OPTOMAGNETIC COMPOSITE MEDIUM . . . PHYSICAL REVIEW B66, 155411 ~2002!
bution in the inclusions is given. Section VI presents t
obtained results onmeff and «eff and an overall discussion
There are also two mathematical appendixes.

II. BREWSTER’S ANGLE IN THE PRESENCE
OF PERMEABILITY

Introducing effective magnetic permeability at optical fr
quencies may result in some unusual behavior of light pro
gating in macroscopically heterogeneous composite m
~with boundaries!. Here we consider the reflection and r
fraction of a polarized light at an interface between two
electric media with nontrivial magnetic properties. The
sults of this section are, in many respects, known~see, for
example, Ref. 23!, however, it is convenient to reexamine th
conditions of reflection/refraction described by Fresne
equations, since they are customarily analyzed for nonm
netic materials. In particular, we show that the condition u
der which there is no a reflected wave from a bound
~Brewster’s angle! becomes different in the presence of pe
meability. The light is incident from medium ‘‘1’’ with the
material parameters«1 , m1 towards medium ‘‘2’’ with «2 ,
m2 . The quantities pertaining to the incident, reflected a
transmitted waves are distinguished by the suffixes i, r, an
respectively, as shown in Fig. 2. In the case of the elec
field E perpendicular to the plane of incidence~s polariza-
tion! the Fresnel’s relationship between the field in the in
dent wave and that in the reflected wave is23

S Er

Ei
D

'

5
~n1 /m1!cosu i2~n2 /m2!cosu t

~n1 /m1!cosu i1~n2 /m2!cosu
. ~1!

Here,u i ,r ,t are the corresponding angles of incidence, refl
tion and refraction obeying usual Snell’s equation

u i5u r , n1 sinu i5n2 sinu t ~2!

with the index of refractionn5A«m. The conditionEr50,
or

n1m2 cosu i5n2m1 cosu t , ~3!

gives Brewster’s angleub . For nonmagnetic mediam1
5m251 Eq. ~3! can hold only if«15«2 ~no optical inter-
face!. Therefore, Brewster’s angle is not observed fors po-
larization in conventional optics. Withm1,2Þ1 the absence
of reflection and Brewster’s angle can happen even fos
polarization:

FIG. 2. Geometry of reflection and refraction.
15541
e

a-
ia

-
-

s
g-
-
y
-

d
t,

ic

-

-

tanub5A«1m2
22«2m1m2

«2m1m22«1m1
2 ~4!

when («1m2
22«2m1m2)/(«2m1m22«1m1

2)>0.
Suppose that the optical properties are due only to

magnetic permeability («15«251,n15Am1,n25Am2),
then, the Brewster angle is given by

tanub5n2 /n1 . ~5!

Equation~5! formally coincides with a usual equation know
for p-polarized light~electrical field is in the plane of inci-
dence!. For incidence from air~vacuum! («15m151), Eq.
~4! becomes

tanub5Am2
22n2

2

n2
221

,

which can be satisfied either bym2
2>n2

2.1 (um2u>u«2u and
un2u.1) or by m2

2<n2
2,1 (um2u<u«2u and un2u,1).

For the p-polarization case, the Brewster angle can
found from Eq.~4! by interchanging« andm. This is because
the boundary conditions for the two cases are symmetr
with respect toE andH. Then, Eq.~4! becomes

tanub5Am1«2
22m2«1«2

m2«1«22m1«1
2 ~6!

and Brewster’s angle exists forp polarization when (m1«2
2

2m2«1«2)/(m2«1«22m1«1
2)>0. For m15m251 Eq. ~6!

gives a standard form for the Brewster angle tanub5n2 /n1
@compare with Eq.~5!#. In the case of incidence from ai
(«151 andm151) Eq. ~6! reduces to

tanub5A«2
22n2

2

n2
221

. ~7!

From Eq.~7! it is clear that Brewster’s angle in this pola
ization is realized either under the condition«2

2>n2
2.1

(u«2u>um2u and un2u.1) or «2
2<n2

2,1 (u«2u<um2u and
un2u,1), which are opposite to those fors polarization.

It is worth mentioning that for both polarizations there
no reflection at normal incidence under the conditi
«1 /m15«2 /m2 , as follows from Eqs.~4! and~6!. This result
is well known for microwaves, representing the condition
the impedance matching since the ratio«/m is related to the
wave impedance.23 It also means that an arbitrary polarize
light will not be reflected from the interface of air~vacuum!
and a medium with optical constantsu«2u5um2u. Thus, there
may be an optical analogy of the impedance matching.
view of these conditions of reflection, optomagnetic mate
als may demonstrate interesting phenomena at optical
quencies, suitable for applications in optical filters, pha
shifters, and isolators.

III. LIMITATIONS IMPOSED ON PERMEABILITY
AT HIGH FREQUENCIES

In this section we analyze the restriction conditions
introducing high frequency permeability to the Maxwe
1-3
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equations. The magnetizationM5(B2H)/4p appears in the
Maxwell equations as a result of averaging the microsco
current densityJmic :

curlM5
^Jmic&

c
. ~8!

Here^¯& stands for a mean value of a microscopic quan
c is the velocity of light~Gaussian units are used througho
the paper!. The physical meaning of magnetization is t
magnetic moment per unit volume. This comes from the p
sibility to rewrite the total magnetization of the body in th
form

E MdV5
1

2c E ~r3^Jmic&!dV, ~9!

where the integration is carried out inside the body. Equa
~8! is correct for a static magnetic field. When the mac
scopic fields depend on time, the establishment of the r
tionship between the mean value^Jmic& and other quantities
is not straightforward. A general form of Eq.~8! is20

curlM5
^Jmic&

c
2

1

c

dP

dt
, ~10!

whereP is the polarization vector. However, Eq.~10! is not
consistent with Eq.~9!. Therefore, the physical meaning o
M at high frequencies depends on the possibility of negle
ing the second term in the right part of Eq.~10!:

ccurlM@
dP

dt
. ~11!

Let us suppose that the fields are induced by an electrom
netic wave of frequencyv. Estimating curlM;xH/ l ,
dP/dt;vaE, wherex is the magnetic susceptibility,a is
the electric polarizability,l is the characteristic size of th
system, and takingE;H for the electromagnetic wave, Eq
~11! can be written as

x@a l /l, ~12!

wherel is the wavelength. It is generally considered that
optical frequencies~and onward! inequality ~12! cannot be
satisfied and the concept of the permeability is meaningl
This is correct if the magnetic moment is associated w
electron motion in the atom. Indeed, the relaxation times
any paramagnetic or ferromagnetic processes are cons
ably larger than optical periods. Thenx is due to electron
movements under the Lorenz force, and can be estimate
x;(n/c)2, wheren is the electron velocity in the atom. O
the other hand, the optical frequencies are of the order ofn/b
where b is the atomic dimension. Then Eq.~12! reads l
!b(n/c), which is not compatible with the requirement th
the characteristic size of the system has to be much gre
than the atomic dimension (l @b).

The situation may be completely different for meta
dielectric composites. If the inclusion size is smaller than
wavelength~but larger than the atomic size! the effective
magnetic and dielectric parameters can be introduced
15541
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result of local field averaging. For a composite with me
grains of a few nanometres, the effective parameters inc
ing permeability become meaningful even for optical fr
quencies. In this case, the effective permeability is obtai
by averaging the magnetic moments of induced current
metal inclusions. Our analysis demonstrates that inequa
~12! is satisfied in the composites considered over cer
frequencies in the optical range.

IV. PROBLEM FORMULATION

In metal-dielectric composites irradiated by high fr
quency electromagnetic field the magnetic properties are
duced by contour currents induced in metallic inclusions
the spatial scale of the system is smaller than the incid
wavelength, the magnetic moments of individual curre
loops ~within a single inclusion or formed by a number o
them! give rise to magnetization and the effectiv
permeability.2,22,24The interaction between induced curren
can be considered within the effective medium approxim
tion. Composite materials with inclusions of a complex for
~split rings, chiral and omega particles! are known to have
unusual magnetic properties including both giant param
netic effect and negativemeff .

10–12 These properties are re
lated to resonance interaction of the electromagnetic w
with an inclusion and have been reported for microwave f
quencies. The complex form of the inclusion is needed
realize the resonant conditions at wavelengths much la
than the inclusion size. For example, in a unit with two c
axial rings having oppositely oriented splits12 a large capaci-
tance is generated lowering the resonance frequency con
erably. When the inclusion dimensions are reduced down
nanoscale, the wavelength can be proportionally decrea
down to microns falling in the optical range. Then, the effe
tive permeability of nanocomposites can be substantia
optical frequencies. However, it seems that the fabrication
nanoinclusions of a complex form may not be a realistic ta
Fortunately, in the optical region the resonance frequenc
lowered due to localized plasmon modes and fairly sim
inclusions of a loop shape will create substantial magn
moments even when the inclusion size is much smaller t
the wavelength of the incident light.

Within the effective medium theory, the problem is r
duced to considering the scattering of electromagnetic w
by a metallic contour. In general, this process can be v
complicated. Here we consider two types of inclusions: rin
shaped inclusions~having some gap large enough to negle
the edge capacitance! and pairs of parallel conducting stick
connected via displacement currents~see Fig. 1!, which per-
mit a fairly simple analysis at certain approximations. F
the chosen geometry, the resonance of localized plasm
confined within the inclusion is realized, which leads to t
resonant current distributions and eventually, to large
duced magnetic moments. The latter is responsible for
effective permeability having a resonancelike dispersion
with the resonant frequency coinciding with that for the cu
rent distribution.

Let us formulate the basic assumptions under which
problem is treated. We consider the composite medium i
1-4
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diated by a plane-polarized electromagnetic wave of a sin
frequencyv, so that the time dependence is of the fo
exp(2ivt). The contour length~l! is much larger than the
cross-section size (2a). Then, when calculating fields in th
surrounding space, the thickness of the contour can be
glected and the induced currents can be replaced by the
fective linear currentsj . The current distribution inside th
inclusion affects the scattered fields only via the bound
conditions imposed at the inclusion surface. The wavelen
is also much larger than the cross sectionl@2a, but there is
no restrictions onl with respect tol. The magnetic moment
in the composite are induced when the incident light has
magnetic field directed perpendicular to the plane of a m
tallic contour as shown in Fig. 3. In the case of a circu
contour@Fig. 3~a!#, the fieldH induces a circumferential cur
rent j m(u) depending on the azimuthal angleu. Then, the
magnetic momentm associated with this current is

m5
1

2c E @r3Jm~r !#dV5oz

R0
2

2c E
0

u0
j m~u!du, ~13!

whereJm5 jm(u)ds , ds is the two-dimensional Dirac delta
function which peaks at the axis of the wire,R0 is the radius
of the contour, (2p2u0) is the angle of the gap, andoz is the
unit vector perpendicular to the contour plane. The curre
due to the electric field give no contribution tom. In the case
of a pair of conducting sticks@Fig. 3~b!# the current is dis-
tributed along their length and can form closed contours
the displacement currents. The metallic sticks as elemen
produce the effective permeability were first proposed
Ref. 25. In this work, however, a random assembly of m
tallic sticks was considered, for which the total magne
moment vanishes due to symmetry. As a result, the effec
permeability for such a system is unity, as was proven
experiments26 ~in Ref. 26 the response from a stick compo
ite is described adequately in terms of the effective perm
tivity, indicating that the effective permeability is essentia
unity!. The magnetic properties may appear only in dilut
composites containing pairs of parallel sticks as a single
ement, as shown in Fig. 1~a!. The magnetic moment is the
found as@from symmetry, the contribution from the displac
ments currents equals to that from currentj m(x)]:

FIG. 3. Geometry of metallic inclusions, principle direction
and quantities used.
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2 l /2

l /2

j m~x!dx, ~14!

where d is the distance between the sticks. The magne
polarizability x0 of a single inclusion associated with th
induced moment can be found fromm5x0VH, whereV is
the volume of the metallic inclusion. The effective perm
ability is calculated from a self-consistent equation of t
type2,22,24

meff5114ppx0~meff!, ~15!

wherep is the volume concentration. If the incident electr
magnetic wave has the electric fieldE parallel to the wires
@Fig. 1~a!# a substantial electric dipole moment is genera
contributing to the effective permittivity. The currentsje in-
duced by this field can be considered separately as show
the following section. The electric dipole momentp and the
dielectric polarizabilitya0 of the inclusion are calculated fo
stick contour using the continuity equation] j e /]x5 ivr and
integrating by parts with boundary conditionsj e(6 l /2)[0
~r is the charge density per unit length!:

p5ox

i

v E
2 l /2

l /2

j e~x!dx, p5a0VE. ~16!

The effective permittivity can be found from the sel
consistent equation similar to Eq.~15!.25

In our analysis it will be important to consider a res
nance distribution of the induced currents. From the mic
wave antenna theory it is known that a nontrivial curre
distribution occurs when the wavelength is in the range ol.
Then, the use of the effective dielectric and magnetic para
eters is doubtful. However, in our case the situation is diff
ent. In optical and infrared spectral ranges, metal conduc
ity s can be approximated by Drude formula

s~v!5
s0

12 ivt
, ~17!

where s05vp
2t/4p, vp is the plasma frequency,t is the

relaxation time~for silver, s055.731017 s21 and t52.7
310214 s). In the high frequency range considered herev
;1015 s21) losses in metal grains are relatively smallvt
@1. Therefore, the metal conductivity is characterized by
dominant imaginary part. This is very important for o
analysis since the current can have a resonance for a co
erably larger wavelengthl@2l . Physically, this is associate
with the resonance of localized plasmon modes.

In Eq. ~17! the relaxation timet has a meaning of the
mean-free time between electron collisions. The metal inc
sions considered here have a length in the range of 100
and a cross-section size of 10 nm. The mean-free pas
noble metals such as silver is about 40 nm. It implies that
parametert used in Eq.~17! differs from that in bulk mate-
rials. However, in the frequency rangevt@1, electrons os-
cillate many times between collisions and the collisions
of little importance. The conductivity has a dominant imag
nary part independent oft :
1-5
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s~v!5
vp

2

4pv2t
1 i

vp
2

4pv
.

The resistive losses, which are determined by the real p
are typically smaller or in the range of the radiation loss
and will only slightly change the values of currents at re
nance. However, the resonance frequency will shift con
erably towards higher frequencies ifvt;1. This imposes
limitations on the minimum cross section.

V. MATHEMATICAL BACKGROUND

A. Basic equations

Let us consider the current distribution in a thin metal
conductor irradiated by an electromagnetic field. The
proximations used are 2a! l , l@2a. This is a standard
problem of the antenna theory~see, for example, Refs. 2
and 28!, which can be treated in terms of retarded scalaw
and vectorA potentials. The total electric fieldEt5e01e is
represented by the sum of the external fielde0 and the scat-
tered fielde. In the Lorenz gauge«]w/]t14p div A50, the
equation fore is written as

e5
4p ivm

c2 A2
4p

iv«
grad divA. ~18!

The vector potentialA taken at arbitrary pointr0 is obtained
in the form of a convolution with the total current densi
J(r ):

A~r0!5~G* J!5E
V
J~r 8!G~r !dVr8 , G~r !5

exp~ ikr !

4pr
,

~19!

where r5r02r 8, r 5ur u, integration is taken over the vol
ume containing current,k5(v/c)A«m is the wave number
G(r ) is the Green function satisfying the Helmholtz equ
tion. Customarily, Eq.~19! is solved under the zero bounda
condition

Ēt[0, ~20!

where Ēt is the tangential component of the total elect
field taken at the surface of the conductor. Then, the cur
distribution is found from an integrodifferential equatio
The condition~20! corresponds to the case of an ideal co
ductor with infinite conductivity. Being used as an appro
mation, Eq.~20! works reasonably well when the radiatio
losses are considerably larger than the resistive ones o
system is out of resonance. However, in certain cases~in-
cluding ours!, the current distribution may have a zero~or
greatly reduced! dipole moment. This implies that the radia
tion losses are comparable with the resistive ones and
condition ~20! is no longer valid. The processes related to
finite conductivity may change the resonance condition
the current distribution: reduce the current amplitude a
shift of the resonance wavelength. Here the problem
solved imposing impedance boundary conditions, which
valid at any frequency including the optical range
15541
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Ēt5 §̂~H̄t3n!, ~21!

where§̂ is the surface impedance matrix,n is the unit vector
normal to the surface and directed inside the conductor,H̄t is
the tangential component of the total magnetic field taken
the surface~hereafter, overbar is used to denote tangen
fields at the inclusion surface!. For the geometry considere
here~see Figs. 1 and 3!, the external magnetic field is norma
to the contour plane and gives no contribution to Eq.~21!.
The scattered fieldh is determined as

h5
4p

c
curl A

or

h~r0!5
1

c EV

~12 ikr !exp~ ikr !

r 3 @J~r 8!3r #dVr8 . ~22!

When the skin effect is strong, Eq.~21! does not depend
upon geometry and for a nonmagnetic conductor~permeabil-
ity of metal is always unity at optical frequencies! is repre-
sented by a scalar~normal skin effect!:

§5~12 i !A v

8ps
. ~23!

The case of a thin arbitrarily shaped conductor having a
cular cross section allows the surface impedance to be d
mined for any frequencies. The electromagnetic field ins
such a conductor can be taken to be the same as that ins
straight cylinder. Then, in the local cylindrical coordina
system (r ,w,x) with the axis x in the axial direction the
impedance boundary conditions~21! become

Ētx5§xxh̄w ,

Ētw52§wwh̄x , ~24!

with29

§xx5
k0c

4ps

J0~k0a!

J1~k0a!
, §ww52

k0c

4ps

J1~k0a!

J0~k0a!
, ~25!

wherek0
254p isv/c2 andJ0 , J1 are the Bessel functions o

the zero and first order, respectively. Equations~25! are valid
for normal skin-effect. For the dimensions considered,
skin depth is in the range of the mean-free pass, and b
these parameters are larger thana. Then, the skin effect is
week, and using Eq.~25! is still reasonable.

Since we are interested only in fields in the surround
space, the current inside a thin conductor can be replace
an effective linear onej (x) that flows along the axis of the
wire: J(r )5 j (x)dS . The volume integration in Eq.~19! is
then replaced by the integration along the current conto
Thus, the current distribution in a thin conductor irradiat
by the electromagnetic field is found from Eqs.~18!, ~19!
with boundary condition~24! that binds scattered fieldse
~18! andh ~22! taken on the surface of the conductor.
1-6
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B. Current equation in a straight wire
with circular cross section

First, the current equation is obtained for a straight w
with a circular cross section placed in the electrical fielde0
~of any origin! parallel to the wire axisx. The scattered field
e is determined by thex component of the vector potentia
The value of the longitudinal electric fieldēx(x) taken at the
wire surface is represented in terms of the integrodifferen
operator with respect tox, as it follows from Eqs.~18!, ~19!:

ēx~x!52
4p

iv« F ]2

]x2 ~G* j !1k2~G* j !G ,
~G* j !5E

2 l /2

l /2

j ~s!G~r !ds, r 5A~x2s!21a2. ~26!

For this geometry, the scattered magnetic fieldh̄w taken at
the surface is circumferential. In Eq.~22!, considering that
the effective linear currentj (x8) is flowing along the wire
axis andr0 points at the wire surface yields@J(x8)3r #uw
5 j (x8)a. Then, the equation forh̄w obtains the form

h̄w~x!5
2

ac
~Gw* j !5

2

ac E2 l /2

l /2

j ~s!Gw~r !ds, ~27!

whereGw(r )5a2(12 ikr )exp(ikr)/2r 3.
Finally, substituting Eqs.~26! and~27! into boundary con-

dition ~24! yields the integrodifferential equation for the lin
ear currentj (x):

]2

]x2 ~G* j !1k2~G* j !5
iv«

4p
ē0x~x!2

iv«§xx

2pac
~Gw* j !.

~28!

Equation~28! is solved imposing zero boundary conditio
at the wire ends:j (2 l /2)5 j ( l /2)50 ~the end surfaces ar
assumed small and associated capacitance is neglected!.

Real parts of the Green functions Re(G) and Re(Gw) have
sharp peaks ats5x, which makes it possible to use the fo
lowing approximations for calculating the convolutions30

@Re~G!* j #' j ~x!E
2 l /2

l /2

Re@G~r !#ds5 j ~x!Q,

Q5E
2 l /2

l /2

Re@G~r !#ds}
1

4p E
2 l /2

l /2 ds

As21a2
;

ln~ l /a!

2p
,

@Re~Gw!* j #' j ~x!E
2 l /2

l /2

Re@Gw~r !#ds5 j ~x!Qw ,

Qw5E
2 l /2

l /2

Re@Gw~r !#ds}
a2

2 E
2 l /2

l /2 ds

~s21a2!3/2

1
a2k2

2 E
2 l /2

l /2 ds

As21a2
}@11a2k2 ln~ l /a!#;1,

~29!
15541
e

l

whereQ andQw are positive form factors. The logarithmi
term in Qw is neglected sinceak!1 in our case.

The convolutionsj (x) with Re(G) and Re(Gw) give the
main contribution to Eq.~28!: u@ Im(G)* j#u!u@Re(G)* j#u and
u@ Im(Gw)* j#u!u@Re(Gw)* j#u. On the other hand, convolution
j (x) with imaginary parts Im(G) and Im(Gw) are responsible
for radiation losses and become important at resonance. T
can be calculated by the iteration method given in Appen
A. Equation~28! is reduced to an ordinary differential equ
tion for the zero approximationj 0(x) where the radiation
losses are neglected:

]2

]x2 j 0~x!1k1
2 j 0~x!5

iv«

4pQ
ē0x~x!, ~30!

k15kg, ~31!

g5S 11
ic§xx

2pavm

Qw

Q D 1/2

;S 11
ic§xx

avm ln~ l /a! D
1/2

.

Equation~31! shows that the impedance boundary conditi
renormalizes the wave number of the incident radiati
Considering the solution of Eq.~30! with j (2 l /2)5 j ( l /2)
50, the resonance wavelengths are determined via this
wave number from the condition cosk1l/250 or k1l
5p(2n21):27,28

l res,n5
2l

2n21
Re~gA«m!, n51,2,3,... . ~32!

A similar renormalization method for the wave number h
been used to tackle boundary effects in the microwave s
tering from a conducting stick placed in a thin dielectr
layer.31

C. Current equation for two parallel wires

With the help of Eq.~28!, we can now consider the cur
rent distribution in two parallel wires. The distanced be-
tween them has to be larger than the diameter (d.2a) in
order to use the approximation of thin conductors. The eq
tions for currents are of the form

]2

]x2 ~G* j 1!1k2~G* j 1!

5
iv«

4p
@ ē01x~x!1ē21x~x!#2

iv«§xx

2pac
~Gw* j 1!,

]2

]x2 ~G* j 2!1k2~G* j 2!

5
iv«

4p
@ ē02x~x!1ē12x~x!#2

iv«§xx

2pac
~Gw* j 2!.

~33!

Hereē12x andē21x are the longitudinal electric fields induce
by each conductor at the surface of other,ē01x and ē02x are
the external fields,j 1(x) and j 2(x) are the linear currents
1-7
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inside the conductors. The fieldsē12x andē21x are determined
from Eq. ~26! with r 5r d5A(x2s)21d2.

Equations~33! are reduced to two independent equatio
by introducingj e5( j 11 j 2)/2 and j m5( j 12 j 2)/2:

]2

]x2 @~G2Gd!* j m#1k2@~G2Gd!* j m#

5
iv«

8p
~ ē01x2ē02x!2

iv«§xx

2pac
~Gw* j m!, ~34!

]2

]x2 @~G1Gd!* j e#1k2@~G1Gd!* j e#

5
iv«

8p
~ ē01x1ē02x!2

iv«§xx

2pac
~Gw* j e!, ~35!

Gd~r d!5exp~ ikr d!/4pr d .

It is easy to see that only electric fielded directed along the
wires and magnetic fieldH perpendicular to the two-wire
contour~xy plane! will excite currents inside the inclusion i
the discussed geometry. The perpendicular magnetic
produces circulatory electric fieldem5( iv/2c)mHld/( l
1d) along the wire contour due to Faraday’s law of indu
tion. Therefore, the external electric fields are of the fo
ē01x5ed1em and ē02x5ed2em . This implies that the cur-
rent j m in the first equation is induced by the magnetic fie
and is responsible for the magnetic momentm. The current
j e entering the second equation is created by the electric
and defines the electric dipole momentp.

For d sufficiently small~strong interaction!, the convolu-
tion with the Green functionGd(r d) can be estimated with
the help of an approximate formula~29!:

@Re~Gd!* j #' j ~x!Qd , ~36!

Qd5E
2 l /2

l /2

Re@Gd~r d!#ds}
1

4p E
2 l /2

l /2 ds

As21d2
;

ln~ l /d!

2p
.

Similar to Eq.~30!, the zero approximation for the curren
distribution reads

]2

]x2 j m0~x!1km
2 j m0~x!5

iv«

4p~Q2Qd!
em , ~37!

]2

]x2 j e0~x!1ke
2 j e0~x!5

iv«

4p~Q1Qd!
ed , ~38!

km5kgm ,gm5S 11
ic§xx

2pavm

Qw

~Q2Qd! D
1/2

;S 11
ic§xx

avm ln~d/a! D
1/2

, ~39!
15541
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ke5kge ,ge5S 11
ic§xx

2pavm

Qw

~Q1Qd! D
1/2

;S 11
ic§xx

avm ln~ l 2/da! D
1/2

. ~40!

The general solution of Eqs.~37!, ~38! is of the form

j m,e0~x!5A sin~km,ex!1B cos~km,ex!1
iv«em,d

4p~Q7Qd!km,e
2 .

~41!

In Eq. ~41!, the first set of subscripts corresponds to t
magnetic excitation for which sign ‘‘minus’’ in the last term
is taken, and the second set corresponds to the electric e
tation with sign ‘‘plus.’’ Imposing zero boundary conditio
@ j m,e0(2 l /2)5 j m,e0( l /2)[0# yields

j m,e0~x!5
iv«em,d

4p~Q7Qd!km,e
2

@cos~km,el /2!2cos~km,ex!#

cos~km,el /2!
.

~42!

The resonance wavelengthslm , le for the two excitations
are different and can be found from the conditionkm,el
5p(2n21):27,28

lm,e5
2l

2n21
Re~A«mgm,e!, n51,2,3,... . ~43!

The amplitude of the current at resonance is restricted
losses related to conductivity and relaxation properties of
surrounding medium. However, solution~41! does not con-
tain such an important factor as radiation losses since
imaginary parts of convolutions were neglected. To find
effect of radiation, original Eq.~33! can be solved by itera
tions. For this purpose, it is converted to an integral form
the Appendix A. Thenth iteration can be represented as

j n~x!5 j 0~x!1E
2 l /2

l /2

S~x,q! j n21~q!dq, ~44!

where the zero iterationj 0 has to be taken in the form of Eq
~41! since the boundary condition is imposed forj n and
S(x,q) is the integral kernel. The iteration method is prov
to converge very rapidly. The first iterationj 1 is sufficient to
take account of the radiation effects. Its explicit form and t
form of the kernelS(x,q) are calculated in Appendix A.

The scattering at a ring inclusion gives similar results
the current distribution and magnetic polarizability. This ca
is considered in Appendix B.

VI. RESULTS AND DISCUSSION

We are now in a position to proceed with the analysis
the effective magnetic and electric properties associated
the currents induced in the metallic contours. The charac
istic size l is taken to be in the range of 100 nm and t
cross-sectional size of 10 nm. These scales can be achi
in practice. The conductivity obeying the Drude equati
~17! with parameters typical of such noble metals as sil
and copper are used in all the calculations. The effect o
1-8
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smaller relaxation time~in comparison with that of a bulk
metal! due to electron scattering at the inclusion surface
sults in shifting the dispersion region to higher frequenci

Two-wire contour. First, we consider two-wire contou
composites irradiated by light having the magnetic fieldH
perpendicular to the contour plane and the electric fieldE
perpendicular to the wires. For this polarization, the circu
tory currentsj m are induced leading to the effective perm
ability. The effective permittivity can be considered to
unity. The dimensions used are as follows:l 5100 nm, a
56 nm,d530 nm. It is useful to investigate the forms of th
current distribution for different frequencies along with t
dispersion law of the magnetic polarizability of the inclusi
x05x81 ix9. Figure 4 shows plots ofj (x)5 j 8(x)1 i j 9(x)
as a function of a distancex along the wire for three frequen
cies f , f res, f ; f res, and f . f res, where f res5c/l res is the
resonance frequency. The current distribution is calcula
using formulas~37! and ~A7! obtained in the zero approxi
mation and using first iteration, respectively. In this case,
resonance wavelength is found to bel res5730 nm, which is
several times larger than it could be expected from h
wavelength resonance condition (l res52l ) known for micro-
wave antennas.27,28 The skin effect is weak for the chose
wire radius and the contribution from the surface impeda
causes this remarkable shift of the resonance wavele
since the conductivity is dominantly imaginary for these f
quencies. Physically, this result corresponds to locali
plasmon modes inside the wire.

On the other hand, the current distribution exhibits all t
features typical of those in microwave antennas. The
part j 8 changes phase atf res. For frequencies below the reso
nance@Fig. 4~a!# j 8 is positive and magnetic polarizability o
the inclusionx0 exhibits a paramagnetic response, as it
seen in Fig. 5. Forf . f res @Fig. 4~b!#, j 8 is negative andx0 is
of a diamagnetic character, showing quite large negative
ues. Closer to the resonance,j 8 undergoes rapid transforma
tions@Fig. 4~c!#. In this frequency range small factors such
radiation may introduce essential changes inj 8(x) plots, but
the integral parameterx0(v) does not change much showin
only a small shift of the resonance frequency and a sli
decrease in the resonance peaks. For the considered g
etry, the dielectric dipole moment is zero and the radiation
strongly reduced.

Figure 6 shows the effective permeabilitymeff5m81im9
calculated for the volume concentration of inclusionsp
56% by considering the current contours as independ
magnetic moments~dipole sum! and within the effective me-
dium theory ~EMT! @see Eq.~15!#. In this case, the wire
radius was chosen to be 10 nm to demonstrate that the r
nance shifts to higher frequencies since the skin effec
stronger for a larger cross section. For noninteracting m
ments, the resonance peaks in permeability are large re
ing negative values past the resonance and the dispe
region is narrow, whereas the interaction broadens the
meability behavior and reduces the peaks ofm8 and m9
greatly, so that the real part is always positive. An import
characteristic is thatm8 peaks at lower frequency whenm9 is
very small. Thus, there exists a range of frequencies wh
the light propagation is affected by magnetic properties
15541
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the light absorption is still negligible. It may happen th
EMT is a rather rough approximation for the considered s
tem. A periodic array of two-wire contours may exhibit
stronger magnetic activity as suggested by the dipole s
result, which does show negativem8. In any way, the actua
behavior is somewhere in between the considered cases
the least range ofm8 variation is 1.5–0.5 for this concentra

FIG. 4. Typical current distribution~including realj 8 and imagi-
nary j 9 parts! along the wire length for different frequencies~a! f
, f res, ~b! f . f res, and~c! and ~d! f ; f res.
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tion, which is quite big. It has to be noted that the magne
properties in two-wire contour system cannot be enhan
by simply increasing the concentration. If the distance
tween the pairs is in the range ofd, then the induced mag
netic properties disappear as it is clear from symmetry. T
system of randomly placed wires has no magnetic prope
~neglecting those due to circumferential currents inside
wires!, as already discussed in Sec. IV.

We now consider the polarization of the incident light f
which H is still perpendicular to the contour plane butE is
along the wires. For this case, bothmeff and«eff are essential.
The result formeff is the same as considered previously sin
the currentsj m and j e due toH and E contribute indepen-
dently to the magnetic and electric polarisabilities, resp
tively. The currentj e , which determines the electric polariz
ability of the inclusion a0 , is calculated in zero
approximation~38! and taking first iteration~A7!. In this
case, the results fora05a81 ia9 differ greatly for the zero
and first approximations, as shown in Fig. 7, because o
substantial radiation effect. The polarizability has reson
dispersion behavior. The radiation losses make the reson
wider, shift the resonance frequency and reduce the reso
peaks. Comparing plotsa0(v) andx0(v) ~Fig. 5! it is seen
that the resonance frequency fora0 is higher, since the reso
nance forj e happens at higher frequency than forj m . The
effective permittivity «eff5«81i«9 calculated for p53%
within EMT @see Eq.~15!# shows a very broad dispersio
region as seen in Fig. 8. In terms of«eff , the effect of radia-
tion is not pronounced since the interaction itself has a si

FIG. 5. Magnetic polarizabilityx05x81 ix9 of two-wire con-
tour vs frequency. The zero~dashed curve! and first ~solid curve!
approximations are given.
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lar effect of smoothing the resonance characteristics. The
part of the permittivity is negative near the high-frequen
side of the resonance. Figure 9 compares the dispersion
havior for«eff andmeff (p53%) for the aforementioned po
larization. The resonance region for«eff is shifted towards
higher frequencies. In the area of magnetic resonance,meff
;«eff with very small losses«9!1, m9!1. It means that
inequality ~12! is satisfied sincel /l!1 and the concept o
permeability is meaningful at optical frequencies. Therefo
this system can be useful for designing materials with eff
tive parameters suitable for new optical effects described
Sec. II.

Ring contour

A similar magnetic behavior is obtained for ring
composite materials irradiated by light having the magne
field perpendicular to the plane of the ring~see Appendix B!.
The electric field of the incident light is in the plane of th
ring and always induces some effective permittivity. In th
case, the magnetic and electric resonance frequencies
cide. The value of«eff is reduced in comparison with that o
the two-wire case since the average exciting electric field
the electric dipole moment is smaller. Then,meff;«eff at reso-
nance in this system.

Figure 10 shows the dispersion behavior of the magn
polarizability of the ring inclusion. The calculations a
made withR0550 nm, a55 nm, andu05320°. The gap in
the ring is sufficiently large to avoid any effects from th

FIG. 6. Effective permeabilitymeff5m81im9 of composite con-
taining wire pairs vs frequency for the volume concentration of 6
calculated for two cases: independent inclusions~dashed curve! and
inclusions in effective medium~solid curve!.
1-10
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edge capacitance, which could be difficult to control
nanoscales. For these dimensions, the resonance wavel
is about 2mm ~infrared part of the spectrum!. The radiation
losses are essential because of the existence of the ele
dipole moment. They strongly reduce the resonance peak
order to move the dispersion region to the visible spec
range, the ring diameter has to be decreased. However, w
not have much flexibility since for our analysis the conditi
R0@a is important. Further decrease ina may be not realis-
tic and will bring about complex behavior of the conductivi
in low-dimensional systems. TakenR0530 nm, the reso-
nance wavelength decreases down to 1.30mm, which is still

FIG. 7. Electric polarizabilitya05a81 ia9 of two-wire contour
vs frequency. The zero~dashed curve! and first ~solid curve! ap-
proximations are given.

FIG. 8. Effective permittivity of composite containing wire pai
vs frequency for the volume concentration of 3%. The zero~dashed
curve! and first~solid curve! approximations are given.
15541
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in the infrared. Surprisingly, the magnetic polarizability of
ring for these higher frequencies is substantially decrea
due to strong radiation losses, which will result in mu
smaller values of the effective permeability. It appears t
the dispersion region ofmeff in ring composites is essentiall
limited by infrared spectral range. The effective permeabi
for R0530 nm and two concentrationsp56% and p
530% is presented in Fig. 11. Similar to the two-wire com
posite, at frequencies where the real part has peaks,
imaginary part is small, which is important for possible a
plications. For ring composites, the concentration can be
creased, which allows the negative permeability to be re
ized, as demonstrated in Fig. 11~b!.

FIG. 9. Effective permeability and permittivity of composit
containing wire pairs vs frequency for the volume concentration
3%.

FIG. 10. Magnetic polarizabilityx05x81 ix9 of open-ring con-
tour vs frequency. The zero~dashed curve! and first ~solid curve!
approximations are given.
1-11
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IV. CONCLUSION

We have shown that a metal-dielectric composite hav
loop-shape nanoscale inclusions responds to optical radia
as if it has effective magnetic properties. Such material
be named as optomagnetic. It is known that the macrosc
magnetic properties originated by localized electrons in a
have no physical meaning from optical frequencies onwa
In contrast, the effective permeability of the proposed co
posite is proven to be consistent with the macroscopic M
well equations even at optical frequencies, having values
can differ substantially from unity within a dispersion ban
Optical effects are predicted which are related to spec
conditions of reflection and refraction at interface with su
a medium. They are likely to find applications in optic
filters, sensors, polarizes, and other optoelectronics dev
An interesting example is the reflectionless normal incide
from vacuum when the permeability and permittivity are t
same. This condition is an optical analogy of the impeda
matching known for microwaves and is quite realistic in t
considered optomagnetic materials for a certain narrow
quency range. In addition, the losses~imaginary parts of
these parameters! can be small at those frequencies.

The analytical approach developed is based on solving
scattering problem for metallic inclusions of two types:
ring with a relatively large gap and a pair of parallel wire
The method allows us to find the current and charge dis
butions within the inclusion, which constitute the effecti

FIG. 11. Effective permeability of composite containing op
rings vs frequency for the volume concentration of 6%@in ~a!# and
30% @in ~b!#. The zero~dashed curve! and first ~solid curve! ap-
proximations are given.
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permeability and permittivity. The localized plasmon mod
are proven to play an important role as they make the mic
structure to be resonant at frequencies much lower than th
following from the half-wavelength requirement for micro
wave antennas. For example, the effective permeability
composites having two-wire inclusions of 100 nm lon
shows resonance behavior with a characteristic frequenc
431014 Hz ~750 nm!. The parameters determining the op
cal conductivity such as relaxation time~mean-free time be-
tween collisions! are also important to realize favorable res
nance conditions. The use of noble metals as Au, Ag, and
is preferable to increase the relaxation time. However,
cause the composite structure has nanodimensions, the
parameters may need to be modified. This factor requ
further investigation.

For composite with volume fraction more than 1% t
interactions between inclusions become important. They
considered in a self-consistent manner using the effec
medium theory. It turns out that the interactions broaden
dispersion region and strongly reduce the permeability pe
near the resonance, preventing it from having negative
ues. It may be that the effective medium theory for the co
sidered system is a rough approximation. Then, the anal
of the effective permeability in a periodic array of loop
shaped inclusions allowing an exact solution would be o
considerable interest.

The analysis predicts that inherent metallic microstruct
properties will limit magnetic activity of the type considere
here by visible spectral range. More specifically, magne
properties of the composites containing ring-shape inclusi
will not be essential past the infrared as radiation effe
become very strong. The radiation factor is reduced fo
contour formed by two parallel wires. With this structur
element the effective magnetism can exist in visible spec
range.

Finally, the resonant properties of the proposed optom
netic medium strongly depend on conductivity. It is know
that the conductivity of nanoinclusions can be changed c
siderably by external parameters such as bias magneti
electric fields.34,35This opens up a possibility to create ada
tive optics: modulators, tuneable lenses, and filters hav
small energy losses.

APPENDIX A

Here we describe the iteration method of solving E
~34! and ~35!. The convolutions of the currentj m,e(x) with
the Green functions are considered separately for the real
imaginary parts. Approximates~29! and~36! are used for the
real parts. Equations~34!, ~35! with j (x)5 j m,e(x) and
e0(x)5ē01x7ē02x can be rewritten in the form

F ]2

]x2 1 k̃2GF j ~x!1
i

~Q7Qd!
@ Im~G7Gd!* j #G

5
iv«

8p~Q7Qd!
e0~x!1

i ~ k̃22k2!

~Q7Qd!
@ Im~G7Gd!* j #

1
v«zxx

2pac~Q7Qd!
@ Im~Gw!* j #, ~A1!
1-12
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where

k̃25km,e
2 5

v2

c2 «mS 11
iczxxQw

2pavm~Q7Qd! D .

The members of Eq.~A1! are grouped in a way to separate
renormalized wave numberk̃. Equation~A1! can be treated
as an inhomogeneous differential equation with respec
]2/]x21 k̃2. The general solution of this equation is repr
sented by

j ~x!5A sin~ k̃x!1B cos~ k̃x!1
iv«

8p~Q7Qd!k̃

3E
2 l /2

x

sin@ k̃~x2s!#e0~s!ds1
i ~ k̃22k2!

~Q7Qd!k̃

3E
2 l /2

x

sin@ k̃~x2s!#@ Im~G7Gd!* j #ds

1
v«zxx

2pac~Q7Qd!k̃
E

2 l /2

x

sin@ k̃~x2s!#

3@ Im~Gw!* j #ds2
i

~Q7Qd!
@ Im~G7Gd!* j #.

~A2!

The parametersA and B are found from the boundary con
dition

j ~2 l /2!5 j ~ l /2![0. ~A3!

Equation~A2! is the Fredholm equation of the second kin
which allows the iteration method to be successfully us
with a rapid convergence. The zero iteration is constructe
follows:

j 0~x!5A sin~ k̃x!1B cos~ k̃x!

1
iv«

8p~Q7Qd!k̃
E

2 l /2

x

sin@ k̃~x2s!#e0~s!ds.

~A4!

The nth iteration can be written as

j n~x!5 j 0~x!1
i ~ k̃22k2!

~Q7Qd!k̃
E

2 l /2

x

sin@ k̃~x2s!#

3@ Im~G7Gd!* j n21#ds1
v«zxx

2pac~Q7Qd!k̃
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3E
2 l /2

x

sin@ k̃~x2s!#@ Im~Gw!* j n21#ds

2
i

~Q7Qd!
@ Im~G7Gd!* j n21#. ~A5!

The parametersA and B have to be calculated at the fina
stage of the iteration method. In the case of the zero appr
mation, Eq.~A4! together with Eq.~A3! yield expression
~42! of the main text (em5const). When the next iteration i
considered, the parametersA andB are needed to be calcu
lated again to satisfy Eq.~A3!.

Introducing the integral kernelS for Eq. ~A5! give

j n~x!5 j 0~x!1E
2 l /2

l /2

S~x,q! j n21~q!dq. ~A6!

Here

j 0~x!5A sin~ k̃x!1B cos~ k̃x!1
iv«e0

8p~Q7Qd!k̃2
,

S~x,q!5S1~x,q!1S2~x,q!1S3~x,q!,

S1~x,q!52
i

~Q7Qd!
Im@G~r !7Gd~r d!#,

r 5A~x2q!21a2, r d5A~x2q!21d2,

S2~x,q!5
i ~ k̃22k2!

~Q7Qd!k̃
E

2 l /2

x

sin@ k̃~x2s!#

3Im@G~r !7Gd~r d!#ds,

r 5A~s2q!21a2,

r d5A~s2q!21d2,

S3~x,q!5
v«zxx

2pac~Q7Qd!k̃
E

2 l /2

x

sin@ k̃~x2s!#

3Im@Gw~r !#ds, r 5A~s2q!21a2.

The kernelS is written as the sum of three terms that rep
sent three different sources of radiation.S1 is a local kernel
depending only on the wave numberk in free space. This
contribution corresponds to that of the wire with infinite co
ductivity. The next two terms are nonlocal.S2 is responsible
for the radiation into free space partly penetrating back to
wires. Points in space are electrically bound via the cond
tors, which is represented by the convolutions with functi
sin@k̃(x2s)#. S3 accounts for retarding effects related to im
pedance boundary condition. All three members of kerneS
contain a small factor 1/4p(Q7Qd) resulting in a rapid con-
vergence of the iteration sequence.

The first iteration gives
1-13
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j 1~x!5AS sin~ k̃x!1E
2 l /2

l /2

S~x,q!sin~ k̃q!dqD
1BS cos~ k̃x!1E

2 l /2

l /2

S~x,q!cos~ k̃q!dqD
1

iv«e0

8p~Q7Qd!k̃2
S 11E

2 l /2

l /2

S~x,q!dqD . ~A7!
ze

k

ry
-
o
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The parametersA and B are found by solving two linear
equations@ j 1(6 l /2)[0#

S sin~ k̃l /2!1a11 cos~ k̃l /2!1a12

2sin~ k̃l /2!1a21 cos~ k̃l /2!1a22
D ^ S A

BD5S C
D D ,

~A8!

where
S a11 a12

a21 a22
D 5S E

2 l /2

l /2

S~ l /2,q!sin~ k̃q!dq E
2 l /2

l /2

S~ l /2,q!cos~ k̃q!dq

E
2 l /2

l /2

S1~2 l /2,q!sin~ k̃q!dq E
2 l /2

l /2

S1~2 l /2,q!cos~ k̃q!dq
D , ~A9!
and
r a
the

op

the

t
d
red

for
S C

D
D 52

iv«e0

8p~Q7Qd!k̃2 S 11E
2 l /2

l /2

S~ l /2,q!dq

11E
2 l /2

l /2

S1~2 l /2,q!dq
D .

In Eq. ~A9! the equalityS2,3(2 l /2,q)[0 is used. Equation
~A9! is represented as

S a111a21 2 cos~ k̃l /2!1a121a22

2 sin~ k̃l /2!1a112a21 a122a22
D ^ S A

BD
5S C1D

C2D D . ~A10!

From Eq.~A10!, A andB are given by

A5
~C2D !1B~a222a12!

2 sin~ k̃l /2!1a112a21

, ~A11!

B5S C1D

2
1

~D2C!~a111a21!

4 sin~ k̃l /2!12~a112a21!
D Y

S cos~ k̃l /2!1
~a222a12!~a111a21!

4 sin~ k̃l /2!12~a112a21!
1

a121a22

2 D .

The resonance wavelengths are calculated by putting to
the real part of the denominator in the expression forB. The
resonance peaks are determined by its imaginary part ta
at the resonance wavelength.

APPENDIX B

The current distribution in a thin conductor of arbitra
form was analyzed by Mei.32,33 The problem was solved us
ing the Fredholm equation of the first kind, which does n
contain the wave operator]2/]x21k2 explicitly. As a result,
ro

en

t

the iteration procedure cannot be applied to this equation
the overall analysis is very complicated. Fortunately, fo
circular current loop the problem can be formulated using
methods developed here for a straight conductor.

We will use cylindrical coordinates (r,u,z) with the ori-
gin in the center of the loop as shown in Fig. 12. The lo
has a small gap of a segmental angle. The dihedral angleu is
measured from the gap. The vector potentialA taken at the
point P(r0) is represented as a contour integral along
current loop

A~r0!5E
L
j ~r s!G~r !ds, ~B1!

where r s5(R0 ,us,0) is the vector pointing to the curren
element,r 5ur02r su, R0 is the radius of the current loop, an
j (r s) is the linear current. Because of symmetry, the scatte
fields are described by only one componentAu of the vector
potential

Au~r0!5E
L
j ~s!G~r !cos~u r 0

2us!ds, ~B2!

FIG. 12. Principal geometry, directions, and quantities used
the calculation of the current distribution along an open ring.
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where the integration is with respect tos5R0us and j (s)
5u j (s)u. The electric fieldeu is equated as

eu~r0!52
4p

iv« F 1

r2

]2

]u2 Au1k2AuG . ~B3!

Equation~B3! taken at the loop@r05(R0 ,u,0)# becomes

ēu~n!52
4p

iv« F ]2

]n2 ~G* j !1k2~G* j !G , ~B4!

~G* j !5E
0

l

j ~s!G~r !cos~u2us!ds, ~B5!

r 5AR0
21~R01a!222R0~R01a!cos~u2us!.

Here n5R0u, l 5R0u0 is the length of nonclosed loop (u0
,2p). Formally, Eq.~B4! is similar to Eq.~26! for ēx in a
straight wire. To use the impedance boundary conditions~24!

we have to find the circumferential magnetic fieldh̄w @in
local cylindrical coordinates (a,w,n) with n along the loop
axis#. A general form of the scattered magnetic field taken
the loop pointn is

h~n!5
1

c EL

~12 ikr !exp~ ikr !

r 3 @ j ~s!3r #ds, ~B6!

where r 5AR0
21(R01a)222R0(R01a)cos(u2us). The in-

tegration in Eq.~B6! is divided into two parts, one for which
r .D and the other for whichr ,D, whereD is a distance
small compared withR0 but large compared witha. In the
first integral, the contribution toh̄w(n) averaged over the
wire circumference is estimated to be of the ordera/R0

3,
which is small and can be neglected@see expression~29! for
Qw]. For the integration wherer ,D, we can take (j3r )w

5 j (s)a and h̄w(n) is equated similar to that for a straigh
wire

h̄w~n!5
a

c En1

n2 ~12 ikr !exp~ ikr !

r 3 j ~s!ds, ~B7!

where D5un22n1u. Although the parameterD is chosen
arbitrarily, we assume that the integration is bounded in
segmentR0c with anglec'2A2a/R0, between the points
n1 and n2 as shown in Fig. 13. Then,h̄w is expressed in
terms of the convolution

h̄w~n!5
2

ac
~Gw* j !,~Gw* j !5E

n1

n2

Gw~r ! j ~s!ds, ~B8!

where

Gw~r !5
a2~12 ikr !exp~ ikr !

2r 3 ,

n15max@0,~n2A2aR0!#, n25min@u0R0 ,~n1A2aR0!#.

~B9!
15541
t

e

Now we are able to formulate the integrodifferential equat
for the current distribution in a circular loop. Substitutin
Eqs.~B4! and ~B8! into boundary condition~24! yields

]2

]n2 ~G* j !1k2~G* j !5
iv«

4p
ēu0~n!2

iv«znn

2pac
~Gw* j !,

~B10!

j ~0!5 j ~ l ![0.

Here the convolutions are defined by Eqs.~B5! and ~B8!.
The external electric fieldēu0(n) is considered to be circular
which is induced by the external magnetic field perpendi
lar to the loop plane. As in the case of two-wire contour, t
external electric field in the plane of the ring does not aff
the magnetic moment. The axial component of the surf
impedance§nn5§xx is defined by Eq.~25!. Equation~B10!
formally is similar to Eqs.~28!, ~33! and can be solved usin
the method developed. The convolutions are estimated a

@Re~G!* j #' j ~n!E
0

l

Re@G~r !#cos~u2us!ds5 j ~n!Q,

Q5E
0

l

Re@G~r !#cos~u2us!ds}
1

4p E
0

l cos~u0/22us!ds

A~s2 l /2!21a2

,
ln~ l /a!

2p
,

@Re~Gw!* j #' j ~n!E
n1

n2

Re@Gw~r !#ds5 j ~n!Qw ,

~B11!

Qw5E
n1

n2

Re@Gw~r !#ds}
a2

2 E
0

D ds

@~s2D/2!21a2#3/2

1
a2k2

2 E
0

D ds

A~s2D/2!21a2
}@11a2k2 ln~D/a!#;1.

The iteration method is formulated as follows:

FIG. 13. Principal integration path for Eq.~B7!.
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j n~n!5 j 0~n!1
i ~ k̃22k2!

Qk̃
E

0

n

sin@ k̃~n2s!#@ Im~G!* j n21#ds

1
v«§nn

2pacQk̃
E

0

n

sin@ k̃~n2s!#@ Im~Gw!* j n21#ds

2
i

Q
@ Im~G!* j n21#, ~B12!

where

j 0~n!5A sin~ k̃n!1B cos~ k̃n!1
iv«ēu0

4pQk̃2
,

k̃5kg, g5S 11
ic§nn

2pavm

Qw

Q D 1/2

.

Introducing a general kernelSgives Eq.~B12! in the form

j n~n!5 j 0~n!1E
0

l

S~n,q! j n21~q!dq, ~B13!

S~n,q!5S1~n,q!1S2~n,q!1S3~n,q!, ~B14!

S1~n,q!52
i

Q
Im@G~r !#cos~u2uq!,
or

v.

J.

n

ett

y

S

E
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r 5AR0
21~R01a!222R0~R01a!cos~u2uq!,

S2~n,q!5
i ~ k̃22k2!

Qk̃
E

0

n

sin@ k̃~n2s!#

3cos~us2uq!Im@G~r !#ds,

r 5AR0
21~R01a!222R0~R01a!cos~us2uq!,

S3~n,q!5
v«§nn

2pacQk̃
E

0

n

sin@ k̃~n2s!#Im@Gw~r !#Q~s,q!ds,

r 5AR0
21~R01a!222R0~R01a!cos~us2uq!.

Here

Q~s,q!5 H1,qP@s1~s!,s2~s!#
0,qP@s1~s!,s2~s!#

is the ‘‘cutting’’ function. This function takes into accoun
that the integration with respect toq is made in the interval
@s1,s2#, where s15max@0,(s2A2aR0)# and s2
5min@u0R0,(s1A2aR0)#.
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