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Optomagnetic composite medium with conducting nanoelements
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Atype of metal-dielectric composites has been proposed that is characterized by a resonancelike behavior of
the effective permeability.¢ in the infrared and visible spectral ranges. This material can be referred to as an
optomagnetic medium. It consists of conducting inclusions in the shape of nonclosed contours or pairs of
parallel sticks with length of 50—-100 nm embedded in a dielectric matrix. The analytical formalism developed
is based on solving the scattering problem for considered inclusions with impedance boundary condition,
which yields the current and charge distributions within the inclusions. The magnetic properties originated by
induced currents are enhanced by localized plasmon modes, which make an inclusion resonate at a much lower
frequency than that of the half-wavelength requirement at microwaves. It implies that microstructure can be
made on a scale much less than the wavelength and the effective permeability is a valid concept. The presence
of the effective magnetic permeability and its resonant properties lead to unusual optical effects and open
interesting applications. In particular, the condition for Brewster’s angle becomes different resulting in reflec-
tionless normal incidence from aivacuun) if the effective permeability and permittivity are the same. The
resonant behavior of the effective permeability of the proposed optomagnetic medium could be used for
creation of optical polarizes, filters, phase shifters, and selective lenses.
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[. INTRODUCTION tion n. Many surprising effects are possible in these so-called
left handed materials theoretically predicted by Vesef4go,
Metal-dielectric composites, in which small metal par- which would be of great importance for communications and
ticles are embedded into dielectric host, present an excitinglectronics. These include reversed Doppler and Cherenkov
area of study. The overall electric, magnetic, and opticakffects and a reversed Snell’s angle, which could result in
properties are not governed by the behavior of the raw makenses without limitations on the resolution by wavelendth.
terials. A vast amount of literature exists on this topic. In theSo far, the concept of negative refraction has been predicted
limit of high metal concentration, the percolation across theand proven at microwave frequencies. In the experiment on
connected clusters results in critical dielectand magnetic  deflection of a beam of microwave radiation by a prism
responses, strong local field fluctuatiband enhancement of made of wire-and-ring material negative refraction angles
transport® and optical”’ nonlinearities. In the limit of di- were found® which correspond to the negative indesap-
luted composites, individual metal inclusions contribute topropriate to Snell’'s law. The transmission spectra measured
the effective electromagnetic properties; however, small mein these materials also confirm the concept of negatite
tallic scatters may show completely different behavior as An immediate question is whether left-handed materials
compared with bulk metals. In both cases, the effective perean be realized at optical frequenciéale exclude from con-
mittivity e.¢ and permeabilityxe can be tuned to values not sideration photonic crystals where it is difficult to assign an
easily possible in natural materials. effective equivalenn and where the phenomenon of nega-
Recent advances in microfabrications make possible cretive refraction has been recently predicted near negative
ation of composite materials with constituents of differentgroup velocity band$®) On one hand, negative dielectric
forms and sizes down to nanoscalésThis offers a way to  constant is natural for metals below the plasma resonance
engineer various dielectric and magnetic metamaterialghat falls above visible frequencies. For example, silver
since the effective parameterg; and o are determined by would be a good choice for negative permittivity at optical
microstructure. Composites containing rings, helixXopar-  frequencies since the resistive part is very small. On the
ticles exhibit resonancelike behavior of both the permittivity other hand, quite rigid limitations exist with respect to the
and permeability in overlapping frequency baf®swhich  permeability at high frequencies. There is a widespread be-
is quite unusual in nature. In a medium of three-dimensionalieve that the concept of permeability has no physical mean-
array of intersecting wires the propagation modes have ag at optical frequencies and onward, as was proven for
dispersion characteristic similar to that in a neutral plasmatomic magnetisnisee, for example, Ref. 20The aim of
with negativee .+ below the plasma resonance somewhere irthis paper is to elucidate the implications related to high-
the gigahertz rang®¥:*® It was further shown that the com- frequency magnetic properties and to demonstrate that
posites built of two-dimensional arrays of split copper riffgs metal-dielectric composites with nanoinclusions can have a
and wires have a range of frequencies over which both theonsiderable magnetic activity at optical frequencies
permittivity and permeability are negative in microwaves. We consider two types of metal-dielectric composites
These materials have generated a considerable interestagth inclusions forming different current contours: two-wire
they offer a possibility to realize a negative index of refrac-contour and a single ring with a gdpee Fig. 1 The math-
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g E E dium is foreseen to find a variety of applications in optics
‘)_. and optoelectronics. The resonance properties of the effec-
X H K tive permeability at optical frequencies can be exploited for

the production of tuneable narrow bandwidth optical filters
(either on reflection or on absorptiprThe presence of per-
meability may be used in optoelectronic interferometers to
measure phase shifts induced by magnetic fields and is likely
f l " to result in a new generation of all optical sensors. The de-
I pendence of permeability dispersion upon carrier concentra-
(a) tion inside the inclusion and external parameters could be
— used for creation of tuneable optical elements.

Natural ferromagnetic behavior tails off completely at gi-
gaherz frequencies. In the case of ferrite materials with few
magnetic sublattices, there exists so-called exchange modes

of magnetic excitations with eigenfrequencies in the infrared,
é’\o C but their intensity is very small. Then, only the electron
C C movement under the Lorentz force would contributeutg

E
H
“v 4%

i c at optical frequencies. In this case, there appears a problem
C i C CO of using a concept of permeability in the averaged macro-
CC St scopic Maxwell equations. The situation is different for com-
CC C i C CC“C posite materials containing nanosized metal inclusions. The
OCC C CO effective permeability is obtained by averaging the magnetic
C CC 00 moments of closed currents in metal inclusions and can have
C c quite high values as a result of the resonance interaction of
CCC 0 b the incident electromagnetic wave with plasmons confined
COC ( ) inside the inclusiorilocalized plasmon modgsThe resonant

frequency is lowered considerably allowing the resonance to
occur at wavelength of the exciting light much larger than
cal frequencies. A possible polarization of the electromagnetic wavéhe inclusion S|z_e(at microwaves, there would be_ a half-
associated with induced magnetic properties is indicateda)ina wavelength reql._Jlremenlt for resonapemd the effective pa-
system of nanowires grown on a substrate is shown, in which tw(;ametgrs are _St'” a_valld concept. Near resonance, the cur-
parallel wires form a constituent element. The spacing in the pair of€NtS in the inclusions are enhanced and large magnetic

wires is much smaller than the distance between the paifg)jm  Moments are generated. That may either enhgpeemag-
nanoring composite is shown. netic effecj or oppose(diamagnetic effegtthe incident field

and the effective permeability exhibits a resonant behavior.
ematical formalism developed is based on a modified anConsidering a diluted system with a small volume concen-
tenna theory, which provides a bridge between the microtration p<1 of the current contours and calculatipgy by
wave methods using distributed parameters and the optic&ummation over independent magnetic moments give the
description based on plane waves and surface plasmons. Wispersion of the effective permeability witla.«>1 below
show that the magnetic properties at optical frequencies caifie resonance andes goes to negative values past the reso-
be generated by localized plasmon modes. The theory préance. However, the interaction between the inclusions
dicts resonancelike behavior of the effective permeability(taken into account within the effective medium thedip)
over certain frequency range in the infrared and visible partslecreases considerably the valuesugf near the resonance
of spectrum in such composites. The negative valugs.@f and for realistic concentration®€0.1) alwaysu>0. The
are possible past the resonance; however, high volume fraconsidered system has also the effective permittieity.
tions are needed to realize.3<0 since the magnetic dipole For ring-inclusions, the value @fy; is reduced due to geom-
interaction strongly reduces the resonance peaks. Neverthetry. For two-wire contours, the permittivity is essential for
less, other unusual optical effects can be realized in the predae light polarization with the electric field along the wires
ence of someues nNoticeably different from unitywhich do  [see Fig. 18)]; however, the resonance frequency Q¥ is
not require negatives). In particularly, the condition under shifted towards higher frequencies with respect to that for
which there is no reflected wave@rewster's angle  ues, Which makes it possible to realize the conditigpy
changes. In the case.z=¢e @ normal incidence from air =g in both cases.

(vacuum gives no reflection. This effect known at micro-  The paper is organized as follows. Section Il starts with
waves could be useful for optical filters and isolators. the description of proposed optical effects due to existence of
The phenomenon of nontrivial permeability at optical fre- substantialues. In Sec. Il we discuss in more detail the
guencies can be named optomagnetiand the area of study limitations on the concept of permeability at high frequen-
is then referred to as optomagnejigsorder to distinguish it  cies. Section IV formulates how to determine the effective
from the magnetic field influence on light propagation parameters in the considered composites. In Sec. V, the
known as magnetooptics. The proposed optomagnetic menathematical formalism for calculation of the current distri-

FIG. 1. Composite medium with effective permeability at opti-
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E1Mp— EQM M2
tanfy= \) @

EoM1M2— E1 Mg

when (e1u5—eom1 )/ (e op1ptp—8113) =0.
Suppose that the optical properties are due only to the

magnetic permeability &;=g,=1n;=y,N,= ),
then, the Brewster angle is given by

m,ELu | M,€2,Hp tanf,=n,/n;. (5)

Equation(5) formally coincides with a usual equation known
for p-polarized light(electrical field is in the plane of inci-

dence. For incidence from aifvacuu =u,=1), Eq.
bution in the inclusions is given. Section VI presents the(4) bgcomes ( M (e1=w1=1), Eq

obtained results o and e and an overall discussion.
There are also two mathematical appendixes.

«1» | «2»

FIG. 2. Geometry of reflection and refraction.

p5—n;
tanf,= _nz_ 1
Il. BREWSTER'S ANGLE IN THE PRESENCE 2
OF PERMEABILITY which can be satisfied either hya=n3>1 (|u,|=|e,| and

In2|>1) or by u5<n3<1 (|usl<|e,| and|n,/<1).

For the p-polarization case, the Brewster angle can be
und from Eq.(4) by interchanging: and . This is because

e boundary conditions for the two cases are symmetrical

with respect tcE andH. Then, Eq.(4) becomes

Introducing effective magnetic permeability at optical fre-
guencies may result in some unusual behavior of light propa;
gating in macroscopically heterogeneous composite medi%
(with boundaries Here we consider the reflection and re-
fraction of a polarized light at an interface between two di-
electric media with nontrivial magnetic properties. The re-
sults of this section are, in many respects, kndaee, for tanfy=\/———m— (6)
example, Ref. 28 however, it is convenient to reexamine the H2€1827 [H18g
conditions of reflection/refraction described by Fresnel'synq Brewster’s angle exists fqr polarization when /(Llsg
equations, since they are customarily analyzed for nonmag;'u £18) (1pe189— 1182 =0. FOr puy=py=1 Eq. ()
netic materials. In particular, we show that the condition un- ivezs ; 2stand2ar1d ?‘ormlfc}r the Brewst%ar arﬁgle agany I,
der Wh'Ch, there is no a ref_lected wave from a boundarSEJcompare with Eq.5)]. In the case of incidence from air
(Brewster’'s anglebecomes different in the presence of per-(8 —1 andu,=1) Eq. (6) reduces to
meability. The light is incident from medium “1” with the ‘°1! M1 9
material parameters;, w, towards medium “2” withe,,

Mo. The quantities pertaining to the incident, reflected and tanf,= —. 7)
transmitted waves are distinguished by the suffixes i, r, and t, n—1

respectively, as shown in Fig. 2. In the case of the electrig:rom Eq.(7) it is clear that Brewster's angle in this polar-
field E perpendicular to the plane of incidentepolariza-  jzation is realized either under the conditie3=n3>1
tion) the Fresnel’s relationship between the field in the |nC|-(|82|>|M2| and |n,|>1) or sgsn§<l (|les]<|po| and

dent wave and that in the reflected wavé’is In,|<1), which are opposite to those fetpolarization.
It is worth mentioning that for both polarizations there is
= i 1) no reflection at normal incidence under the condition
(n1/p1)cosb;+(ny/ ua)cose e1/ui=¢e51u,, as follows from Eqs(4) and(6). This result
is well known for microwaves, representing the condition of
the impedance matching since the ratip is related to the
wave impedancé It also means that an arbitrary polarized
light will not be reflected from the interface of aivacuum
and a medium with optical constants,| = |u,|. Thus, there
with the index of refractiom= e . The conditionE, =0, May be an optical analogy of the impedance matching. In
or view of these conditions of reflection, optomagnetic materi-
als may demonstrate interesting phenomena at optical fre-
Nyup COSH; =Ny COSH;, (3)  quencies, suitable for applications in optical filters, phase
shifters, and isolators.

2
M1E— U2E1E

€Ny

Er) _ (Ny/pq)cos;— (Ny/ ) COSH;
B/,

Here, ¢; . are the corresponding angles of incidence, reflec
tion and refraction obeying usual Snell’s equation

0,=06,, nysinf;=n,sinb, (2

gives Brewster's angled,. For nonmagnetic medigu,
=u,=1 Eq.(3) can hold only ife;=¢, (no optical inter-
face. Therefore, Brewster’s angle is not observed $qo-
larization in conventional optics. Witle, ,# 1 the absence
of reflection and Brewster’s angle can happen evensfor In this section we analyze the restriction conditions for
polarization: introducing high frequency permeability to the Maxwell

lIl. LIMITATIONS IMPOSED ON PERMEABILITY
AT HIGH FREQUENCIES
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equations. The magnetizatidh= (B— H)/47 appears in the result of local field averaging. For a composite with metal
Maxwell equations as a result of averaging the microscopi@rains of a few nanometres, the effective parameters includ-

current densitydc: ing permeability become meaningful even for optical fre-
quencies. In this case, the effective permeability is obtained
(Imie) by averaging the magnetic moments of induced currents in
curlM = ——. ®  metal inclusions. Our analysis demonstrates that inequality

) . ~ (12) is satisfied in the composites considered over certain
Here<' : > stands for a mean value of a microscopic quantltyfrequencies in the 0ptica| range.

c is the velocity of light(Gaussian units are used throughout
the pap_e)“. The phyS|caI.mean|ng of.magnet|zat|on is the IV. PROBLEM FORMULATION
magnetic moment per unit volume. This comes from the pos-
sibility to rewrite the total magnetization of the body in the

form In metal-dielectric composites irradiated by high fre-

quency electromagnetic field the magnetic properties are pro-
1 duced by contour currents induced in metallic inclusions. If
f MdV= 2_0,[ (rxX{Jmc)dV, (9)  the spatial scale of the system is smaller than the incident
wavelength, the magnetic moments of individual current
where the integration is carried out inside the body. Equatiofoops (within a single inclusion or formed by a number of
(8) is correct for a static magnetic field. When the macro-them) give rise to magnetization and the effective
scopic fields depend on time, the establishment of the relapermeability”**?*The interaction between induced currents
tionship between the mean val(&,.) and other quantities can be considered within the effective medium approxima-

is not straightforward. A general form of E¢B) is®® tion. Composite materials with inclusions of a complex form
(split rings, chiral and omega partic)eare known to have
(Imic)  1dP unusual magnetic properties including both giant paramag-
curM=—-—- 43¢ (10 nhetic effect and negative.s.1°-2 These properties are re-

] o . lated to resonance interaction of the electromagnetic wave
whereP is the polarization vector. However, EQL0) is not \ith an inclusion and have been reported for microwave fre-
consistent with Eq(9). Therefore, the physical meaning of guencies. The complex form of the inclusion is needed to
M at high frequencies depends on the possibility of neglectyezjize the resonant conditions at wavelengths much larger

ing the second term in the right part of EG.0): than the inclusion size. For example, in a unit with two co-
d axial rings having oppositely oriented sptts large capaci-
ccurlM > _P (11)  tance is generated lowering the resonance frequency consid-
dt erably. When the inclusion dimensions are reduced down to

anoscale, the wavelength can be proportionally decreased
own to microns falling in the optical range. Then, the effec-
tive permeability of nanocomposites can be substantial at
optical frequencies. However, it seems that the fabrication of
nanoinclusions of a complex form may not be a realistic task.
Fortunately, in the optical region the resonance frequency is
lowered due to localized plasmon modes and fairly simple
y>all\, (12) inclusions of a loop shape wiII_cregte §ubstantia| magnetic
moments even when the inclusion size is much smaller than
where\ is the wavelength. It is generally considered that atthe wavelength of the incident light.
optical frequenciesand onwargl inequality (12) cannot be Within the effective medium theory, the problem is re-
satisfied and the concept of the permeability is meaninglessgluced to considering the scattering of electromagnetic wave
This is correct if the magnetic moment is associated withby a metallic contour. In general, this process can be very
electron motion in the atom. Indeed, the relaxation times foicomplicated. Here we consider two types of inclusions: ring-
any paramagnetic or ferromagnetic processes are consid&haped inclusionéhaving some gap large enough to neglect
ably larger than optical periods. Thegnis due to electron the edge capacitancand pairs of parallel conducting sticks
movements under the Lorenz force, and can be estimated adnnected via displacement currefgse Fig. 1, which per-
x~ (v/c)?, wherev is the electron velocity in the atom. On mit a fairly simple analysis at certain approximations. For
the other hand, the optical frequencies are of the ordefof the chosen geometry, the resonance of localized plasmons
where b is the atomic dimension. Then E@l2) readsl confined within the inclusion is realized, which leads to the
<bh(v/c), which is not compatible with the requirement that resonant current distributions and eventually, to large in-
the characteristic size of the system has to be much greatduced magnetic moments. The latter is responsible for the
than the atomic dimension$Db). effective permeability having a resonancelike dispersion law
The situation may be completely different for metal- with the resonant frequency coinciding with that for the cur-
dielectric composites. If the inclusion size is smaller than theent distribution.
wavelength(but larger than the atomic sigz¢he effective Let us formulate the basic assumptions under which the
magnetic and dielectric parameters can be introduced as @oblem is treated. We consider the composite medium irra-

Let us suppose that the fields are induced by an electroma
netic wave of frequencyw. Estimating cu~ yH/I,
dP/dt~waE, where y is the magnetic susceptibilityy is
the electric polarizability] is the characteristic size of the
system, and taking~H for the electromagnetic wave, Eqg.
(11) can be written as
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d (12
m=oz—j Jm(X)dx, (14
CJ-2

where d is the distance between the sticks. The magnetic
polarizability y, of a single inclusion associated with the

induced moment can be found from= y,VH, whereV is

the volume of the metallic inclusion. The effective perme-

ability is calculated from a self-consistent equation of the
type2,22,24

Jm(0)

C

Metr= 1+ AmPXx0( Mett) s (15

wherep is the volume concentration. If the incident electro-
magnetic wave has the electric fididparallel to the wires
[Fig. 1(@)] a substantial electric dipole moment is generated
contributing to the effective permittivity. The currerjtsin-

. . . . duced by this field can be considered separately as shown in
diated by a plane-polarized electromagnetic wave of a smglﬂ1e following section. The electric dipole momemand the

frequencyw, so that the time dependence is of the formdielectric polarizabilitye of the inclusion are calculated for

exp(—iwt)._The_contour lengtt(l) is much Igrger than the " stick contour using the continuity equatiéi./dx=iwp and
cross-section size €. Then, when calculating fields in the integrating by parts with boundary conditiopg =1/2)=0

surrounding space, the thickness of the contour can be ne- . - ;

glected and the induced currents can be replaced by the e?t8 's the charge density per unit length

fective linear currentg. The current distribution inside the i (e

inclusion affects the scattered fields only via the boundary p:ox—f jo(X)dx, p=ayVE. (16)
conditions imposed at the inclusion surface. The wavelength WS-

is also much larger than the cross section2a, but there is
no restrictions o with respect to.. The magnetic moments onsistent equation similar to E€L5).25
in the composite are induced when the incident light has th& | ql is it will be i t. i id

magnet feld directed perpendiculr 0 the piane of a me. % 0% SHANSS VL e TEOATL o eonsit @
tallic contour as shown in Fig. 3. In the case of a circular :

) ' : : : wave antenna theory it is known that a nontrivial current
contour[Fig. 3(a)], the fieldH induces a circumferential cur- .~ "> " . L
) ; : distribution occurs when the wavelength is in the rangé of
rent j ,(6) depending on the azimuthal angte Then, the . . ; .
: . . . . Then, the use of the effective dielectric and magnetic param-
magnetic momenin associated with this current is

eters is doubtful. However, in our case the situation is differ-
) ent. In optical and infrared spectral ranges, metal conductiv-

1 RS (o ; .
M ZJ [rx3.(r)]dV= OZZ_;)J Oj (e)de, (13) ity o can be approximated by Drude formula
0

FIG. 3. Geometry of metallic inclusions, principle directions,
and quantities used.

The effective permittivity can be found from the self-

Jo
whereJ,=jm(6) s, 5 is the two-dimensional Dirac delta- olw)= T (17
function which peaks at the axis of the wif; is the radius
of the contour, (2r— 6,) is the angle of the gap, amgdis the ~ where cro=wf,7-/477, o is the plasma frequency; is the
unit vector perpendicular to the contour plane. The currentselaxation time(for silver, 0,=5.7x10"" s*! and r=2.7
due to the electric field give no contributiontim In the case X 10~ *s). In the high frequency range considered hese (
of a pair of conducting stickgFig. 3(b)] the current is dis- ~10°s 1) losses in metal grains are relatively smalr
tributed along their length and can form closed contours via>1. Therefore, the metal conductivity is characterized by the
the displacement currents. The metallic sticks as elements siominant imaginary part. This is very important for our
produce the effective permeability were first proposed inanalysis since the current can have a resonance for a consid-
Ref. 25. In this work, however, a random assembly of me-erably larger wavelength>2I. Physically, this is associated
tallic sticks was considered, for which the total magneticwith the resonance of localized plasmon modes.
moment vanishes due to symmetry. As a result, the effective In Eq. (17) the relaxation timer has a meaning of the
permeability for such a system is unity, as was proven bymean-free time between electron collisions. The metal inclu-
experiment® (in Ref. 26 the response from a stick compos-sions considered here have a length in the range of 100 nm
ite is described adequately in terms of the effective permitand a cross-section size of 10 nm. The mean-free pass in
tivity, indicating that the effective permeability is essentially noble metals such as silver is about 40 nm. It implies that the
unity). The magnetic properties may appear only in dilutedparameterr used in Eq.(17) differs from that in bulk mate-
composites containing pairs of parallel sticks as a single elrials. However, in the frequency ranger>1, electrons os-
ement, as shown in Fig.(d). The magnetic moment is then cillate many times between collisions and the collisions are
found agfrom symmetry, the contribution from the displace- of little importance. The conductivity has a dominant imagi-
ments currents equals to that from currgpéx)]: nary part independent af.
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2 2

()= 2y Ee=3(Hoxn), (21)
N r0?r ' dme

wheres is the surface impedance matrixjs the unit vector

The resistive losses, which are determined by the real parhormal to the surface and directed inside the conduktpis
are typically smaller or in the range of the radiation losseshe tangential component of the total magnetic field taken at
and will only slightly change the values of currents at reso-the surface(hereafter, overbar is used to denote tangential
nance. However, the resonance frequency will shift considfields at the inclusion surfageFor the geometry considered
erably towards higher frequencies dfr~1. This imposes here(see Figs. 1 and)3the external magnetic field is normal
limitations on the minimum cross section. to the contour plane and gives no contribution to E2f).

The scattered fielth is determined as

V. MATHEMATICAL BACKGROUND 4
ar
A. Basic equations h= Tcurl A

Let us consider the current distribution in a thin metallic
conductor irradiated by an electromagnetic field. The ap®’
proximations used areaxl, A>2a. This is a standard ) ,
problem of the antenna theofgee, for example, Refs. 27 h(ro)zlf (l_lkr)aexmkr)[J(r’)xr]dvr,. 22
and 28, which can be treated in terms of retarded scalar ClJv r
and vectorA potentials. The total electric fiell;=e;+ e is _ )
represented by the sum of the external figjdand the scat- When the skin effect is strong, E¢21) does not depend

tered fielde. In the Lorenz gaugede/dt+4m divA=0, the ~ UPON geometry and for a nonmagnetic condugpermeabil-
equation fore is written as ity of metal is always unity at optical frequencids repre-

sented by a scaldnormal skin effect

Amiop A .
e= >— A— ——grad divA. (18 D)
c iwe s=(1-i)\/=—. (23
8o

The vector potentiah taken at arbitrary point, is obtained ) o ) )
in the form of a convolution with the total current density The case of a thin arbitrarily shaped conductor having a cir-
J(r): cular cross section allows the surface impedance to be deter-

mined for any frequencies. The electromagnetic field inside
exp(ikr) such a conductor can be taken to be the same as that inside a
A(ro)Z(G*J)Zf Jr")G(ndVy, G(r)=—F——, straight cylinder. Then, in the local cylindrical coordinate
v (19 system (,¢,x) with the axisx in the axial direction the
impedance boundary conditio®1) become

Aar

wherer=ry—r’, r=|r|, integration is taken over the vol-

ume containing currenk= (w/c) e is the wave number, Ex=Sxgp»
G(r) is the Green function satisfying the Helmholtz equa-
tion. Customarily, Eq(19) is solved under the zero boundary Ew: — gwﬁx, (24)
condition
with?
E.=0, (20
o koc Jo(koa) koc Ji(koa)
where E, is the tangential component of the total electric SO 4w Ji(kod) ' o9® Amo Jo(kod) ' (29)

field taken at the surface of the conductor. Then, the current

distribution is found from an integrodifferential equation. wherekj=4miow/c? andJ,, J; are the Bessel functions of
The condition(20) corresponds to the case of an ideal con-the zero and first order, respectively. Equati¢®f are valid
ductor with infinite conductivity. Being used as an approxi-for normal skin-effect. For the dimensions considered, the
mation, Eq.(20) works reasonably well when the radiation skin depth is in the range of the mean-free pass, and both
losses are considerably larger than the resistive ones or tlikese parameters are larger trenThen, the skin effect is
system is out of resonance. However, in certain cdses week, and using Eq25) is still reasonable.

cluding ours, the current distribution may have a zef@r Since we are interested only in fields in the surrounding
greatly reduceddipole moment. This implies that the radia- space, the current inside a thin conductor can be replaced by
tion losses are comparable with the resistive ones and then effective linear ong(x) that flows along the axis of the
condition (20) is no longer valid. The processes related to awire: J(r)=j(x)ds. The volume integration in Eq19) is
finite conductivity may change the resonance condition fothen replaced by the integration along the current contour.
the current distribution: reduce the current amplitude andrhus, the current distribution in a thin conductor irradiated
shift of the resonance wavelength. Here the problem idy the electromagnetic field is found from Ed48), (19)
solved imposing impedance boundary conditions, which isvith boundary condition(24) that binds scattered fields
valid at any frequency including the optical range (18) andh (22) taken on the surface of the conductor.
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B. Current equation in a straight wire whereQ andQ,, are positive form factors. The logarithmic
with circular cross section term inQ,, is neglected sincak<1 in our case.

First, the current equation is obtained for a straight wire 1€ convolutionsj(x) with Re(G) and ReG,) give the
with a circular cross section placed in the electrical figyd Main contribution to Eq(28): [[Im(G)*j]|<[[Re)*]]| and
(of any origin parallel to the wire axis. The scattered field |[IM(Gy)*i]l<|[Re@G,)*]]. On the other hand, convolutions
e is determined by thet component of the vector potential. ](X) with imaginary parts Ing) and Im(S,) are responsible
The value of the longitudinal electric fiek(x) taken at the for radiation losses and become important at resonance. They
wire surface is represented in terms of the integrodifferentiaf@n be calculated by the iteration method given in Appendix

operator with respect tg, as it follows from Eqs(18), (19: A Equation(28) is reduced to an ordinary differential equa-
tion for the zero approximatiofig(x) where the radiation

A7 [ 92 ) losses are neglected:
a [ * * 3
&(X) == —|—3(G*]) +k*(G*]) |, P i
1000 +KEo(X) = 1 Eox(X) (30
2 (9X2 0 1J0 47TQ 0x )
(G*j)=J j(s)G(r)ds, r=\(x—s)?+a% (26)
e ki=kg, (3D
For this geometry, the scattered magnetic fﬁwtaken at : 12 . 12
the surface is circumferential. In EQR2), considering that g=( ng—XQ‘!’) ~ G
the effective linear curreni(x’) is flowing along the wire 2mawp Q awuIn(l/a)

axis z/andro points at the wire surface yieldsl(x )<l Equation(31) shows that the impedance boundary condition

=j(x")a. Then, the equation fdn, obtains the form renormalizes the wave number of the incident radiation.

2 2 (2 Considering the solution of Eq30) with j(—1/2)=j(1/2)

h,(x)= a_c(sz): a:j j(5)G,(r)ds, (27) =0, the resonance wavelengths_a_lre determined via this new
12 wave number from the condition ckg/2=0 or kql

- — 2 (2n—1):2728
whereG,(r) =a?(1—ikr)exp(kr)/2r3. m(2n-1)

Finally, substituting Eq926) and(27) into boundary con- 2|
dition (24) yields the integrodifferential equation for the lin- Nresn =51 Re(d Jew), n=123,... (32
ear currentj (x):
A similar renormalization method for the wave number has
been used to tackle boundary effects in the microwave scat-
tering from a conducting stick placed in a thin dielectric
(28 layer

Equation(28) is solved imposing zero boundary conditions
at the wire endsj(—1/2)=j(1/2)=0 (the end surfaces are
assumed small and associated capacitance is neglected With the help of Eq.(28), we can now consider the cur-
Real parts of the Green functions B§(@nd ReG,) have  rent distribution in two parallel wires. The distandebe-
sharp peaks a=x, which makes it possible to use the fol- tween them has to be larger than the diameter 2a) in

2 iwe | WESyy

J
* i 2 * i) — = _
_&XZ(G J)+Kk(G*)) I €ox(X) >

(GI)-

ac @

C. Current equation for two parallel wires

lowing approximations for calculating the convolutidhs order to use the approximation of thin conductors. The equa-
o tions for currents are of the form
[RG(G)*J']~1'(X)J’_”2 R G(r)]ds=j(x)Q, 72
&_XZ(G*jl)—"kz(G*jl)
Q f”z R G(r)]d L _ds In(l/a) lwe WES
— r S —— ~ , — — XX .
“12 4w ) _ip\s?+a2 2w = 77 [Box(X¥) +€an(X) ] = 52 (Ghi1),
L 112 _ 72
[RE(G,) J]%J(X)f_llzRG[G¢(V)]d5:J(X)Q<p, W(G*J'z)"‘kz(G*jz)
12 a2 rir ds _iw_s . _ B lwesy, .
Q‘p= f—l/z RQG¢(I’)]dSO<? f—uzm? T Ax [e02x(x)+elzx(x)] 2rac (G¢JZ)-

(33

a’k? (12 ds -

+t _llzm“[lﬂi k=In(l/a)]~1, Heree,,, ande,,, are the longitudinal electric fields induced
by each conductor at the surface of othey, andeg, are

(290  the external fieldsj,(x) andj,(x) are the linear currents
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inside the conductors. The fields,, ande,;, are determined ICSyy Q. 12

from Eq. (26) with r=r 4= \(x—s)?+d>. ke:kge-ge:(1+ mawp (O+ Qg

Equations(33) are reduced to two independent equations

by introducingj.=(j1+],)/2 andj = (j1—j)/2: ICSyx 12
o n(Zda) (40)
awu In(l</da)
92 . .
a_XZ[(G_Gd)*jm]+kz[(G_Gd)*jm] The general solution of Eq$37), (38) is of the form
e
ws _iwsse Ly Jmeo0=Asinkn ) + B coskin ) + %.
= — — - —_— m(Q+
87T (eOIX eOZ() 2’7Tac ( @]m)! ( ) d m(,Zl)
2 In Eq. (41), the first set of subscripts corresponds to the
G+ GI* I T+ KI(G+ G i magnetic excitation for which sign “minus” in the last term
r?_XZ[( @) Jel [ @) Jel is taken, and the second set corresponds to the electric exci-
i i tation with sign “plus.” Imposing zero boundary condition
o (BoucBon) — e (Ghie), (35 Umeo ~1/2)=]meo(1/2)=0] yields
) iweenq  [COgKp el /2) —CcOg K X)]
X)= —
Gy(r g) = explikr o)/t 4. Jmeot) = 4 QT QI cogKp el /2)

(42

It is easy to see that only electric fieéd directed along the The resonance wavelengths,, A, for the two excitations

wires and magnetlc fieldH perpendlcular to the two-wire are different and can be found from the Cond|t|bme
contour(xy plang will excite currents inside the inclusion in - = (2n—1):%7:28

the discussed geometry. The perpendicular magnetic field
produces circulatory electric fielde,,= (iw/2c) uHId/(l 2|

+d) along the wire contour due to Faraday’s law of induc- Mm,e= 2n—1 op—1 ReVeume), N=123,... (43
tion. Therefore, the external electric fields are of the form
€o=€q+ ey andeyx=e4—ey,. This implies that the cur- The amplitude of the current at resonance is restricted by

rentj,, in the first equation is induced by the magnetic fieldlosses related to conductivity and relaxation properties of the

and is responsible for the magnetic momentThe current  surrounding medium. However, soluti¢gdl) does not con-

j entering the second equation is created by the electric fieltRin such an important factor as radiation losses since the

and defines the electric dipole moment imaginary parts of convolutions were neglected. To find the
For d sufficiently small(strong interaction the convolu-  €ffect of radiation, original Eq(33) can be solved by itera-

tion with the Green functiofG4(r4) can be estimated with tions. For this purpose, it is converted to an integral form in
the help of an approximate formu(@9): the Appendix A. Thenth iteration can be represented as

112
[Re(Gg)*j]1~](x)Qq., (36) In(X)=Jo(X)+ f_I/ZS(X.Q)J'n—l(Q)dq, (44)

2 ds In(I/d) where the zero iteratiojy, has to be taken in the form of Eq.
_ (41) since the boundary condition is imposed fy and
—112y/s +d2 2m S(x,q) is the integral kernel. The iteration method is proven
to converge very rapidly. The first iteratigp is sufficient to
Similar to Eq.(30), the zero approximation for the current take account of the radiation effects. Its explicit form and the

12 1
Qd:f i Re Gy(rqg) ]dS“

distribution reads form of the kernelS(x,q) are calculated in Appendix A.
The scattering at a ring inclusion gives similar results for
52 iwe the current distribution and magnetic polarizability. This case
' 2 = is considered in Appendix B.
ﬁ?JmO(X)_l—ka mO(X) 47T(Q_Qd) em (37) pp

VI. RESULTS AND DISCUSSION

2 iwe

X —zJe0(X) +Kgjeo(X) = W (38 We are now in a position to proceed with the analysis of
the effective magnetic and electric properties associated with
) o f[h(.a currents induced in thg metallic contours. The character-

K —Kgo g _( 1CSyy Q. ) istic sizel is taken to be in the range of 100 nm and the

mrom 2maonu (Q—Qq) cross-sectional size of 10 nm. These scales can be achieved

2 in practice. The conductivity obeying the Drude equation
(39) (17) with parameters typical of such noble metals as silver
' and copper are used in all the calculations. The effect of a

ICSyy
T aenin(dla)
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smaller relaxation timdin comparison with that of a bulk
meta) due to electron scattering at the inclusion surface re- 104
sults in shifting the dispersion region to higher frequencies.
Two-wire contour First, we consider two-wire contour ~ Ix10
composites irradiated by light having the magnetic field el
perpendicular to the contour plane and the electric fteld 8x103
perpendicular to the wires. For this polarization, the circula-
tory currentsj,, are induced leading to the effective perme- 4x108
ability. The effective permittivity can be considered to be
unity. The dimensions used are as follows: 100 nm, a 0 s s s
=6 nm,d=30 nm. It is useful to investigate the forms of the -0.04 -0.02 xokofm) 0.02 0.04

current distribution for different frequencies along with the
dispersion law of the magnetic polarizability of the inclusion X104}
Xxo=x' tix". Figure 4 shows plots of(x)=j'(x)+ij"(x)
as a function of a distancealong the wire for three frequen-
cies f<f o, f~fles, aNdf>Tf o5, Wheref,=C/\ s is the
resonance frequency. The current distribution is calculated RTRT 7] R N— zero approximation
using formulas(37) and (A7) obtained in the zero approxi-
mation and using first iteration, respectively. In this case, the
resonance wavelength is found to kg= 730 nm, which is
several times larger than it could be expected from half-
wavelength resonance condition{= 2I) known for micro-
wave antenna$.?® The skin effect is weak for the chosen
wire radius and the contribution from the surface impedance 50
causes this remarkable shift of the resonance wavelength
since the conductivity is dominantly imaginary for these fre- 7
guencies. Physically, this result corresponds to localized with the account
plasmon modes inside the wire. sob of radiation

On the other hand, the current distribution exhibits all the
features typical of those in microwave antennas. The real Lol oo f~f

., . - res

partj’ changes phase &f.. For frequencies below the reso- /
nanceFig. 4a)] j’ is positive and magnetic polarizability of
the inclusiony, exhibits a paramagnetic response, as it is . , . .
seen in Fig. 5. Fof>f,s[Fig. 4b)], j’ is negative ang,g is 004 -0.02 0.00 0.02 0.04
of a diamagnetic character, showing quite large negative val- % (pm)
ues. Closer to the resonangé,undergoes rapid transforma-
tions[Fig. 4(c)]. In this frequency range small factors such as 8x104 F i
radiation may introduce essential change§'ifx) plots, but fof
the integral parameteyy(w) does not change much showing 6x104 - res
only a small shift of the resonance frequency and a slight
decrease in the resonance peaks. For the considered geom- -~
etry, the dielectric dipole moment is zero and the radiation is
strongly reduced.

Figure 6 shows the effective permeabilityp=p' +in”
calculated for the volume concentration of inclusiops (d)
=6% by considering the current contours as independent 0 00h 002 000 . 002 0.04
magnetic moment&ipole sum and within the effective me- X (um)
dium theory (EMT) [see Eq.(15)]. In this case, the wire
radius was chosen to be 10 nm to demonstrate that the reso- FIG- 4. Typical current distributiofincluding realj" and imagi-
nance shifts to higher frequencies since the skin effect i§ary " parts along the wire length for different frequenciéa f
stronger for a larger cross section. For noninteracting mo=fres: (0) > fres, and(c) and(d) f~fres-
ments, the resonance peaks in permeability are large reach-
ing negative values past the resonance and the dispersitine light absorption is still negligible. It may happen that
region is narrow, whereas the interaction broadens the peEMT is a rather rough approximation for the considered sys-
meability behavior and reduces the peakswof and u”  tem. A periodic array of two-wire contours may exhibit a
greatly, so that the real part is always positive. An importanistronger magnetic activity as suggested by the dipole sum
characteristic is that’ peaks at lower frequency wheut is  result, which does show negatiye. In any way, the actual
very small. Thus, there exists a range of frequencies wherkehavior is somewhere in between the considered cases and
the light propagation is affected by magnetic properties buthe least range of’ variation is 1.5-0.5 for this concentra-

f>f F1x)

res

with the account
of radiation

Jix)
(b)

-0.04 -0.02 0.00 0.02 0.04
X (pm)

Jix)

-150}  zero approximation ()

//(x)

4x104 |

2x104
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8

6l %= 57x1017 | zero approximation 3F  1=100nm s 6%

4t 'v 2.7x10 42 with the account a=10nm

of radiation 2F  d=30nm
2 .
=0 "

21 1=100 nm @) ol o,= 5. 7x1017 ::," --------- dipole sum

4+ Z: g(;lm N fms - 4.13x10M4 o2 7% 101 .:.» —— mean field theory

L = nm gk i

-6 A~ 730 nm>>2l 1 . . @
_8 1 1 1 1 1

400 405 410 415 420 425 430 4.0 45 50 355 6.0 6.5 7.0

10-14 f (Hz)

10-14 f (Hz)

dipole sum

{ — mean field theory

400 405 410 415 420 425 430 40 45 50 55 60 65 70

-14 p
1014 £ (Hz) 10141 (Hz)
FIG. 6. Effective permeabilityt=u'+in” of composite con-
taining wire pairs vs frequency for the volume concentration of 6%,
calculated for two cases: independent inclusi@eshed curvyeand
inclusions in effective mediurnfsolid curve.

FIG. 5. Magnetic polarizabilityyo=x'+ix" of two-wire con-
tour vs frequency. The zer@ashed curveand first(solid curve
approximations are given.

tion, which is quite big. It has to be noted that the magnetiqar effect of smoothing the resonance characteristics. The real
properties in two-wire contour system cannot be enhancefart of the permittivity is negative near the high-frequency
by simply increasing the concentration. If the distance besijde of the resonance. Figure 9 compares the dispersion be-
tween the pairs is in the range qr then the induced mag- havior for e and ey (P=3%) for the aforementioned po-
netic properties disappear as it is clear from symmetry. Theyrization. The resonance region feg is shifted towards
system of randomly placed wires has no magnetic propertieﬁigher frequencies. In the area of magnetic resonapngg,
(neglecting those due to circumferential currents inside thevseff with very small losses:”<1, u”<1. It means that
wires), as already discussed in Sec. IV. _ inequality (12) is satisfied sincé/A<1 and the concept of
We now consider the polarization of the incident light for yermeapility is meaningful at optical frequencies. Therefore,
which H is still perpendicular to the contour plane WS ihig system can be useful for designing materials with effec-

along the wires. For this case, bqif; ande are essential.  tiye parameters suitable for new optical effects described in
The result foruef is the same as considered previously sincegge ).

the currentsj,,, and j. due toH and E contribute indepen-

dently to the magnetic and electric polarisabilities, respec- )

tively. The currentj., which determines the electric polariz- Ring contour

ability of the inclusion aqy, is calculated in zero A similar magnetic behavior is obtained for ring-
approximation(38) and taking first iteration(A7). In this  composite materials irradiated by light having the magnetic
case, the results fakg=a’ +ia" differ greatly for the zero field perpendicular to the plane of the rifgpe Appendix B

and first approximations, as shown in Fig. 7, because of &he electric field of the incident light is in the plane of the
substantial radiation effect. The polarizability has resonanting and always induces some effective permittivity. In this
dispersion behavior. The radiation losses make the resonancese, the magnetic and electric resonance frequencies coin-
wider, shift the resonance frequency and reduce the resonagide. The value ot is reduced in comparison with that of
peaks. Comparing plotsy(w) and xo(w) (Fig. 5 it is seen  the two-wire case since the average exciting electric field for
that the resonance frequency teg is higher, since the reso- the electric dipole moment is smaller. Then~ e at reso-
nance forj, happens at higher frequency than fgr. The  nance in this system.

effective permittivity eq=¢’+ig” calculated forp=3% Figure 10 shows the dispersion behavior of the magnetic
within EMT [see Eq.(15)] shows a very broad dispersion polarizability of the ring inclusion. The calculations are
region as seen in Fig. 8. In terms of;, the effect of radia- made withRy=50 nm,a=5 nm, andf,=320°. The gap in
tion is not pronounced since the interaction itself has a simithe ring is sufficiently large to avoid any effects from the
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3.0 ;
60 H 1=100 nm
40 1=100nm & . zero approximation 25k p=3% : 8/ a=6nm
r a=6nm - : _
d=30 nm with the account 20l 5 d=30nm
201 of radiation © ’ : 0,= 5.7x1017
~ 1.5 : T=2.7x10-14
= :
20¢ o, =5.7x1017 10
A0r 1 =27x104 0.5
(a) : Ares ~ 750 nm
601 1 1 1 L 0.0 1 |.:.A/ L 1 1
5.0 5.5 6.0 6.5 7.0 75 2 3 4 5 6 7 8
1014 f (Hz) 10-14 f (Hz)
60 FIG. 9. Effective permeability and permittivity of composite
containing wire pairs vs frequency for the volume concentration of
3%.
in the infrared. Surprisingly, the magnetic polarizability of a
ring for these higher frequencies is substantially decreased
due to strong radiation losses, which will result in much
smaller values of the effective permeability. It appears that
(b) the dispersion region g« in ring composites is essentially
limited by infrared spectral range. The effective permeability
. . . . for Rg=30nm and two concentrationp=6% and p
5.0 55 6.0 6.5 7.0 7.5 or L o .
10-14 £ (Hz) =30% is presented in Fig. 11. Similar to the two-wire com-

FIG. 7. Electric polarizabilityxy= o’ +i«a"” of two-wire contour
vs frequency. The zeréashed curveand first(solid curve ap-

proximations are given.

posite, at frequencies where the real part has peaks, the
imaginary part is small, which is important for possible ap-
plications. For ring composites, the concentration can be in-
creased, which allows the negative permeability to be real-
ized, as demonstrated in Fig. (bl

edge capacitance, which could be difficult to control at

nanoscales. For these dimensions, the resonance wavelength 20t o
is about 2um (infrared part of the spectrumThe radiation 15F 0,=37x1017 7% | e zero approximation
losses are essential because of the existence of the electric Lol t=27x1014 with the account
dipole moment. They strongly reduce the resonance peaks. In sk . of radiation
order to move the dispersion region to the visible spectral =~ = b
X . = 00
range, the ring diameter has to be decreased. However, wedo *~ ¢ @}
not have much flexibility since for our analysis the condition 05r R =50 nm =
Ro>a is important. Further decreasedmmay be not realis- A0 - smm e LsTxi0M (a)
tic and WI|| brln_g about complex behavior of the conductivity -L5F 8,=320° N um>> 2R
in low-dimensional systems. TakeRy=30 nm, the reso- 20F ) oo 0
nance wavelength decreases down to JuB@ which is still 12 14 1.6 18 2.0
1014 f (Hz)
3.0 4.0
a5t 1=100 nm ‘ ----------- zero approximation| 35t
20 a=6nm with the account 3.0
of radiation 2.5
1.5 = 20
® 10 0,=57x1017 | p=3% = 1s
o5l T=27x10M | 10
0.5
0.0 g ' ...................... 0.0
o5t 0.5 . : !
1 2 3 4 5 6 7 8 9 10 1.2 1.4 L6 1.8 2.0
1014 f (Hz) 10-14 f (Hz)

FIG. 8. Effective permittivity of composite containing wire pairs
vs frequency for the volume concentration of 3%. The Zeiashed
curve and first(solid curvg approximations are given.

FIG. 10. Magnetic polarizability,= x' +ix” of open-ring con-
tour vs frequency. The zer@ashed cunjeand first(solid curve
approximations are given.
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14 i permeability and permittivity. The localized plasmon modes
Ao, =5.7x1017 - are proven to play an important role as they make the micro-
12 _ﬁ/,//\ T=2.7x10-14 structure to be resonant at frequencies much lower than those
1.0 following from the half-wavelength requirement for micro-
08l wave antennas. For example, the effective permeability of
= R,=30nm composites having two-wire inclusions of 100 nm long
06 2=5nmm A B 23310 shows resonance behavior with a characteristic frequency of
0.4 : A ~130um>>2R 4x 10" Hz (750 nm. The parameters determining the opti-
o2l \ cal conductivity such as relaxation tintmean-free time be-
00 R () tween collisiongare also important to realize favorable reso-
N A nance conditions. The use of noble metals as Au, Ag, and Cu
16 18 20 22 24 26 28 30 32 34 is preferable to increase the relaxation time. However, be-
10141 (Hz) cause the composite structure has nanodimensions, the bulk

parameters may need to be modified. This factor requires

2.1+ " o =57x1017 : o
= 0 further investigation.
s p=30% g

r T=2.7x10-14 For composite with volume fraction more than 1% the
1L.5¢ w! R =30nm interactions between inclusions become important. They are
1.2 a=5nm considered in a self-consistent manner using the effective

medium theory. It turns out that the interactions broaden the
dispersion region and strongly reduce the permeability peaks

= 0
0.9 8,= 320

g::- / _ near the resonance, preventing it from having negative val-
0.0 Pt P\ P ues. It may be that the effective medium theory for the con-
g sidered system is a rough approximation. Then, the analysis
031 R (b,) of the effective permeability in a periodic array of loop-
1.6 1.8 20 22 24 26 28 30 32 34 shaped inclusions allowing an exact solution would be of a
10-4 £ (Hz) considerable interest.

The analysis predicts that inherent metallic microstructure
properties will limit magnetic activity of the type considered
here by visible spectral range. More specifically, magnetic
properties of the composites containing ring-shape inclusions
will not be essential past the infrared as radiation effects
become very strong. The radiation factor is reduced for a
IV. CONCLUSION contour formed by two parallel wires. With this structural

We have shown that a metal-dielectric composite havingf;igeent the effective magnetism can exist in visible spectral

loop-shape nanoscale inclusions responds to optical radiation Finally, the resonant properties of the proposed optomag-

as if it has effective magnetic properties. Such material can tic medium strongly depend on conductivity. It is known

be named as optomagnetic. Itis known that the MACTOSCOPI 4t the conductivity of nanoinclusions can be changed con-

. ) - : : t
magnetic properties originated by localized electrons in ato"%iderably by external parameters such as bias magnetic or
electric fields***°This opens up a possibility to create adap-

have no physical meaning from optical frequencies onward

In contrast, the effective pe_rmeabll_lty of the proposeq COM3ive optics: modulators, tuneable lenses, and filters having

posite is proven to be consistent with the macroscopic Max:
. ) i : mall energy losses.

well equations even at optical frequencies, having values that

can.differ substantially frpm unity_within a dispersion banq: APPENDIX A

Optical effects are predicted which are related to specific

conditions of reflection and refraction at interface with such Here we describe the iteration method of solving Egs.

a medium. They are likely to find applications in optical (34) and(35). The convolutions of the currenf, o(x) with

filters, sensors, polarizes, and other optoelectronics devicethie Green functions are considered separately for the real and

An interesting example is the reflectionless normal incidencdémaginary parts. Approximatg®9) and(36) are used for the

from vacuum when the permeability and permittivity are thereal parts. Equationg34), (35 with j(X)=]jne(x) and

same. This condition is an optical analogy of the impedancey(x) =€, + €9 Can be rewritten in the form

matching known for microwaves and is quite realistic in the

FIG. 11. Effective permeability of composite containing open
rings vs frequency for the volume concentration of A#w(a)] and
30% [in (b)]. The zero(dashed curveand first(solid curve ap-
proximations are given.

2 .
considered optomagne_ti_c materials fqr a c_ertain narrow fre- —+K2|| 0+ _I—[Im(GiGd)*j]
quency range. In addition, the lossémaginary parts of ax (Q+Qq)
these parametersan be small at those frequencies. i ~> o
The analytical approach developed is based on solving the _ lwe eo(X)+ i(k"—k%) [IM(GFGg)*j]
scattering problem for metallic inclusions of two types: a 8m(QFQq) ° (Q¥Qy) d
ring with a relatively large gap and a pair of parallel wires.
The method allows us to find the current and charge distri- WE {yx Im(G )*i Al
> method allows us to find th . . 5020 MG, (A1)
butions within the inclusion, which constitute the effective 2mac(Q=+Qq)
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where X .
X f siMk(x—$)I[IM(G,)*j,1]ds
~1/2

2 .
w ICgXXng

~ ) _
k2=kmve=?s,u, 1 [

.
vk

2maou(Q+ Qq) m[lm(e+ed) jn-1l- (A5)
The members of EqA1) are grouped in a way to separate a The parameters and B have to be calculated at the final
renormalized wave numbdr. Equation(Al) can be treated stage of the iteration method. In the case of the zero approxi-
as an inhomogeneous differential equation with respect tenation, Eq.(A4) together with Eq.(A3) yield expression
#%19x?>+k2. The general solution of this equation is repre-(42) of the main text &,=const). When the next iteration is
sented by considered, the parametefsand B are needed to be calcu-
lated again to satisfy EQA3).

Introducing the integral kernes for Eq. (A5) give

j(x)=Asin(kx) + B cogkx) + Iw—8~ 12
8(Q= Q) in(0=io00+ [ Sxaina@da (a0

X L2 L2
xf sir{"k(x—s)]eo(s)ds+w Here

-1z (Q+Quk .

. o~ —~ |(1)8e0

< 5 jo(x)=Asin(kx)+ B cogkx) + ————,

><J:”zsir[k(x—s)][lm(GIGd)*j]ds 87(QF QK2

S(x,9)=S1(x,q) +Sx(x,0) + S3(x,0),

we fyx X L~
+—~j Ilzsu'[k(x—s)] :
2 FQuk -
WaC(Q Qd) I Sl(X,q):—mlm[e(r)IGd(rd)],
*jlds— ——— FGy*jl.
MO (grgy M e e @R, 1=
(A2) ~
i(k>—Kk?) (x .
The parameterg and B are found from the boundary con- So(x,9)= RN f,,,zs"{k(x_s)]
dition (Q+Qgk
XIM[G(r)FGy(rg)]ds,
j(=112)=j(l/2)=0. (A3)

r=\(s—q)2+

Equation(A2) is the Fredholm equation of the second kind,

which allows the iteration method to be successfully used rq=(s—q)?+d?,
with a rapid convergence. The zero iteration is constructed as
follows: wel y
XX - T
Ss(X,Q)=—2 0+ 0 )~kf Ilzslr[k(x—s)]
~ ~ mac(Q+ -
jo(x) = A sin(kx) + B cogkx) d
i ) XIM[G,(r)]ds, r=v(s—q)?+a’
we L~
+ —_~k ﬁl/z sink(x—s)]eo(s)ds. The kernelSis written as the sum of three terms that repre-
87(Q+Qq) sent three different sources of radiati®.is a local kernel

(A4) depending only on the wave numblkerin free space. This
contribution corresponds to that of the wire with infinite con-
The nth iteration can be written as ductivity. The next two terms are nonloc&, is responsible
for the radiation into free space partly penetrating back to the
wires. Points in space are electrically bound via the conduc-

) ) i(k2—k?) (x tors, which is represented by the convolutions with function
In(X)=jo(X)+ ——— W) sifk(x=s)] sink(x—s)]. S; accounts for retarding effects related to im-
(Q+Qq pedance boundary condition. All three members of keBel
0l contain a small factor 1#(Q+ Q) resulting in a rapid con-
X[IM(G*Gy)*jp_1]dS+ ————— vergence of the iteration sequence.
2mac(Q+Qqyk The first iteration gives

155411-13
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12

j100)=A| sin(kx)+ wazsu,q)sin(kq)dq

PHYSICAL REVIEW B66, 155411 (2002

The parameteré\ and B are found by solving two linear
equationg j;(=1/2)=0]

_ /2 _ ik &
+B coskx)+f S(x,Q)COS(kq)dq) ( sm(kl/2)+a11 COS{E”ZHaH ®(A)=<C),
-2 —sin(kl/2)+a,, cogkl/2)+ay/ B/ \D
: (A8)
lweey 112
— 1+f S(m)dq)- (AT)
8m(QFQq)k? 12 where
12 - 172 ~
f S(172,q)sin(kq)dq S(1/2,9)cogkq)dq
aq; apo —1/2 —1/2
)= : (A9)
ay; as 112 s 112 -
f Si(=172g)sin(ka)dq f Si(—1/2,g)cogka)dq
~1/2 ~1/2
|
12 the iteration procedure cannot be applied to this equation and
] 1+ S(1/2,9)dq the overall analysis is very complicated. Fortunately, for a
|(l)SeO —1/2

o)

In Eq. (A9) the equalityS,  —1/2,0)=0 is used. Equation
(A9) is represented as
A
“B

(A10)

112

8m(QF Qq)k? 1+ J Si(—1/2,9)dq
112

( ayy+ay 2 cogkl/2) +as,+ay,

2 sin(kl/2) +a;;—ap
C+D

:(C—D)'

From Eq.(A10), A andB are given by

app—ax

A (C—D)+B(azxp—a)
2 sin(KI/2)+ay—ay

)/

(ag—a)(ataz)
4 sinkl/2) +2(ay;— ay)

(A11)

C-I—D+
2

(D-C)(a;tay)
4 sinkl/2)+2(ay;— ayy)

apptag
2

( cogkl/2)+

The resonance wavelengths are calculated by putting to zero

the real part of the denominator in the expressionBforhe

resonance peaks are determined by its imaginary part taken

at the resonance wavelength.

APPENDIX B

The current distribution in a thin conductor of arbitrary
form was analyzed by Mé?>3The problem was solved us-

ing the Fredholm equation of the first kind, which does not

contain the wave operat@?/dx>+ k? explicitly. As a result,

circular current loop the problem can be formulated using the
methods developed here for a straight conductor.

We will use cylindrical coordinatesp(6,z) with the ori-
gin in the center of the loop as shown in Fig. 12. The loop
has a small gap of a segmental angle. The dihedral &higle
measured from the gap. The vector potentialaken at the
point P(ry) is represented as a contour integral along the
current loop

A(ro>=ij<rs>G(r>ds, (BY)

where rg=(Rg, 65,0) is the vector pointing to the current
elementy =|r,—r4, Ry is the radius of the current loop, and
j(rg) is the linear current. Because of symmetry, the scattered
fields are described by only one compon@ptof the vector
potential

Ao(fo)=JLJ(S)G(r)COS{0rO— bs)ds, (B2)

(0,0,2)

Y

FIG. 12. Principal geometry, directions, and quantities used for

the calculation of the current distribution along an open ring.
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where the integration is with respect 5= Ry6s and j(s)
=1j(s)|. The electric fielde, is equated as

192
2(902

aa
ey(ro)=— { Ayt szg}. (B3)

Equation(B3) taken at the loopry=(Ry,0,0)] becomes

_ a [ 2 5
ea(V):_st v —(G*|)+k(G*) |, (B4)
(G*))= fJ(S)G(f)COS(G 0s)ds, (B5)

r=R3+(Ry+a)?—2Ry(Ry+a)cog 6— b).

Here v=Ry6, | =Ry6, is the length of nonclosed loop¢
<2m). Formally, Eq.(B4) is similar to Eq.(26) for e, in a
straight wire. To use the impedance boundary conditi@ds
we have to find the circumferential magnetic fidid [in
local cylindrical coordinatesa ¢,v) with v along the loop

axis|. A general form of the scattered magnetic field taken at

the loop pointv is

1 1
h(V)ZEJL(

wherer = \R3+ (Ry+a)2—2Ry(Ry+a)cos@— 6. The in-

—ik ik
KOPEED opxr1ds

(B6)

tegration in Eq{(B6) is divided into two parts, one for which

r>A and the other for whiclm<A, whereA is a distance
small compared withR, but Iarge compared witl. In the
first integral, the contribution tdn(p(v) averaged over the
wire circumference is estimated to be of the ordéR3,
which is small and can be neglectete expressio®9) for
Q,]. For the integration where<A, we can take j(<r),,

=j(s)a andﬁp(v) is equated similar to that for a straight

wire

3 j(s)ds,

— a (v2(1l—ikr)exp(ikr)
-2 [ ®7)

where A=|v2—v1|. Although the parameteA is chosen

PHYSICAL REVIEW B56, 155411 (2002

FIG. 13. Principal integration path for EB7).

Now we are able to formulate the integrodifferential equation
for the current distribution in a circular loop. Substituting
Egs.(B4) and(B8) into boundary conditiori24) yields

ggvv

( o 1)
(B10)

3 . S iwe__
(G )G )= )

j(0)=j=0.

Here the convolutions are defined by E@B5) and (B8).

The external electric field,(v) is considered to be circular,
which is induced by the external magnetic field perpendicu-
lar to the loop plane. As in the case of two-wire contour, the
external electric field in the plane of the ring does not affect
the magnetic moment. The axial component of the surface
impedancss,, = s,y is defined by Eq(25). Equation(B10)
formally is similar to Eqs(28), (33) and can be solved using
the method developed. The convolutions are estimated as

|
[Re(G)*j]~j<v>f0 REG(r)]cos 0— 6)ds=j(1)Q,

I coq 6y/2— 6,)ds

o fRe[G(rncos(e 00 o o Vo2 e

arbitrarily, we assume that the integration is bounded in the

segmentRq¢ with angle y~2.2a/R,, between the points

vl and»2 as shown in Fig. 13. Therh, is expressed in
terms of the convolution

_ 2 v2
(0= (G20t [ e, nieids @9

where

a’(1—ikr)exp(ikr)
2r3 ’

vl=maq{0,(v—+2aRy)], v2=min[ 6yRy,(v+2aRy)].

Gy(r)=

(B9)

In(l/a)
= 27

v2
[Re(G¢)*J]~j(v)fl REG,(1)]ds=j(1)Q,

(B11)
v2 ds
Q(P: Jvl

o [(s—A/2)%+a?]%?

a2
Re[G‘p(r)]dsoc?

«[1+a%k?In(Ala)]~1.

2k2f ds
2 Jo (s—Al2)%°+a?

The iteration method is formulated as follows:
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"sinfk(v—9)1[IM(G)*],_1]ds
0

L2 L2
jn<u>:jo<v>+Mj
ok

(1)8@,,,, v - T *
~f sifk(v—s)][IM(G,)*jn-1]ds
2macQk’0
[ .
—a[lm(G)*Jnfl], (B12)
where
. - ~ i weeg
jo(v)=Asin(kv)+B cogkv)+ —,
47rQK?
~ _ ics,, Q, 12
k—kg, g= 1+ma) .

Introducing a general kern8lgives Eq.(B12) in the form

|
in(1)=ion+ | Sy s@da,  ®19

S(VvQ):Sl(VvQ)"'Sz(V,Q)"'Sa‘(VaQ)a (814)

Sl(VaQ): Q

Im[G(r)]cog 6—6,),

PHYSICAL REVIEW B66, 155411 (2002

r =R+ (Ro+a)2—2Ry(Ro+a)cos 6— 6,),

i(k2—k?)

sz(y,q)=—~fysir{T<(v—s)]
Qk 0

X cog 05— 0,)Im[G(r)]ds,

r=R§+ (Ro+a)%2—2R(Ry+a)cog fs— 6),

vv

wES
S(v,q)=—_

2 QkfovSinrk(V_S)]'m[%(f)]@(s,q)ds,
mac

r =R+ (Ro+a)2—2Ry(Ro+a)cos 65— ).
Here

19e[sl(s),s2(s)]
O(s.0)=10qe[s1(s),52(5)]

is the “cutting” function. This function takes into account
that the integration with respect tpis made in the interval

[s1s2], where sl=max0,(s—+2aR;)] and s2
=min[ §Ry,(s+v2aRy) ].
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