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Chirality effects in carbon nanotubes
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We consider chirality related effects in optical, photogalvanic, and electron-transport properties of carbon
nanotubes. We show that these properties of chiral nanotubes are determined by terms in the electron effective
Hamiltonian describing the coupling between the electron wave vector along the tube principal axis and the
orbital momentum around the tube circumference. We develop a theory of photogalvanic effects and a theory
of dc electric current, which is linear in the magnetic field and quadratic in the bias voltage. Moreover, we
present analytic estimations for the natural circular dichroism and magnetospatial effect in the light absorption.
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I. INTRODUCTION

Since the discovery of carbon nanotubes1 the physical
properties of these nanostructures have attracted a lo
attention.2 Usually carbon nanotubes~CN’s! are visualized as
a layer of graphene sheet rolled up into a cylinder. Depe
ing of the way of the rolling up the cylinder can be chiral
nonchiral.

In media with chiral symmetry it is impossible to distin
guish between polar and axial vectors. This leads to the
istence of the natural optical activity,3 including the optical
rotatory power and circular dichroism in the absence of m
netic fields, and any other effect of chirality where a po
vector and an axial vector~or a pseudovector! are interre-
lated by some phenomenological equation. The circular p
togalvanic effect~CPGE! is among them. In this effect a d
current induced by an electromagnetic wave of the comp
amplitudeE is proportional to components of the axial ve
tor i (E3E* ) and thus depends on the sign of the circu
polarization of light. The CPGE was predicted in Refs. 4
and then studied in bulk gyrotropic crystals6,7 and semicon-
ductor quantum-well structures.8–10

Theoretically, achiral magnetic properties and optical
sorption spectra of CN’s were investigated by Ajiki an
Ando in the effective-mass approximation11–13~see also Ref.
14!. The theory of the optical activity of CN’s has been co
sidered by Tasakiet al.3 in the framework of the microscopi
tight-binding model.

In the present paper we consider effects of chirality
CN’s by extending the effective-mass theory.11–13 We show
that these effects appear due to terms in the electron Ha
tonian describing the coupling between the orbital mom
tum around the circumference of a chiral CN and the lin
electron momentum along the tube. This is quite differ
from the case of bulk materials and semiconductor quan
wells where these effects are attributed to spin-orbit te
sakb in the electron effective Hamiltonian (sa andk are the
Pauli spin matrices and the electron wave vector;a,b are the
Cartesian coordinates!4,10 ~see also Ref. 15!.

The paper is organized as follows. In Sec. II we brie
review properties of the single particle electron spectrum
0163-1829/2002/66~15!/155404~9!/$20.00 66 1554
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CN’s and derive an expression for the matrix element of
electron-photon interaction. In Secs. III and IV we prese
the theory of photogalvanic effects in chiral CN’s. We sho
that the circularly polarized light generates a dc curr
through CN and the current direction depends on the sign
polarization, i.e., on the photon spirality. In the presence
an external magnetic fieldB parallel to the nanotube princi
pal axis, the linearly polarized light generates a dc curr
whose direction changes upon the inversion ofB. In Sec. V
we develop a theory of the magnetochiral anisotropy in
dc charge transport through a CN, which is the existence
dc current proportional toB and quadratic in the applied
electric fieldE. In Sec. VI we give analytical estimates fo
the optical anisotropy and optical activity of CN. In Sec. V
we discuss limitations of our approach and mention ot
effects which are similar to those considered in this artic

II. ELECTRON BAND STRUCTURE
AND ELECTRON-PHOTON MATRIX ELEMENTS

IN CARBON NANOTUBES

Usually carbon nanotubes~CN’s! are visualized as a con
formal mapping of a graphene sheet onto a cylindrical s
face where one of the two-dimensional~2D! Bravais lattice
vectors, L , maps to the cylinder circumference.16–18 The
structures specified by the vectorsL directed along one of
the twofold rotation axesu2 or u28 are called, respectively
armchair and zigzag CN’s, where the axisu2 is parallel and
the axisu28 is perpendicular at least to one side of the 2
lattice hexagon. These particular tubes are achiral. Excep
them all others are chiral with their principal axisz being the
screw axis.

Following Refs. 11–13 we write the circumferential ve
tor as

L5naa1nbb , ~1!

wherena ,nb are integers anda,b are the 2D basis vector
with the angle 120° between them. Choosing the coordin
systemx1 ,x2 in such a way thatx1ia, x2'a we have for the
components ofa andb
©2002 The American Physical Society04-1
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a5a~1,0!, b5aS 2
1

2
,
A3

2 D , ~2!

where the lattice constanta is equal toA3 times the inter-
atomic distanced51.44 Å.19 The electron effective Hamil-
tonian for a graphene sheet

H5S 0 h*

h 0 D ~3!

is expanded in the vicinity of the points

K5
4p

3a
~21,0!, K 85

4p

3a
~1,0! ~4!

at the corners of the 2D Brillouin zone shown in Fig. 1.
the following we definek and k8 as wave vectors referred
respectively, to the pointsK andK 8 and assume the produc
ka,k8a!1 to be small. Then, in the second order inka or
k8a, the matrix elementh in Eq. ~3! is given by~see Ref. 13!

h~k,K !5ge2 iuFk'2 ikz1
a

4A3
e3iu~k'1 ikz!

2G ~5!

near theK point and

h~k8,K 8!5geiuF2k'8 2 ikz81
a

4A3
e23iu~k'8 2 ikz8!2G

~6!

near theK 8 point. Hereg5(A3/2)g0a, g0 @'3 eV ~Refs.
11,19!# is the transfer integral between neighboringp orbit-
als,u is the angle between the vectorL and the basis vecto
a. The subscriptsz,' indicate components of a vector re
ferred to the axes lying in the graphene plane and relate
the vectorL so asz'L andkz'L , k'iL .

In the same approximation the energy spectrum near
K point is given by

Ec,v~k,K !56uhu'6gH uku1
a

4A3uku
@~k'

3 23k'kz
2!cos 3u

1~kz
323k'

2 kz!sin 3u#J , ~7!

whereuku5Ak'
2 1kz

2, the upper and lower signs represent t
conduction~subscriptc) and valence~subscriptv) bands,

FIG. 1. ~a! Schematic representation of a graphene sheet.a and
b are the primitive translation vectors, dashed lines show the t
fold rotation axesu2 and u28 . ~b! Two-dimensional Brillouin zone
of graphene.
15540
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respectively. The similar spectrum near theK 8 point is ob-
tained by changingk'→2k'8 , kz→kz8 , u→2u in agree-
ment with the time inversion symmetry requireme
Ec,v(k,K 8)5Ec,v(2k,K ).

In a CN specified by the vectorL the electron wave func-
tion satisfies the cyclic boundary conditionC(r )5C(r
1L ). This enables one to find the allowed discrete values
k' as

k'5
2p

L S n2
n

3D , k'8 5
2p

L S n1
n

3D , ~8!

wheren is an integer 0,61,62, . . . , characterizing the an
gular momentum component of an electron,L5uL u
5aAna

21nb
22nanb, and n equals to one of three integer

0,61 determined by the presentation of the sumna1nb as
3N1n with integerN. The dispersion in the conduction an
valence subbands is obtained by substituting Eq.~8! into
Eqs. ~5!, ~6! or Eq. ~7!. In the following we focus on the
nanotubes characterized by finite band gap and assumn
Þ0. According to Eq.~7!, for small values ofkz satisfying
the conditionukzu!uk'u in theK valley and similar condition
in the K8 valley, the electron spectrum has a parabolic fo
with terms linear inkz

Ec,v~n,kz ;K !56S Dn

2
1

\2kz
2

2mn
1bnkzD , ~9!

Ec,v~n,kz8 ;K8!56S Dn8

2
1

\2k
z

82

2mn8
1bn8kz8D ,

where

Dn52guk'u, Dn852guk'8 u, ~10!

mn5
\2uk'u

g
, mn85

\2uk'8 u
g

, ~11!

bn52
A3

4
gauk'usin 3u, bn85

A3

4
gauk'8 usin 3u, ~12!

and k' ,k'8 are defined in Eq.~8!. Note that the identity
Ec,v(n,kz ;K8)5Ec,v(2n,2kz ;K) follows directly from the
time inversion symmetry.

In the presence of an external magnetic fieldB, the elec-
tron energy is modified just by changingk' ,k'8 from Eq.~8!
into

k'5
2p

L S n2
n

3
1

F

F0
D , k'8 5

2p

L S n1
n

3
1

F

F0
D ,

~13!

whereF is the magnetic flux passing through the cross s
tion of a CN,F5BzL

2/(4p), andF0 is the magnetic flux
quantumch/e. Now the consequence of the time inversio
symmetry takes the formEc,v(n,kz ;F;K8)5Ec,v(2n,
2kz ;2F;K).

-
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Chirality ~or spirality! of a nanotube manifests itself in
particular coupling between the angular momentum as
scribed byn and the directed translational motion as d
scribed bykz : due to the terms linearkz in Eq. ~9! or, in
general, due to odd-in-kz terms in Eq.~7! the energy has a
contribution which depends both on the sign ofkz and the
sign of n.

It is interesting to analyze how this particular couplin
disappears for zigzag and armchair tubes which are ac
from the symmetry point of view. In zigzag tubes, the an
u between the circumferential vectorL and the vectora is an
integer multiple of 60°, sin 3u is zero and odd-in-kz terms in
Eqs. ~7!,~9! vanish. In armchair tubes, the angleu equalsu
530°1N60° with N integer leading to one of the following
three relations betweenna and nb : na52nb , nb52na , or
nb52na . This means that the sumna1nb is an integer
multiple of 3 and the parametern is zero. As a result value
of uk'u become independent of the sign ofn and the coupling
between signs ofn andkz in the terms odd-in-kz terms. This
follows also from the symmetry considerations and is
important check point. In the following sections we w
show that the odd-in-kz terms in the electron energy spe
trum govern the chirality effects in CN’s.

Let us now turn to the calculation of the matrix eleme
Vf i for the electron optical transition between the initial sta
i and the final statef. The electron envelope functions can
written in the form

cc,v~z;n,kz!5
einw

A2p

eikzz

ALCN

Ĉc,v~n,kz!, ~14!

whereLCN is the nanotube length andw is the azimuth angle
The two-component columnsĈc,v are eigenvectors of the 2
32 matrix Hamiltonian~3!, given by

Ĉc5
1

A2
Fh* /uhu

1 G , Ĉv5
1

A2
F 1

2h/uhuG ~15!

with h defined by Eq.~5! for theK valley and by Eq.~6! for
the K8 valley whereK,K8 are thez components of the vec
tors K ,K 8.

We remind the reader that the electron interaction w
the electromagnetic field is described by the perturba
(e/c)$v̂•A%s , whereA is the vector potential of the field,
2e is the electron charge,v̂ is the electron velocity operato
\21dH/dkz , and $•••%s means a symmetrized product
operators. Ifukzu!uk'u then one can neglect the second-ord
terms in the expansion Eq.~5!, the symmetrization symbo
can be omitted and the scalar product ofv̂ and the light unit
polarization vectore has the form

v̂•e5
ig

2\ F 0 eiu f 12

e2 iu f 21 0 G . ~16!

Here

f 125eiwe22e2 iwe11ez , f 215eiwe22e2 iwe12ez ,
15540
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e65ex6 iey and x,y are rectangular axes perpendicular
the principal axisz of the tube. The selection rules for matr
elements of the operator taken between the envelope f
tions Eq.~16! are in agreement with the conservation law f
z components of the angular momentanf5ni1nphot, where
nphot561 for the circular polarizations6 of a photon
propagating along thez axis andnphot50 for the light lin-
early polarized alongz. In particular, the transitions
(c,0,K)→(c,1,K), (c,0,K8)→(c,21,K8) occur, respec-
tively, under thes1 and s2 photoexcitation. The square
moduli of the corresponding matrix elements are given b

u~ v̂•e! f i u25
1

8 Fg\ kzS 1

k',0
2

1

k',1
D G2

5
1

32S g

\

kz

k',0
D 2

,

~17!

where we took into account thatk',152k',0. The transitions
under consideration are forbidden at theK andK 8 points but
become allowed forkz ,kz8Þ0. The squared moduli of the
optical matrix element is given by

uVf i u25S e

c
AD 2

u~ v̂•e! f i u25
2pe2I

v2cnv

1

32S g

\

kz

k',0
D 2

, ~18!

whereA5uAu, I is the light intensity, andnv is the refractive
index of the medium. In the following we consider a fre
standing nanotube and assumenv51.

It should be stressed that the linear-optics approxima
is valid as long as\21uVf i u!(2tp)21, wheretp is the elec-
tron momentum relaxation time, otherwise one has to t
into account the saturation of the absorption. Another imp
tant point is that the depolarization effect3,12can be neglected
provided

U4ps'

Lv U!1, ~19!

wheres' is the conductivity at the frequencyv defined as

\vW52s'S v

c
AD 2

with W being the optical transition rate.
The electron structure and optical matrix elements p

sented above are based on the effective Hamiltonian~3! de-
rived from the tight-binding Hamiltonian taking into accou
only p atomic orbitals.3,13,17 For a flat graphene sheet th
mixing of p and s bands is forbidden by the symmetr
Saitoet al.17 showed that the curvature of CN’s gives rise
somep-s mixing but near the Fermi energy an admixture
s orbitals is very small. In fact this mixing can slightl
renormalize values ofDn ,mn , andbn but the forthcoming
conclusions and estimations should remain largely
changed.

III. CIRCULAR PHOTOGALVANIC EFFECT

Physically, the CPGE can be considered as a transfor
tion of the photon angular momenta into a translational m
tion of free charge carriers. It is an electron analog of m
4-3
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chanical systems which transmit rotatory motion to a lin
one such as a screw tread or a plane with a propeller. P
nomenologically, in the case of chiral CN’s it is described

j CPGE,z5G i ~E3E* !z , ~20!

wherej CPGE,z is the dc photocurrent,G is a real coefficient,E
is the complex amplitude of the electric field of the elect
magnetic wave and, for the transverse wave,

i ~E3E* !5Pcirc E0
2 ô ~21!

with E0 ,Pcirc , ô being, respectively, the electric field amp
tude uEu, the degree of the circular polarization of light, an
the unit vector pointing in the direction of light propagatio
The photocurrent~20! reverses its direction under inversio
of the light circular polarization and vanishes for linear
polarized excitation.

Usually the microscopic theory of natural optical activi
in bulk semiconductors15,20 as well as the theory of CPGE
~Refs. 4,10! is based on allowance of spin-dependent lin
in k terms b lms lkm in the electron effective Hamiltonian
wherek is the electron wave vector ands l are the Pauli spin
matrices. The real coefficientsb lm form a pseudotensor sub
jected to the same symmetry restriction as the pseudoten
describing the optical activity and CPGE. In CN’s the sp
orbit interaction is negligible and the similar role is play
by the coupling between the orbital angular momentumn
and the wave vectorkz as described by Eqs.~7!, ~9!.

The transfer of photon angular momenta into an elec
current along the principal axis of a chiral CN can be d
scribed by the standard equation for the current

j CPGE,z52e (
n,kz ,s

vc~n,kz ,s! f c~n,kz ,s!

1e (
n,kz ,s

vh~n,kz ,s! f h~n,kz ,s!, ~22!

wheree is the elementary charge (e.0), the indexs labels
the valleysK and K8, vc(n,kz ,s)5\21@dEc(n,kz ,s)/dkz#
is the group velocity andf c(n,kz ,s) is the nonequilibrium
steady-state distribution function for electrons in the cond
tion band. The similar quantities for holes in the valen
bandv have the subscripth. Note that they are related wit
the corresponding quantities in the electron representatio
the valence states byvh(n,kz ,K)52vv(2n,2kz ,K8),
f h(n,kz ,K)512 f v(2n,2kz ,K8).

In the following we will consider the case where elas
scattering processes are more effective than the inela
ones. Then one can apply the standard procedure of sol
the kinetic equation and decompose the distribution func
f m (m5c,h) into the contributions

f m
6~n,kz ,s!5

1

2
@ f m~n,kz ,s!6 f m~n,k̃z ,s!# ~23!

that are even and odd with respect to the change ofkz by k̃z

where k̃z belongs to the same valley and satisfies the eq
tion Em(n,k̃z ,s)5Em(n,kz ,s). Since the even contribution
15540
r
e-

-

r

ors
-

c
-

-
e

of

tic
ng
n

a-

in Eq. ~23! is in fact a function of the electron energy,
nullifies the elastic scattering integral and also makes no c
tribution to the current. Introducing the momentum rela
ation timestp

( f ,i ) we can present the photocurrent as

j 52e (
nf ,ni ,kz ,s

@vc~nf ,kz ,s!tp
( f )

2vc~ni ,kz ,s!tp
( i )#Wcc~nf ,ni ,kz ,s! ~24!

for optical transitions (c,ni ,s)→(c,nf ,s) between the con-
duction subbands and in a similar way for transitions b
tween the valence subbands or for interband transitio
wherenf ,ni are the angular momentum components in
final and initial states. The transition rate is given by

Wcc~nf ,ni ,kz ,s!

5
2p

\
uVf i u2 f c

0@Ec~ni ,kz ,s!#

3d@Ec~nf ,kz ,s!2Ec~ni ,kz ,s!2\v#.

Here f c
0 is the equilibrium distribution function and we as

sume that in equilibrium the upper subband (c,nf ,s) is un-
occupied.

In this section we take a chiral CN with the parametern
51, assume that the tube isn doped and consider the inte
subband photoexcitation of electrons from the lowest c
duction subbands (c,n50,s) to the first higher subband
(c,n51,K) and (c,n521,K8) ~see Fig. 2!. In order to ob-
tain compact analytical results we consider near-edge op
transitions with the light frequencyv satisfying the condi-
tion

u\v2D10u!D10, ~25!

where D10 is the energy separation between the subba
(c,0,K) and (c,1,K) given by, see Eqs.~8!, ~10!,

D105
1

2
~D12D0!5

2pg

3L
.

In this caseukzu!uk'u and one can use the approximate equ
tions ~9!–~12!. Rewriting Eq.~9! in the form

Ec~n,kz ;K !5
Dn

2
2

mnbn
2

2\2
1

\2~kz1kn!2

2mn
~26!

FIG. 2. The scheme of direct inter-subband optical transitio
between bands withn50 andn51. The dashed line corresponds
the level of the chemical potential in the conduction band.
4-4
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with kn5mnbn /\2 we conclude thatkz̃ entering Eq.~23!
equals to2kz22kn . We ignore the small frequency regio
where the terms linear-in-kz exceed or are comparable wit
the quadratic terms inkz in Eq. ~9! and assume the ratio
æn(kz)5bnkz /(\2kz

2/2mn) for n50,1 to be small which is
valid if

ukzu@2mnbn /\2 or u\v2D10u@2mnbn
2/\2.

Taking into account Eq.~17! and retaining the first-orde
terms inæn we can write the photocurrent as a sum of fo
contributions

j CPGE5eW1,0~ l v1 l m1 l t1 l f !. ~27!

Here W1,0 is the transition probability rate per unit leng
calculated neglected the terms lineark:

W1,05
2p

\

2pe2I

v2cnv

1

32S g

\

kz

k',0
D 2

f c
0~E0!g10~D102\v!.

~28!

I is the light intensity in units energy3 length213time21,
the one-dimensional reduced density of states equals

g10~E!523(
kz

dS 2
\2kz

2

2m10
2ED 5

1

p S 2m10

\2E
D 1/2

u~2E!,

the factor of 2 makes allowance for the spin degenera
u(x) is the step function equal to 0 ifx,0 and 1 ifx.0,
2m10

21 is the inverse reduced effective massm1
212m0

21

@sincem152m0.m0 a value ofm1052m0 is positive and
g10(E) is defined for negative values ofE#, andf c

0(E0) is the
value of the equilibrium distribution function at the ener
E05(\2kz

2/2m0)5(m10/m0)(D102\v)52(D102\v). The
lengthsl v ,l m ,l t ,l f in Eq. ~27! are related to the photoexc
tation asymmetry arising due to thekz dependence of the
velocity and density of states (l v), of the squared matrix
element (l m), of the momentum relaxation time (l t) and of
the equilibrium distribution function (l f). For the optical
transitions under consideration the straightforward deriva
results in

l v5
3b0

\
~tp

(1)2tp
(0)!, l m5

2b0

\
~tp

(1)22tp
(0)!,

l t5
6b0

\ S tp
(1)

d ln tp
(1)

d ln E1
2tp

(0)
d ln tp

(0)

d ln E0
D ,

l f5
3b0

\
~2tp

(0)2tp
(1)!

D102\v

kBT
@12 f 0~E0!#. ~29!

Obviously, the momentum relaxation timetp
(1) is shorter then

tp
(0) because a photoelectron excited to the subband (c,n

51) can be readily scattered to the subband (c,n50).
The circular photocurrent can be estimated as

j CPGE;eW1,0

b0

\
tp Pcirc ~30!
15540
r

y,

n

and for intensities at the absorption saturation

j CPGE;
2p sin 3u

A3

e

tp

a

L S D10

D102\v D 1/2

.

Taking g56.5 eV Å,a52.5 Å, n51, L5135 Å, sin 3u
50.7 we haveD1050.1, m050.017m, wherem is the bare
electron mass, b0 /\51.13106 cm/s. Then for tp

510211 s, D102\v50.1 D10, and f c
0(E0);1 we obtain

j CPGE;1029 A. While making this estimation we assume
the differencetp

(0)2tp
(1) and the electron-electron scatterin

time tee to be comparable withtp
(0) . It is worth mentioning

that a value of the photocurrent in recently discovered cr
tals of CN’s ~Ref. 21! will be significantly enhanced com
pared to a single CN.

We conclude the section by comparing the CPGE
scribed by Eq.~30! with the photon drag~PD! effect which
exists in crystals of arbitrary symmetry and is independ
on the sign of the circular polarization. The PD current
estimated as

j PD;eW1,0

\q

m0
tp , ~31!

where q is the photon wave vector~in vacuum q5v/c).
Thus, for\v50.1 meV we havej CPGE/ j PD;b0m0 /(\2q)
'3.

In this section we presented both the detailed calcula
and estimation by an order of magnitude for the CPGE.
the next sections we restrict ourselves only to analytical
timations of other effects while their detailed considerati
will be given elsewhere.

IV. MAGNETOINDUCED LINEAR PHOTOGALVANIC
EFFECT

In addition to the circular PGE, in noncentrosymmet
media a photocurrent of another kind can be induced by
electromagnetic wave. This is called the linear photogalva
effect ~LPGE! and described by a third-rank tensorx i jk ,
symmetrical with respect to the interchange of the indicej
andk. Thus, for the LPGE one has7

j LPGE,i5x i j l I ~ejel* 1ej* el !/2. ~32!

Ideal CN’s are unpolar with their principal axisz being two-
sided which forbids the photocurrent~32!. In BxCyNz nano-
tubes~BN’s! the symmetry is reduced, the axisz is polar and
the LPGE becomes allowed.22 We show here that the linea
photocurrent can be induced in an ideal CN in the prese
of an external magnetic fieldBiz. Phenomenologically the
magnetoinduced LPGE can be written as

j M -LPGE,z5IBz @L iuezu21L'~ uexu21ueyu2!# ~33!

and determined by two linearly independent coefficie
L i ,L' . This kind of photocurrent was first predicted in Re
4 for gyrotropic crystals.

For the interband transitions (v,0)→(c,0) excited in an
undoped CN by the linearly polarized lighteiz, one has the
following estimation:
4-5
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j M -LPGE,z;eW0,0

b0

\
tp n

F

F0
. ~34!

The estimation follows if we take into account the quadra
term in the expansion ofh in powers ofka. Due to this term
the squared matrix element of the optical transition has
odd contribution, the ratio of the odd contribution to th
main even contribution being proportional toakzsin3u. In
the magnetic field the band gapsD00(K),D00(K8) differ due
to the difference ofuk'u and uk'8 u at n50. @see Eq.~13! and
Fig. 3 where the scheme of the optical transitions is sho
The different thickness of lines in Fig. 3, which correspo
to the transitions of electrons with different momenta in
cate that they probabilities are different.# This leads to the
relative difference in the transition rates for theK and K8
valleys proportional to

D00

\v2D00
n

F

F0
.

Thus the linear magneto-photocurrent induced by the li
polarized along the principal axisz can be estimated as

j M -LPGE,z;eW0,0 akzsin 3u
\kz

m0

F

F0

D00

\v2D00
tp .

Since

kz

\kz

m0
;

\v2D00

\

andD00;gk',0 , b0;ag sin 3u we obtain

j M -LPGE,z;eW0,0

D00a

\
tpsin 3u

F

F0

and finally arrive at Eq.~34!. The same order of magnitud
for j M -LPGE,z is obtained if we ignore the quadratic terms
h(k) but include the cubic-kz terms in the energy dispersio
Eq. ~7!. Above we assumedF to be much smaller thanF0.
For large values ofF the linear magnetophotocurrent is
periodic function of the ratioF/F0. While preparing the

FIG. 3. A scheme of optical transitions between electron a
hole bands withn50 in the case of linearly polarized light and i
the presence of the external magnetic field. The dashed lines
different width correspond to transitions with different probabilitie
15540
c
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manuscript we learned about a similar work23 on the magne-
toinduced linear photovoltaic effect.

V. MAGNETOINDUCED dc ELECTRIC CURRENT
QUADRATIC IN THE ELECTRIC FIELD

Equation ~34! for magnetoinduced linear PGE holds
high frequenciesv.tp

21 . This effect, however, does no
vanish even in the casev50: the chiral symmetry allows
existence of a current which is quadratic in the electric fi
and linear in the external magnetic field. In the case of b
metals this effect has been observed in Ref. 24.

In the case of chiral CN a general expression fordc cur-
rent has the form

j z5sEz1LEz
2Bz , ~35!

wheres5e2ntp /m0 is the linear Drude conductivity,tp is
the momentum relaxation time, andm0 is the effective mass
in the lowest conduction subband, and we assume the F
level lies below the bottom of the subbands (c,61). Note
that the magnetochiral coefficientL is nonzero only in chiral
CN’s.

Qualitatively, the nature of the magnetochiral correcti
can be understood as follows: the electric field accelera
electrons~in n-doped samples! and creates a nonequilibrium
electron distribution. In this section we assume that the e
tic electron relaxation rate is much larger than the inela
one, which is associated with the electron-phonon scatt
ing. Then in the first approximation in the ratio betwe
these rates the electron distribution function depends only
the electron energy. It should be determined from the bala
of the energy supplied to the electron system by the elec
field and the energy transfered by electrons to the acou
phonons. It is important that the distribution functions whi
depend only on the electron energy correspond to zero
rent. To get a nonzero value of the dc current we have to t
into account that in the case of chiral CN the electro
phonon inelastic scattering rate depends on the directio
the electron momentum. As a result, there is a correction
the electron distribution function which is odd inkz , the
value of which is proportional to the ratio between the
elastic and elastic relaxation rates. In other words,
electron-phonon inelastic processes convert a currentless
tribution of the electron gas into a distribution characteriz
by a nonzero electric current, proportional toE2. Similar
mechanisms were previously considered for gyrotro
crystals25 and simple spiral nanotubes.26

An antisymmetric part of the probability rate for the ele
tron inelastic scattering can be found if we use the symme
considerations and write, in addition to the 232 Hamil-
tonian~3!, the operator of the electron-phonon interaction
a graphen sheet near the pointK

Ve-phon5S J0 u J u1

J u2 J0 u D . ~36!

Hereu5u111u22, u65u112u226 iu12, ulm is the in-plane
strain tensor in the axesx1 ,x2, andJ0 ,J are the deforma-
tion potential constants. In the tight-binding modelJ5

d

ith
.

4-6
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2J0/2. Let uzz be a uniform strain in a single CN. Then th
strain-induced shift of the electron energy in the subba
(c,0) in theK valley is equal to

«u~u;K !5FJ02
A3

2
JS k',0

k0
cos 3u1

kz

k0
sin 3u D Gu22

~37!

and «u(u;K8)5«u(2u;K). Herek05Ak',0
2 1kz

2. It follows
from the above equation that the ratio of the part odd inkz to
the part even inkz for the rate of electron scattering by
phonon can be estimated as

h~kz![
W(2)

W(1)
;

kz

k0
sin 3u. ~38!

At zero magnetic field the asymmetry induced by inelas
processes in thekz distribution in the valleyK is compen-
sated by the asymmetry in theK8 valley and the quadratic
in-Ez current is zero. The magnetic field shifts the bottoms
the K and K8 valleys relative to each other@see Eqs.~9!,
~13!#, the equilibrium electron densities in these valleys b
come different leading to a current contribution proportion
to Ez

2Bz .
In contrast to the previous consideration of free-stand

CN’s we consider here a CN that lies on a solid surface
is effected by 3D acoustic phonons of the solid. It allows o
to uncouple the momentum and energy conservation law
electron-phonon scattering processes. Then the correctio
the dc current proportional toE2Bz is estimated as

d j z;e^W(1)h~ k̄z!z@tp~kf ,z!v~kf ,z!2tp~ki ,z!v~ki ,z!#&,
~39!

whered j z in the part of the current proportional toEz
2 ,

z;
gk',0

EF

F

F0
~40!

is the relative difference of the electron equilibrium densit
in the valleysK and K8 induced by the magnetic field, se
Eqs. ~10!, ~13!, EF is the Fermi energy referred to the co
duction band bottom,tp is the momentum relaxation time
v(kz)5\kz /m* is the electron velocity,kf ,z andki ,z are the
initial and final values ofkz in the inelastic scattering pro
cess, we assume the differencekf ,z2ki ,z to be much smaller
than k̄z5(kf ,z1ki ,z)/2; the angle brackets mean the avera
ing overkz . A value of W(1) is estimated from the balanc
of energy as

kBTW(1)5sEz
2 , ~41!

wherekB is the Boltzmann’s constant and we take into a
count that the typical electron energy change under scatte
is of the order of the thermal energy or, analytically,

\2k̄z~ki ,z2kf ,z!/m* ;kBT.

Here we consider the degenerate electron gas and as
kBT to be much smaller than the Fermi energyEF . Then Eq.
~39! can be reduced to
15540
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d j z;esE2sin 3u tp

g

\EF

F

F0
~42!

or

d j z

j z
;sin 3u

eEtp

\

g

EF

F

F0
. ~43!

We would like to mention that in the approximation o
purely elastic scatteringd j z is zero. Nevertheless Eqs.~42!,
~43! is independent of inelastic scattering rate. This is b
cause we considered the case when the sample leng
larger than the inelastic diffusion lengthADpt in, whereDp

;vF
2tp is the elastic diffusion coefficient andvF is the Fermi

velocity, and we used Eq.~41!. In the opposite limit the value
of the current is proportional tot in

21 . Assuming, for example,
that the voltage bias on the sample isU;0.01V, EF
;0.1 eV, tpg/\;LCN and, hence,Eztpg/\;U, F/F0
;1022 ~for Bz510 T, L570 Å), we get the estimate
d j z / j z;1023.

VI. CHIRALITY EFFECTS IN OPTICAL SPECTROSCOPY

In this section we presen estimates for two other effects
chirality in optical spectroscopy of CN’s: the natural circul
dichroism and the magnetochiral dichroism.

Let us start with the natural circular dichroism appeari
as a difference in the interband or intersubband optical tr
sition rates for thes1 ands2 light polarizations. As men-
tioned above, in bulk semiconductors the theory of natu
optical activity is based on allowance for coupling betwe
the electron spin and wave vector. Contrary to t
approach,15 we ignore the spin-orbit interaction in CN’s be
cause it is negligible for C atoms and take into account
coupling between the angular momentumn and the wave
vectorkz . We assume the circularly polarized light to prop
gate along the principal axisz of a chiral nanotube withn
51 and consider the interband optical transitions (v,0,K)
→(c,1,K), (v,21,K8)→(c,0,K8) allowed for thes1 polar-
ization and (v,1,K)→(c,0,K), (v,0,K)→(c,21,K) allowed
for the s2 polarization. The energy conservation law rea
Ec(nf ,kz1q;K)2Ev(ni ,kz ;K)5\v, Ec(nf ,kz81q;K8)
2Ev(ni ,kz8 ;K8)5\v. Due to the presence of the light wav
vectorq in these equations and the linear-in-kz terms in the
energy dispersion given by Eq.~9!, the absorption probabil-
ity ratesW(s6) for the s6 polarization differ and the rela
tive difference is given by

W~s1!2W~s2!

W~s1!1W~s2!
;

bq

\v2D10
cv

, ~44!

where D10
cv is the band gap between (c,1,K) and (v,0,K)

subbands. For comparison we present also an estimation
the circular dichroism due to the Faraday effect in the m
netic fieldBiz:

W~s1!2W~s2!

W~s1!1W~s2!
;

D10
cv

\v2D10
cv

F

F0
. ~45!
4-7
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If the condition~19! is not satisfied the depolarization effe
can substantially renormalize the dichroism, however the
tio of the relative differences given by Eqs.~44!, ~45! holds
unchanged.

Let us now turn to an estimate of the magnitude of
magneto-chiral dichroism which manifests itself in the d
pendence of the light absorption coefficient on the prod
qaBb . Here qa and Bb are components of the light wav
vectorq and the magnetic fieldB ~Refs. 27,28! ~see also Ref.
29, and references therein!. In chiral CN’s the magnetochira
dichroism can be described by the following contribution
the absorption or emission probability rate:29

dW5Bzqz @Qiuezu21Q'~ uexu21ueyu2!#. ~46!

For the interband transitions (v,0,s)→(c,0,s) (s5K,K8)
one has QiÞ0, Q'50 and dW00}Bzqzuezu2
5Bzcosu0sin2u0, whereu0 is the angle between the nan
tube axisz and the propagation direction of the light linear
polarized in the plane containing the vectorq0 and the axisz.
For the transitions (v,0)→(c,0) in one valley, say the valley
K, the ratiodW00/W00 is given bybqz /(\v2D00) similarly
to the previous consideration. At zero magnetic field the tr
sitions in the valleyK8 lead to a contribution todW00 of the
opposite sign and the net value ofdW00 vanishes. An exter-
nal magnetic field breaks the compensation, and the im
ance in contributions from theK andK8 valleys is governed
by a value of@D00/(\v2D00)#(F/F0). As a result we ob-
tain

dW00

W00
;

bqzD00

~\v2D00!
2

F

F0
. ~47!

VII. CONCLUSION

At present we have no information concerning public
tions on experimental observations of the chirality induc
effects predicted in this paper. Nevertheless the active
perimental studies of transport, optical absorption and
man spectroscopy of CN’s and even the observation30 of the
photoconductivity of single-walled CN’s opens a direct w
to observe the effects considered above. They are not spe
for chiral CN and in principle should be present in any m
-

-

15540
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soscopic system lacking the mirror-reflection symmetry.
particular they should be present in mesoscopic disorde
metallic samples where all possible symmetries are brok
Some of these effects have been already discussed.31,32

Another system where the effects considered above
manifest themselves is a DNA molecule, which electr
transport properties have been investigated recently.33,34 Al-
though usually DNA have large resistance, we would like
mention in this connection that the photoinduced elect
transport effects can be measured even in diamond.6

The photogalvanic effects should also exist in Joseph
junctions with no mirror-reflection symmetry. For examp
it could be either superconductor-carbon nanotu
superconductor or superconductor-disordered me
superconductor junctions. The qualitative difference of
photogalvanic effects in metals is that the circularly pol
ized light will induce both the normal and superfluid comp
nents of the current through the junctions.

The theory presented above neglects effects of elect
electron interaction including the excitonic and Luttinge
liquid effects. In this respect we would like to mention th
F-dependent terms in the electron spectrum will suppr
the dip in the energy dependence of the density of states
interacting electrons in one dimension.35 In disordered
samples the magnitude of this effect should ma
results36–38 for diffusive quasi-one-dimensional conductors

Finally we would like to mention an effect which is in
verse to the circular and linear photogalvanic effec
Namely, in the absence of magnetic field the dc electric c
rent in a CN should induce the circular polarization of t
photoluminescence. In the presence of an external magn
field parallel to a CN, the electric currentj z should induce a
change in the photoluminescence intensity proportiona
j zBz .
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