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Chirality effects in carbon nanotubes
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We consider chirality related effects in optical, photogalvanic, and electron-transport properties of carbon
nanotubes. We show that these properties of chiral nanotubes are determined by terms in the electron effective
Hamiltonian describing the coupling between the electron wave vector along the tube principal axis and the
orbital momentum around the tube circumference. We develop a theory of photogalvanic effects and a theory
of dc electric current, which is linear in the magnetic field and quadratic in the bias voltage. Moreover, we
present analytic estimations for the natural circular dichroism and magnetospatial effect in the light absorption.
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[. INTRODUCTION CN’s and derive an expression for the matrix element of the
electron-photon interaction. In Secs. lll and IV we present
Since the discovery of carbon nanotubélse physical the theory of photogalvanic effects in chiral CN’s. We show
properties of these nanostructures have attracted a lot dfat the circularly polarized light generates a dc current
attention? Usually carbon nanotubg€N’s) are visualized as  through CN and the current direction depends on the sign of
a layer of graphene sheet rolled up into a cylinder. DependPolarization, i.e., on the photon spirality. In the presence of
ing of the way of the rolling up the cylinder can be chiral or @ external magnetic fielB parallel to the nanotube princi-
nonchiral. pal axis, the linearly polarized light generates a dc current
In media with chiral symmetry it is impossible to distin- Whose direction changes upon the inversiorBofn Sec. V
guish between polar and axial vectors. This leads to the exwe develop a theory of the magnetochiral anisotropy in the
istence of the natural optical activifyincluding the optical ~dc charge transport through a CN, which is the existence of a
rotatory power and circular dichroism in the absence of magdc current proportional t@ and quadratic in the applied
netic fields, and any other effect of Ch|ra||ty where a p0|are|ectric fieldE. In Sec. VI we give analytical estimates for
vector and an axial vectaor a pseudovectorare interre-  the optical anisotropy and optical activity of CN. In Sec. VII
lated by some phenomenological equation. The circular phoe discuss limitations of our approach and mention other
togalvanic effec{ CPGB is among them. In this effect a dc €ffects which are similar to those considered in this article.
current induced by an electromagnetic wave of the complex

amplitudeE is proportional to components of the axial vec- Il. ELECTRON BAND STRUCTURE

tor i(EXE*) and thus depends on the sign of the circular AND ELECTRON-PHOTON MATRIX ELEMENTS
polarization of light. The CPGE was predicted in Refs. 4,5 IN CARBON NANOTUBES

and then studied in bulk gyrotropic crystalsand semicon- ) .

ductor quantum-well structurés’® Usually carbon nanotubd€N’s) are visualized as a con-

Theoretically, achiral magnetic properties and optical abformal mapping of a graphene sheet onto a cylindrical sur-
sorption spectra of CN’'s were investigated by Ajiki and face where one of the two—d'lmenspr(ﬁD) Bravalsllattlce
Ando in the effective-mass approximation's (see also Ref. Vectors,L, maps to the cylinder circumferent®.*® The
14). The theory of the optical activity of CN’s has been con- Structures specified by the vectdrsdirected along one of
sidered by Tasalet al® in the framework of the microscopic the twofold rotation axesl, or u, are called, respectively,
tight-binding model. armchair and zigzag CN's, where the axisis parallel and

In the present paper we consider effects of chirality inthe axisu, is perpendicular at least to one side of the 2D
CN’s by extending the effective-mass thedty*We show lattice hexagon. These particular tubes are achiral. Except for
that these effects appear due to terms in the electron Hamithem all others are chiral with their principal axéeing the
tonian describing the coupling between the orbital momenscrew axis.
tum around the circumference of a chiral CN and the linear Following Refs. 11-13 we write the circumferential vec-
electron momentum along the tube. This is quite differentor as
from the case of bulk materials and semiconductor quantum
wells where these effects are attributed to spin-orbit terms L=nja+nyb, (1)
oKz in the electron effective Hamiltoniarr(, andk are the
Pauli spin matrices and the electron wave veaigf are the  wheren,,n, are integers and,b are the 2D basis vectors
Cartesian coordinatis'® (see also Ref. 15 with the angle 120° between them. Choosing the coordinate

The paper is organized as follows. In Sec. Il we brieflysystemx; ,x, in such a way thax,||a, X, a we have for the
review properties of the single particle electron spectrum otomponents o& andb
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FIG. 1. (a) Schematic representation of a graphene skeand

b are the primitive translation vectors, dashed lines show the two-

fold rotation axesu, anduy. (b) Two-dimensional Brillouin zone
of graphene.

a=a(1,0), b=a
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where the lattice constart is equal to\/3 times the inter-
atomic distancel=1.44 Al° The electron effective Hamil-
tonian for a graphene sheet

(0 h*
H:
h 0 )
is expanded in the vicinity of the points
K= 2T (~10, K =2 (1,0 4
- 5(_ ’ )1 _5( ’ ) ( )

at the corners of the 2D Brillouin zone shown in Fig. 1. In
the following we defin&k andk’ as wave vectors referred,
respectively, to the point§ andK’ and assume the products
ka,k’a<1 to be small. Then, in the second orderkia or
k’a, the matrix element in Eq. (3) is given by(see Ref. 18

h(k,K)=vye "7 k, —ik +ie3‘0(ki+ik )2l (5
’ z 4\/5 V4
near theK point and
h(k’,K")=ve'? —ki—ik;+me’3“'(ki—ik;)2
(6)

near theK’ point. Herey=(1/3/2)y0a, v, [~3 €V (Refs.
11,19] is the transfer integral between neighboringprbit-
als, 0 is the angle between the vectorand the basis vector
a. The subscriptz, L indicate components of a vector re-
ferred to the axes lying in the graphene plane and related
the vectorL so aszl L andk,LL, kL.

In the same approximation the energy spectrum near th

K point is given by

a

4\3|K|

Ec'v(k,K)=i|h|~iy[|k|+ [(k3—3k, k?)cos 39

+(k3—3k%k,)sin 39]], 7)
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respectively. The similar spectrum near #ié point is ob-
tained by changindk, ——k| , k,—k,, 6——#6 in agree-
ment with the time inversion symmetry requirement
Ec,.(K,K')=Ec,(—kK).

In a CN specified by the vectar the electron wave func-
tion satisfies the cyclic boundary conditio (r)="W¥(r
+L). This enables one to find the allowed discrete values of

k, as
[

wheren is an integer - 1,=2, .. ., characterizing the an-
gular momentum component of an electroh,=|L|
=a\n2+nZ—n,n,, and v equals to one of three integers:
0,1 determined by the presentation of the sog+n, as
3N+ v with integerN. The dispersion in the conduction and
valence subbands is obtained by substituting &.into
Egs. (5), (6) or Eq. (7). In the following we focus on the
nanotubes characterized by finite band gap and assume
#0. According to Eq(7), for small values ok, satisfying
the condition|k,|<|k, | in theK valley and similar condition
in the K’ valley, the electron spectrum has a parabolic form
with terms linear ink,

2

L

2
kL:T

4 !
3 K

+V
n+ —
3

: ®

#2K?
E.,(nKy:K)=*| —+=—+ B,k ©)
Cc,v 11NZ — 2 2mn n™z|»
'2
LRk,
Ec.(nk; ;K== 7+2m{1+,3,’1k£ ,
where
Ap=2ylk [, Ar=2vlk]], (10
nk, |, RPK|
mn: 7 l mn: y l (11)

3 3
Br=— \/T_7a| k, |sin 36, ﬂ”‘:\/T_ yalk||sin36, (12

and k, ,k| are defined in Eq(8). Note that the identity
Ec.(nk;;K)=E¢,(—n,—k;;K) follows directly from the

t%me inversion symmetry.

In the presence of an external magnetic fiBldthe elec-
fron energy is modified just by changig ,k| from Eq.(8)
into

P

(13

where® is the magnetic flux passing through the cross sec-
tion of a CN,®=B,L?%/(47), and®, is the magnetic flux
quantumch/e. Now the consequence of the time inversion

wherelk| = \/kf + kzz, the upper and lower signs represent thesymmetry takes the formkE.,(nk,;®;K")=E. (—n,

conduction(subscriptc) and valence(subscriptv) bands,

-k, ; —P;K).
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Chirality (or spirality) of a nanotube manifests itself in a e.=ec*rie, andx,y are rectangular axes perpendicular to
particular coupling between the angular momentum as dethe principal axis of the tube. The selection rules for matrix
scribed byn and the directed translational motion as de-elements of the operator taken between the envelope func-
scribed byk,: due to the terms linedk, in Eq. (9) or, in  tions Eq.(16) are in agreement with the conservation law for
general, due to odd-ik; terms in Eq.(7) the energy has a z components of the angular momenmta= n; + N pne, Where
contribution which depends both on the signkgfand the Npno= =1 for the circular polarizationo.. of a photon
sign ofn. propagating along the axis andn,p,=0 for the light lin-

It is interesting to analyze how this particular coupling early polarized alongz In particular, the transitions
disappears for zigzag and armchair tubes which are achirgt 0K)—(c,1K), (c,0K’)—(c,—1K’) occur, respec-
from the symmetry point of view. In zigzag tubes, the angletively, under thes, and o_ photoexcitation. The squared
¢ between the circumferential vectbrand the vectoais an  moduli of the corresponding matrix elements are given by
integer multiple of 60°, sin&is zero and odd-itk, terms in
Egs.(7),(9) vanish. In armchair tubes, the angleequalsé - , [y [ 1 1\12 1y k. \2
=30°+N60° with N integer leading to one of the following |(v-©)sil ) %kz K o K 1| 327 k o
three relations between, andn,: n,=2n,, n,=2n,, or ' ’ '
np,=—n,. This means that the sum,+n, is an integer
multiple of 3 and the parameteris zero. As a result values ; ) . S
of |k, | become independent of the signroénd the coupling under consideration are forb|dden at heandK pomts but
between signs af andk, in the terms odd-irk, terms. This Pecome allowed fok; ,k;#0. The squared moduli of the
follows also from the symmetry considerations and is arPPtical matrix element is given by
important check point. In the following sections we will ) ) )
show that the odd-ik; terms in the electron energy spec- v -|2=(EA) (5@ _|2:27Te I i(z ﬁ) 18
trum govern the chirality effects in CN’s. fi c " w2en, 3217 ko)

Let us now turn to the calculation of the matrix element ] o ) ) )

V;; for the electron optical transition between the initial stateWhereA=|A[, I is the light intensity, ana,, is the refractive
i and the final staté The electron envelope functions can be index of the medium. In the following we consider a free-

where we took into account thiat ; =2k, ,. The transitions

written in the form standing nanotube and assumg=1.
It should be stressed that the linear-optics approximation
ene gk is valid as long ag ~*|Vy|<(27,) ", wherer, is the elec-
Yeo(znk)=— —C.,(n,k,), (14  tron momentum relaxation time, otherwise one has to take
v2m Llen into account the saturation of the absorption. Another impor-
i i , tant point is that the depolarization eff@ttcan be neglected
whereL ¢ is the nanotube length andis the azimuth angle. provided
The two-component columréc,u are eigenvectors of the 2
X 2 matrix Hamiltonian(3), given by Ao,
<1, (19
Lw
C L[h/in c ! h is th ductivity at the f defined
=— , =— 15 whereo, is the conductivity at the frequeney defined as
c \/E 1 v \/E _h/|h| ( ) ot y q ay
2
w
with h defined by Eq(5) for theK valley and by Eq(6) for ﬁwW:ZQ(gA)
the K’ valley whereK,K' are thez components of the vec-
torsK,K". with W being the optical transition rate.

We remind the reader that the electron interaction with The electron structure and optical matrix elements pre-
the electromagnetic field is described by the perturbatiorsented above are based on the effective Hamiltof8ale-
(e/c){Q-A}S, whereA is the vector potential of the field, rived from the tight-binding Hamiltonian taking into account

-~ H H ,13,17
—eis the electron charg#,is the electron velocity operator ONly 7 atomic orbitals’ For a flat graphene sheet the
%~ 1dH/dk,, and{-- -}, means a symmetrized product of MiXing of 1777 and o bands is forbidden by the _symm_etry.
operators. Ifk,|<|k, | then one can neglect the second-order>aito€t al" showed that the curvature of CN's gives rise to
terms in the expansion Ed5), the symmetrization symbol SCMem-o mixing but near the Fermi energy an admixture of

can be omitted and the scalar product\?(ﬂnd the light unit ;:en%rbr:i:llliszelsv;ﬁgssoaa".rnln ?r?(; I[t;h'SbuT';:zgfocr?hnC;:;?:tly
polarization vectoe has the form non’ n 9

conclusions and estimations should remain largely un-

) » 0 %, changed.
v~e:ﬁ e_ief 0 (16)
21 lll. CIRCULAR PHOTOGALVANIC EFFECT
Here Physically, the CPGE can be considered as a transforma-
. _ _ A tion of the photon angular momenta into a translational mo-
f,=€e'%e_—e 'Ye,+e,, fyy=€'%e_—e 'Ye, —¢g,, tion of free charge carriers. It is an electron analog of me-
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chanical systems which transmit rotatory motion to a linear E(n, k,)
one such as a screw tread or a plane with a propeller. Phe-
nomenologically, in the case of chiral CN's it is described by

jepe,=TT(EXE¥),, (20)

wherej cpge, is the dc photocurrent; is a real coefficientz
is the complex amplitude of the electric field of the electro-
magnetic wave and, for the transverse wave,

i (EXE*)=Pg E2 0 (22) FIG. 2. The scheme of direct inter-subband optical transitions
between bands with=0 andn= 1. The dashed line corresponds to
with Eg,Pgrc, 0 being, respectively, the electric field ampli- the level of the chemical potential in the conduction band.
tude|E|, the degree of the circular polarization of light, and o _ .
the unit vector pointing in the direction of light propagation. In EQ. (23) is in fact a function of the electron energy, it
of the light circular polarization and vanishes for linearly tribution to the current. Introducing the momentum relax-

polarized excitation. ation times{"" we can present the photocurrent as
Usually the microscopic theory of natural optical activity

in bulk semiconductofs®° as well as the theory of CPGE i=—e S [vd(ns.k,,s)mD

(Refs. 4,10 is based on allowance of spin-dependent linear ne ks o 2=l

in k terms B0k, in the electron effective Hamiltonian, 0
wherek is the electron wave vector arg are the Pauli spin —vc(Ni Kz,8) 75" [Wee(Ng,Ni Kz, S) (24)
matrices. The real coefficientsi, form a pseudotensor sub- for optical transitions ¢,n; ,s)— (c,n;,s) between the con-
jected to the same symmetry restriction as the pseudotensadgction subbands and in a similar way for transitions be-
describing the optical activity and CPGE. In CN's the spin-tween the valence subbands or for interband transitions,
orbit interaction is negligible and the similar role is playedyneren, ,n; are the angular momentum components in the

by the coupling between the orbital angular momentum fina| and initial states. The transition rate is given by
and the wave vectdk, as described by Eq$7), (9).

The transfer of photon angular momenta into an electric Wec(ng,ni,K;,S)
current along the principal axis of a chiral CN can be de- )
i i o
scribed by the standard equation for the current _ T|Vﬁ|2 fS[Ec(ni k,,9)]
JcreE,= _en;S ve(Nn,Kz,9)fe(nk;,S) X O Ec(ng,k;,8) —Ec(ni k;,8) —fiw].

Here f2 is the equilibrium distribution function and we as-
+e 2 vh(n,K,,8)fh(n,k,,S), (22) sume that in equilibrium the upper subbarary(;,s) is un-
nk; s occupied.
wheree is the elementary charge$ 0), the indexs labels 1'” gggufne:tlﬁgt\ivﬁet?ukge?isgg;ael dCaNru;NIctgntgizepratrhaemiﬁi:
the valleysK andK', v (n,k,,s)=%"dE.(n,k,,s)/dk o e ! N
verey ve(nks, ) [AEc(n.k, ,s)/dk,] subband photoexcitation of electrons from the lowest con-

is the group velocity and.(n,k,,s) is the nonequilibrium : = . .
steady-state distribution function for electrons in the conducduction subbandsc(n=0s) to the f.'rSt higher subbands
—1K") (see Fig. 2 In order to ob-

tion band. The similar quantities for holes in the valence(c,’n:l’K) and (c,n'= | :
bandy have the subscrih. Note that they are related with tain compact analytical results we consider near-edge optical

the corresponding quantities in the electron representation dfansitions with the light frequency satisfying the condi-

the valence states by,(n,k,,K)=-v,(—n,—k,,K"),
fn(n,k; ,K)=1—f,(—n,—k, ,K"). _ _
h(In the f)ollowing(we Willzcongider the case where elastic 10— Asd <As0, 29

scattering processes are more effective than the inelastighere A, is the energy separation between the subbands

ones. Then one can apply the standard procedure of solving,0K) and (c,1K) given by, see Eqg8), (10),

the kinetic equation and decompose the distribution function

fm (M=c,h) into the contributions 2Ty

1

. AlOZE(Al_AO):T-
fn(n,kz,8)= SLfm(nkz,8)= fm(nk.,8)]1 (23 Inthis casdk,|<|k, | and one can use the approximate equa-
tions (9)—(12). Rewriting Eq.(9) in the form

that are even and odd with respect to the chande, dfy k,

- o ) A, mMuB2 KA2A(K,+ k)2
wherek, belongs to the same valley and satisfies the equa E.(nk,:K)= Sn Ny z" Kn (26)
tion Em(n,Fz,s)=Em(n,kz,s). Since the even contribution e

2 242 2m,

155404-4



CHIRALITY EFFECTS IN CARBON NANOTUBES.. ..

with x,=m,3,/#? we conclude thak, entering Eq.(23)
equals to—k,— 2k, . We ignore the small frequency region
where the terms linear-ik; exceed or are comparable with
the quadratic terms ik, in Eq. (9) and assume the ratios
aaq(kz)=ﬁnkz/(ﬁ2kf/2mn) for n=0,1 to be small which is
valid if

[k,|>2m, B, /4% or |ho—Aq>2m,B2/h2.

Taking into account Eq(17) and retaining the first-order

PHYSICAL REVIEW B 66, 155404 (2002

and for intensities at the absorption saturation

27sin30 e al A Y2

\/§ Tp L Alo_hw
Taking y=6.5 eVA,a=25 A, v=1, L=135 A, sin®
=0.7 we haveA ,=0.1, my=0.017, wherem is the bare
electron mass, By/A=1.1x10° cm/s. Then for Tp
=10 s, Ajg—fw=0.1 Ay, and fo(Eg)~1 we obtain
jcpee~10"° A. While making this estimation we assumed

jCPGE{V

terms inag, we can write the photocurrent as a sum of fourthe differencer?)— 7" and the electron-electron scattering

contributions

jCPGI::er,()(IU+|m+IT+If)' (27)

Here W, o is the transition probability rate per unit length
calculated neglected the terms lindar

y k, |2
%on) fg(Eo)glo(Alo_ﬁw)-
(29)

| is the light intensity in units energylength 1 xtime 2,

the one-dimensional reduced density of states equals

Wio=2 S 35

2w 2me?l 1
h wicn, 32

1/2

h2K2
6(—E),

_ ):i 2110
2p10 T

h2E

glo(E)=2><§ 8

the factor of 2 makes allowance for the spin degeneracyan

0(x) is the step function equal to 0 ¥<0 and 1 ifx>0,
— g is the inverse reduced effective masg '—m;*
[sincem;=2my>m, a value ofuo=2m, is positive and

010(E) is defined for negative values &f|, andf(c)(EO) is the

value of the equilibrium distribution function at the energy

Eo=(ﬁ2k§/2m0)=(,ulolmo)(Alo—ﬁw)=2(A10—ﬁw). The
lengthsl, ,I,,l,,l; in Eq. (27) are related to the photoexci-
tation asymmetry arising due to the dependence of the
velocity and density of stated,(, of the squared matrix
element (,,,), of the momentum relaxation timé _j and of
the equilibrium distribution functionl¢). For the optical

time 7, to be comparable witk{”. It is worth mentioning
that a value of the photocurrent in recently discovered crys-
tals of CN’s (Ref. 21 will be significantly enhanced com-
pared to a single CN.

We conclude the section by comparing the CPGE de-
scribed by Eq(30) with the photon dragPD) effect which
exists in crystals of arbitrary symmetry and is independent
on the sign of the circular polarization. The PD current is
estimated as

j W, ha
~e — 7y,
JpD 1,0 mg P

(31
where q is the photon wave vectofin vacuumg= w/c).
Thus, forhw=0.1 meV we havg cpce! j po~ BoMo/ (%20)

~3.

In this section we presented both the detailed calculation
d estimation by an order of magnitude for the CPGE. In
the next sections we restrict ourselves only to analytical es-
timations of other effects while their detailed consideration
will be given elsewhere.

IV. MAGNETOINDUCED LINEAR PHOTOGALVANIC
EFFECT

In addition to the circular PGE, in noncentrosymmetric
media a photocurrent of another kind can be induced by the
electromagnetic wave. This is called the linear photogalvanic
effect (LPGE) and described by a third-rank tensgr,

transitions under consideration the straightforward derivatiossymmetrical with respect to the interchange of the indices

results in
BBO 2130
IU=T(T§,1)—TE,°)), Isz(TE‘_)l)_ZTg)))I
(1) (0)
| :% 7_(1)d|n S —T(O)dln T
% \"™ dinE; P dinE, )’
3Bo

Ajg—hw
2P0 5 (0)_ (1210 T,

If_ A (ZTp 7-p ) kBT [1 fO(EO)] (29)
Obviously, the momentum relaxation timg is shorter then
() because a photoelectron excited to the subband (
=1) can be readily scattered to the subbaog&0).

The circular photocurrent can be estimated as

. 0
Jecpee—€Wy g 7 T Peirc (30)

andk. Thus, for the LPGE one has
(32

Ideal CN'’s are unpolar with their principal axideing two-
sided which forbids the photocurre(82). In B,CyN, nano-
tubes(BN’s) the symmetry is reduced, the axiss polar and

the LPGE becomes allow&dWe show here that the linear
photocurrent can be induced in an ideal CN in the presence
of an external magnetic fiel@||z. Phenomenologically the
magnetoinduced LPGE can be written as

jrcei=xij | (ejef +efe)/2.

(33

and determined by two linearly independent coefficients
Ay,A, . This kind of photocurrent was first predicted in Ref.
4 for gyrotropic crystals.

For the interband transition® (0)—(c,0) excited in an
undoped CN by the linearly polarized ligdfz, one has the
following estimation:

imrcez=1B, [Alef*+ A, (le*+ey|)]
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E(k,) n= manuscript we learned about a similar workn the magne-
net toinduced linear photovoltaic effect.

A I?\ V. MAGNETOINDUCED dc ELECTRIC CURRENT
T ; QUADRATIC IN THE ELECTRIC FIELD

k, Equation (34) for magnetoinduced linear PGE holds at
high frequenciesw> Tgl. This effect, however, does not
vanish even in the case=0: the chiral symmetry allows
existence of a current which is quadratic in the electric field

n=0 and linear in the external magnetic field. In the case of bulk

n=0 metals this effect has been observed in Ref. 24.

) N In the case of chiral CN a general expressiondorcur-
FIG. 3. A scheme of optical transitions between electron andant has the form

hole bands witm=0 in the case of linearly polarized light and in
the presence of the external magnetic field. The dashed lines with j,=cE,+AEZB,, (35)
different width correspond to transitions with different probabilities.
wherea=e2nrp/m0 is the linear Drude conductivitys, is
. 0 the momentum relaxation time, and is the effective mass
JM-LPGEz~eWo,07 o Vo (34 in the lowest conduction subband, and we assume the Fermi
0 level lies below the bottom of the subbands{1). Note
The estimation follows if we take into account the quadraticthat the magnetochiral coefficientis nonzero only in chiral
term in the expansion df in powers ofka. Due to this term  CN'’s.
the squared matrix element of the optical transition has an Qualitatively, the nature of the magnetochiral correction
odd contribution, the ratio of the odd contribution to the can be understood as follows: the electric field accelerates
main even contribution being proportional &k,sin3¢. In  electrons(in n-doped samplgsand creates a nonequilibrium
the magnetic field the band gapsy(K),Ago(K') differ due  €lectron distribution. In this section we assume that the elas-
to the difference ofk, | and|k]| atn=0.[see Eq(13) and tic electr_on _relaxatio_n rate i_s much larger than the inelastic
Fig. 3 where the scheme of the optical transitions is shown@n€, which is associated with the electron-phonon scatter-
The different thickness of lines in Fig. 3, which corresponding. Then in the first approximation in the ratio between
to the transitions of electrons with different momenta indi-these rates the electron distribution function depends only on
cate that they probabilities are differdnThis leads to the the electron energy. It should be determined from the balance

K’

relative difference in the transition rates for theand K’ ©Of the energy supplied to the electron system by the electric

valleys proportional to field and the energy transfered by electrons to the acoustic
phonons. It is important that the distribution functions which

Ago D depend only on the electron energy correspond to zero cur-

mvao. rent. To get a nonzero value of the dc current we have to take

into account that in the case of chiral CN the electron-
Thus the linear magneto-photocurrent induced by the lighphonon inelastic scattering rate depends on the direction of

polarized along the principal axiscan be estimated as the electron momentum. As a result, there is a correction to
the electron distribution function which is odd ly, the
) . , @ Ay value of which is proportional to the ratio between the in-
Im-Lrcez~€Wo0 ak,sin 39m— O ho—An TP elastic and elastic relaxation rates. In other words, the
0o 00 electron-phonon inelastic processes convert a currentless dis-
Since tribution of the electron gas into a distribution characterized
by a nonzero electric current, proportional E5. Similar
ik, fhow—Aq mechanisms were previously considered for gyrotropic
“me & crystal€® and simple spiral nanotubé$.
An antisymmetric part of the probability rate for the elec-
andAgg~ YK, o, Bo~aysin 3¢ we obtain tron inelastic scattering can be found if we use the symmetry

considerations and write, in addition to thex2 Hamil-
. oW Aga SN 30— tonian(3), the operator of the electron-phonon interaction for
Im-LpeE? 00 7 P D, a graphen sheet near the poitt

and finally arrive at Eq(34). The same order of magnitude EoU E uy

for jum.Lpce; IS Obtained if we ignore the quadratic terms in Ve phor= ( = u = u ) (36)
h(k) but include the cubids, terms in the energy dispersion =0 70

Eq. (7). Above we assumed to be much smaller thad,,. Hereu=uj;+ Uy, Us=Uj;—Uxp* iUy, Uy iS the in-plane
For large values ofb the linear magnetophotocurrent is a strain tensor in the axes;,x,, and=,,= are the deforma-
periodic function of the ratiob/®,. While preparing the tion potential constants. In the tight-binding modg&l=
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—Ey/2. Letu,, be a uniform strain in a single CN. Then the y @
strain-induced shift of the electron energy in the subband 8j,~eoE?sin 30 T E: B (42)
(c,0) in theK valley is equal to ko
or
3 [k k
ey(6;K)=|Eo— \/T—E(ki’ocos&% k—zsin 30) Upp S, . _eEry @
0 0 —*~sin36 = . (43
(37 Jz h Ep @q

ande,(6;K")=¢e,(— 0;K). Herekg= \/kf ot kzz. It follows
from the above equation that the ratio of the part odH,ito
the part even irk, for the rate of electron scattering by a
phonon can be estimated as

W) k, .
——~ —sin 36.

(38)
At zero magnetic field the asymmetry induced by inelasti
processes in thé&, distribution in the valleyK is compen-
sated by the asymmetry in th€' valley and the quadratic-

in-E, current is zero. The magnetic field shifts the bottoms of

the K and K’ valleys relative to each othdsee Eqs.(9),

We would like to mention that in the approximation of
purely elastic scatteringj, is zero. Nevertheless Eggl2),
(43) is independent of inelastic scattering rate. This is be-
cause we considered the case when the sample length is
larger than the inelastic diffusion lengiD ,7;,, whereD,
~v§rp is the elastic diffusion coefficient and: is the Fermi
velocity, and we used E@41). In the opposite limit the value
of the current is proportional tq;l . Assuming, for example,

C%hat the voltage bias on the sample ~0.01v, Ef

~0.1 eV, 7yy/fi~Lcy and, henceE,r,y/fhi~U, (I)/_d)o
102 (for B,=10 T, L=70 A), we get the estimate
8j,1j,~1073,

(13)], the equilibrium electron densities in these valleys be-vI CHIRALITY EFFECTS IN OPTICAL SPECTROSCOPY
come different leading to a current contribution proportional ™

to E2B,.

In this section we presen estimates for two other effects of

In contrast to the previous consideration of free-standinghirality in optical spectroscopy of CN’s: the natural circular
CN's we consider here a CN that lies on a solid surface andichroism and the magnetochiral dichroism.
is effected by 3D acoustic phonons of the solid. It allows one Let us start with the natural circular dichroism appearing
to uncouple the momentum and energy conservation laws ias a difference in the interband or intersubband optical tran-
electron-phonon scattering processes. Then the correction ion rates for ther, and o_ light polarizations. As men-

the dc current proportional td&?B, is estimated as
81~ (W (k) £l mo(Kr v (Ke ) = (ki o (ki )]),
(39
where §j, in the part of the current proportional Eﬁ

N ‘ykL,OE
Er D

(40

tioned above, in bulk semiconductors the theory of natural
optical activity is based on allowance for coupling between
the electron spin and wave vector. Contrary to the
approach? we ignore the spin-orbit interaction in CN’s be-
cause it is negligible for C atoms and take into account the
coupling between the angular momentumand the wave
vectork,. We assume the circularly polarized light to propa-
gate along the principal axis of a chiral nanotube with/

=1 and consider the interband optical transitiomsOK)

is the relative difference of the electron equilibrium densities—(c,1K), (v,—1K’)—(c,0K") allowed for theo, polar-

in the valleysk andK’ induced by the magnetic field, see

Egs.(10), (13), E is the Fermi energy referred to the con-

duction band bottoms, is the momentum relaxation time,
v(k,)=%k,/m* is the electron velocityk; , andk; , are the

initial and final values ok, in the inelastic scattering pro-
cess, we assume the differerigg,— k; , to be much smaller

ization and ¢,1K)—(c,0K), (v,0K)—(c,—1,K) allowed

for the o_ polarization. The energy conservation law reads
Ec(ng k+a;K) —E (N kg K)=1w, Ec(ng K, +0;K')
—E,(n; Kk, ;K")=%w. Due to the presence of the light wave
vectorq in these equations and the linearkipterms in the
energy dispersion given by E¢P), the absorption probabil-

than?zz(kf,ﬁ— ki ,)/2; the angle brackets mean the averag-ity ratesW(o ) for the .. polarization differ and the rela-

ing overk,. A value of W(™) is estimated from the balance
of energy as

keTWH) = gE2, (41)

wherekg is the Boltzmann’s constant and we take into ac-

tive difference is given by

W(o,)-W(o)  Bq
W(o)+W(o-) fe— %'

(44)

count that the typical electron energy change under scatteriﬁ@hereA% is the band gap betweerc,(K) and ,0K)

is of the order of the thermal energy or, analytically,

72Ky 2= Kt )M ~kgT.

Here we consider the degenerate electron gas and assume

kgT to be much smaller than the Fermi eneky. Then Eq.
(39) can be reduced to

subbands. For comparison we present also an estimation for
the circular dichroism due to the Faraday effect in the mag-
netic field B||z:

Cv

W(oy)-W(o) A &
W(o)+W(o-) ﬁw—A% dy’

(45)
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If the condition(19) is not satisfied the depolarization effect soscopic system lacking the mirror-reflection symmetry. In
can substantially renormalize the dichroism, however the raparticular they should be present in mesoscopic disordered
tio of the relative differences given by Eqg4), (45) holds  metallic samples where all possible symmetries are broken.
unchanged. Some of these effects have been already discu¥s&d.

Let us now turn to an estimate of the magnitude of the Another system where the effects considered above can
magneto-chiral dichroism which manifests itself in the de-manifest themselves is a DNA molecule, which electron
pendence of the light absorption coefficient on the productransport properties have been investigated recé&htfAl-
q.Bsz. Hereq, and B, are components of the light wave though usually DNA have large resistance, we would like to
vectorg and the magnetic fielB (Refs. 27,28 (see also Ref. mention in this connection that the photoinduced electron
29, and references therginin chiral CN's the magnetochiral transport effects can be measured even in dianfond.
dichroism can be described by the following contribution to  The photogalvanic effects should also exist in Josephson

the absorption or emission probability rate: junctions with no mirror-reflection symmetry. For example,
5 5 5 it could be either superconductor-carbon nanotube-
SW=B.q, [Q)le] +Q. (e +]ey*)]. (46)  superconductor or  superconductor-disordered  metal-

For the interband transitions (0,5)—(c,05) (s=K,K’) superconductor junctions. The qualitative difference of the
one has Q#0 Q,=0 and  6Wyo=B,q,le |2 photogalvanic effects in metals is that the circularly polar-
— B,cosfysirPd, where 6, is the angle between the nano- ized light will induce both the normal and superfluid compo-
yA 1 . .

tube axisz and the propagation direction of the light linearly N€nts of the current through the junctions.
polarized in the plane containing the vectgrand the axig. The theory presented above neglects effects of electron-
For the transitionsi(,0)— (c,0) in one valley, say the valley electron interaction including the excitonic and Luttinger-
K. the ratioﬁWOOIW(;o is givén byq /(ﬁw—,Aoo) similarly liquid effects. In this respect we would like to mention that

’ z . .
to the previous consideration. At zero magnetic field the tran®-dependent terms in the electron spectrum will suppress
sitions in the valleyk’ lead to a contribution t@W, of the  the dip in the energy dependence of the density of states for
opposite sign and the net value &Ny, vanishes. An exter- interacting electrons_ in one dlmensﬁf’n.ln disordered
nal magnetic field breaks the compensation, and the imbaf@mples _the magnitude of this effect should ~match
ance in contributions from thig andK ' valleys is governed result$®~*8for diffusive quasi-one-dimensional conductors.

Finally we would like to mention an effect which is in-
by a value off Ago/(iw—A d/dg). As a result we ob- . . .
y A oo/ (7= A0 (/Do) verse to the circular and linear photogalvanic effects.

tain . . !
Namely, in the absence of magnetic field the dc electric cur-
SW A ® rent in a CN should induce the circular polarization of the
0 B . ,
~ Do (470 photoluminescence. In the presence of an external magnetic
Woo  (hw—Ag9* Po field parallel to a CN, the electric currejyt should induce a
change in the photoluminescence intensity proportional to
VIl. CONCLUSION i:B;.

At present we have no information concerning publica-
tions on experimental observations of the chirality induced
effects predicted in this paper. Nevertheless the active ex- The work of B.S. was supported by Division of Material
perimental studies of transport, optical absorption and RaSciences, U.S. National science foundation under Contract
man spectroscopy of CN’s and even the observaliohthe =~ No. DMR-9205144. The work of E.L.l. was supported by
photoconductivity of single-walled CN’s opens a direct way programmes of Russian Academy and Russian Ministry of
to observe the effects considered above. They are not specif@ciences. We would like to acknowledge useful discussions
for chiral CN and in principle should be present in any me-with D. Cobden, C. Kane, L. Levitov, and C. Markus.
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