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Stark-resonance densities of states, eigenfunctions, and lifetimes for electrons in Ga@d,Ga)As
quantum wells under strong electric fields: An optical-potential wave-packet propagation method
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The densities of states, eigenfunctions, and lifetimes of the Stark resonances arising in the conduction band
of (Al,Ga)As/GaAs(Al,Ga)As quantum wells under strong electric fields are determined. A quantitative com-
parison between the Al-concentration-dependent and -independent effective-mass approximations is also pro-
vided. A numerical real-time wave-packet propagation method, successfully implemented earlier for bound
states, is adapted for this task by supplementing the Hamiltonian with an exterior optical potential, which
damps the wave function in the asymptotic region. Such a technique permits both the reflection-free simulation
of the continuum with a finite computational grid and the filtering of the nonresonant background out of the
eigenspectrum. This approach yields the entire resonance spectrum of a given structure in a single calculation
and L2 approximations to the continuum eigenfunctions. The lifetime of a resonance is obtained from the
time-decay constant of the norm of the calculatédresonance eigenfunction, a method that is applicable to
resonances of any line shape.
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[. INTRODUCTION with any potential profile; in particular, with any field
strength. This makes them particularly useful in cases where

When a quantum system is subjected to a dc field, thenalytical methods*® are not applicable and/or other ap-
formerly discrete quantum states become energy-shiftegroximate methods***>1° are impractical or inaccurate;
(metastabletunneling or above-barrier resonances. In low-however, they only yield eigenenergies. On the other hand, in
dimensional semiconductor heterostructures, this phenonthe dynamic perspective the time evolution of a tunneling
enon is known as the quantum-confined Stark eff@€@SB, wave packet is simulated by numerical integration of the
which is important for the understanding of their basictime-dependent Schdinger equation(TDSE).**=1"2° This
physic$2 and for their application to the design of optoelec- provides a dynamical picture of the electron escaping from
tronic device$:® since these systems are commonly sub-the well, and the lifetime is often computed from the time-
jected to a voltage bias. dependent tunneling probability; 1’ although other alterna-

In weak fields(up to about 100 kV/cm the lowest-lying  tive prescriptions can be usétPerhaps not surprisingly, the
resonances are so sharp that they are often approximatedpectral and dynamidefinitionsof the lifetime do not yield
treated as bound staté$n symmetrical structures, within similar values(see Sec. I, accordingly, it is desirable to
this weak-field regime, the Stark shift is a second-order efimplement exact numerical methods not only for the calcu-
fect in the perturbation-theory sers&his has motivated the lation of resonance energies but also for the determination of
construction of asymmetrical structures, in the hope tdifetimes within the spectral FWHM definition.
achieve first-order energy shifts while still applying weak The position dependence of the effective mass is often
fields® An obvious alternative for achieving large shifts is to neglected in both static and dynamic calculatidf!41°
apply strong fields; a regime where, however, perturbatiorlthough its importance for the QCSE has been pointed
theory fails and significant broadening of the states arisesut>***® In numerical finite-differenc&*®*’ or finite-
due to the field-induced tunneliftd, specially for excited element® methods, such a dependence can be easily incor-
states. Consequently, it is necessary to devise nonperturbperated. In addition, little attention has been devoted to the
tive approaches for the accurate determination of Stark shiftigh-field (say, larger than 200 kV/chregimel®1®
and mean tunneling lifetimes in these systems under strong In this work, the densities of states, eigenfunctions, and
fields. lifetimes of all the Stark tunneling resonances arising in the

The problem of the QCSE has been addressed from botbonduction band of AlGa _,As/GaAs/AlGa _,As quan-
static (spectral and dynamic perspectives. In static ap-tum wells(QW'’s) under strong electric fields are determined.
proaches, the energy and lifetime of a resonance are obtainéd quantitative comparison between the Al-concentration-
from its peak position and reciprocal full width at half maxi- dependent and-independent effective-mass approximations is
mum (FWHM), respectively, employing a variety of methods also provided. A numerical real-time wave-packet propaga-
for finding eigensolutions of the time-independent Sehro tion method RTWPM), successfully implemented earlier for
dinger equationTISE): Ab initio,® Airy function with real  bound eigenspectr&,is adapted for this task by including in
and complex argumenfs stabilization grapt**® Fourier ~ the Hamiltonian an exterior optical potentfaf?* In this ap-
seriest® finite difference®!%finite element® and complex proach, an appropriately chosen test wave packet is numeri-
coordinate™® Time-independent numerical finite- cally propagated in time and its autocorrelation function
differenc&%1and finite-elemerf methods are exact, in the evaluated. The Fourier transform of such a function yields a
sense that approximations other than a discretization of spa@®ntinuous spectral density function, which exhibits the
and time is not involved, and flexible, since they can dealeighted densities of states associated with the tunneling and
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above-barrier resonances comprised in the test function. Uni-
form L2 approximations to the continuum eigenfunctions are
obtained by Fourier transforms of the propagated wave
packet at the corresponding energies. The optical potential
plays two computational roles: simulation of the reflection-
free propagation of the wave packet in the continuum, at the
same time employing a finite computational grid, and filter-
ing of the nonresonant background out of the test function.
The lifetime of a resonance is determined by propagating the
corresponding calculatdd?® peak eigenfunction in time and

evaluating the decay constant of its nothhen the reso- -400 1 -392.9meV~
nance presents a Lorentzian profile, this procedure yields the 200 -150 -100 50 O 50 100 150 200
same values as the FWHM methdd? although the former
is more generally applicable to resonances of any line shape. 2000+
It must be kept in mind that, although the RTWPM relies on 1500 1000 kViem
particular solutions of the TDSE, its goal is to extract eigen- 1000336 7TmeV
solutions of the TISE, i.e., it is a time-dependent spectral
approach. N 5%
This methodology has the same advantages as the afore- L‘b o4
mentioned time-independent numerical methdtfs 28 with =2
the additional ones of automatically enforcing the boundary ~5001 ~—-645.6meV
conditions(since the TDSE is an initial-value problem unlike -1000+
the TISE, which is a boundary-value problgmroducing the 15001
entire resonance spectrum of a given structure in a single — T ————T——
calculation, and yielding Stark shifts, resonance widths, and -200 -150 -100 50 0 50 100 150 200
lifetimes on the same footing. Other wave-packet propaga- z(A)

tion methodologies, often referred to as equation-of-motion
methods, have also proven useful in semiconductor physics FIG. 1. Conduction-band profiles for \&=200 A QW under
for the calculation of the electronic structure of F=400 and 1000 kv/cm.
nanocluster® and the optical properties of crystalline and
amorphous materiafS, nanocrystalliteS/ and hetero- where Vo(2) is the field-free band-edge potential. This
structure$®#to name a few examples. Hamiltonian does not possess bound eigenstates.

In Sec. Il, the model for the QW is set up in terms of a
position-dependent electron effective mass. Section 11l pre-
sents the general formalism of the RTWPM for the calcula- IIl. GENERAL FORMALISM
tion of densities of states, eigenfunctions, and lifetimes for | the following, it is assumed that the eigenspectrum of
any Hamiltonian that exhibits resonances in its continuuMpe Hamiltonian  is fully continuouglike in Eg. (1)],
eigenspectrum. In Sec. IV, the strategies employed for th?| _ h is th iabl .
efficient computational implementation of this methodology, ¢:(a) S%(q)z’ wheree 1S the energy vana &.(Q) ISa
in particular, the exterior optical potential, are explained. Inreal, nonk.”, Dlrrac-(jelta . orthonormalized
Sec. V, the results of the calculations for several well widthd.] ¢(9) @e(@)dg=4(e —£")] eigenfunction, and denotes

and field strengths are presented, discussed, and compartgc? relevant set of spatial coordinates. Inclusion of a discrete

with other reports. Section VI closes with concluding re- part in the eigenspectrum Is straightforwafd.
marks and perspectives for future work. On the other hand, it is useful to recall that a resonance

embedded in the continuous eigenspectrum of the system can

I MODEL be treated as a discrete, comple%, eigenstate 15:19:24:31g¢
' a certain associated non-Hermitian Hamiltoniah, The

In this work, an electron in a symmetrical rectangular QWcomplex energies and “stationary” wave functions are given
is considered, with barriers modeled by step functions oby
heightV,. The structure is subjected to a uniform transverse
electric field of strengthF, which “tilts” the well as illus- E —e —i[./2 ©
trated in Fig. 1. The effective-mass approximation is used, noTno e
taking into account its dependence on Al concentration.

Employing the well-established BenDaniel-Duke expres- D (q,t)=3n(q)exp —iEt/h), (3)
sion for the position-dependent-mass kinetic-energy

6,30 ; H
operator,”*’the Hamiltonian takes the form wheres, is the (real) energy at theath resonance peak and

52 d 1 2n(0) is the corresponding complex eigenfunction. Sikte
A= — __(*__ +Vce(z)—eFz (1) is not Hermitian, the eigenstat&s,(q) are not necessarily
2 dz\mg(z) dz orthogonal, although they can be considered to be approxi-
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mately so when the resonance peaks do not overlap signifivhere c(g) is, in general, a complex number as well. A
cantly. The squared norm of a “stationary” resonance waveprocedure for the construction of a test function that satisfies

function, Egs. (6a) and (6b) simultaneously is presented in Sec. IV.
5 5 Formal propagations in time of the expressi¢®a and(6b)
(Pn(t)| (1)) =exp(—Tt/h), (4 with B andH, respectively, yield
is seen to decay in time with the constéht/7, from which
the mean lifetime can be defined as \Tf(q t)=2 b, % (q)exp —iE t/#) (73
n
m=nilT,. (5
The aforementioned associated non-Hermitian Hamil- \If(q,t)zf cle)p (q)exp —iet/h)de. (7b)

tonian can be rigorously constructed by a complex scaling of
the coordinates appearing in the Hamiltonian of the system, For the determination of the resonance densities of states,

of the formq?qe'f’_?’l The resulting analytically continued g the propagated test functigiia or (7b) is used to con-
Hamiltonian,H(qe'?)=H,, exhibits an isolated point spec- struct atime-autocorrelation function

trum consisting of the discrete complex eigenvalkgs ac-

companied by a continuous spectrum which appears rotated "A(t):=<~y(o)|~1‘r(t)> (89
in the complex-energy plane by an angle-i6 with respect

to the (rea) spectrum of the original Hamiltoniatt. Thus,

under the complex scaling ¢f, the resonance energies and :; |bal?exp( —iEqt/), (8b)
lifetimes are explicitly unraveled and the nonresonant con-
tinuum eigenstates acquire a finite lifetime. The same obser-
vations about the spectrum hold when the complex scaling is
performed only on an exterior contour, instead of on a ray,
of the complex-coordinate plarfé.Such exterior scaling :f lc(e)|2exp(—ielh), (8d)
offers the advantageous feature of damping the contin-

uum eigenfunctions in the region of the contour but leavin
them unscathed everywhere eféég., the eigenfunctions of

A =(¥(0)[W (1)) (80)

Yvhich is seen to measure the spatial overlap of the propa-
- R gated test function with itself at the initial time. In order to
Hy,®n(q), are identical to the eigenfunctions &f(q),  obtain Eq.(8b), it is assumed that thg,(q) are orthonormal.
<p8n(q), except on the complex contour, where the former areAlthough the wave functiong7a) and (7b) are different,
complex. since they are generated with different Hamiltonians, it can
be guaranteed that the functiof@) and(8c) turn out to be
quual (see Sec. IY. Next, the truncated Fourier-Laplace
transform of the time-autocorrelation function is evaluated in

In this work, a simpler alternative for the definition igif
is employed, which consists of adding an exterior optica
potential to the Hamiltoniaf®?* If such potential is con- ; .
structed appropriately, its effects turn out to be equivalent & rder to obtain thespectral function
those of an exterior complex scaling. The explicit form of the 1 T
optical potential is not required for the foregoing formal de- Qq(e):=2 Re{—f A(t)exp(ist/h)dt} (9a)
velopment and will be presented in Sec. IV. 2wh Jo

The RTWPM (Ref. 22 for the determination of Hamil-
tonian eigenspectra requires the initial specification tést ’
function whose spatial form is that of a wave packet. Such a %En: |bal“Ln(e = &) (9b)
function must satisfy the boundary conditions of the prob-
lem, otherwise being arbitrary at this point. Hence, if the

development is carried out employit;, a suitably chosen
test function can be formally written as the linear superwhereA(t):ﬂ(t) is taken into account and Eq&b) and

~|c(e)|?, (90)

position (8d) are employed to obtaif®b) and(9c¢), respectively. Here,
T is the total propagation time ang,(e¢ — &) is the unit-area
\If(q)=; b3 (q), (63 Lorentzian function
o . 1 r,2 10
where b,, is, in general, a complex number. On the other n(s—sn)—; (6= o) 2+ (T J2)2 (10

hand, if the development is carried out employiHg any

test function can also be formally expressed as the spectrathose FWHM is given byl",,. Equations(9b) and (9¢c) are

expansion obtained by assuming thdtis long enough so that the ef-
fects of the convolution of the infinite-resolution spectral

functions (9b) and (9¢) with the unit-area line-shape
(@)= [ ce)p.ade, (6p)  unctions (9b) and (90 P
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(113  the asymptotic region the exterior optical potential is placed
(see Secs. IV and V
sin(eT/h) If the development is carried out with instead, approxi-
- . (11b mations to its peak resonance eigenfunctions are analogously
; obtained from truncated Fourier-Laplace transforms of any

— d(e) (110 propagated test functiofYb),

are negligible, i.e., so that the width of E@.1b) becomes

much narrower _than any of the resonance peaks. Equations S(q,em) =2 R 1 IT\P(q,t)exp(ismt/ﬁ)dt
(9b) and(9c¢) indicate that, for sufficiently lond’, the calcu- 2mh Jo

} nite coordinate interval, whose length depends on how far in

1 (7 .
or(e)=2 R{mfo expliet/f)dt

me

lated spectral function, employing eithidror H, consists of (13d

a series of LorentziatBreit-Wignen resonances centered at

the (real) peak eigenenergies, whose heights give the corre- B

sponding spectral weights by = | cle)e(q)dr(em—e)de (139
|bp 2~ (7T /2)[c(en) >~ (7T W/2) Qr(ey). (12 .

Actually, since the resonance eigenfunctighgq) are not > Clem)@e, (a), (13

necessarily orthonormal, the resonances may overlap and
their line shapes may deviate from the Lorentzian profilewherec(e) is now assumed to be a real number too. It is
This would be a manifestation of the intrinsic nature of theobserved that, for sufficiently long, the real part of the
spectrum and not of a limitation of the method. Finally, theFourier component at theth peak energys.+(d,&pm), yields
normalized density of states associated with a given resdn approximation to the corresponding eigenfunction by
nance is obtained by dividing the corresponding peak by its
spectral weight12).

Approximations to the resonance eigenfunctioni?icﬂre
obtained from truncated Fourier-Laplace transforms, at the
(rea) peak energies, of any propagated test functida Nevertheless, Eq13¢ indicates that, no matter how lorig

1
¢sm(Q)’~Vm2T(q,8m)- (14b

[which needs not be the same as the one used i{8t. becomes} 1(q,e,) actually constitutes a wave packet, since
1 T the convolution integral appearing there never collapses to a
S1(0,em):=2 R{—f W (q,t)exp(ient/f)dt single term for finiteT. Hence, the function&l4b) also con-
2mh Jo stitute L2 approximations to the peak resonance eigenfunc-

(133 fions of A, of uniform quality over a finite coordinate inter-
val, whose length, in this case, increasesTagets longef®

=2 byn(@)La(en—en) (13 Employing Eq. (139 it is readily verified that, for long
. enoughT, the L2 functions (14b) are approximately ortho-
2 normal, and that in the limiT — they become Dirac-delta
=~ brem(a), (130 orthonormalized.
m

If the propagation time is long enough, thé approxima-
where, in this case, it is assumed tigtis a real number, tions (148 and(14b) coincide everywhere, except in the re-
i.e., that the test functioné6a and (6b) are chosen real. gion where the optical potential is located. This is due to the
Equation (130 is obtained by assuming thal is long  fact that such a potential, if constructed appropriat&gc.
enough so that the effects of the convolution of the fUﬂCtiOﬂﬁV), leaves the time-dependent wave function intact outside
(10) and (11b are negligible, and it is valid only in the of that region, the same being true for the Fourier compo-
region outside the support of the optical potential, where th@ents(149. The L? character of these approximations does
@n(q) are real, as indicated above. Furthermore, (80C) is  not limit their practical applicability, since matrix elements
obtained by assuming that the Lorentzians do not overlaghvolving continuum eigenfunctions, e.g., dipole matrix ele-
strongly. It is observed that, for sufficiently lorigand out-  ments, converge at finite values of the integration limits. On
side the optical potential, the real part of the Fourier compothe contrary, this method is conceptually appealing, since it
nent of the wave packet at theth peak energy>(q,e,,),  avoids the practical use of tifanphysical continuum eigen-
yields an approximation to the corresponding complexsstates oH, which are seen to play only an underlying formal
energyL? eigenfunction ofH by role in this development.

The lifetime of a resonance is related to the imaginary

_ L part of its associated complex ener@y by Eq.(5). Accord-
Pm(@)= WET(qﬂgm)- (143 ng to Eq.(10), the most straightforward method, within the
" spectral definition, for determining the lifetime is to fit the
These functions also provide’ approximations to the peak calculated density of states to a Lorentzian function and to
resonance eigenfunctions Bff of uniform quality over a fi-  evaluate its FWHM:2® Obviously, if the Lorentzian fit is
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not precise, the lifetime obtained in this way is inaccurate. A Narrow real Gaussian wave packets located inside the
method appropriate in this case consists of propagating theell are used as test functiofswhich are expected to be

calculated resonance eigenfunctid@a in time with B [Eq. spectrally_ composed mainly of resonant states, since the rela-
(3)] and calculating its squared norf&q. (4)]. T, is then tive amplitudes of resonan't eigenfunctions are known t.o be
extracted from the slope of the logarithm of this functién. Much larger than the amplitudes of nonresonant ones in the
[Equivalently, the squared time-autocorrelation functionwell reglon.(lf_ such Gaussians were IQcated outside the well,
~ ~ 2 the test function would mostly comprise nonresonant states
[{@n(0) P (1)) *=exp(-T'it/f) can be employeyd Hence, these functions are expected to satisfy(&ag). with
very good approximation, a claim that will be confirmed in
IV. COMPUTATIONAL IMPLEMENTATION the following section. Any contamination from nonresonant
The numerical integration of the TDSE, with the Hamil- states in the test function would cause the spectral function

tonian (1) including the optical potential, was carried out by (99 t0 €xhibit a background, which can be eliminated by
means of a finite-differences scheme, which is described ipropagating the test function wit,, for some time, prior to
Refs. 22 and 28. the evaluation of the time-autocorrelation function. This pro-
Since the computational grid is finite, with,;, andz,,, cedure is based on the observation that the exterior optical
its left- and right-hand boundaries, the artificial Dirichlet potential, besides serving as an asymptotic spatial absorber,
boundary condition®¥ (z.,i,) =V (zn) =0 are imposed. Due also simultaneously acts as a filter of the nonresonant back-
to the shape of the potentiéFig. 1), the first condition is ground comprised in the wave packéfThis can be under-
appropriate, provided,,;, is far enough to the left from the stood by recognizing that the relative amplitudes of nonreso-
well, which is easily accomplished. The second condition ishant eigenfunctions are larger than the amplitudes of
appropriate only if the wave packet is never allowed to reactiesonant ones in the asymptotic region, causing the former to
the boundany,,.,; otherwise it would reflect from it giving be damped more rapidly by the absorbing potential. This, in
rise to a spurious discretization of the continuum associatetirn, is manifested by the fact that the lifetimes of the non-
with the bound states of the Computational BB)The most resonant eigensta’[es Efy are much shorter than the life-
straightforward manner to avoid these problems, and also thgmes of its resonant ones.
most expensive, is simply to employ a large dfid°A more In order to guarantee that the time-autocorrelation func-
efficient approach, although still costly, is to allow the grid to tions (8a) and (8c) turn out to be equal, it is sufficient to
expand in time along with the wave pacRétThese two employ test functiong6a and (6b) with compact support
approaches would provide implementations of the RTWPMand to place the optical potential sufficiently far away from
with the original Hamiltonian of the systerhi. this region during the calculation of the time-autocorrelation
In this work, a much more efficient strategy is adopted,function. This is justified by noticing that the initial and
which afords an implementation of the RTWPM with the propagated test functions overlap only within the support

non-Hermitian Hamiltoniam of Sec. IIl. The strategy relies €91on. Although, strictly speaking, a Gaussian does not pos-

on adding an optical potential with compact support sess compact support, in practice such a function vanishes
beyond a certain point.

Vopt(z) =—iy(2), (15

to H far to the right from the well. Since the modified Hamil-

tonianﬁyzﬂ + Vopt is not Hermitian, it causes the norm of A prototype system was first considered, consisting of an
the wave function to decrease in time as soon as it reached ,Ga _,As/GaAs/AlGa, _,As rectangular QW of width
the region where the optical potential is located. This can b&/=200 A and barriers of heigh¥,=336.7 meV (which
used to advantage by tuningz) so as to completely damp correspond to an Al concentrationxf 0.45 if a band offset
the wave function in the asymptotic region before reachingf 0.6 is takef?). This rather wide structure was chosen in
the grid boundary, at the same time leaving it intact in theorder to better illustrate the capabilities of the method, addi-
region of interest. The functional form tional results for narrower QW's are reported below. The
effective masses of the electron in the well and barrier re-
gions were taken asn} =0.0665n, and mj =0.104m,,
’ respectively’® Calculations were performed féf=400 and
1000 kV/cm, whose corresponding potential profiles are de-
Y(2<24) =0, (16)  Picted in Fig. 1. Although these fields are relatively strong,
they can be easily achieved experimentally. Appropriate grid
where yax IS the maximum strength oj(z) andz, is the  and optical-potential parameters were found to bg;,
starting point ofV, is chosen since it has a continuous first=—300 A, z,,,=650 A, z,=500 A, and y,=800 meV.
derivative atz=z,, consequently eliminating spurious re- For the calculations with a position-independent effective
flections at that point. Alternative techniques for the mass, the barrier mass was also taken as 0§65
reflection-free simulation of the continuum that could be The propagation times needed to obtain well-converged
used in this context are exterior complex-coordinatedensities of states wer€=8600 and 140 fs, for 400 and
contours’>34coordinate stretching, and infinite element® 1000 kV/cm, respectively. The former took a much longer

V. RESULTS AND DISCUSSION

m(Z2—2Zp)
1-cos 0

max~— 2o

W(Zo<Z<Zyn) = ')’gax
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FIG. 2. Spectral function, displaying the weighted densities of !C- 3. Spectral function, displaying the weighted densities of
states, calculated with a position-dependatid line) and a con- states, calculated with a position-dependent effective mass for a
stant(dashed ling effective mass, for aV=200 A QW underf W= 200 A QW underF =1000 kv/cm.
=400 kV/cm. The inset shows an enlargement of the lowest-lyin

resonance. gform of the test function employed for the calculation. How-

ever, the peak positions and FWHM'’s are independent of the
test function employed, since these properties are intrinsic of
the Hamiltonian. The negative Stark shifts are found to be
very large(Table .

time since the resonance widths are much smadlee be-
low). The filtering propagation was carried out for about 20
fs, unt_|l the norm of the initially unity-normalized _ real Figure 3 displays the spectral function foF
Gaussian wave packet decreasee-th1. Spectral functions . "
=1000 kV/cm, calculated by employing a position-

calculated with unfiltered and filtered test functions were Ob'dependent effective mass. Due to the much stronger field,

served to be very similar, confirming the expectation ex-Only one(broad tunneling resonanc@ee Fig. 1 and Tablg |

pressed in the preceding section. ) .
. . and several overlapping above-barrier resonances are ob-
In order to evaluate the Stark shifts, calculations were alsg

performed forE =0 kV/em, employing the methodology de- Served. Despite the overlap of the tunneling resonance with

scribed in Ref. 22. The field-free OW was found to Supportits neighbor, its line shape is still found to fit very well to a

five bound states, with energies of 10.3, 43.5, 95.2, 166, anélor;eer:ttzr';? iﬁsthingec\}ﬁ)%stzg S'gsglitll\)/ e Stark shift is much

igg ;nle(;/ fg;il%yér_g ;g?igznégipar:\'/e’n; me;i?/tulr\{ge ;”fjﬁ The solid curves in Fig. 4 display three unity-normalized
stant effective mass. (L?) eigenfunctions ofH., with F =400 kv/cm, calculated
The solid curve of Fig. 2 displays the spectral function forwith a position-dependent mass, corresponding to the two
F =400 kV/cm, calculated employing a position-dependentiunneling resonances and a nonresonant eigenstate in be-
effective mass. Out of the first five features observed, whicliween them. These? functions constitute good approxima-
likely correlate with the five field-free bound states, only thetions to the eigenfunctions ofi for z<500 A, at which
first two are tunneling resonances, since they lie below th@oint they are observed to be strongly damped by the optical
barrier(see Fig. 1 and Tablg,lwhereas the rest are remnants potential. Since the first resonance is sharp, the lobe within
from above-barrier resonances. The inset shows an enlargthe well exhibits a much larger amplitude than the outer os-
ment of the first resonance, which is seen to be very sharpillations, i.e., this state has a strong quasibound character.
compared to the second. Both tunneling resonances afkhe relative amplitude of the outer oscillations of the second
found to fit very well to Lorentzian profiles. It must be kept resonance is not so small, since this state is just below the
in mind that their relative heights are proportional to theirbarrier and presents a weaker bound character. The inner
spectral weight$12), which, in turn, depend on the explicit lobes of both resonance eigenfunctions are seen to be

TABLE |. Peak energiess(”), Stark shifts fe(” =P — &), full widths at half maxima ("), and
lifetimes (Tﬁf)) calculated with a constant(*) and position-dependefitn* (z)] effective mass for av
=200 A QW underF =400 and 1000 kV/cm.

&P (meV) Ae®) (mev) ' (mev) 7P (fs)
m* m* (z) m* m* (z) m* m* (z) m* m* (z)
W=200 A, F=400 kVv/cm
n=1 —230 —236 —241 —246 2.48 0.895 264 735
n=2 —-70.9 —-72.9 —-114 —-114 28.3 20.8 23.25 31.6
W=200 A, F=1000 kV/cm
n=1 —738 —743 —749 —753 70.7 48.1 9.30 13.6
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FIG. 4. Peak resonance eigenfunctions, calculated with a t(fs)
position-dependerisolid lines and a constanfdashed lineseffec- FIG. 6. Time-dependent norifupper curve and its logarithm
tive mass, for av=200 A QW underF =400 kv/cm. A nonreso-  (lower curvé of the lowest-lying resonance eigenfunction, calcu-
nan_t_eigenfunction with an interme_diate energy, calculated with gated with a position-dependent effective mass, fowa 200 A
position-dependent effective mass is also shown. QW under F=400 kV/cm. The lower curve has been shifted

up by 1.

strongly pushed towards the lower edge of the well by the_ ) , ,
electric field. On the other hand, the nonresonant eigenfunc-i9: 4 show the corresponding eigenfunctions, where the
tion possesses a very small relative amplitude inside th¥ariations observed in the outer amplitudes are consistent
well. an indication of the unbound character of this con-With the decrease in the lifetimes. The underestimation of the
tinuum state. The unity-normalized peak eigenfunction corlifetimes within the constant-mass approximation is easily
responding to the single tunneling resonance for understood by recalling that a light particle tunnels through a
=1000 kV/cm is shown in Fig. 5. As expected, this stateParrier more rapidly than a heavy oh@n the other hand,

presents much less bound character than in the previous ca%%? reasons why this approximation causes positive energy
The upper and lower curves of Fig. 6 display the time-Snifts are not well understood yet _ _
dependent norm and its logarithfshifted up by 1, respec- In order to compare the results of the RTWPM with avail-
tively, of the calculated eigenfunction corresponding to the2Pl€ data from other approaches, calculations were also per-
F =400 kv/cm first resonance pedKigs. 2 and 4 The ob- formed fqr narrower QW'’s under various field strengths.
served behavior is as predicted by Ed), illustrating the Table Il displays the results, together with values taken from

validity of the norm method. In all cases, the FWHM and Refs: 10, 13, 15 and 16. FoW=100A and F
norm methods were found to yield the same lifetime values~ 400 KV/cm, the resonance energy and shift in the first row
which are reported in Table I. This agreement is due to thgVeé'e calculated employing a numerical Fourier-series
fact that the resonance profiles fitted well to Lorentzians and'verse-powerFIP) method,” whereas the lifetime was ob-
help to demonstrate the internal consistency of the method@ined by fitting the sg-called tnneling probabiliFTP),
ology. Pi(t)=1— (@] 1(t))] . to the exponential function 1
The dashed curve in Fig. 2 was calculated employing the” 8XP(-T'1t%) at long times, wherep,(t) is the field-free -
constant effective mass. It is seen that this approximatioground eigenfunction pr.opasgated in time with the Hamil-
induces relatively small spurious positive shifts in the reso{onianincluding the dc field® The peak energy, shift, and
nance energies, but large underestimations of the tunnelifgVHM in the second row were calculated by means of an

lifetimes of up to about 300%Table ). The dashed curves in Airy-function (AF) method™® (In Refs. 15 and 13, a slightly
higher barrier ofVy=340 meV is employed It is observed

that, for energies, the FIP and AF methods agree fairly well
with the RTWPM whereas, for lifetimes, tfeonstant-mags
FTP and (variable-mass AF methods disagree with the
-730+ RTWPM by almost three orders of magnitude, although they
agree relatively well between them.
740 For W=100 A andF =250 kV/cm, the peak energy and
FWHM in the first and second rows were calculated employ-
ing Fourier-stabilization-graph(FSG and AF methods,
respectively”® The same properties in the third row were
obtained by the same authors employing three different AF
760 : i , . . . . approacheé‘?‘ For this field strength, the resonance is very
100 0 100 200 300 400 500 600 sharp, requiring very long propagation times in order to con-
z(A) verge the spectral function in the RTWPM. Therefore, only
FIG. 5. Peak resonance eigenfunction, calculated with aipper and lower bounds for the FWHM and lifetime, respec-
position-dependent effective mass, foMa=200 A QW underF tively, are reported. It is seen that the agreement between the
=400 kV/cm. FSG and AF methods of Ref. 15 is excellent, whereas the AF

-7204

g(meV)

-750 1
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TABLE II. Peak energiesd(™), Stark shifts A& =¢{P— &), full widths at half maxima ("), and

lifetimes (TE]F)) calculated with a constantr(*) and a position-dependefin* (z)] effective mass for the

indicated QW widths and field strengths.

) (meV) Ae® (meV) r'®) (mev) 7F) (fs)
m* m* (z) m* m* (z) m* m* (z) m* m* (z)
W=100 A, F=400 kV/cm
FIP/ITP -36.5 -70.16 5.2x10°3 1.26x10°
APP —38.5 -72.2 3.0%10°8 2.17x10°
RTWPM —34.3 —-40.3 —-688 —72.7 2.47 0.88 266 746
W=100 A, F=250 kV/cm
FSG 2.10 -31.6 1.24<10°6 5.31x 10
AFP 2.19 —-315 1.26¢10°© 5.24x 108
AF¢ —0.94 0.145 4.5% 10
RTWPM -1.16 -335 <0.022 >3.0x10°
W=52 A, F=200 kV/cm
FDIP/TF 74.7 -5.2 2.63 2.%10°
RTWPM 74.5 4.6 <2.2x10°2 >3.0x10°
W=230 A, F=400 kV/cm
AFf -11.2 7.31 900
RTWPM 145 129 -18.0 -12.0 10.9 3.66 600 1800

®Reference 15V,=340 meV. Numerical Fourier-series inverse-power and tunneling-probability methods for
the energy eigenvalues and lifetimes, respectively.

PReference 15. Airy-function approach.

‘Reference 15. Fourier-series stabilization-graph method.

9Reference 13V=340 meV. Airy-function approach.

®Reference 16W=51 A ,V,=300 meV. Numerical finite-difference inverse-power and tunneling-probability
methods for the energy eigenvalues and lifetimes, respectively. The values recorded are read off the reported
curves.

Reference 10V,=400 meV. Airy-function approach. The values recorded are read off the reported curves.

method from Ref. 13 provides a lower value of the resonanceonsideration in mind, it is observed that both the energy and
energy and a lifetime shorter by four orders of magnitudethe lifetime agree reasonably well with the RTWPM.

In the latter reference, no comments are provided about The lifetime values produced by the RTWPM and AF
the reasons for these disagreements. The RTWPM gives anethod3®*®are based on a spectfatatig definition[Egs.
even lower value for the resonance energy and a lifetime a4) and (10)], whose physical interpretation has long been
least one order of magnitude longer than the AF method ofhe object of controversy On the other hand, various ex-
Ref. 13. plicitly time-dependent definitions of the lifetirre'52

For W=52 A andF=200 kV/cm, the first row displays
values read off from the curves reported in Ref.(Mere a
slightly smaller width ofW=51 A and a slightly lower bar-
rier of V=300 meV are employedIn that work, the reso-

originate from appealing physical interpretations, but there is
no reason to expect that they yield the same values as the
spectral definition. In the particular case of the aforemen-
tioned TP fitting procedur®®this is due to the fact that an

nance energy and shift were calculated employing a numerabrupt switching of the electric field leaves the electron in a
cal finite-difference-inverse-powéFDIP) method, whereas spectrally wide nonstationary state®® with several reso-
the lifetime was defined by the same fitting as in Ref. 15nance channels available for its escape from the well, result-
(FDTP). For energies, the FDIP method is seen to agree vering in a lifetime much shorter than that predicted by a static
well with the RTWPM, however, the latter yields a lifetime calculation. The spectral width of such a nonstationary state
longer by at least two orders of magnitude than the FDTRs manifested in transient oscillations of the time-
scheme. autocorrelation function®®3-*9This explains, at least in
Finally, for W=30 A and F=400 kV/cm, the first row part, the large discrepancy in the lifetime value between the
presents values extracted from the curves reported in Ref. 16DTP method® and the RTWPM observed in Table II.
where the peak position and FWHM are obtained using an For the discrepancies in energy and lifetime values be-
AF method. In that work, a constant mass and a barrier ofween the RTWPM and the FTP, AF, and FSG methods of
Vy=400 meV are considered, which are expected to producRef. 15, on the one hand, and the AF method of Ref. 13, on
somewhat different values from the present work. With thisthe other hand, the authors are unable to offer an explanation.
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VI. CONCLUSIONS AND PERSPECTIVES under the field strengths considered in this work make this a
onvenient scenario for the study of the basic physics of the

The present adaptation of the real-time wave-packe tark effect, and may play an important role in the design of

T e e ot S OPIOCIEConc dvices, S 3 madators
. y . ymp The closely related aspect of the dependence of the elec-
gion, appears as an accurate and versatile numerical methg,

ology for the calculation of continuum eigenspectra of Iow-t on dynamics and the associated shake-up spectra on the
9y gensp strength and switching conditions of the applied field will be

d|men§|onal semlcondqctor systems, in part!cular, resonanp%ported elsewhere. Work is also underway towards the ex-
densities of states, lifetimes, and eigenfunctions. Its capablg—

ity of producing the entire density of states in a single run ension of this methodqlogy to the cr_;llc_ulatlon' of local den-
and spectral lifetime values on the same footing makes i§|t|es of states and optical spectra within multiband models.
specially interesting. The method is also conceptually ap-
pealing, since no practical use is made of thaphysical,
nond ?) eigenstates of the Hamiltonian, which play only an  This work was funded in part by Colciencias, through
underlying formal role. Grant No. 1106-05-10095. The authors are grateful to Pro-

The strong resonance featuféarge Stark shifts and short fessor J. A. Arango and Professor N. Porras-Montenegro for
mean lifetime$ exhibited by an electron in a quantum well instructive discussions.
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