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Stark-resonance densities of states, eigenfunctions, and lifetimes for electrons in GaAsÕ„Al,Ga…As
quantum wells under strong electric fields: An optical-potential wave-packet propagation method

Martha L. Zambrano and Julio C. Arce*
Departamento de Quimica, Universidad del Valle, A.A. 25360, Cali, Colombia

~Received 7 June 2002; published 31 October 2002!

The densities of states, eigenfunctions, and lifetimes of the Stark resonances arising in the conduction band
of ~Al,Ga!As/GaAs/~Al,Ga!As quantum wells under strong electric fields are determined. A quantitative com-
parison between the Al-concentration-dependent and -independent effective-mass approximations is also pro-
vided. A numerical real-time wave-packet propagation method, successfully implemented earlier for bound
states, is adapted for this task by supplementing the Hamiltonian with an exterior optical potential, which
damps the wave function in the asymptotic region. Such a technique permits both the reflection-free simulation
of the continuum with a finite computational grid and the filtering of the nonresonant background out of the
eigenspectrum. This approach yields the entire resonance spectrum of a given structure in a single calculation
and L2 approximations to the continuum eigenfunctions. The lifetime of a resonance is obtained from the
time-decay constant of the norm of the calculatedL2 resonance eigenfunction, a method that is applicable to
resonances of any line shape.

DOI: 10.1103/PhysRevB.66.155340 PACS number~s!: 73.21.Fg, 73.23.2b, 73.40.2c, 02.60.2x
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I. INTRODUCTION

When a quantum system is subjected to a dc field,
formerly discrete quantum states become energy-shi
~metastable! tunneling or above-barrier resonances. In lo
dimensional semiconductor heterostructures, this phen
enon is known as the quantum-confined Stark effect~QCSE!,
which is important for the understanding of their bas
physics1,2 and for their application to the design of optoele
tronic devices,2,3 since these systems are commonly su
jected to a voltage bias.

In weak fields~up to about 100 kV/cm!, the lowest-lying
resonances are so sharp that they are often approxim
treated as bound states.4 In symmetrical structures, within
this weak-field regime, the Stark shift is a second-order
fect in the perturbation-theory sense.5 This has motivated the
construction of asymmetrical structures, in the hope
achieve first-order energy shifts while still applying we
fields.6 An obvious alternative for achieving large shifts is
apply strong fields; a regime where, however, perturba
theory fails and significant broadening of the states ar
due to the field-induced tunneling,5,7 specially for excited
states. Consequently, it is necessary to devise nonpertu
tive approaches for the accurate determination of Stark s
and mean tunneling lifetimes in these systems under str
fields.

The problem of the QCSE has been addressed from
static ~spectral! and dynamic perspectives. In static a
proaches, the energy and lifetime of a resonance are obta
from its peak position and reciprocal full width at half max
mum~FWHM!, respectively, employing a variety of method
for finding eigensolutions of the time-independent Sch¨-
dinger equation~TISE!: Ab initio,8 Airy function with real
and complex arguments,9–13 stabilization graph,14,15 Fourier
series,15 finite difference,8,16,17finite element,18 and complex
coordinate.19 Time-independent numerical finite
difference8,16,17and finite-element18 methods are exact, in th
sense that approximations other than a discretization of s
and time is not involved, and flexible, since they can d
0163-1829/2002/66~15!/155340~9!/$20.00 66 1553
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with any potential profile; in particular, with any field
strength. This makes them particularly useful in cases wh
analytical methods9–13 are not applicable and/or other ap
proximate methods8,14,15,19 are impractical or inaccurate
however, they only yield eigenenergies. On the other hand
the dynamic perspective the time evolution of a tunnel
wave packet is simulated by numerical integration of t
time-dependent Schro¨dinger equation~TDSE!.15–17,20 This
provides a dynamical picture of the electron escaping fr
the well, and the lifetime is often computed from the tim
dependent tunneling probability,15–17 although other alterna
tive prescriptions can be used.21 Perhaps not surprisingly, th
spectral and dynamicdefinitionsof the lifetime do not yield
similar values~see Sec. IV!; accordingly, it is desirable to
implement exact numerical methods not only for the cal
lation of resonance energies but also for the determinatio
lifetimes within the spectral FWHM definition.

The position dependence of the effective mass is of
neglected in both static and dynamic calculations,9,10,12,14,15

although its importance for the QCSE has been poin
out.11,13,16 In numerical finite-difference8,16,17 or finite-
element18 methods, such a dependence can be easily in
porated. In addition, little attention has been devoted to
high-field ~say, larger than 200 kV/cm! regime.10,15

In this work, the densities of states, eigenfunctions, a
lifetimes of all the Stark tunneling resonances arising in
conduction band of AlxGa12xAs/GaAs/AlxGa12xAs quan-
tum wells~QW’s! under strong electric fields are determine
A quantitative comparison between the Al-concentratio
dependent and-independent effective-mass approximatio
also provided. A numerical real-time wave-packet propa
tion method~RTWPM!, successfully implemented earlier fo
bound eigenspectra,22 is adapted for this task by including i
the Hamiltonian an exterior optical potential.23,24 In this ap-
proach, an appropriately chosen test wave packet is num
cally propagated in time and its autocorrelation functi
evaluated. The Fourier transform of such a function yield
continuous spectral density function, which exhibits t
weighted densities of states associated with the tunneling
©2002 The American Physical Society40-1
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above-barrier resonances comprised in the test function.
form L2 approximations to the continuum eigenfunctions a
obtained by Fourier transforms of the propagated w
packet at the corresponding energies. The optical pote
plays two computational roles: simulation of the reflectio
free propagation of the wave packet in the continuum, at
same time employing a finite computational grid, and filt
ing of the nonresonant background out of the test functi
The lifetime of a resonance is determined by propagating
corresponding calculatedL2 peak eigenfunction in time an
evaluating the decay constant of its norm.24 When the reso-
nance presents a Lorentzian profile, this procedure yields
same values as the FWHM method,9–15 although the former
is more generally applicable to resonances of any line sh
It must be kept in mind that, although the RTWPM relies
particular solutions of the TDSE, its goal is to extract eige
solutions of the TISE, i.e., it is a time-dependent spec
approach.

This methodology has the same advantages as the a
mentioned time-independent numerical methods,8,16–18 with
the additional ones of automatically enforcing the bound
conditions~since the TDSE is an initial-value problem unlik
the TISE, which is a boundary-value problem!, producing the
entire resonance spectrum of a given structure in a sin
calculation, and yielding Stark shifts, resonance widths,
lifetimes on the same footing. Other wave-packet propa
tion methodologies, often referred to as equation-of-mot
methods, have also proven useful in semiconductor phy
for the calculation of the electronic structure
nanoclusters25 and the optical properties of crystalline an
amorphous materials,26 nanocrystallites,27 and hetero-
structures,28,29 to name a few examples.

In Sec. II, the model for the QW is set up in terms of
position-dependent electron effective mass. Section III p
sents the general formalism of the RTWPM for the calcu
tion of densities of states, eigenfunctions, and lifetimes
any Hamiltonian that exhibits resonances in its continu
eigenspectrum. In Sec. IV, the strategies employed for
efficient computational implementation of this methodolog
in particular, the exterior optical potential, are explained.
Sec. V, the results of the calculations for several well wid
and field strengths are presented, discussed, and comp
with other reports. Section VI closes with concluding r
marks and perspectives for future work.

II. MODEL

In this work, an electron in a symmetrical rectangular Q
is considered, with barriers modeled by step functions
heightV0 . The structure is subjected to a uniform transve
electric field of strengthF, which ‘‘tilts’’ the well as illus-
trated in Fig. 1. The effective-mass approximation is us
taking into account its dependence on Al concentration.

Employing the well-established BenDaniel-Duke expr
sion for the position-dependent-mass kinetic-ene
operator,16,30 the Hamiltonian takes the form

Ĥ52
\2

2

d

dz S 1

me* ~z!

d

dzD 1VC~z!2eFz, ~1!
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where VC(z) is the field-free band-edge potential. Th
Hamiltonian does not possess bound eigenstates.

III. GENERAL FORMALISM

In the following, it is assumed that the eigenspectrum
the Hamiltonian is fully continuous@like in Eq. ~1!#,
Ĥw«(q)5«w«(q), where« is the energy variable,w«(q) is a
real, non-L2, Dirac-delta orthonormalized
@*w«(q)w«8(q)dq5d(«2«8)# eigenfunction, andq denotes
the relevant set of spatial coordinates. Inclusion of a disc
part in the eigenspectrum is straightforward.22

On the other hand, it is useful to recall that a resona
embedded in the continuous eigenspectrum of the system
be treated as a discrete, complex,L2 eigenstate9–15,19,24,31of

a certain associated non-Hermitian Hamiltonian,Ĥ̃. The
complex energies and ‘‘stationary’’ wave functions are giv
by

En5«n2 iGn/2, ~2!

F̃n~q,t !5w̃n~q!exp~2 iEnt/\!, ~3!

where«n is the ~real! energy at thenth resonance peak an
w̃n(q) is the corresponding complex eigenfunction. SinceĤ̃
is not Hermitian, the eigenstatesw̃n(q) are not necessarily
orthogonal, although they can be considered to be appr

FIG. 1. Conduction-band profiles for aW5200 Å QW under
F5400 and 1000 kV/cm.
0-2
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STARK-RESONANCE DENSITIES OF STATES, . . . PHYSICAL REVIEW B 66, 155340 ~2002!
mately so when the resonance peaks do not overlap sig
cantly. The squared norm of a ‘‘stationary’’ resonance wa
function,

^F̃n~ t !uF̃n~ t !&5exp~2Gnt/\!, ~4!

is seen to decay in time with the constantGn /\, from which
the mean lifetime can be defined as

tn5\/Gn . ~5!

The aforementioned associated non-Hermitian Ham
tonian can be rigorously constructed by a complex scaling
the coordinates appearing in the Hamiltonian of the syst
of the formq→qeiu.31 The resulting analytically continue

Hamiltonian,Ĥ̃(qeiu)[ Ĥ̃u , exhibits an isolated point spec
trum consisting of the discrete complex eigenvaluesEn , ac-
companied by a continuous spectrum which appears rot
in the complex-energy plane by an angle of22u with respect
to the ~real! spectrum of the original Hamiltonian.31 Thus,
under the complex scaling ofĤ, the resonance energies an
lifetimes are explicitly unraveled and the nonresonant c
tinuum eigenstates acquire a finite lifetime. The same ob
vations about the spectrum hold when the complex scalin
performed only on an exterior contour, instead of on a r
of the complex-coordinate plane.32 Such exterior scaling
offers the advantageous feature of damping the con
uum eigenfunctions in the region of the contour but leav
them unscathed everywhere else,32 i.e., the eigenfunctions o

Ĥ̃u ,w̃n(q), are identical to the eigenfunctions ofĤ(q),
w«n

(q), except on the complex contour, where the former
complex.

In this work, a simpler alternative for the definition ofĤ̃
is employed, which consists of adding an exterior opti
potential to the Hamiltonian.23,24 If such potential is con-
structed appropriately, its effects turn out to be equivalen
those of an exterior complex scaling. The explicit form of t
optical potential is not required for the foregoing formal d
velopment and will be presented in Sec. IV.

The RTWPM ~Ref. 22! for the determination of Hamil-
tonian eigenspectra requires the initial specification of atest
function, whose spatial form is that of a wave packet. Suc
function must satisfy the boundary conditions of the pro
lem, otherwise being arbitrary at this point. Hence, if t

development is carried out employingĤ̃, a suitably chosen
test function can be formally written as the linear sup
position

C~q!5(
n

bnw̃n~q!, ~6a!

where bn is, in general, a complex number. On the oth
hand, if the development is carried out employingĤ, any
test function can also be formally expressed as the spe
expansion

C~q!5E c~«!w«~q!d«, ~6b!
15534
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where c(«) is, in general, a complex number as well.
procedure for the construction of a test function that satis
Eqs. ~6a! and ~6b! simultaneously is presented in Sec. I
Formal propagations in time of the expressions~6a! and~6b!

with Ĥ̃ and Ĥ, respectively, yield

C̃~q,t !5(
n

bnw̃n~q!exp~2 iEnt/\!, ~7a!

C~q,t !5E c~«!w«~q!exp~2 i«t/\!d«. ~7b!

For the determination of the resonance densities of sta
first the propagated test function~7a! or ~7b! is used to con-
struct atime-autocorrelation function

Ã~ t !ª^C~0!uC̃~ t !& ~8a!

5(
n

ubnu2exp~2 iEnt/\!, ~8b!

A~ t !ª^C~0!uC~ t !& ~8c!

5E uc~«!u2exp~2 i«/\!, ~8d!

which is seen to measure the spatial overlap of the pro
gated test function with itself at the initial time. In order
obtain Eq.~8b!, it is assumed that thew̃n(q) are orthonormal.
Although the wave functions~7a! and ~7b! are different,
since they are generated with different Hamiltonians, it c
be guaranteed that the functions~8a! and~8c! turn out to be
equal ~see Sec. IV!. Next, the truncated Fourier-Laplac
transform of the time-autocorrelation function is evaluated
order to obtain thespectral function

VT~«!ª2 ReF 1

2p\ E
0

T

A~ t !exp~ i«t/\!dtG ~9a!

'(
n

ubnu2Ln~«2«n! ~9b!

'uc~«!u2, ~9c!

whereA(t)5Ã(t) is taken into account and Eqs.~8b! and
~8d! are employed to obtain~9b! and~9c!, respectively. Here,
T is the total propagation time andLn(«2«n) is the unit-area
Lorentzian function

Ln~«2«n!5
1

p

Gn/2

~«2«n!21~Gn/2!2 , ~10!

whose FWHM is given byGn . Equations~9b! and ~9c! are
obtained by assuming thatT is long enough so that the ef
fects of the convolution of the infinite-resolution spectr
functions ~9b! and ~9c! with the unit-area line-shape
function22
0-3
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dT~«!ª2 ReF 1

2p\ E
0

T

exp~ i«t/\!dtG ~11a!

5
sin~«T/\!

p«
~11b!

——→
T→`

d~«! ~11c!

are negligible, i.e., so that the width of Eq.~11b! becomes
much narrower than any of the resonance peaks. Equa
~9b! and~9c! indicate that, for sufficiently longT, the calcu-

lated spectral function, employing eitherĤ̃ or Ĥ, consists of
a series of Lorentzian~Breit-Wigner! resonances centered
the ~real! peak eigenenergies, whose heights give the co
sponding spectral weights by

ubnu2'~pGn/2!uc~«n!u2'~pGn/2!VT~«n!. ~12!

Actually, since the resonance eigenfunctionsw̃n(q) are not
necessarily orthonormal, the resonances may overlap
their line shapes may deviate from the Lorentzian profi
This would be a manifestation of the intrinsic nature of t
spectrum and not of a limitation of the method. Finally, t
normalized density of states associated with a given re
nance is obtained by dividing the corresponding peak by
spectral weight~12!.

Approximations to the resonance eigenfunctions ofĤ̃ are
obtained from truncated Fourier-Laplace transforms, at
~real! peak energies, of any propagated test function~7a!
@which needs not be the same as the one used in Eq.~8!#,

S̃T~q,«m!ª2 ReF 1

2p\ E
0

T

C̃~q,t !exp~ i«mt/\!dtG
~13a!

5(
n

bnw̃n~q!Ln~«n2«n! ~13b!

'
2

pGm
bmw̃m~q!, ~13c!

where, in this case, it is assumed thatbn is a real number,
i.e., that the test functions~6a! and ~6b! are chosen real
Equation ~13b! is obtained by assuming thatT is long
enough so that the effects of the convolution of the functio
~10! and ~11b! are negligible, and it is valid only in the
region outside the support of the optical potential, where
w̃n(q) are real, as indicated above. Furthermore, Eq.~13c! is
obtained by assuming that the Lorentzians do not ove
strongly. It is observed that, for sufficiently longT and out-
side the optical potential, the real part of the Fourier com
nent of the wave packet at themth peak energy,S̃T(q,«m),
yields an approximation to the corresponding compl

energyL2 eigenfunction ofĤ̃ by

w̃m~q!'
pGm

2bm
S̃T~q,«m!. ~14a!

These functions also provideL2 approximations to the pea
resonance eigenfunctions ofĤ of uniform quality over a fi-
15534
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the asymptotic region the exterior optical potential is plac
~see Secs. IV and V!.

If the development is carried out withĤ instead, approxi-
mations to its peak resonance eigenfunctions are analogo
obtained from truncated Fourier-Laplace transforms of a
propagated test function~7b!,

ST~q,«m!ª2 ReF 1

2p\ E
0

T

C~q,t !exp~ i«mt/\!dtG
~13d!

5E c~«!w«~q!dT~«m2«!d« ~13e!

——→
T→`

c~«m!w«m
~q!, ~13f!

wherec(«) is now assumed to be a real number too. It
observed that, for sufficiently longT, the real part of the
Fourier component at themth peak energy,ST(q,«m), yields
an approximation to the corresponding eigenfunction by

w«m
~q!'

1

c~«m!
ST~q,«m!. ~14b!

Nevertheless, Eq.~13e! indicates that, no matter how longT
becomes,ST(q,«m) actually constitutes a wave packet, sin
the convolution integral appearing there never collapses
single term for finiteT. Hence, the functions~14b! also con-
stitute L2 approximations to the peak resonance eigenfu
tions of Ĥ, of uniform quality over a finite coordinate inter
val, whose length, in this case, increases asT gets longer.33

Employing Eq. ~13e! it is readily verified that, for long
enoughT, the L2 functions ~14b! are approximately ortho-
normal, and that in the limitT→` they become Dirac-delta
orthonormalized.

If the propagation time is long enough, theL2 approxima-
tions ~14a! and~14b! coincide everywhere, except in the re
gion where the optical potential is located. This is due to
fact that such a potential, if constructed appropriately~Sec.
IV !, leaves the time-dependent wave function intact outs
of that region, the same being true for the Fourier com
nents~14a!. The L2 character of these approximations do
not limit their practical applicability, since matrix elemen
involving continuum eigenfunctions, e.g., dipole matrix e
ments, converge at finite values of the integration limits.
the contrary, this method is conceptually appealing, sinc
avoids the practical use of the~unphysical! continuum eigen-
states ofĤ, which are seen to play only an underlying form
role in this development.

The lifetime of a resonance is related to the imagina
part of its associated complex energy~2! by Eq.~5!. Accord-
ing to Eq.~10!, the most straightforward method, within th
spectral definition, for determining the lifetime is to fit th
calculated density of states to a Lorentzian function and
evaluate its FWHM.9–15 Obviously, if the Lorentzian fit is
0-4
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STARK-RESONANCE DENSITIES OF STATES, . . . PHYSICAL REVIEW B 66, 155340 ~2002!
not precise, the lifetime obtained in this way is inaccurate
method appropriate in this case consists of propagating

calculated resonance eigenfunction~14a! in time with Ĥ̃ @Eq.
~3!# and calculating its squared norm@Eq. ~4!#. Gn is then
extracted from the slope of the logarithm of this function24

@Equivalently, the squared time-autocorrelation functi
u^F̃n(0)uF̃n(t)&u25exp(2Gnt/\) can be employed#.

IV. COMPUTATIONAL IMPLEMENTATION

The numerical integration of the TDSE, with the Ham
tonian~1! including the optical potential, was carried out b
means of a finite-differences scheme, which is describe
Refs. 22 and 28.

Since the computational grid is finite, withzmin andzmax
its left- and right-hand boundaries, the artificial Dirichl
boundary conditionsC(zmin)5C(zmax)50 are imposed. Due
to the shape of the potential~Fig. 1!, the first condition is
appropriate, providedzmin is far enough to the left from the
well, which is easily accomplished. The second condition
appropriate only if the wave packet is never allowed to re
the boundaryzmax; otherwise it would reflect from it giving
rise to a spurious discretization of the continuum associa
with the bound states of the computational box.18 The most
straightforward manner to avoid these problems, and also
most expensive, is simply to employ a large grid.15,16A more
efficient approach, although still costly, is to allow the grid
expand in time along with the wave packet.33 These two
approaches would provide implementations of the RTWP
with the original Hamiltonian of the system,Ĥ.

In this work, a much more efficient strategy is adopte
which afords an implementation of the RTWPM with th

non-Hermitian HamiltonianĤ̃ of Sec. III. The strategy relies
on adding an optical potential with compact support,23,24

Vopt~z!52 ig~z!, ~15!

to Ĥ far to the right from the well. Since the modified Ham

tonian Ĥ̃g[Ĥ1Vopt is not Hermitian, it causes the norm o
the wave function to decrease in time as soon as it rea
the region where the optical potential is located. This can
used to advantage by tuningg(z) so as to completely dam
the wave function in the asymptotic region before reach
the grid boundary, at the same time leaving it intact in
region of interest. The functional form

g~z0<z<zmax!5
gmax

2 F12cos
p~z2z0!

zmax2z0
G ,

g~z,z0!50, ~16!

wheregmax is the maximum strength ofg(z) and z0 is the
starting point ofVopt, is chosen since it has a continuous fi
derivative atz5z0 , consequently eliminating spurious re
flections at that point.33 Alternative techniques for the
reflection-free simulation of the continuum that could
used in this context are exterior complex-coordin
contours,32,34coordinate stretching,29 and infinite elements.35
15534
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Narrow real Gaussian wave packets located inside
well are used as test functions,22 which are expected to be
spectrally composed mainly of resonant states, since the
tive amplitudes of resonant eigenfunctions are known to
much larger than the amplitudes of nonresonant ones in
well region.~If such Gaussians were located outside the w
the test function would mostly comprise nonresonant stat!.
Hence, these functions are expected to satisfy Eq.~6a! with
very good approximation, a claim that will be confirmed
the following section. Any contamination from nonresona
states in the test function would cause the spectral func
~9b! to exhibit a background, which can be eliminated

propagating the test function withĤ̃g for some time, prior to
the evaluation of the time-autocorrelation function. This p
cedure is based on the observation that the exterior op
potential, besides serving as an asymptotic spatial abso
also simultaneously acts as a filter of the nonresonant b
ground comprised in the wave packet.24 This can be under-
stood by recognizing that the relative amplitudes of nonre
nant eigenfunctions are larger than the amplitudes
resonant ones in the asymptotic region, causing the forme
be damped more rapidly by the absorbing potential. This
turn, is manifested by the fact that the lifetimes of the no

resonant eigenstates ofĤ̃g are much shorter than the life
times of its resonant ones.

In order to guarantee that the time-autocorrelation fu
tions ~8a! and ~8c! turn out to be equal, it is sufficient to
employ test functions~6a! and ~6b! with compact support
and to place the optical potential sufficiently far away fro
this region during the calculation of the time-autocorrelati
function. This is justified by noticing that the initial an
propagated test functions overlap only within the supp
region. Although, strictly speaking, a Gaussian does not p
sess compact support, in practice such a function vanis
beyond a certain point.

V. RESULTS AND DISCUSSION

A prototype system was first considered, consisting of
Al xGa12xAs/GaAs/AlxGa12xAs rectangular QW of width
W5200 Å and barriers of heightV05336.7 meV ~which
correspond to an Al concentration ofx50.45 if a band offset
of 0.6 is taken36!. This rather wide structure was chosen
order to better illustrate the capabilities of the method, ad
tional results for narrower QW’s are reported below. T
effective masses of the electron in the well and barrier
gions were taken asme* 50.0665me and me* 50.104me ,
respectively.36 Calculations were performed forF5400 and
1000 kV/cm, whose corresponding potential profiles are
picted in Fig. 1. Although these fields are relatively stron
they can be easily achieved experimentally. Appropriate g
and optical-potential parameters were found to be:zmin
52300 Å, zmax5650 Å, z05500 Å, andgmax5800 meV.
For the calculations with a position-independent effect
mass, the barrier mass was also taken as 0.0665me .

The propagation times needed to obtain well-converg
densities of states wereT58600 and 140 fs, for 400 and
1000 kV/cm, respectively. The former took a much long
0-5
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time since the resonance widths are much smaller~see be-
low!. The filtering propagation was carried out for about
fs, until the norm of the initially unity-normalized rea
Gaussian wave packet decreased to'0.1. Spectral functions
calculated with unfiltered and filtered test functions were
served to be very similar, confirming the expectation e
pressed in the preceding section.

In order to evaluate the Stark shifts, calculations were a
performed forF50 kV/cm, employing the methodology de
scribed in Ref. 22. The field-free QW was found to supp
five bound states, with energies of 10.3, 43.5, 95.2, 166,
256 meV, employing a position-dependent effective ma
and 11.0, 43.7, 96.3, 172, and 261 meV, employing a c
stant effective mass.

The solid curve of Fig. 2 displays the spectral function
F5400 kV/cm, calculated employing a position-depend
effective mass. Out of the first five features observed, wh
likely correlate with the five field-free bound states, only t
first two are tunneling resonances, since they lie below
barrier~see Fig. 1 and Table I!, whereas the rest are remnan
from above-barrier resonances. The inset shows an enla
ment of the first resonance, which is seen to be very sh
compared to the second. Both tunneling resonances
found to fit very well to Lorentzian profiles. It must be ke
in mind that their relative heights are proportional to th
spectral weights~12!, which, in turn, depend on the explic

FIG. 2. Spectral function, displaying the weighted densities
states, calculated with a position-dependent~solid line! and a con-
stant ~dashed line! effective mass, for aW5200 Å QW underF
5400 kV/cm. The inset shows an enlargement of the lowest-ly
resonance.
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form of the test function employed for the calculation. How
ever, the peak positions and FWHM’s are independent of
test function employed, since these properties are intrinsi
the Hamiltonian. The negative Stark shifts are found to
very large~Table I!.

Figure 3 displays the spectral function forF
51000 kV/cm, calculated by employing a position
dependent effective mass. Due to the much stronger fi
only one~broad! tunneling resonance~see Fig. 1 and Table I!
and several overlapping above-barrier resonances are
served. Despite the overlap of the tunneling resonance w
its neighbor, its line shape is still found to fit very well to
Lorentzian. As expected, the negative Stark shift is mu
larger than in the previous case~Table I!.

The solid curves in Fig. 4 display three unity-normaliz

(L2) eigenfunctions ofĤ̃g with F5400 kV/cm, calculated
with a position-dependent mass, corresponding to the
tunneling resonances and a nonresonant eigenstate in
tween them. TheseL2 functions constitute good approxima
tions to the eigenfunctions ofĤ for z,500 Å, at which
point they are observed to be strongly damped by the opt
potential. Since the first resonance is sharp, the lobe wi
the well exhibits a much larger amplitude than the outer
cillations, i.e., this state has a strong quasibound chara
The relative amplitude of the outer oscillations of the seco
resonance is not so small, since this state is just below
barrier and presents a weaker bound character. The i
lobes of both resonance eigenfunctions are seen to

f

g

FIG. 3. Spectral function, displaying the weighted densities
states, calculated with a position-dependent effective mass f
W5200 Å QW underF51000 kV/cm.
TABLE I. Peak energies («n
(F)), Stark shifts (D«n

(F)5«n
(F)2«n

(0)), full widths at half maxima (Gn
(F)), and

lifetimes (tn
(F)) calculated with a constant (m* ) and position-dependent@m* (z)# effective mass for aW

5200 Å QW underF5400 and 1000 kV/cm.

«n
(F) ~meV! D«n

(F) ~meV! Gn
(F) ~meV! tn

(F) ~fs!

m* m* (z) m* m* (z) m* m* (z) m* m* (z)

W5200 Å, F5400 kV/cm
n51 2230 2236 2241 2246 2.48 0.895 264 735
n52 270.9 272.9 2114 2114 28.3 20.8 23.25 31.6

W5200 Å, F51000 kV/cm
n51 2738 2743 2749 2753 70.7 48.1 9.30 13.6
0-6
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strongly pushed towards the lower edge of the well by
electric field. On the other hand, the nonresonant eigenfu
tion possesses a very small relative amplitude inside
well, an indication of the unbound character of this co
tinuum state. The unity-normalized peak eigenfunction c
responding to the single tunneling resonance forF
51000 kV/cm is shown in Fig. 5. As expected, this sta
presents much less bound character than in the previous

The upper and lower curves of Fig. 6 display the tim
dependent norm and its logarithm~shifted up by 1!, respec-
tively, of the calculated eigenfunction corresponding to
F5400 kV/cm first resonance peak~Figs. 2 and 4!. The ob-
served behavior is as predicted by Eq.~4!, illustrating the
validity of the norm method. In all cases, the FWHM a
norm methods were found to yield the same lifetime valu
which are reported in Table I. This agreement is due to
fact that the resonance profiles fitted well to Lorentzians
help to demonstrate the internal consistency of the meth
ology.

The dashed curve in Fig. 2 was calculated employing
constant effective mass. It is seen that this approxima
induces relatively small spurious positive shifts in the re
nance energies, but large underestimations of the tunne
lifetimes of up to about 300%~Table I!. The dashed curves in

FIG. 4. Peak resonance eigenfunctions, calculated with
position-dependent~solid lines! and a constant~dashed lines! effec-
tive mass, for aW5200 Å QW underF5400 kV/cm. A nonreso-
nant eigenfunction with an intermediate energy, calculated wit
position-dependent effective mass is also shown.

FIG. 5. Peak resonance eigenfunction, calculated with
position-dependent effective mass, for aW5200 Å QW underF
5400 kV/cm.
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Fig. 4 show the corresponding eigenfunctions, where
variations observed in the outer amplitudes are consis
with the decrease in the lifetimes. The underestimation of
lifetimes within the constant-mass approximation is eas
understood by recalling that a light particle tunnels throug
barrier more rapidly than a heavy one.8 On the other hand,
the reasons why this approximation causes positive ene
shifts are not well understood yet.8

In order to compare the results of the RTWPM with ava
able data from other approaches, calculations were also
formed for narrower QW’s under various field strength
Table II displays the results, together with values taken fr
Refs. 10, 13, 15 and 16. ForW5100 Å and F
5400 kV/cm, the resonance energy and shift in the first r
were calculated employing a numerical Fourier-ser
inverse-power~FIP! method,15 whereas the lifetime was ob
tained by fitting the so-called tunneling probability~FTP!,
P1(t)512u^w1uw1(t)&u2, to the exponential function 1
2exp(2G1t/\) at long times, wherew1(t) is the field-free
ground eigenfunction propagated in time with the Ham
tonian including the dc field.15 The peak energy, shift, an
FWHM in the second row were calculated by means of
Airy-function ~AF! method.15 ~In Refs. 15 and 13, a slightly
higher barrier ofV05340 meV is employed!. It is observed
that, for energies, the FIP and AF methods agree fairly w
with the RTWPM whereas, for lifetimes, the~constant-mass!
FTP and ~variable-mass! AF methods disagree with th
RTWPM by almost three orders of magnitude, although th
agree relatively well between them.

For W5100 Å andF5250 kV/cm, the peak energy an
FWHM in the first and second rows were calculated empl
ing Fourier-stabilization-graph~FSG! and AF methods,
respectively.15 The same properties in the third row we
obtained by the same authors employing three different
approaches.13 For this field strength, the resonance is ve
sharp, requiring very long propagation times in order to co
verge the spectral function in the RTWPM. Therefore, on
upper and lower bounds for the FWHM and lifetime, respe
tively, are reported. It is seen that the agreement between
FSG and AF methods of Ref. 15 is excellent, whereas the

a

a

a

FIG. 6. Time-dependent norm~upper curve! and its logarithm
~lower curve! of the lowest-lying resonance eigenfunction, calc
lated with a position-dependent effective mass, for aW5200 Å
QW under F5400 kV/cm. The lower curve has been shifte
up by 1.
0-7
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TABLE II. Peak energies («n
(F)), Stark shifts (D«n

(F)5«n
(F)2«n

(0)), full widths at half maxima (Gn
(F)), and

lifetimes (tn
(F)) calculated with a constant (m* ) and a position-dependent@m* (z)# effective mass for the

indicated QW widths and field strengths.

« (F) ~meV! D« (F) ~meV! G (F) ~meV! t (F) ~fs!

m* m* (z) m* m* (z) m* m* (z) m* m* (z)

W5100 Å, F5400 kV/cm
FIP/TPa 236.5 270.16 5.2231023 1.263105

APb 238.5 272.2 3.0331023 2.173105

RTWPM 234.3 240.3 268.8 272.7 2.47 0.88 266 746

W5100 Å, F5250 kV/cm
FSGc 2.10 231.6 1.2431026 5.313108

AFb 2.19 231.5 1.2631026 5.243108

AFd 20.94 0.145 4.543104

RTWPM 21.16 233.5 ,0.022 .3.03105

W552 Å, F5200 kV/cm
FDIP/TPe 74.7 25.2 2.63 2.53103

RTWPM 74.5 24.6 ,2.231022 .3.03105

W530 Å, F5400 kV/cm
AFf 211.2 7.31 900

RTWPM 145 129 218.0 212.0 10.9 3.66 600 1800

aReference 15.V05340 meV. Numerical Fourier-series inverse-power and tunneling-probability method
the energy eigenvalues and lifetimes, respectively.

bReference 15. Airy-function approach.
cReference 15. Fourier-series stabilization-graph method.
dReference 13.V5340 meV. Airy-function approach.
eReference 16.W551 Å,V05300 meV. Numerical finite-difference inverse-power and tunneling-probab
methods for the energy eigenvalues and lifetimes, respectively. The values recorded are read off the
curves.

fReference 10.V05400 meV. Airy-function approach. The values recorded are read off the reported cu
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method from Ref. 13 provides a lower value of the resona
energy and a lifetime shorter by four orders of magnitu
In the latter reference, no comments are provided ab
the reasons for these disagreements. The RTWPM give
even lower value for the resonance energy and a lifetim
least one order of magnitude longer than the AF method
Ref. 13.

For W552 Å andF5200 kV/cm, the first row displays
values read off from the curves reported in Ref. 16~where a
slightly smaller width ofW551 Å and a slightly lower bar-
rier of V05300 meV are employed!. In that work, the reso-
nance energy and shift were calculated employing a num
cal finite-difference-inverse-power~FDIP! method, whereas
the lifetime was defined by the same fitting as in Ref.
~FDTP!. For energies, the FDIP method is seen to agree v
well with the RTWPM, however, the latter yields a lifetim
longer by at least two orders of magnitude than the FD
scheme.

Finally, for W530 Å and F5400 kV/cm, the first row
presents values extracted from the curves reported in Ref
where the peak position and FWHM are obtained using
AF method. In that work, a constant mass and a barrie
V05400 meV are considered, which are expected to prod
somewhat different values from the present work. With t
15534
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consideration in mind, it is observed that both the energy
the lifetime agree reasonably well with the RTWPM.

The lifetime values produced by the RTWPM and A
methods10,13,15are based on a spectral~static! definition@Eqs.
~4! and ~10!#, whose physical interpretation has long be
the object of controversy.21 On the other hand, various ex
plicitly time-dependent definitions of the lifetime15,16,21

originate from appealing physical interpretations, but there
no reason to expect that they yield the same values as
spectral definition. In the particular case of the aforem
tioned TP fitting procedure,15,16 this is due to the fact that an
abrupt switching of the electric field leaves the electron in
spectrally wide nonstationary state,37,38 with several reso-
nance channels available for its escape from the well, res
ing in a lifetime much shorter than that predicted by a sta
calculation. The spectral width of such a nonstationary s
is manifested in transient oscillations of the tim
autocorrelation function.15,16,37–39This explains, at least in
part, the large discrepancy in the lifetime value between
FDTP method16 and the RTWPM observed in Table II.

For the discrepancies in energy and lifetime values
tween the RTWPM and the FTP, AF, and FSG methods
Ref. 15, on the one hand, and the AF method of Ref. 13,
the other hand, the authors are unable to offer an explana
0-8
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VI. CONCLUSIONS AND PERSPECTIVES

The present adaptation of the real-time wave-pac
propagation method, by adding an optical~absorbing! poten-
tial to the Hamiltonian of the system in the asymptotic
gion, appears as an accurate and versatile numerical me
ology for the calculation of continuum eigenspectra of lo
dimensional semiconductor systems, in particular, resona
densities of states, lifetimes, and eigenfunctions. Its capa
ity of producing the entire density of states in a single r
and spectral lifetime values on the same footing make
specially interesting. The method is also conceptually
pealing, since no practical use is made of the~unphysical,
non-L2) eigenstates of the Hamiltonian, which play only
underlying formal role.

The strong resonance features~large Stark shifts and shor
mean lifetimes! exhibited by an electron in a quantum we
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