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Monte Carlo simulation of electron transport in SiÕSiO2 superlattices:
Vertical transport enhanced by a parallel field
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Considerable effort is presently devoted to develop Si quantum structures for microelectronics and nano-
electronics. In particular, well-defined Si/SiO2 superlattices and quantum wells are under study. We investigate
here the transport properties of a Si/SiO2 superlattice with a multiband one-particle Monte Carlo simulator. The
band structure is obtained with an analytical model and the scattering mechanisms introduced in the simulator
are confined optical phonons, both polar and nonpolar. Owing to the very flat shapes of the bands along the
growth direction, very low drift velocities are obtained for vertical transport. However, the simulation shows
that, for oblique fields, the transport properties along the vertical direction are strongly enhanced by the
in-plane component of the electric field, consequently higher vertical drift velocities can be easily obtained.

DOI: 10.1103/PhysRevB.66.155332 PACS number~s!: 73.63.Hs, 72.10.Di
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I. INTRODUCTION

Silicon is now experiencing a new phase as a functio
material. In fact considerable effort is being devoted on
development of efficient silicon light-emitting material.1–4

The light-emission processes in silicon are clearly rela
to quantum confinement effects, thus Si devices based
confined structures, such as quantum layers, quantum w
or quantum dots, have been the subject of intensive inve
gations by several research groups.2–4 Silicon-based hetero
structures form one of the most promising classes of s
systems because of their easy compatibility with conv
tional silicon-based integrated circuit technology. In partic
lar, Si/insulator multiple quantum wells or superlattices~SL!,
where calcium fluoride (CaF2) or silicon dioxide (SiO2)
were used as insulating material, have been studied f
both the experimental and the theoretical points of view, w
a particular emphasis on their photoluminescen
properties.5–19 In these systems the thickness of the silic
layers lies in the nanometer range. It is interesting to n
that most of the experimental work was originally based
the amorphous silicon films; however, well-defined cryst
line Si/SiO2 systems are now available.20

Beside photoluminescence, also electroluminescence
been observed both in Si/CaF2 and Si/SiO2 superlattices.21–26

As the optimization of the electroluminescence is related
the carrier injection efficiency into the Si quantum layers
is very important to understand the electrical transport pr
erties of these structures. Until now this has been perform
by computing current-voltage characteristics both
Si/CaF2 ~Refs. 27 and 28! and Si/SiO2 ~Ref. 29! multiple
quantum wells through model calculations, where the e
tron and hole tunneling between adjacent wells is evalua
0163-1829/2002/66~15!/155332~10!/$20.00 66 1553
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within the Wentzel-Kramers-Brillouin approximation30 or by
modeling charge carrier transport across the heterostruct
by means of an equivalent circuit.31 From the numerical re-
sults, a number of simple conclusions useful to optim
physical parameters in order to achieve their maximum e
troluminescence efficiency has been derived.

Our aim here is to investigate the transport properties
Si/SiO2 superlattices through a multiband one-particle Mon
Carlo simulator in order to study the best response to
applied electric field with respect to the different geometr
of the system.

The present work is part of a larger project that will i
clude the study of hole transport and recombination mec
nisms, in order to understand electroluminescence prope
of silicon-based superlattices.

Section II of this paper is a detailed description of t
method used to calculate the band structure of the sys
The analytical form of the minibands is obtained by fitting
tight-binding form over the numerical solution obtaine
within the envelope function formalism. The scatterin
mechanisms are described in Sec. III, and include in
simulation confined optical phonons, both polar and non
lar. Section IV focuses on the description of the simulat
Here we show the fundamental steps of the Monte Ca
~MC! simulation, and discuss how scattering events are
cluded in the code.

In Sec. V, we present our results concerning simulatio
with vertically applied field and oblique field, where we ca
see the effect of the parallel component of the electric fi
on vertical transport. In particular, we show that in this w
we can significantly improve vertical transport properties

II. BAND STRUCTURE

The material under investigation is a Si/SiO2 SL, where
the Si layers are grown along the~100! directionz.
©2002 The American Physical Society32-1
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As Hamiltonian for an electron in our SL, we assume t
following:

HSL5Hcr1WSL1He2p , ~1!

whereHcr is the Hamiltonian due to the crystalline potentia
WSL is the SL potential, andHe-p is the electron-phonon
interaction Hamiltonian. The interaction with phonons
treated within the time-dependent perturbation theory
will be developed in the following section.

Now, the Schro¨dinger equation to be solved is

@Hcr~r !1WSL~r !#uC&5EuC&. ~2!

If we consider that the electrons moves near a band m
mum k0, we can apply the envelope function
approximation32 to solve the problem, obtaining a new equ
tion that describes the eigenvalue problem for the envel
function:

@En~2 i“ !1WSL~r !#Fn~r !5EFn~r !, ~3!

whereF is the envelope function andEn(2 i“) is the energy
operator for the electron in the material. The expression
this last operator, when considering a little interval nea
minimumk0, can be easily substituted by the parabolic ba
approximation,33

En~2 i“ !.En~k0!1~2 i“ i2k0,i !S \2

2m*
D

i , j

~2 i“ j2k0,j !.

~4!

The effective mass tensor (1/m* ) i , j describes the band curv
ing around the pointk0. Equation~3! is separable along th
high symmetry of 1/m* directions and allows us to deal wit
one-dimensional problems.

First, let us look for the solution along the SL grow
directionz. The effective mass is now a function of the m
terial layer and, in general, it may be considered as a fu
tion of thez position; the new problem to be solved is

S 2
\2

2
“

1

m~z!
“1WSL~z! DF~z!5EzF~z!, ~5!

where the term“@1/m(z)#“ ensures current continuity a
the interfaces,34 and the potentialWSL is the Krönig-Penney
potential:

WSL~z!5H 0, 2b<z2nL<0

W0 , 0<z2nL<a,
~6!

whereW0 is the conduction-band offset~CBO!. With current
conservation34 and periodic-boundary conditions, we get t
solution along thez direction, i.e., the minibandsE(kz).

Concerning thex andy problems, we notice that Eq.~5!
along these directions represents a free-electron problem
we get a parabolic dispersion. Therefore, the resulting th
dimensional~3D! miniband is
15533
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E~k!5E~kz!1
\2

2mx
~kx2kx,0!

21
\2

2my
~ky2ky,0!

2, ~7!

where E(kz) is the nonanalytical solution of the
Krönig-Penney35 potential. This expression can be approx
mated by a tight-binding36 analytical dispersionE(kz). ẽ

2 t̃ cos(kzd), whereẽ and t̃ are, respectively, the middle en
ergy and the half width of the miniband, and are used
parameters fitted to the Kro¨nig-Penney solution. In the cas
of silicon we must consider that the six band minima are o
G. The j th miniband arising from theath minimum, cen-
tered ink0

a , has the analytical form

Ej
a~k!5

\2

2mx
a

~kx2k0,x
a !21

\2

2my
a

~ky2k0,y
a !2

1@ ẽ j
a2 t̃ j

acos~kzd!#. ~8!

It is evident that, along thez direction, all the equivalent
valleys of silicon are refolded inkz50, while the positions
k0,x

a and k0,y
a do not change. As a consequence, if the SL

grown along the Si~001! direction, the two valleys alongkz
are refolded into the same miniband with double multiplici
Although the six silicon valleys have the same energy, in
SL they have different energies owing to the different effe
tive masses along thez direction. The minibands for a
Si/SiO2 SL ~with 24-Å Si and 7.68-Å SiO2) are represented
in Fig. 1. In this figure only the dispersion alongkz is repre-
sented so the continuous and the dotted lines are the dis
sions of the bands centered atG, the dashed line is the dis
persion for the fourfold minibands off-G. These minibands
are very flat, in particular, the lowest one that is about 1 m
wide. This is the cause of very low vertical mobility in suc
systems.

III. SCATTERING MECHANISMS

The system under examination is supposed to be a
fectly grown SL with smooth interfaces, so we can assu
that there is no interface scattering. We also consider a
grown with a content of impurity so low that at room tem
perature, impurity scattering is negligible if compared to t
phonon scattering. As regards scattering by phonons, in
simulations we include only optical-phonon scattering b
cause at room temperature this is the strongest mechan

Optical phonons in layered systems are genera
confined,37,38 it means that silicon layers will show optica
frequencies typical of a bulk silicon and oxide layers w
behave as a bulk oxide. For this reason, during the sim
tion, we account for the real-space position of the electr
when it moves within the Si layers, it can interact with
phonons and, in the oxide layers, with oxide optic
phonons.53

Since Si is a nonpolar material, the electrons in the
layer can interact with the lattice only via deformation p
tential; SiO2 is a polar material and the electrons intera
both with polar and deformation potential mechanisms.39 Ac-
tually, in the silicon dioxide two polar phonons modes, a
2-2
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FIG. 1. kz dispersion of the minibands. Th
dashed line represents thez dispersion of the
~100! and~010! valleys. Note the different scale
in the three figures on the right showing zoom
on the minibands.
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one nonpolar, are present~the specific constants are given
Table I!.

The optical-phonon differential scattering rate is obtain
by using the Fermi golden rule,

P~nk;n8k8!5
2p

\
M ~nk;n8k8!d@En~k!2En8~k8!6\vop#,

~9!

where M (nk;n8k8)5u^n8k8uHe-punk&u2. ~Here and in the
following, n will indicate a specific miniband that is the pa
of labelsa andj.! In particular, if we substitute the miniban
dispersion~8! into thed function and integrate overk8, we
15533
d

obtain the total scattering rate for an electron that is scatte
by a phonon of energy\v from then miniband and pseudo
momentumk into anyk8 in the n8 miniband.

The matrix element for deformation potential optic
phonons is40

uMn,n8~k,k8!u25
\~DtK !2

2rVvop
F Nop

Nop11G , ~10!

and for polar optical phonon is
doped
r.
TABLE I. Values used in the simulations for the physical quantities.

Physical quantity Value/Ref.

Longitudinal effective mass in Si m* 50.97 ~Ref. 41!
Transverse effective mass in Si m* 50.19 ~Ref. 41!
Effective mass in SiO2 m* 50.3, ~Refs. 42,43!
Conduction-band offset CBO53.1 eV ~Ref. 44!
Lattice temperature T5300 K
Si optical-phonon energy E560 meV ~Ref. 45!
Si optical coupling constant DtK583108 eV/cm ~Ref. 45!
Oxide nonpolar phonon energy E5132 meV~Ref. 39!
Oxide optical coupling constant DtK523109 eV/cm ~Ref. 39!
Oxide first polar phonon energy E563 meV ~Ref. 39!
First polar optical constant 1

e1
2

1
e2

50.063~Ref. 39!
Oxide second polar phonon energy E5153 meV~Ref. 39!
Second polar optical constant 1

e1
2

1
e2

50.143~Ref. 39!
Oxide mean polar phonon energy E5108 meV
Mean polar optical constant 1

e1
2

1
e2

50.2
Oxide screening wave vector 109 cm21

aArbitrarily chosen in order to avoid divergences. This value implies a carrier concentration near 1016 cm23,
typical of doped silicon. We have performed simulations with the correct screening length for un
silicon and the results are almost the same, but the simulation time is one order of magnitude large
2-3
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uMnn8~k,k8!u2

5
e2Eop

2V~ uk2k8u21ukDu2!
S 1

e1
2

1

e2
D F Nop

Nop11G ,
~11!

where DtK is the deformation potential coupling constan
Nop is the phonon population,kD51/l D is the screening
wave vector for the electrons, ande2 and e1 are the low-
and high-frequency dielectric constants. In this way, b
interband and intraband scattering probabilities have b
introduced.

IV. THE MONTE CARLO SIMULATOR
An electron subject to the electric field is accelera

along the field direction, but it remains in the same mi
band. When a scattering occurs, the ballistic flight is int
rupted and the electron is scattered away into ak8 point in
the same or in another miniband; then the particle is ag
accelerated by the electric field.

We performed the simulation of transport using a se
classical one-particle MC.45 According to this genera
scheme, we randomly generate the free flight durationt r
5(1/G0)ln(r) (G0 is the total scattering rate including th
self-scattering mechanism!. Now we choose randomly th
scattering mechanism and the state after the collision acc
ing to the differential scattering ratePn8(k,k8) of the se-
lected process.

After integration of Eq.~9!, the nonpolar scattering prob
ability results in

Pn8~E!5
~Dtk!2

2rvop\
2d

Amx
n8my

n8F Nop

Nop11G

35
0

1

p
arccosS En82E7\v

u t̃ n8u
D

1

. ~12!

In the integration of the total scattering rate, we have to s
over all the minibandsn8, counted with their multiplicitym:
P(E)5(n8mn8Pn8(E).

The polar optical interaction in Eq.~11! gives rise to an
anisotropic scattering rate. In order to simplify the calcu
tion, we maximize the matrix element by imposingk2k8
50 and now the integration is the same than before w
maximized probability:

P̄~E!5
pe2vop

2d\2kD
2 S 1

e1
2

1

e2
DAmx

n8my
n8F Nop

Nop11G

35
0

1

p
arccosS En82E7\v

u t̃ bu
D

1

. ~13!
15533
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To get the exact result, once the state after the scatte
k8 is generated, we apply the rejection technique in orde
decide whether the scattering process, or a fictitious s
scattering, has occurred. The optical-phonon dispersions
approximated, as usual, with constants, and the two p
phonons in oxide are introduced in the simulation as o
one mode of mean energy and the coupling constant equ
the sum of the two constants~see Table I!. The final scatter-
ing rate reveals a steplike behavior typical of the density
states of our system.

The estimators for the physical quantities are collected
the end of each free flight, just before the choice of t
scattering mechanism, even if the flight ends with a se
scattering. In the simulation we are interested in the d
velocity, the mean energy, and the electron distribution fu
tions in energy and in momentum space. The two distribut
functions are obtained by setting up meshes on energy
momenta and counting how many times the electron vi
each interval of these meshes. The mean energy iē
5(1/N)( i 51

N e i , whereN is the number of free flights in the
simulation ande i is the energy at the end of the flight. Th
drift velocity is obtained45 from the same estimator by sub
stitution of energy with the group velocity vg
5(1/\)“ke(k). The simulation time is long enough to en
sure the physical quantities to have small statistical err
typically the error associated to our results is of the order
0.1–1 %.

V. RESULTS AND DISCUSSION

Two kinds of simulations have been performed:~a! with
the field applied along the growth directionz, and~b! with an
oblique field. In the latter case, a constant field is appl
along thez direction and a component of the field in th
parallelx direction is varied. In both cases, vertical transp
is studied. Simulations are performed at lattice tempera
T5300 K. The model has been tested for GaAs/AlxGa12xAs
SL’s and our results are in good agreement w
experiments46 and theoretical predictions.47 The two differ-
ent geometries, with different layer thicknesses, have b
considered for Si/SiO2 superlattice.

A. „25Õ5…-Å SL with vertical fields

The first system studied is a SL arbitrarily made up of
Å of silicon and 5 Å of silicon dioxide with an applied ver-
tical electric field; the results are shown in Figs. 2 and 3.
it regards drift velocity~Fig. 2, lower part!, we see that in-
creasing the electric field, the velocity first increases up t
maximum and then a further increase of the applied fi
causes a decrease in the drift velocity. This is the nega
differential conductivity regime, predicted by Esaki an
Tsu,48 and it can be explained using the electronic distrib
tion function inkz direction~Fig. 3 lower part!: at low elec-
tric field the distribution is located near the center of t
minizone, but slightly shifted towards right, so the drift v
locity is low. At higher field the peak of the distribution i
more shifted where the group velocity is higher; then,
highest field the maximum shifts, but the distribution flatte
2-4
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and the drift velocity comes from the contribution of all th
k-space points. Another important result is that drift veloc
is very low, owing to the very flat shape of the miniband.

The mean energy assumes a value near 28 meV in
region of low fields, then it increases about 1.5 meV~Fig. 2!;

FIG. 2. Mean energy~measured from the minimum of the low
est band! and drift velocity for a~25/5!-Å Si/SiO2 SL.

FIG. 3. Momentum distribution functions for the~25/5!-Å
Si/SiO2 SL, for several values of the applied field.
15533
he

this increase cannot be observed in the energy distribu
function because it is very small.

Figure 2, upper part, shows the mean electron energy
function of the electric field. Since the system under inve
gation has parabolic energy dispersion along two directi
and a different, very flat, dispersion alongz direction, it is of
interest to analyze the mean kinetic energy at equilibriu
This analysis is presented in the Appendix. The ene
shown in Fig. 2 is the total energy~including miniband bot-
toms! measured from the bottom of the lowest miniband,
that the equilibrium value~around 29 meV! is slightly above
the two-dimensional case, consistently with the fact that
per minibands are partially occupied. The increase obser
in mean energy can be interpreted noting that it is com
rable to the miniband width and that, as described above
high fields, electrons populates uniformly the whole min
band.

B. „24Õ7.68…-Å SL with vertical fields

The second system analyzed in this work has almost
same thickness of silicon and a larger thickness of oxide
we can study the dependence of transport properties upon
dimensions of the system. Moreover, the dimensions are
directly correlated to the material unit cells; the two lay
thicknesses correspond, respectively, to exactly 4.5 times
dimension of the Si unit cell and one SiO2 unit cell. The
results are reported in Figs. 4–6. With vertical applied fie
the behavior for the drift velocity~Fig. 4! is similar, but the
intensity is one order of magnitude lower. This low transp
regime is caused by the larger barriers~7.68 Å versus 5 Å!
that implies more flat minibands, or equivalently, reducti
of the tunneling rate.

We have reported the drift velocity in each miniband~Fig.
5! and the population of electrons in each miniband~Fig. 6!.
It can be seen that the higher minibands, having higher
locities, are less populated so their contribution to the ove
drift velocity is very low at low fields, when the field is
increased, the second miniband gives the most impor
contribution to the drift velocity.

FIG. 4. Drift velocity for a~24/7.68!-Å Si/SiO2 SL.
2-5
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The momentum distribution function has very simil
behavior to that found in case described in the preced
section.

C. „24Õ7.68…-Å SL with oblique fields

We have seen in the previous sections that the vert
transport properties are in general very weak when only v
tical field is applied. The idea we propose in this section
that by applying a parallel field, electrons can be heated
and populate higher~and wider! minibands. This gives rise to
a higher mobility. In other words, by increasing the electr
energy, tunneling is favored.

Concerning diagonal simulations, we consider the la
SL, with a constant field along thez direction Ez
52000 KV/m, near the peak of the velocity curve. We a
apply a variable field along thex direction, so that we can
study the vertical transport versus parallel electric field. T
system is anisotropic and the electron mobility is mu
higher along the in-plane direction, about three or four ord
of magnitude higher than along the vertical direction; t
resulting drift velocity is not parallel to the electric field.
typical result withEz53000 KV/m andEx5200 KV/m is a

FIG. 5. Drift velocity, for each miniband, in a~24/7.68!-Å
Si/SiO2 SL.

FIG. 6. Population in the minibands for the~24/7.68!-Å Si/SiO2

SL.
15533
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rsdrift velocity of vd,z56.5 m/s andvd,x560 000 m/s. From
what has been said above, it is very interesting to study h
the z component of the velocity is influenced by the paral
electric field; these results are showed in Figs. 7–12.

FIG. 7. Mean energy and drift velocity as functions of the p
allel field with constant field alongz direction, for a~24/7.68!-Å
Si/SiO2 SL.

FIG. 8. Population fraction for a~24/7.68!-Å Si/SiO2 SL.
2-6
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MONTE CARLO SIMULATION OF ELECTRON . . . PHYSICAL REVIEW B66, 155332 ~2002!
As it regards drift velocity~Fig. 7 lower part!, we see that,
when a lateral field is applied, electrons move twice or th
times faster than with only vertical field. This phenomenon
clearly interpreted by observing the miniband populatio

FIG. 9. Drift velocity for each miniband in a~24/7.68!-Å
Si/SiO2 SL.

FIG. 10. Momentum distribution function, in the miniband
and 2, for several values of parallel electric fieldEx .
15533
e
s
s

versus parallel electric field~Fig. 8!, the drift velocity sepa-
rated for each miniband~Fig. 9! and the momentum distri
bution functions~Fig. 10! as function ofE.

Electrons move faster, by increasing the field, for tw
reasons: the first one is that by increasing the parallel fi
the fractions of electron populations in higher minibands
crease, thus ‘‘faster’’ minibands give a more important co
tribution to transport; moreover, it can be seen that the va
of drift velocity provided by each miniband increases
itself ~Fig. 9! owing to the change in the momentum dist
bution for each miniband~Fig. 10!. The parallel electric field
unbalances the momentum distribution favoring the regi
with positive velocity.

This interpretation is confirmed by the heating of ele
trons reported in Figs. 7, 11, and 12 showing, respectiv
the total kinetic energy, the kinetic energy for each miniba
and the energy distribution functions; electrons are heated
in each miniband, and the wider minibands contribute m
when the parallel field increases. The heating occurs al
the parallel direction and redistribute itself in the other dire
tions.

FIG. 11. Mean energy, above the bottom of each miniband,
~24/7.7!-Å Si/SiO2 SL.

FIG. 12. Energy distribution function, in the first miniband, fo
several values of parallel electric fieldEx .
2-7



h
es
t o
th

an
al
e
ta

ns
r-
an
th
y.
n
n
rif

is
n
g

r
to
om
e

a
e

s o
b
he

b
l t

c-
rgy.

lane
her

ric
ld

A

lec-
t
n

ical

the
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In Fig. 12, the distribution functions, especially at hig
parallel field, for the first miniband show different slop
separated by kinks. This behavior is strongly dependen
the phonon-scattering rate. Electrons with energy below
first kink have little possibility to dissipate because they c
not emit optical phonons; above this energy, their therm
zation is more efficient through phonon emission. The s
ond kink arises from the same mechanism with the final s
in the second miniband.

VI. CONCLUSIONS

In this work we have investigated the electrical respo
of Si/SiO2 superlattice to applied electric fields. Two diffe
ent geometries have been studied, in which the silicon
oxide layers have different thicknesses. Coherently with
very flat shape of the miniband, we found low drift velocit
Moreover, the mean velocity of electron in strongly depe
dent upon the oxide layer thickness: it decreases significa
when the oxide layers are thicker. The curve of the d
velocity is well explained by the Esaki-Tsu model.

Now we discuss the validity of the model used in th
paper. The semiclassical miniband transport descriptio
useful when the miniband width is greater than the volta
drop over a SL period, i.e.,eEd,2 t̃ ; beyond this limit, a
quantum description is required.49 The first miniband~that is
less than 1 meV wide! satisfies this condition for fields lowe
than 200 KV/m. But from the Figs. 4 and 5, it is possible
see that above this value the transport properties are d
nated by the second miniband. This miniband is about 9 m
wide and satisfies the former condition whenEz
,3000 KV/m. Since in the diagonal simulations a vertic
field Ez52000 KV/m is used, the semiclassical mod
should be applicable. For higher electric fields, the result
a rigorous quantum theory could be somewhat different,
we are confident that the major physical result presented
would be confirmed.

We have shown that it is possible to improve transport,
applying an extra component of the electric field, paralle

FIG. 13. Mean kinetic energy in a SL miniband vsD ~half of the
miniband width!.
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the layer interfaces. In this way, a better vertical drift velo
ity has been obtained through an increase of electron ene
Our discussion has shown that this is caused by the in-p
heating of the carriers in such a way that can populate hig
minibands. From the experimental point of view, elect
field is a way for this purpose, probably similar results cou
be obtained using alternated electric fields.
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APPENDIX: MEAN KINETIC ENERGY IN SL MINIBANDS

The SL under investigation is a quasi-2D system: the e
tron dispersion is parabolic in thex-y plane and a nearly fla
cosine shape in thez direction. So we can expect a mea
value for kinetic energyK, between the two dimensionalkBT
and the three dimensional3

2 kBT. In this section, we perform
this calculation. The starting point is the standard statist
definition50

K̄52
]

]b
lnE

2`

1`

e2be(p)dp. ~A1!

The electron kinetic energy is measured starting from
minimum of the miniband. Equation~8! can be rewritten as
e(p)5ex1ey1D@12cos(pz/\)d# @where D5 t̃ in Eq. 8#,
and the above definition becomes

K̄52(
i 51

3
]

]b
lnE

2`

1`

e2be i (pi )dpi5(
i 51

3

Ki5
1

b
1K3 .

~A2!

The mean kinetic energy isKx5Ky51/b for the parabolic
degrees of freedom, while for thez direction it is

K̄z5D2
]

]b
ln I ~b,D!, ~A3!

where

I ~b,D!52
\

dE0

p

ebD cosjdj. ~A4!

If we perform the substitutionc52cos(j),

I ~b,D!52
\

dE21

1

~12c2!21/2ebDcdc52
\

d
ApGS 1

2DI0~bD!,

~A5!

here G is the factorial function andI0(bD) is the Bessel
function. Substituting the last result in Eq.~A3!, and remem-
2-8



d
n

-

o,

A.

A.

ac

A
i B

ias
ys

n

si

to

,

A

A

g

s

-

,

as-

10

ni,

ro-

r
li

s

f
s,

.H.

cs

e-

er,
uld

of

MONTE CARLO SIMULATION OF ELECTRON . . . PHYSICAL REVIEW B66, 155332 ~2002!
bering 1/b5kBT, we have the final form

K̄z~T,D!5D2F ]

]b
ln I0~bD!G

b51/kBT

. ~A6!
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shows that even single electrons can be correctly describe
terms of a ‘‘cloud’’ of charge, or, equivalently, in terms of
quantum distribution whose single points behave very much
virtual classical particles; they are accelerated, by smooth po
tial, as classical particles and are scattered by fast varying
tentials or phonons with a mechanism very similar to that
scribed in semiclassical particles. The difficulty remains t
during the duration of the electron-phonon interaction, the
15533
in

e
n-
o-
-
t
-

tual particles may move from a layer to a different one. Th
consideration may suggest that a quantum treatment of trans
in superlattices may be desirable. On the other hand, the
sumption of phonon scattering localized in a single layer m
also be justified by the consideration that owing to the flat d
persion of the optical-phonon modes, these lattice vibrations
be reasonably well described by the Einstein model of locali
harmonic oscillators.
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