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Effects of J-gate potential and uniform electric field on a coupled donor pair in Si
for quantum computing

Angbo Fang and Y. C. Chang
Department of Physics and Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois, 6180

J. R. Tucker
Department of Electrical Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801

~Received 4 March 2002; revised manuscript received 11 July 2002; published 30 October 2002!

We present theoretical studies of a coupled-donor pair in Si via an unrestricted Hartree-Fock method with a
generalized valence bond wave function. Polarization properties and exchange coupling for a phosphorous
donor pair in silicon under a J-gate potential~modeled by a parabolic well! and a uniform electric field~either
parallel or perpendicular to the interdonor axis! are examined. The energies and charge distributions of the
lowest-lying singlet and triplet states as functions of the J-gate potential and uniform electric field for various
donor separations are analyzed. Implications for Si:P electron-spin-based quantum computer architecture are
discussed.
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I. INTRODUCTION

The development of efficient quantum algorithms f
classically difficult problems has generated an exploding
terest in the construction of a quantum computer~QC!.1,2

Among dozens of quantum computer proposals, solid-s
QC’s are gaining popularity with their promise of scalabilit
In particular, quantum computer architectures implemen
in semiconductors, where either electron spins3 or nuclear
spins4 as qubits embedded in semiconductor structures h
the potential to take advantage of the enormous resource
contemporary microelectronics. In such schemes, elec
spins of localized electrons in semiconductors are used e
as carriers of quantum information units~qubits! or as agents
for coherent transfer of information between qubits realiz
on nuclear spins. By performing unitary transformations o
arrays of qubits, data processing can be achieved in a q
tum computer. It has been proved that any unitary multiqu
operation can be performed by the combination of sing
qubit operations and the controlled-NOT two-qub
operation.2 In most proposals for an electron-spin-bas
quantum computer, single-qubit operations are performed
bringing individual spins into resonance with applied ma
netic fields, while two-qubit operations are implemented
an exchange interaction due to overlap of electron w
functions localized around neighboring sites. The excha
coupling between the two spinsS1 andS2 is described by a
Heisenberg Hamiltonian

Hex5JS1•S2 , ~1!

where J is the coupling strength, corresponding to t
singlet-triplet splitting for the two localized electrons~la-
beled by 1 and 2!. The effective exchange interaction@Eq.
~1!# allows one to implement a ‘‘square root of swap’’ gat
USW

1/2 , by applying a pulseJ(t) with *0
tsdtJ(t)/\5p/2 ~mod

2p). This gate, in combination with single-qubit gates, c
realize any multiqubit operations.5,6 For quantum dot
0163-1829/2002/66~15!/155331~9!/$20.00 66 1553
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electron-spin-based QC architectures, the typical switch
time is aroundts530 ps, with the adiabatic pulse shapeJ(t)
height aroundJ0580 meV.7,8

In the initial state of a quantum computer, all qub
should be well isolated from one another. A two-qubit inte
action is then switched on by an external gate. At the end
each complete operation, the two-qubit interaction
switched off again. One main obstacle in realizing accur
qubit operations is the electron-spin decoherence due to
controlled interaction with its surrounding environment.
reliable error-correction scheme9 requires gate operation
with an error rate no larger than one part in 104.7,8,10Fast but
accurate gate control over qubits is therefore required. H
ever, too fast mixing of the two-electron states would exc
the previously frozen orbital degrees of freedom, which c
lead to failure of the simplified Heisenberg Hamiltonian
the characterization of the low-energy dynamics of the tw
electron system. It has been pointed out that adiabatic op
tion of the exchange gate can help reduce the errors ca
by state mixing.7,11 Thus, the optimum value of the gate op
eration time is constrained from below by the adiabatic c
dition and from above by the spin decoherence time. I
estimated12 that the leakage rate of quantum information d
to state mixing is reasonably small (,1026) for a gate op-
eration time longer than 30 ps, for a typical coupled quant
dot QC system. In the Si:P spin-based architectures con
ered here, the single-donor energy-level spacing is la
than that for other types of quantum dots and the electr
spin decoherence time is much longer~as discussed below!.
Thus, we believe that the condition for adiabatic gate con
would not lead to stringent requirements for quantu
computing,13 let alone the fact that there are nonadiaba
possibilities to perform gate operations.14

Conventionally, two parameters are used to approxima
characterize the electron-spin decoherence: the di
electron-spin-flip timeT1 and the transverse spin lifetimeT2.
Usually T1 is larger thanT2. The switching timets should
be less than 1024T2 to make error-correction schemes re
©2002 The American Physical Society31-1
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able. For isotopically purified Si:P,T2 is measured by spin
echo technique to be roughly 1024 s to 1023 s with a donor
concentrationn51016 cm23.15,16 Here T2 is mainly due to
effects of the spin-orbit, multipole-multipole, and exchan
interactions between neighboring electron spins. Ka
pointed out thatT2 is probably limited by the dipolar inter
actions for very small donor concentrations.17 In a quantum
computer all these sources of decoherence can be regard
controllable using compensating algorithms.18,19 Compared
with the lower bound ofT2 (;100 ns) observed in bulk
GaAs using ultrafast time-resolved optical methods,20 the
electron-spin decoherence time in Si:P is much longer, an
Si:P-based QC would thus allow much slower gate contr

To describe the time evolution behavior of a system w
a slowly time-dependent Hamiltonian, the adiabatic appro
mation can be employed. The state of a quantum syste
time t can then be expanded as a linear combination of
instantaneous eigenstates at that time:21 c(t)5( ici(t)ui(t)
and H(t)ui(t)5Ei(t)ui(t). The time evolution of the coef
ficientsci(t) can be obtained by substituting these two eq
tions into the time-dependent Schro¨dinger equation.

In a Si:P electron-spin-based QC scheme, donor ions
as labels for qubits~their corresponding bound-electro
spins!. Throughout a two-qubit gate operation, the lowe
singlet state and triplet state should be well isolated from
other excited states to avoid leakage error in quan
computing.8 A rough estimate of the typical donor~qubit!
separation for a Si:P electron-spin-based QC can be don
follows. For a switching time ofts;30 ps, the peak value o
the exchange coupling during a gate operation is around
meV. For error correction to be reliable, the exchange in
action at the off state must be less than 1025 meV if we
assume that the uncontrolled part of the interaction wh
induces decoherence has the same order of magnitude a
exchange interaction at the off state.

The asymptotic limit of the exchange energy between t
hydrogenic systems separated by a distanceR is given by22

J51.64
e2

eaB
S R

aB
D 5/2

expS 22R

aB
D , ~2!

where aB is the effective Bohr radius. Thus, an exchan
energy of 1025 meV corresponds to an interdonor separat
of about 10 Bohr radii, or roughly 200 Å for two phosphor
donors. Such critical dimensions are well within the capa
ity of today’s scanning-tunneling microscopy lithograph
technology.23 Therefore, in this paper, we will concentra
our study on coupled donors separated byR58aB , 10aB ,
and 15aB , with a special emphasis on theR510aB case.

In Kane’s original proposal,4 a J gate located betwee
neighboring donors imposes an electrostatic potential to
form the electron wave functions and enhance the excha
coupling for two-qubit operations controlled by an adiaba
pulse. The ultimate goal is to find an optimal J-gate poten
and time-dependent shape by considering its experime
feasibility and computing efficiency. This study of a couple
donor pair under a static J-gate potential is intended to p
vide relevant information for experimental engineering
qubits and J gates, and may serve as a starting poin
15533
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numerical simulation of the gate-controlled time evoluti
for a two-qubit system within the adiabatic approximatio
External uniform field can also influence the energy diffe
ence between the singlet and triplet state by changing
effective Bohr radius of electrons bound to donors and
wave-function overlap. Their influence on the exchan
splitting and charge distribution will reveal informatio
about the decoherence due to uncontrolled gate-induced
tric field and provide a means for the measurements
qubits.

In the past ten years the two-electron double quantum
problem has been extensively studied due to its theore
importance.11,24–26 Hatree-Fock, Heitler-London, or Hund
Mulliken molecular-orbital methods were most often used
evaluate the lowest singlet and triplet energies. Qualitativ
speaking, the reliability of these methods is strongly dep
dent on the specific system configuration and the trial w
function or basis set used. For example, the Heitler-Lond
method would yield a ferromagnetic exchange coupling
hydrogenic systems separated by a very large distan
(>60aB).27 To the best of our knowledge, only qualitativ
evaluation or quantitative calculation with oversimplifie
models have been used to characterize the singlet-tr
splitting of localized electrons~either in coupled donors in a
semiconductor environment or in coupled quantum dots! un-
der uniform electric and magnetic fields.11,24–26 Reliable
quantitative calculations of the J-gate potential in the S
electron-spin-based quantum computing system has no
been reported.

In this paper we introduce an unrestricted Hartree-Fo
~UHF! method with a generalized valence bond~GVB! wave
function to study the wave functions and eigenenergies
the lowest singlet and triplet states of the two-electron s
tem under the influence of the J-gate potential and a unifo
electric field parallel or perpendicular to the interdonor ax
In Sec. II we formulate our procedure for calculating t
singlet and triplet states. We show that our method simpli
the two-electron problem to a single-electron problem wh
it accounts for~to a large extent! the electron correlation. The
method gives better results than the regular Hartree-F
method or Heitler-London approximation. In Sec. III, w
model the effect of a J gate on the exchange coupling of
isolated donor pair with a parabolic potential. The effect
parallel and perpendicular electric field is discussed in S
IV. In Sec. V, we give a conclusion and address the impli
tions of our results for Si:P electron-spin-based quant
computing.

II. UHF METHOD WITH GVB WAVE FUNCTION

The spatial Hamiltonian for two electrons bound to na
ral or artificial localization centers in semiconductor stru
tures~e.g., shallow donors or quantum dots! can be written
as

H~r 1 ,r 2!5H1~r 1!1H1~r 2!1vee, ~3!

whereH1(r ) is the Hamiltonian for one electron in the ab
sence of the other electron andvee is the mutual Coulomb
interaction. We write the two-electron spatial wave functi
1-2
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EFFECTS OF J-GATE POTENTIAL AND UNIFORM . . . PHYSICAL REVIEW B66, 155331 ~2002!
as a symmetric~singlet! or antisymmetric~triplet! combina-
tion of one-electron wave-function products,

C6~r 1 ,r 2!5
1

A2~11S2!
@fL~r 1!fR~r 2!6fR~r 1!fL~r 2!#,

~4!

where the subscript1(2) denotes singlet~triplet! states,fL
(fR) denotes a one-particle wave function localized at
left ~right! donor site, andS[u^fLufR&u is the overlap inte-
gral.

Our goal is to solve the Schro¨dinger equation

H~r 1 ,r 2!C6~r 1 ,r 2!5EC6~r 1 ,r 2!. ~5!

UHF method is used to solve the lowest singlet and trip
states for the coupled-donor~quantum dot! system. Assume
that in a given iteration, we already know the wave functi
fR(r ). We choose an appropriate set of orthonormal ba
functions, bn(r );n51•••N to describe the one-electro
wave functionsfL(r ). Let the expansion coefficients forfL
beLn , andRn5^nufR&. The above two-electron eigenvalu
equation can then be reduced to a single-electron eigenv
problem by projecting it into the statefR . The projected
eigenvalue equation within the basis now reads

(
n

@^n8uH1un&1^fRuH1ufR&dn8,n6^n8uH1ufR&Rn

6Rn8^fRuH1un&1^n8,fRuveeun,fR&

6^n8,fRuveeufR ,n&#Ln5E(
n

~dn8,n6Rn8Rn!Ln .

~6!

Thus,fL(r ) can be solved via the standard diagonalizat
procedure within the one-electron basis. The newly obtai
fL(r ) is then used to solvefR(r ), and we do this iteratively
until the singlet or triplet ground-state energies and wa
functions converge.

For large donor~dot! separation~weak coupling!, we may
use the ground-state wave function of the single do
~atomic orbital! as our initial guess for eitherfR(r ) or
fL(r ). For small donor~dot! separation~strong coupling!,
using the molecular orbital~MO! as our initial guess will
work better. Since the donor ions are well separated in ty
cal QC architectures, we will always use the atomic orb
as the starting point of our calculation.

The above forms of the singlet and triplet states are
the exact ones, but they are more general than ei
Heitler-London28 ~HL! or valence bond29 wave function. Un-
like the HL scheme which uses the fixed atomic orbitals
separated atoms, expression~4! employs flexible orbitals
which are self-consistently optimized for the lowest tw
particle energies in the subspace of singlet or triplet sta
We have numerically verified that if we use the atomic
bital ~molecular orbital! as the starting point for our unre
stricted Hartree-Fock calculation, we get after one iteratio
lower energy~both for singlet and triplet states! than that
obtained by either the HL or MO approach. The wave fun
15533
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tion used here is characterized as a GVB wave function.30 As
compared to the single-determinant wave functions of
stricted or unrestricted Hartree-Fock methods, our wa
function given by Eq.~4! ~after multiplying the correspond
ing singlet or triplet spinors! is a linear combination of two
Slater determinants; thus, it represents a more accurate m
eling of the real wave function beyond the regular mean-fi
approximation.

We note that for the triplet states

fL~r 1!@fR~r 2!1CfL~r 2!#2@fR~r 1!1CfL~r 1!#fL~r 2!

5fL~r 1!fR~r 2!2fR~r 1!fL~r 2!, ~7!

whereC is an arbitrary constant. This means that iffL is
linearly dependent onfR , we can always choose a newfL
which is orthogonal tofR without altering the results. Nu
merically, since we use a finite set of basis functions, imp
ing such a constraint means we need to expandfL in terms
of N21 independent basis functions. Failure to do this w
lead to a singular overlap matrix and the generalized eig
value problem will collapse. To avoid this problem, we u
one less basis function for the expansion offL(r ) and re-
quire all basis functions to be orthogonal tofR(r ) during
each iteration.

We now apply the UHF method to solve the coupl
phosphorous donor pair in silicon. Since the crystal envir
ment makes the two-electron problem very complicated,
simplify the realistic Hamiltonian to a hydrogen
moleculelike Hamiltonian for the envelope function by i
noring the interband mixing and multivalley effect while a
suming that the effects of the periodic crystal potential
captured by the effective-mass tensor and the backgro
dielectric constant. Under such approximation the sing
particle termH1 can be simplified to the usual one-ban
effective-mass equation in real space:31

F(
i 51

3
\2

2mi*

]2

]xi
2

1Vimp~r !GF~r !5~E2E0!F~r !, ~8!

whereVimp is the effective impurity potential composed o
the screened Coulombic potential and the so-called ‘‘cent
cell’’ correction.

In this approximation the impurity wave function can b
expressed as the product of an envelope function and
Bloch function at the band minimum:

f~r !5F~r !fk0

0 ~r !. ~9!

To get an estimate of the energy scale and charge distribu
for the ground state of a single donor, we consider
spherical-effective-mass model. In this model we use
spherically averaged effective electron mass given bym*
5( 1

3 ml*
211 2

3 mt*
21)2150.3m0 for Si and an isotropic ef-

fective dielectric constant«s* 511.4.
In the case of shallow donors we may first neglect

central-cell correction and retain only the Coulombic pote
1-3
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tial with the effective chargeZ* 51. Equation~8! then re-
duces to a hydrogenlike Schro¨dinger equation. We define th
effective Bohr radius,

aB5
4p«s* \2

m* e2
50.529 Å

«s*

m* /m0

'20 Å ~10!

and the effective Rydberg~donor binding energy!,

Ry* 5
e4m*

2\2«s*
2 513.59 eV

m* /m0

«s*
2 '30 meV. ~11!

Throughout the paper, we will use the effective atomic un
~a.u.! in which distance is measured inaB and energy mea
sured in Ry* .

The one-particle Hamiltonian for the single-donor ele
tron in Si:P can be described by a more realistic mo
Hamiltonian such as the one developed by Changet al.32

However, in this paper we shall adopt the spherical-effecti
mass approximation for the following reasons. First, the
sults obtained in the spherical model can be directly co
pared with previous calculations at various limits to che
the accuracy of the numerical method. Second, the sphe
model calculation can be applied to not just Si, but ma
other systems involving coupled hydrogenic impuritie
Third, the predictions made with this approximation will r
main qualitatively correct when applied to realistic syste
such as coupled phosphorous donors in Si.

III. EFFECTS OF J-GATE POTENTIAL

The potential imposed by a realistic J gate depends on
detailed experimental setting and can be rather complica
Here, we model the J gate qualitatively by a one-dimensio
parabolic potential with the minimum located in the midd
of the two donor ions, which acts like an attractor a
strongly enhances the wave-function overlap of the two
nor electrons. Thex axis passes through the two donor io
and their midpoint is atx50. The effect of the J-gate poten
tial takes the formVJ5m(x2R/2)(x1R/2)/(R/2)2, where
R is the separation between the two donor ions andm is the
energy difference~in units of Ry* ) between the potentia
minimum ~at x50) and at donor sites (x56R/2).

For convenience in choosing a finite set of flexible ba
functions along thex axis, we place the system in a well wit
an infinite potential barrier foruxu.L/2. The size ofL is
chosen to be large enough~at least 5aB from either donor
ion!, so it has negligible effect on the donor binding ener
We expand the spatial part of the single-particle wave fu
tion in terms of a linear combination of basis functions of t
form

bm,i~r !5A2/L sin@km~x1L/2!#bn~y21z2!, ~12!

wherekm5mp/L andbn(y,z) is set of orthogonal functions
constructed from the two-dimensional~2D! Gaussian func-
tions exp@2ai(y

21z2)#. The set of Gaussian parameters$a i%
are optimized such that a linear combination of the
Gaussian functions exp@2air

2# best resembles the 1s wave
function of a hydrogen atom.33 Since the donors are we
15533
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separated and their electron wave-function mixing happ
mainly along thex direction, the wave function in they and
z directions should remain close to the 1s orbital of isolated
donors; thus, several Gaussian functions should be g
enough to describe them. In thex direction, there would exist
several kinds of mixing of single-particle orbitals, such
the s-p hybridized state~one electron in thes orbital of do-
nor 1 while the other in thep orbital of donor 2!, p-p hy-
bridized state, and doubly occupied states~both electrons
bound to the same donor ions!, which may become signifi-
cant when a gate potential or a parallel electric field is
plied. The set of plane-wave functions in thex direction is
flexible and convenient enough to characterize all poss
state mixings. The suitability of the basis functions used h
is examined by comparing our numerical results to the ex
results in various limits. For example, with five 2D Gaussi
functions and 50 sine functions we obtain a single-do
ground-state energy of20.998 Ry and the H2 molecule
ground state energy of22.282 Ry, which is better than
the results obtained with the Heitler-London appro
mation28 (22.231 Ry) or Hartree-Fock approximation34

(22.267 Ry).
We first consider the case with interdonor separationR

510aB . The box size used to define the plane-wave basi
the x direction is set to beL520aB , and 5350 basis func-
tions ~five Gaussian functions in the plane and 50 pla
waves along thex axis! are used for solving Eq.~6!. Using
the UHF method described in Sec. II, we calculate the en
gies and wave functions for the lowest singlet and trip
states as functions of the strength of the J-gate potential (m).
We are only interested in cases wherem is below some criti-
cal valuemc , beyond which the electrons can be delocaliz
from the donor ions and trapped by the J-gate potential w
In that case, the electrons’ spatial wave functions would
qualitatively changed, a condition that must be avoided d
ing a gate operation.

To find the critical valuemc , we define an averaged one
dimensional charge distribution along the interdonor axis

r~x!5

E dyE dzE dr 2uC~r ,r 2!u2

E drE dr 2uC~r ,r 2!u2

. ~13!

The charge distributionr(x) undergoes a significant chang
whenm exceedsmc . It is found thatmc depends strongly on
the interdonor separation. Large separation allows a r
tively deep gate potential to enhance the exchange split
while keeping the qualitative shape of charge distribut
unchanged.

Figure 1 shows the exchange splitting,J as a function of
the J-gate potential,m for two different interdonor separa
tions,R58, andR510. At m50 andR510, we obtain an
exchange splitting of 1.0731026 Ry* , which is about half
of the asymptotic result estimated by Eq.~2!. The exchange
splitting increases exponentially as we increase the stre
of the gate potentialm. The exponential dependence ofJ on
m enables such a J gate to switch on and off the spin
exchange coupling between neighboring qubits efficiently.
1-4
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EFFECTS OF J-GATE POTENTIAL AND UNIFORM . . . PHYSICAL REVIEW B66, 155331 ~2002!
m50.8 the exchange splitting isJ50.0234 Ry* ~approxi-
mately 70meV if we use Ry* 530 meV) for R510aB .
Such a value of exchange splitting is roughly the peak va
of an adiabatic pulse shapeJ(t) required to perform the two
qubit gateUSW

1/2 during a switching time ofts'30 ps. We
note that, atR515aB , the exchange splitting is abou
10210 Ry* when the J-gate potential is off~also consistent
with the asymptotic result! while a gate potential withm
51.0 Ry* can only push the exchange energy to the orde
1025. This means that to complete aUSW

1/2 operation, a quan-
tum computer with qubit spacingR515 will need about 30
ns, which is about 1000 times the time needed forR
510aB .

Figure 2 shows the averaged charge distributionr(x) for
various strengths of the J-gate potential forR510aB . We
see that up tom50.8 Ry* , both electrons are still localize
mainly around their donor ions in either the singlet or trip
state, while there is a significant charge buildup nearx50 as
m goes up to 1.0 Ry* . We note thatr(x) at x50 in the
singlet state is higher than its counterpart in the triplet st
as especially evident in Fig. 2 for them51.0 Ry* case. This
can be understood based on the Pauli exclusion principl

IV. EFFECTS OF UNIFORM ELECTRIC FIELD

To model the effects of a uniform electric field, we add
electrostatic potential termVF5eFx (eFz) for parallel~per-
pendicular! field to the HamiltonianH1, which leads to a
Stark shift and finite lifetime for the~quasi-! bound states.
We consider two cases: one with the electric field paralle
the interdonor axis~to study its effect on polarization! and
the other perpendicular to the interdonor axis~to study its
effect on exchange splitting!.

A. Parallel field

For parallel field, the single-electron basis functions us
are the same as those defined in the previous section@Eq.
~12!#. Since the wave functions are confined in the reg

FIG. 1. Exchange splittingJ as a function of the strength o
J-gate potentialm for R58aB and 10aB . We do not show the cas
of R515aB here, because the exchange splitting~roughly
10210 Ry* ) at m50 is smaller than the accuracy of our numeric
calculation.
15533
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uxu,L/2, the problem of the electric-field-induced finite life
time can be avoided. At finite field, the size of the confini
box ~L! must be chosen small enough so that the quan
confined energy level associated with the triangular poten
introduced by the artificial confinement and the electric fie
is above the ground singlet or triplet state. Otherwise,
variational calculation will lead to an incorrect ground-sta
wave function. On the other hand, the confining walls can
be placed within 5aB to the closest donor ion in order t
avoid an artificial quantum confinement effect on the e
change splitting. This consideration puts an upper limit
the strength of parallel field that can be applied before
variational calculation breaks down. However, this constra
can be relaxed if a finite J gate~a symmetric one-dimensiona
parabolic potential along the interdonor axis! is also present.

The Stark effect on the energies of the lowest singlet a
triplet states is illustrated in Table I forR510aB and m
50, where the width of the confining well is chosen to
(L520aB). The electric field lowers the energies of bo
singlet and triplet states, but the triplet state energy is m
less affected due to the Pauli exclusion principle. We n
that atF50.1 Ry* /aB , the singlet state becomes a doub
occupied donor state and the energy of the ground sin
state experiences an abrupt lowering compared to the en
at F50.08 Ry* /aB . If we further increase the electric field
the variational calculation will break down.

Next, we study the evolution of charge distributions
both singlet and triplet states at a fixed donor separatioR
510aB in the presence of a fixed J-gate potential w
strengthm50.2 Ry* as we vary the parallel electric field

l

FIG. 2. Averaged charge distribution along the interdonor a
r(x) @as defined by Eq.~13!# for various strengths of the J-gat
potential.~a! Singlet; ~b! triplet. The interdonor separation is fixe
to beR510aB .
1-5
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The confinement width is set toL530aB and our basis con
sists of five radial Gaussian functions~in the y-z plane! and
80 sine functions ofx ~along the interdonor axis!. We find
that the singlet state changes abruptly to a doubly occu
state at a critical field due to the interplay of Stark shift a
electron-electron interaction. Figure 3~a! shows the charge
distribution of the ground singlet state along thex axis at
zero field and in the neighborhood of the critical field. W
see clearly that at an electric field less than 0.085 Ry* /aB
(;12.6 kV/cm), the charge density displays two distin

TABLE I. Energies for the lowest singlet (Es) and triplet (Et)
states of a donor pair separated byR510aB under a uniform elec-
tric field F along the interdonor axis. The exchange coupling
defined as the singlet-triplet splitting,J5Et2Es . All energies are
in units of Ry* and the fields in units of Ry* /aB . Note that the
single-donor ground-state energy without applying electric field
tained in our variational calculation is20.997 870 87 Ry* .

F Es Et J

0 21.995 742 79 21.995 741 72 0.000 001 07
0.02 21.996 605 58 21.996 604 19 0.000 001 39
0.04 21.999 212 69 21.999 209 81 0.000 002 88
0.06 22.003 626 54 22.003 616 91 0.000 009 63
0.08 22.010 076 07 22.009 938 42 0.000 137 65
0.10 22.194 618 38 22.018 389 76 0.176 278 62

FIG. 3. Averaged charge distribution along the interdonor a
r(x) for various strengths of the parallel electric field at a fix
donor separationR510aB and J gatem50.2 Ry* . ~a! Singlet; ~b!
triplet.
15533
d

t

peaks centered around the two donor ions. The degre
distortion ~polarization! is rather small, which indicates tha
the electric field is not large enough to conquer the Coulo
blockade. At F50.09 Ry* /aB , the singlet charge densit
displays a single enhanced peak~long-dashed curve! around
the left donor ion, revealing an almost complete charge tra
fer from the right donor to the left.

As shown in Fig. 3~b!, the charge distribution of the trip
let state as a function of the electric field is remarkably d
ferent from the singlet state. AtF50.11 Ry* /aB , the charge
distribution still displays two peaks similar to theF50 case
~other than a weak polarization indicating a slight char
transfer from the right donor ion to the region between t
donor ions!. This behavior again can be explained by t
Pauli exclusion principle, which prevents the two electro
of parallel spin to reside on the same site. As we furth
increase the electric field toF50.115 Ry* /aB , the right do-
nor is mostly ionized by the electric field and a new pe
appears in the left region of the left donor, while the previo
peak centered around the left donor remains unchanged.
appearance of the new peak indicates single-electron ion
tion of the two-donor molecule, which may be nam
‘‘Pauli-enhanced ionization.’’ Compared to the triplet sta
the doubly occupied singlet state is rather stable even un
a large electric field with strength up toF50.2 Ry* /aB .

The polarizations~defined as the absolute expectati
value of x11x2, in units of aB) for the lowest singlet and
triplet states are plotted in Fig. 4 as functions of electric fie
for R510 andm50.2. There clearly exists a window be
tween two critical electric fields,Fc

S ~the field at which the
singlet donor state abruptly changes to a doubly occup
donor state! andFc

T ~the field above which the lowest triple
state abruptly becomes ionized!. Table II lists the values of
critical electric fields for the singlet (Fc

S) and the triplet (Fc
T)

for various donor separations and at different strengths
gate. We found that the critical fields are insensitive to
strength of J gate, but sensitive to the donor separation.
note that the polarization behavior for the case withR
58aB andm50.4 Ry* is qualitatively different and we find
no abrupt change of the charge distribution. In this case,

-

s

FIG. 4. The polarization of the lowest singlet and triplet sta
for R510 and m50.2. The critical fields for the singlet (Fc

S

50.090 Ry* /aB) and triplet (Fc
T50.110 Ry* /aB) are marked with

dotted perpendicular lines.
1-6
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potential barrier between donor ions is significantly lower
and a new molecular orbital can be formed. The molecu
orbital is a linear combination of atomic orbitals on the d
nor site and the localized orbitals centered at the bottom
the J-gate potential. This localized orbital acts like a brid
or relaxation channel for the charge transfer. As a result,
charge transfer occurs gradually as we increase the ele
field. There is a high probability for one electron to stay
the bridge due to the interplay of the electric field and Co
lomb blockade~or Pauli exclusion for the triplet state!. It is
pushed by the electric field from one side and blocked
Coulomb interaction~or Pauli exclusion! from the other side.

At a fixed donor separation, the critical electric field
different for singlet (Fc

S) and triplet (Fc
T) states, withFc

S

,Fc
T . Therefore, at an electric field with strength betwe

Fc
S and Fc

T , where the singlet state is in a doubly occupi
configuration while the triplet has not yet become ionize
the difference of their electron charge densities on the
half space is approximately 1. This fact can be used as
efficient means to distinguish the triplet state from the sing
state. Since the width of the window between the two criti
fields for R510aB is approximately 0.02 Ry* /aB
'3 kV/cm, an accuracy of 1 kV/cm for the applied electr
field is required for a readout scheme.

As shown in Table II, bothFc
S andFc

T become smaller for
larger donor separation. This can be understood as follo
For the singlet state, the potential-energy difference betw
the left and right donor sites due to the electric field is lar
for the more widely separated donor pair, which makes
easier for the electron bound to the right donor to hop to
left donor site. For the triplet state, since the doubly occup
configuration is forbidden, one of the electrons tends to
more easily ionized at larger donor separation in order
keep the energy of the system lower. Burdov35 derived an
equation for the critical field of the singlet state of the tw
electron double quantum dot based on a Hund-Mulliken
satz:

1.786e2

esR
2

e2

2esL
52euEuL, ~14!

wherees is the static dielectric constant,R is the dot radius,
and 2L the interdot distance. The left-hand side of the eq
tion is the energy difference between electron-electron in
action in the same and different quantum dots, and the ri
hand side is the work done by the electric field on a charg
move it from one quantum dot to the other quantum dot.

TABLE II. Strength of the critical electric fields~in Ry* /aB) for
the ground singlet state (Fc

S) at which the ground state becomes
doubly occupied state or the lowest triplet state (Fc

T) beyond which
one donor electron is ionized.

R m50.2 m50.4

Fc
S Fc

T Fc
S Fc

T

8 0.105 0.150
10 0.090 0.110 0.090 0.110
15 0.065 0.070 0.065 0.070
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to do the same amount of work to overcome the Coulo
blockade~the left-hand side changes very little for a fair
large separation!, the required field is smaller for larger do
nor ~quantum dot! separation.

It has been proposed that the different polarization beh
ior of singlet and triplet states can be used as a means
measuring a single-electron spin state.17,36 At the first step,
the to-be-measured electron will be coupled to a second e
tron in a known spin state. Then a distinction of singlet
triplet of the two-electron system can be used to infer
spin state of the first electron. To measure whether the e
trons are in a singlet or triplet state, the two-electron syst
will be put in the vicinity of the small island of a single
electron transistor~SET!, whose conductance peaks~as a
function of the chemical potential of the central island! will
experience different shifts for singlet and triplet states, sin
their remarkably different polarizability will affect the islan
potential differently.

B. Perpendicular field

Using an electric field perpendicular to the interqubit a
to control the exchange coupling has also been conside
By using the Heitler-London ansatz and evaluating the d
ference of the Stark shift of mean positions of the two el
trons, Burkard and co-workers25 have shown that, in the cas
where dots of different sizes are coupled, such an elec
field can switch the spin coupling on and off with expone
tial sensitivity. This semiquantitative argument cannot be
plied to the case with bound electrons in Si:P acting as
bits, since such a perpendicular electric field will induce t
same Stark shift for bound electrons which have the sa
Bohr radius.

Here we numerically calculate the dependence of
lowest-lying singlet and triplet energies on the strength o
uniform perpendicular electric field~taken to be along thez
axis in our coordinate system!. In this case, we expand th
single-particle wave functions,fR(r ) andfL(r ), in terms of
linear combinations of basis functions defined as

bm,a i ,L~r !5A2/L sin@km~z1L/2!#e2a i [ y21(x1R/2)2]

~15!

and

bm,a i ,R~r !5A2/L sin@km~z1L/2!#e2a i [ y21(x2R/2)2] ,
~16!

respectively. The width of the confining well along thez
direction is set to beL510aB . Six radial Gaussian function
~with optimized exponents! and 20 plane waves
$A2/L sin@km(z1L/2)#% are used for the expansion of th
single-particle wave functions.

Figure 5~a! shows how the exchange splitting varies as
increase the strength of the perpendicular electric field.
R510aB , the exchange splitting atF50.15 Ry* /aB is about
2.3 times the exchange splitting without the electric fie
Figure 5~b! illustrates the dependence of electron wav
function overlap (u^fLufR&u) on the strength of perpendicu
lar electric field. The electron wave-function overlaps f
1-7
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ANGBO FANG, Y. C. CHANG, AND J. R. TUCKER PHYSICAL REVIEW B66, 155331 ~2002!
singlet and triplet states almost coincide, with the overlap
the singlet state slightly larger. As we increase the field,
wave-function overlap between the two electrons is
hanced. This is caused by the electric-field-induceds-pz hy-
bridization. Since the 2pz orbital has a larger radius than th
1s orbital, the increased hybridization leads to a larger ov
lap. It is for this reason that the exchange splitting increa
as the magnitude of the perpendicular electric field increa

Although the exchange splitting does increase gradu
with the increase of the field strength, we cannot use su
perpendicular electric field alone to switch on and off t
spin coupling in a quantum computer since the electric fi
needed to produce the desired exchange splitting would b
large that the electrons would be well ionized from th
donor sites. The field-ionization rate~in a.u.! of the ground-
state hydrogen atom can be estimated according to the
lytic formula37

G5~4/F !e22/3F. ~17!

At a field of 0.04 Ry* /aB , the probability for ionization dur-
ing a switching time of 30 ps is around 2.631024, which
already exceeds the criterion for the error-correction sche
to work properly. At a field of 0.1 Ry* /aB , the probability
for ionization is already close to 100%. A more suitab
scheme to manipulate the spin coupling in the coupled-do
system is to use the J gate as described in Sec. III, w
does not have the problem of donor ionization.

V. CONCLUSION

In summary, we have calculated the exchange splitting
electrons bound to a donor pair in Si:P within a spheric

FIG. 5. ~a! Exchange splitting and~b! electron wave-function
overlap (u^fLufR&u) as functions of the perpendicular electric fie
for R510aB andR58aB .
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effective-mass approximation. By using the asymptotic f
mulas the approximate donor separation relevant for qu
tum computing is evaluated to be aroundR510aB , which is
confirmed by our numerical calculation. We have used
unrestricted Hartree-Fock method with GVB wave functio
to obtain the energies and wave functions for the lowe
lying singlet and triplet states of the coupled-donor syste
Our method provides an efficient and reliable means
which to study two-center two-electron systems such as
double quantum dot and coupled-donor pair under exte
fields. Our method is better than the Heilter-London, Hun
Mulliken molecular-orbital, or regular Hartree-Fock a
proach.

Using a one-dimensional parabolic potential to simul
the effect of the J gate, we have studied the sensitivity of
exchange splitting to the gate potential. Our study confir
the feasibility of using such a J gate to switch on and off th
spin-exchange interaction in a Si:P electron-spin-based q
tum computer. Furthermore, we have analyzed the differ
polarizability of singlet and triplet states by numerically ca
culating the evolution of their charge distributions under
uniform electric field along the interdonor axis. We find th
for a fixed donor separation there exists a window betw
two critical electric fields, within which the singlet stat
transforms to a doubly occupied configuration, while t
triplet state remains in a bound coupled-donor state, t
displaying distinctly different polarizability. Such a findin
provides a guide for the design of experiments for measu
the single-electron spin via the use of an SET, which sen
the different polarizability in the singlet and triplet states. W
have also studied the influence of a perpendicular elec
field on the exchange splitting. We find that, although su
an electric field does enhance the exchange splitting slo
by increasing the electron wave-function overlap, it can
act as an efficient means by which to switch on and off
spin coupling.

Finally, we note that the current study has ignored
multivalley effect of the silicon conduction band and th
central-cell correction of donor ions. Very recently Koille
et al.38 examined the effect of intervalley electronic interfe
ence due to the existence of six conduction-band minima
Si, by revisiting the earlier work on magnetic susceptibil
of the Si:P system.39 Using linear combinations of envelop
wave functions localized at the six equivalent valleys, th
found that the intervalley scattering would lead to stro
oscillations in the exchange splitting of neighborin
donors.38 Therefore, the position of donors should be pr
cisely controlled. To give a more quantitative calculation
the exchange splitting for coupled donors in Si, one need
apply a more realistic Hamiltonian,32 and correspondingly,
more realistic wave functions which treat electron correlat
more completely, to study relevant issues that we h
missed in this paper.
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