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Effects of J-gate potential and uniform electric field on a coupled donor pair in Si
for quantum computing
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We present theoretical studies of a coupled-donor pair in Si via an unrestricted Hartree-Fock method with a
generalized valence bond wave function. Polarization properties and exchange coupling for a phosphorous
donor pair in silicon under a J-gate potentimodeled by a parabolic weland a uniform electric fieldeither
parallel or perpendicular to the interdonor axise examined. The energies and charge distributions of the
lowest-lying singlet and triplet states as functions of the J-gate potential and uniform electric field for various
donor separations are analyzed. Implications for Si:P electron-spin-based quantum computer architecture are
discussed.
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I. INTRODUCTION electron-spin-based QC architectures, the typical switching
time is aroundrg=30 ps, with the adiabatic pulse shali¢)
The development of efficient quantum algorithms for height aroundl,=80 ueV.”®

classically difficult problems has generated an exploding in- |n the initial state of a quantum computer, all qubits
terest in the construction of a quantum compu®C)."*  should be well isolated from one another. A two-qubit inter-
Among dozens of quantum computer proposals, solid-statgction is then switched on by an external gate. At the end of
QC's are gaining popularity with their promise of scalability. gach complete operation, the two-qubit interaction is
In particular, quantum computer architectures implementedyyiiched off again. One main obstacle in realizing accurate

In _seémlcondqctors, where either electron spios nuclear qubit operations is the electron-spin decoherence due to un-
spins as qubits embedded in semiconductor structures havg,nqjied interaction with its surrounding environment. A

. &
the potential to take advantage of the enormous resources Pcfliable error-correction schefheequires gate operations

contemporary microelectronics. In such schemes, electron. .
. porary . : - “with an error rate no larger than one part irf °Fast but
spins of localized electrons in semiconductors are used either

as carriers of quantum information unitsubits or as agents accurate gate control over qubits is therefore required. How-

for coherent transfer of information between qubits realizedtVe" toq fast mixing of the two-electron states WOUId. excite

; fhe previously frozen orbital degrees of freedom, which can
arrays of qubits, data processing can be achieved in a quaFF:ad to failure_ of_ the simplified Heisenberg H_amiltonian in
tum computer. It has been proved that any unitary multiqubitN€ characterization of the low-energy dynamics of the two-
operation can be performed by the combination of Sing|eelectron system. It has been pointed out that adiabatic opera-
qubit operations and the controlled-NOT two-qubit tion of the exchange gate can help reduce the errors caused
operatior? In most proposals for an electron-spin-basedby state mixing** Thus, the optimum value of the gate op-
quantum computer, single-qubit operations are performed bgration time is constrained from below by the adiabatic con-
bringing individual spins into resonance with applied mag-dition and from above by the spin decoherence time. It is
netic fields, while two-qubit operations are implemented viaestimatedf that the leakage rate of quantum information due
an exchange interaction due to overlap of electron wavéo state mixing is reasonably smak@0 °) for a gate op-
functions localized around neighboring sites. The exchangeration time longer than 30 ps, for a typical coupled quantum
coupling between the two spir® andS, is described by a dot QC system. In the Si:P spin-based architectures consid-
Heisenberg Hamiltonian ered here, the single-donor energy-level spacing is larger
than that for other types of quantum dots and the electron-
spin decoherence time is much londas discussed belgw
Thus, we believe that the condition for adiabatic gate control
would not lead to stringent requirements for quantum
where J is the coupling strength, corresponding to thecomputing!® let alone the fact that there are nonadiabatic
singlet-triplet splitting for the two localized electroria- possibilities to perform gate operatioHs.
beled by 1 and R The effective exchange interacti¢ig. Conventionally, two parameters are used to approximately
(1)] allows one to implement a “square root of swap” gate, characterize the electron-spin decoherence: the direct
UZ2, by applying a pulsd(t) with Joodtd(t)/=m/2 (mod  electron-spin-flip timér; and the transverse spin lifetire.
27). This gate, in combination with single-qubit gates, canUsually T, is larger thanT,. The switching timerg should
realize any multiqubit operation®. For quantum dot be less than 10°T, to make error-correction schemes reli-

HeX:‘]S_I.'521 (1)
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able. For isotopically purified Si:F;, is measured by spin- numerical simulation of the gate-controlled time evolution
echo technique to be roughly 16s to 10 3 s with a donor  for a two-qubit system within the adiabatic approximation.
concentratiom= 10" cm 3.2>1® Here T, is mainly due to  External uniform field can also influence the energy differ-
effects of the spin-orbit, multipole-multipole, and exchangeence between the singlet and triplet state by changing the
interactions between neighboring electron spins. Kaneffective Bohr radius of electrons bound to donors and the
pointed out thaffl, is probably limited by the dipolar inter- wave-function overlap. Their influence on the exchange
actions for very small donor concentratioridn a quantum  splitting and charge distribution will reveal information
computer all these sources of decoherence can be regardedagmut the decoherence due to uncontrolled gate-induced elec-
controllable using compensating algorithfis® Compared tric field and provide a means for the measurements of
with the lower bound ofT, (~100 ns) observed in bulk qubits.
GaAs using ultrafast time-resolved optical meth&tshe In the past ten years the two-electron double quantum dot
electron-spin decoherence time in Si:P is much longer, and problem has been extensively studied due to its theoretical
Si:P-based QC would thus allow much slower gate control.importance:***~?® Hatree-Fock, Heitler-London, or Hund-
To describe the time evolution behavior of a system withMulliken molecular-orbital methods were most often used to
a slowly time-dependent Hamiltonian, the adiabatic approxi€valuate the lowest singlet and triplet energies. Qualitatively
mation can be employed. The state of a quantum system apeaking, the reliability of these methods is strongly depen-
time t can then be expanded as a linear combination of thelent on the specific system configuration and the trial wave
instantaneous eigenstates at that tithex(t)=3,c;(t)u;(t)  function or basis set used. For example, the Heitler-London
and H(t)u;(t)=E;(t)u;(t). The time evolution of the coef- method would yield a ferromagnetic exchange coupling for
ficientsc;(t) can be obtained by substituting these two equahydrogenic systems separated by a very large distance
tions into the time-dependent Schinger equation. (=60az).2” To the best of our knowledge, only qualitative
In a Si:P electron-spin-based QC scheme, donor ions a@valuation or quantitative calculation with oversimplified
as labels for qubits(their corresponding bound-electron models have been used to characterize the singlet-triplet
sping. Throughout a two-qubit gate operation, the lowestsplitting of localized electrongeither in coupled donors in a
singlet state and triplet state should be well isolated from alsemiconductor environment or in coupled quantum Jots
other excited states to avoid leakage error in quantundler uniform electric and magnetic fieldfs**~?® Reliable
computing® A rough estimate of the typical dondgubit)y  quantitative calculations of the J-gate potential in the Si:P
separation for a Si:P electron-spin-based QC can be done &tectron-spin-based quantum computing system has not yet
follows. For a switching time ofs~ 30 ps, the peak value of been reported.
the exchange coupling during a gate operation is around 0.08 In this paper we introduce an unrestricted Hartree-Fock
meV. For error correction to be reliable, the exchange inter{UHF) method with a generalized valence ba®&VB) wave
action at the off state must be less than 1@neV if we  function to study the wave functions and eigenenergies for
assume that the uncontrolled part of the interaction whicihe lowest singlet and triplet states of the two-electron sys-
induces decoherence has the same order of magnitude as teg under the influence of the J-gate potential and a uniform
exchange interaction at the off state. electric field parallel or perpendicular to the interdonor axis.
The asymptotic limit of the exchange energy between twdn Sec. Il we formulate our procedure for calculating the
hydrogenic systems separated by a distaRé given by singlet and triplet states. We show that our method simplifies
the two-electron problem to a single-electron problem while

e2 [ R\52 ~2R it accounts foi(to a large extentthe electron correlation. The
J=1.64£ a—B) exp{ 2 |’ (2 method gives better results than the regular Hartree-Fock

method or Heitler-London approximation. In Sec. lll, we

where ag is the effective Bohr radius. Thus, an exchangemodel the effect ba J gate on the exchange coupling of an

energy of 10° meV corresponds to an interdonor separation'50|ated donor pair vv_|th a parabc.)hc. potgnual. The eff_ect of

of about 10 Bohr radii, or roughly 200 A for two phosphorus parallel and perpe_ndlcular elecmc field is dlscusseq in Sec.

donors. Such critical dimensions are well within the capabil'V- In Sec. V, we give a conclusion and address the implica-

ity of today’s scanning-tunneling microscopy Iithographict'ons of our results for Si:P electron-spin-based quantum

technology”® Therefore, in this paper, we will concentrate COMputing.

our study on coupled donors separatedRoy 8ag, 10ag,

and 135, with a special emphasis on tlie=10ag case. Il. UHF METHOD WITH GVB WAVE FUNCTION
_Inhgarje’sdorigina_l proposdl, a ‘I] gtatetlti_cateﬁ b?tvlv?er(lj The spatial Hamiltonian for two electrons bound to natu-

Poerlr% th%”g% ct?gr?ﬁa{\r?ep?us:ciiggseai%rgir?alr(\:cgclr?: éicr?an;%l or artificial localization centers in semiconductor. struc-

coupling for two-qubit operations controlled by an adiabatic res(e.g., shallow donors or quantum dotan be written

pulse. The ultimate goal is to find an optimal J-gate potentiaﬁs

and time-dependent shape by considering its experimental H(ry,rp) =Hy(r)+Hy(ro) +vee, 3

feasibility and computing efficiency. This study of a coupled-

donor pair under a static J-gate potential is intended to prowhereH(r) is the Hamiltonian for one electron in the ab-

vide relevant information for experimental engineering ofsence of the other electron and, is the mutual Coulomb

qubits and J gates, and may serve as a starting point fonteraction. We write the two-electron spatial wave function
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as a symmetri¢singled or antisymmetridtriplet) combina-  tion used here is characterized as a GVB wave funcliéws
tion of one-electron wave-function products, compared to the single-determinant wave functions of re-
stricted or unrestricted Hartree-Fock methods, our wave
1 function given by Eq(4) (after multiplying the correspond-
Wo(ry,ray)= WML(HWR(Q)J—“ Pr(r) dL(ra)], ing singlet or triplet spinopsis a linear combination of two
4) Slater determinants; thus, it represents a more accurate mod-
eling of the real wave function beyond the regular mean-field
where the subscript (—) denotes singlettriplet) states¢, approximation.
(¢Rr) denotes a one-particle wave function localized at the We note that for the triplet states
left (right) donor site, ands=|({¢_| #r)| is the overlap inte-

gral. _
Our goal is to solve the Schiinger equation DL(r)[Pr(r2) +Coh (1) ] —[dr(r) +Ch(r) o (ro)
=¢(r1) dr(ra) — dr(ry) do(ro), (7)

H(ry,r)Wa(ry,r) =EW.(rq,ry). 5

UHF method is used to solve the lowest singlet and triplefVhere C is an arbitrary constant. This means thaiif is
states for the coupled-donéguantum dot system. Assume 'In€arly dependent ogbz, we can always choose a nefy

that in a given iteration, we already know the wave function‘"’h"?h IS othogonaI tohr vylt_hout alterlng.the re§ults. .Nu-
#r(r). We choose an appropriate set of orthonormal basi_gnerlcally, since we use a finite set of basis funct_lons, impos-
functions, b,(r);n=1---N to describe the one-electron Ing such.a constraint means we 'need to.expandn terms .
wave functionsp, (r). Let the expansion coefficients fef, of N—1 mo_lependent basis fun<_:t|ons. Failure to d_o this _W|II
beL,, andR,=(n|ég). The above two-electron eigenvalue lead to a smgula_r overlap matrix an_d th(_a generalized eigen-
equation can then be reduced to a single-electron eigenvally&!u€ Problem will collapse. To avoid this problem, we use
problem by projecting it into the statér. The projected one less basis function for the expansiondgf(r) and re-

eigenvalue equation within the basis now reads quire _aII bgsis functions to be orthogonal 4e(r) during
each iteration.

We now apply the UHF method to solve the coupled

> [N [HaIn)+(drIH1| dr) Snr 0= (N'[H1| pR)IR, phosphorous donor pair in silicon. Since the crystal environ-
" ment makes the two-electron problem very complicated, we
Ry (prlH1 N (N, prlvedn, Pr) simplify the realistic Hamiltonian to a hydrogen-

moleculelike Hamiltonian for the envelope function by ig-
noring the interband mixing and multivalley effect while as-
suming that the effects of the periodic crystal potential are
captured by the effective-mass tensor and the background
(6) dielectric constant. Under such approximation the single-
Thus, ¢, (r) can be solved via the standard diagonalizationparticle termH; can be simplified to the usual one-band
procedure within the one-electron basis. The newly obtaine@ffective-mass equation in real space:
¢ (r) is then used to solveby(r), and we do this iteratively

i<n,!¢R|Uee| ¢R!n>]Ln:E; (5n’,niRn’Rn)Ln-

until the singlet or triplet ground-state energies and wave 3 2 2
functions converge. , v 2 T Vimp(") |[F(N=(E-EQ)F(r), (8
For large donofdot) separatioriweak coupling, we may =1 2mi 0x;

use the ground-state wave function of the single donor

(atomic orbital as our initial guess for eithegg(r) or  whereV,,, is the effective impurity potential composed of
¢, (r). For small donor(dof) separation(strong coupling the screened Coulombic potential and the so-called “central-
using the molecular orbitalMO) as our initial guess will ~ cell” correction.

work better. Since the donor ions are well separated in typi- In this approximation the impurity wave function can be
cal QC architectures, we will always use the atomic orbitalexpressed as the product of an envelope function and the

as the starting point of our calculation. Bloch function at the band minimum:
The above forms of the singlet and triplet states are not
the exact ones, but they are more general than either H(1)=F(r)¢° (1) 9)
kolP)-

Heitler-Londorf® (HL) or valence bor@® wave function. Un-

like the HL scheme which uses the fixed atomic orbitals of. . .
separated atoms, expressiof employs flexible orbitals To get an estimate of the energy scale and charge d|§tr|but|on
which are self-consistently optimized for the lowest two—for the ground state of a single donor, we consider the

particle energies in the subspace of singlet or triplet Stateépher!cal-effectlve-mass m(_)del. In this model We use an
We have numerically verified that if we use the atomic or-SPherically averaged effective electron mass givenniy
bital (molecular orbital as the starting point for our unre- =(zM¢ ~*+im{ 1) 7*=0.3m, for Si and an isotropic ef-
stricted Hartree-Fock calculation, we get after one iteration dective dielectric constanty =11.4.

lower energy(both for singlet and triplet statgshan that In the case of shallow donors we may first neglect the

obtained by either the HL or MO approach. The wave func-central-cell correction and retain only the Coulombic poten-
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tial with the effective charg&* =1. Equation(8) then re- separated and their electron wave-function mixing happens
duces to a hydrogenlike Sclinger equation. We define the mainly along thex direction, the wave function in thg and
effective Bohr radius, z directions should remain close to the arbital of isolated
donors; thus, several Gaussian functions should be good
es enough to describe them. In tRalirection, there would exist
, —0.529 AM”ZO A (10) several kinds of mixing of single-particle orbitals, such as
0 the s-p hybridized statgone electron in the orbital of do-
and the effective Rydber@lonor binding energy nor 1 while the other in the orbital of donor 2, p-p hy-
bridized state, and doubly occupied statesth electrons

Ameth?
ag=———-—
m* e

4k * . . T
em m /mg bound to the same donor ignsvhich may become signifi-
* _ L ]
Ry Cop2e%° =1359 e e*’ ~30 mev. (11) cant when a gate potential or a parallel electric field is ap-
S S

plied. The set of plane-wave functions in tkelirection is
Throughout the paper, we will use the effective atomic unitsflexible and convenient enough to characterize all possible
(a.u) in which distance is measured & and energy mea- state mixings. The suitability of the basis functions used here
sured in RY . is examined by comparing our numerical results to the exact
The one-particle Hamiltonian for the single-donor elec-results in various limits. For example, with five 2D Gaussian
tron in Si:P can be described by a more realistic modefunctions and 50 sine functions we obtain a single-donor
Hamiltonian such as the one developed by Chahgl®  ground-state energy of-0.998 Ry and the K molecule
However, in this paper we shall adopt the spherical-effectiveground state energy of-2.282 Ry, which is better than
mass approximation for the following reasons. First, the rethe results obtained with the Heitler-London approxi-
sults obtained in the spherical model can be directly commatiorf® (—2.231 Ry) or Hartree-Fock approximati§n
pared with previous calculations at various limits to check(—2.267 Ry).
the accuracy of the numerical method. Second, the spherical We first consider the case with interdonor separafon
model calculation can be applied to not just Si, but many=10ag. The box size used to define the plane-wave basis in
other systems involving coupled hydrogenic impurities.the x direction is set to bé& =20ag, and 550 basis func-
Third, the predictions made with this approximation will re- tions (five Gaussian functions in the plane and 50 plane
main qualitatively correct when applied to realistic systemswyaves along thes axis) are used for solving Eq6). Using

such as coupled phosphorous donors in Si. the UHF method described in Sec. I, we calculate the ener-
gies and wave functions for the lowest singlet and triplet
Ill. EFFECTS OF J-GATE POTENTIAL states as functions of the strength of the J-gate potential (

— - We are only interested in cases wherés below some criti-
The potential imposed by a realistic J gate depends on th{ y o

. X ; . al valueu., beyond which the electrons can be delocalized
detailed experimental setting and can be rather complicate Ko Y

Here we model the J gat litatively b ne-dimension om the donor ions and trapped by the J-gate potential well.
ere, we model the J gate quaiitatively by a one-aimensiongg, y, ¢ case, the electrons’ spatial wave functions would be
parabolic potential with the minimum located in the middle

. . . qualitatively changed, a condition that must be avoided dur-
of the two donor ions, which acts like an attractor anding a gate operation.

strongly enhances the wave-function overlap of the two do- To find the critical valuew,, we define an averaged one-

nor electrons. The axis passes through the two donor ions . : I ) .
and their midpoint is ax=0. The effect of the J-gate poten- dimensional charge distribution along the interdonor axis as

tial takes the formV;= u(x—R/2)(x+R/2)/(R/2)? where
R is the separation between the two donor ions anig the f dyf dzf dr2|\lf(r,r2)|2
energy differencdin units of Ry*) between the potential p(x)= (13
minimum (at x=0) and at donor sitexE += R/2). f drf dr| W (r,ry)|?
For convenience in choosing a finite set of flexible basis

functions along the& axis, we place the system in a well with

an infinite potential barrier fofx|>L/2. The size ofL is The charge distributiop(x) undergoes a significant change

! whenu exceedsu. . It is found thatu. depends strongly on
chosen to be large enoudht least & from either donor the interdonor separation. Large separation allows a rela-

i/?/m’ so it Zai neglig?b:e effecft ohn th.e dlonor lqir;ding en?rgy'tively deep gate potential to enhance the exchange splitting
Ve expand the spatial part of the single-particle wave funcy, ;e keeping the qualitative shape of charge distribution
tion in terms of a linear combination of basis functions of the

unchanged.

form Figure 1 shows the exchange splittigas a function of

_ . 2,2 the J-gate potentialy for two different interdonor separa-
bm,i(r)—\/ﬁsu{km(erL/Z)],Bn(y tz), (19 tions,R=8, andR=10. At =0 andR=10, we obtain an
wherek.,=m/L andB,(y,z) is set of orthogonal functions exchange splitting of 1.0710"® Ry*, which is about half
constructed from the two-dimension@D) Gaussian func- of the asymptotic result estimated by E8). The exchange
tions expp—a;(y?+29)]. The set of Gaussian parametérg}  splitting increases exponentially as we increase the strength
are optimized such that a linear combination of the 3Dof the gate potentigl. The exponential dependencebbn
Gaussian functions ekp a;r?] best resembles theslwave u enables sut a J gate to switch on and off the spin-
function of a hydrogen atorit. Since the donors are well exchange coupling between neighboring qubits efficiently. At
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FIG. 1. Exchange splittingl as a function of the strength of
J-gate potential for R=8ag and 1@&g. We do not show the case
of R=15ag here, because the exchange splittifgoughly
109 Ry*) at u=0 is smaller than the accuracy of our numerical
calculation.

-
o

p(x)

n=0.8 the exchange splitting i$=0.0234 Ry (approxi-
mately 70ueV if we use Ry =30 meV) for R=10ag.
Such a value of exchange splitting is roughly the peak value
of an adlabaﬂg puls_,e shap(et_) re_quwgd to perform the two- FIG. 2. Averaged charge distribution along the interdonor axis
qubit gateUsy, during a switching time ofrs~30 ps. We ) [as defined by Eq(13)] for various strengths of the J-gate

note that, atR=15ag, the exchange spliting is about potential.(a) Singlet; (b) triplet. The interdonor separation is fixed
10 1° Ry* when the J-gate potential is offlso consistent to pe R= 10ag .

with the asymptotic resyltwhile a gate potential withu
=1.0 Ry* can only push the exchange energy to the order o
1075, This means that to completel£'2 operation, a quan-
tum computer with qubit spacing= 15 will need about 30

Ix| <L/2, the problem of the electric-field-induced finite life-
time can be avoided. At finite field, the size of the confining
S ) ) box (L) must be chosen small enough so that the quantum
ns, which is about 1000 times the time needed Rr cqnfined energy level associated with the triangular potential
= 10?8- o introduced by the artificial confinement and the electric field
Figure 2 shows the averaged charge distribufiéx) for s apove the ground singlet or triplet state. Otherwise, the
various strengths of the J-gate potential f=10ag. We  yarjational calculation will lead to an incorrect ground-state
see that up tq.=0.8 Ry", both electrons are still localized \yaye function. On the other hand, the confining walls cannot
mainly around their donor ions in either the singlet or tripletyo placed within 85 to the closest donor ion in order to
state, while there is a significant charge buildup neab as  ayoid an artificial quantum confinement effect on the ex-
w goes up to 1.0 Ry. We note thatp(x) at x=0 in the  change splitting. This consideration puts an upper limit on
singlet state is higher than its counterpart in the triplet statejhe strength of parallel field that can be applied before the
as especially evident in Fig. 2 for the=1.0 Ry* case. This  yariational calculation breaks down. However, this constraint
can be understood based on the Pauli exclusion principle. can be relaxed if a finite J gate symmetric one-dimensional
parabolic potential along the interdonor axis also present.
IV. EFFECTS OF UNIFORM ELECTRIC FIELD The Stark effect on the energies of the lowest singlet and
triplet states is illustrated in Table | foR=10ag and u
=0, where the width of the confining well is chosen to be
(L=20ag). The electric field lowers the energies of both
singlet and triplet states, but the triplet state energy is much
less affected due to the Pauli exclusion principle. We note
Shat atF=0.1 Ry*/ag, the singlet state becomes a doubly
occupied donor state and the energy of the ground singlet
state experiences an abrupt lowering compared to the energy
at F=0.08 Ry /ag. If we further increase the electric field,
the variational calculation will break down.
Next, we study the evolution of charge distributions of
For parallel field, the single-electron basis functions usedoth singlet and triplet states at a fixed donor separa®on
are the same as those defined in the previous seffign =10ag in the presence of a fixed J-gate potential with
(12)]. Since the wave functions are confined in the regionstrengthu=0.2 Ry* as we vary the parallel electric field.

To model the effects of a uniform electric field, we add an
electrostatic potential teriie=eFx (eF2) for parallel(per-
pendiculay field to the HamiltonianH,, which leads to a
Stark shift and finite lifetime for théquasi) bound states.
We consider two cases: one with the electric field parallel t
the interdonor axigto study its effect on polarizatiorand
the other perpendicular to the interdonor aitis study its
effect on exchange splitting

A. Parallel field

155331-5



ANGBO FANG, Y. C. CHANG, AND J. R. TUCKER PHYSICAL REVIEW B56, 155331 (2002

TABLE |. Energies for the lowest singleE() and triplet E;) 16

L NP R .
states of a donor pair separated Ry 10ag under a uniform elec- [ R=10a Fo' X
tric field F along the interdonor axis. The exchange coupling is —~ F ?e* ]
defined as the singlet-triplet splittind=E;— E5. All energies are s RS ;é’ ]
in units of Ry* and the fields in units of Ryag. Note that the § r r'// ]
single-donor ground-state energy without applying electric field ob- ® I i ]
tained in our variational calculation is0.997 870 87 RY. '% N ;Tn';iet g
o | B ]
F E. E, J o af .
0 —1.99574279  —1.99574172 0.000 001 07 I
0.02 —1.99660558  —1.996 604 19 0.000001 39 DY A —X
0.04 —1.99921269  —1.99920981 0.000002 88 000 0.04 0.08 012 0.16
0.06 —2.00362654  —2.00361691 0.000009 63 F(Ry/a)
0.08 —-2.010076 07 —2.00993842 0.000 13765 L ) .
0.10 219461838 501838976 0.176 278 62 FIG. 4. The polarization of the lowest singlet and triplet states

for R=10 and ©=0.2. The critical fields for the singletF@
=0.090 Ry /ag) and triplet ¢ =0.110 Ry /ag) are marked with
dotted perpendicular lines.

The confinement width is set to=30ag and our basis con-
sists of five radial Gaussian functiofis the y-z plane and )
80 sine functions ok (along the interdonor axisWe find peaks centered around the two donor ions. The degree of

that the singlet state changes abruptly to a doubly occupie istortion.(pqlariz.atioﬂ is rather small, which indicates that
state at a critical field due to the interplay of Stark shift and!"® €lectric field is not large enough to conquer the Coulomb

electron-electron interaction. FigurdaB shows the charge Plockade. AtF=0.09 Ry'/ag, the singlet charge density
distribution of the ground singlet state along thexis at  diSPlays a single enhanced pefééng-dashed curyearound
zero field and in the neighborhood of the critical field. We the left donor ion, revealing an almost complete charge trans-

see clearly that at an electric field less than 0.085/Ry  fer from the right donor to the left.

; ; et As shown in Fig. &), the charge distribution of the trip-
~12.6 kV/ , the ch d ty displ t distinct ; L . .
( em) © charge denstly dispiays two- distine let state as a function of the electric field is remarkably dif-

08 ————— ferent from the singlet state. &=0.11 Ry‘/ag, the charge
distribution still displays two peaks similar to tle=0 case
(other than a weak polarization indicating a slight charge
transfer from the right donor ion to the region between two
donor ions. This behavior again can be explained by the
Pauli exclusion principle, which prevents the two electrons
of parallel spin to reside on the same site. As we further
increase the electric field 86=0.115 Ry /ag, the right do-

nor is mostly ionized by the electric field and a new peak
appears in the left region of the left donor, while the previous
peak centered around the left donor remains unchanged. The
appearance of the new peak indicates single-electron ioniza-
tion of the two-donor molecule, which may be named
“Pauli-enhanced ionization.” Compared to the triplet state,
the doubly occupied singlet state is rather stable even under
a large electric field with strength up #=0.2 Ry*/ag.

The polarizations(defined as the absolute expectation
value ofXx;+X,, in units of ag) for the lowest singlet and
triplet states are plotted in Fig. 4 as functions of electric field
for R=10 andx=0.2. There clearly exists a window be-
tween two critical electric fieldsFS (the field at which the
singlet donor state abruptly changes to a doubly occupied
donor statgand FI (the field above which the lowest triplet
state abruptly becomes ionizedable Il lists the values of
critical electric fields for the singleti() and the triplet F])
for various donor separations and at different strengths of J
gate. We found that the critical fields are insensitive to the

FIG. 3. Averaged charge distribution along the interdonor axisStrength of J gate, but sensitive to the donor separation. We
p(x) for various strengths of the parallel electric field at a fixed NOte that the polarization behavior for the case wRh
donor separatiol®R=10ag and J gateu=0.2 Ry*. (a) Singlet; (b) =8ag andu=0.4 Ry* is qualitatively different and we find
triplet. no abrupt change of the charge distribution. In this case, the

0.2

p(x)

0.1

0

-15  -10 -5 0 5 10 15
X (ag)
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TABLE II. Strength of the critical electric fieldén Ry*/ag) for to do the same amount of work to overcome the Coulomb
the ground singlet state) at which the ground state becomes a blockade(the left-hand side changes very little for a fairly
doubly occupied state or the lowest triplet stafg X beyond which  |arge separation the required field is smaller for larger do-

one donor electron is ionized. nor (quantum dd‘[ Separation_
It has been proposed that the different polarization behav-
R n=0.2 n=0.4 ior of singlet and triplet states can be used as a means for
s T £s T measuring a single-electron spin st&té® At the first step,
8 0_1°05 0&50 ¢ ¢ the to-be-measured electron will be coupled to a second elec-

tron in a known spin state. Then a distinction of singlet or

triplet of the two-electron system can be used to infer the
spin state of the first electron. To measure whether the elec-
trons are in a singlet or triplet state, the two-electron system

potential barrier between donor ions is significantly loweredWill be put in the vicinity of the small island of a single-

and a new molecular orbital can be formed. The moleculaf'€ctron transisto(SET), whose conductance peakas a

orbital is a linear combination of atomic orbitals on the do-function of the chemical potential of the central islandll

nor site and the localized orbitals centered at the bottom ofXPerience different shifts for singlet and triplet states, since

the J-gate potential. This localized orbital acts like a bridgeh€ir remarkably different polarizability will affect the island

or relaxation channel for the charge transfer. As a result, th@otential differently.

charge transfer occurs gradually as we increase the electric

field. There is a high probability for one electron to stay on B. Perpendicular field

the bridge due to the interplay of the electric field and Cou-  sing an electric field perpendicular to the interqubit axis

lomb blockade(or Pauli exclusion for the triplet stateitis ¢4 conrol the exchange coupling has also been considered.

pushed by the electric field from one side and blocked bygy ysing the Heitler-London ansatz and evaluating the dif-

Coulomb interactiorfor Pauli exclusionfrom the other side.  farence of the Stark shift of mean positions of the two elec-
At a fixed donor sesparatlon,' the ch|t|caI electric f'elsd IS trons, Burkard and co-workérshave shown that, in the case

different for singlet £.) and triplet F.) states, withF:  \here dots of different sizes are coupled, such an electric

<F!. Therefore, at an electric field with strength betweenfield can switch the spin coupling on and off with exponen-

F>andF!, where the singlet state is in a doubly occupiedtial sensitivity. This semiquantitative argument cannot be ap-

configuration while the triplet has not yet become ionized plied to the case with bound electrons in Si:P acting as qu-

the difference of their electron charge densities on the lefbits, since such a perpendicular electric field will induce the

half space is approximately 1. This fact can be used as apame Stark shift for bound electrons which have the same

efficient means to distinguish the triplet state from the singleBohr radius.

state. Since the width of the window between the two critical Here we numerically calculate the dependence of the

fields for R=10ag is approximately 0.02 Ryag lowest-lying singlet and triplet energies on the strength of a

~3 kV/cm, an accuracy of 1 kV/cm for the applied electric uniform perpendicular electric fieldaken to be along the

field is required for a readout scheme. axis in our coordinate systemin this case, we expand the

As shown in Table I, botHFf and FI become smaller for single-particle wave functiongjg(r) and ¢, (r), in terms of

larger donor separation. This can be understood as followdinear combinations of basis functions defined as

For the singlet state, the potential-energy difference between

the left and right donor sites due to the electric field is larger by, o (1) = V2L SiMKy(z+ L/2)Je~ Y’ + 0+ R2)

for the more widely separated donor pair, which makes it ' (15)

easier for the electron bound to the right donor to hop to the

left donor site. For the triplet state, since the doubly occupie&Ind

configuration is forbidden, one of the electrons tends to be )

more easily ionized at larger donor separation in order to  Pm,q, r(F)= V2IL Sin Kin(z+L/2) e~ aily™+ 0 Ri2)

keep the energy of the system lower. Burtfoderived an (16

equation for the critical field of the singlet state of the two-

electron double quantum dot based on a Hund-Mulliken an

10 0.090 0.110 0.090 0.110
15 0.065 0.070 0.065 0.070

2]

2],

respectively. The width of the confining well along tle
direction is set to b& = 10ag . Six radial Gaussian functions

satz: (with optimized exponenis and 20 plane waves
17862 2 {V2/L sink,(z+L/2)]} are used for the expansion of the
Rl 2elE|L, (14)  single-particle wave functions.
S S

Figure 3a) shows how the exchange splitting varies as we
wheree is the static dielectric constarRR is the dot radius, increase the strength of the perpendicular electric field. For
and 2 the interdot distance. The left-hand side of the equaR=10ag, the exchange splitting &=0.15 Ry /ag is about
tion is the energy difference between electron-electron inter2.3 times the exchange splitting without the electric field.
action in the same and different quantum dots, and the rightrigure 5b) illustrates the dependence of electron wave-
hand side is the work done by the electric field on a charge téunction overlap [( ¢, | #g)|) on the strength of perpendicu-
move it from one quantum dot to the other quantum dot. Solar electric field. The electron wave-function overlaps for
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10— effective-mass approximation. By using the asymptotic for-
[ (a) . mulas the approximate donor separation relevant for quan-
- I tum computing is evaluated to be arouRer 10ag, which is
- ] confirmed by our numerical calculation. We have used an
> -5f B unrestricted Hartree-Fock method with GVB wave functions
c10 | R=10 . to obtain the energies and wave functions for the lowest-
A S lying singlet and triplet states of the coupled-donor system.
10 E Our method provides an efficient and reliable means by
_75 . which to study two-center two-electron systems such as the
10,5003 obs 043 016 double quantum dot and coupled-donor pair under external
F (Ry /ag) fields. Our method is better than the Heilter-London, Hund-
0014 ] Mulliken molecular-orbital, or regular Hartree-Fock ap-
F(b) e proach.
0'012§ RB ™ ] Using a one-dimensional parabolic potential to simulate
L E the effect of the J gate, we have studied the sensitivity of the
0.008F 7 exchange splitting to the gate potential. Our study confirms
3 E the feasibility of using suta J gate to switch on and off the
0.006¢ ] H : : : . :
: ] spin-exchange interaction in a Si:P electron-spin-based quan-
0004'L R=10 E tum computer. Furthermore, we have analyzed the different
0.002- - E polarizability of singlet and triplet states by numerically cal-
0000E—s b ooty ] culating the evolution of their charge distributions under a
0.00 0.04 F‘%gs*/aa) 012 016 uniform electric field along the interdonor axis. We find that

for a fixed donor separation there exists a window between
FIG. 5. (a) Exchange splitting andb) electron wave-function WO critical electric fields, within which the singlet state
overlap ((¢|¢g)|) as functions of the perpendicular electric field transforms to a doubly occupied configuration, while the
for R=10ag andR=8ag. triplet state remains in a bound coupled-donor state, thus
displaying distinctly different polarizability. Such a finding
singlet and triplet states almost coincide, with the overlap folprovides a guide for the design of experiments for measuring
the singlet state slightly larger. As we increase the field, théhe single-electron spin via the use of an SET, which senses
wave-function overlap between the two electrons is enthe different polarizability in the singlet and triplet states. We
hanced. This is caused by the electric-field-induses} hy- have also studied the influence of a perpendicular electric
bridization. Since the B, orbital has a larger radius than the field on the exchange splitting. We find that, although such
1s orbital, the increased hybridization leads to a larger overan electric field does enhance the exchange splitting slowly
lap. It is for this reason that the exchange splitting increaseBY increasing the electron wave-function overlap, it cannot
as the magnitude of the perpendicular electric field increase@ct as an efficient means by which to switch on and off the
Although the exchange splitting does increase graduallyppin coupling.
with the increase of the field strength, we cannot use such a Finally, we note that the current study has ignored the
perpendicular electric field alone to switch on and off themultivalley effect of the silicon conduction band and the
spin coupling in a quantum computer since the electric fielecentral-cell correction of donor ions. Very recently Koiller
needed to produce the desired exchange splitting would be € al 38 examined the effect of intervalley electronic interfer-
large that the electrons would be well ionized from theirence due to the existence of six conduction-band minima in
donor sites. The field-ionization raf a.u) of the ground-  Si, by revisiting the earlier work on magnetic susceptibility

state hydrogen atom can be estimated according to the an@f the Si:P systeri? Using linear combinations of envelope
lytic formula®’ wave functions localized at the six equivalent valleys, they

found that the intervalley scattering would lead to strong
I'=(4F)e 2%, (17)  oscillations in the exchange spliting of neighboring

38 i ;
At a field of 0.04 Ry /ag, the probability for ionization dur- gizg?rséo;?(ilrs;or% thisepgséﬁg)rr; Ofu:r?tri]t(;rtisv:hcztljéctjjIgt?oﬁrgf
ing a switching time of 30 ps is around X@0 4, which y | g d

already exceeds the criterion for the error-correction schemtehe exchange splitting for coupled donors in Si, one needs to

to work properly. At a field of 0.1 Ry/ag, the probability dpply a more realistic H.amllton!e?ﬁ, and correspondmgly,'
N . . more realistic wave functions which treat electron correlation
for ionization is already close to 100%. A more suitable

. ; o i more completely, to study relevant issues that we have
scheme to manipulate the spin coupling in the coupled-dono issed in this paper.

system is to use the J gate as described in Sec. Ill, whic
does not have the problem of donor ionization.
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