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Rashba effect within the coherent scattering formalism
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The influence of spin-orbit coupling in two-dimensional systems is investigated within the framework of the
Landauer-Bttiker coherent scattering formalism. After a short review of the features of spin-orbit coupling in
two-dimensional electron gases, we define the creation and annihilation operators for the stationary states of
the Rashba spin-orbit coupling Hamiltonian and use them to calculate the current operator within the Landauer-
Buttiker formalism. The current is expressed as it is in the standard spin-independent case, but with the spin
label replaced by a new label, which we call the spin-orbit coupling label. The spin-orbit coupling effects can
then be represented in a scattering matrix that relates the spin-orbit coupling stationary states in different leads.
As an example, we calculate the scattering matrix in the case of a four-port beam splitter, and it is shown to
mix states with different spin-orbit coupling labels in a manner that depends on the angle between the leads. A
noise measurement after the collision of spin-polarized electrons at an electron beam splitter provides an
experimental means to measure the Rashba parameteis also shown that the degree of electron bunching
in an entangled-electron collision experiment is reduced by the spin-orbit coupling according to the beam
splitter lead angle.
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[. INTRODUCTION inversion asymmetrythe Rashba effet), resulting from
the asymmetry of the in-plane confining potential and, more

Coherent electron transport through nanostructures ifmportantly, the heterojunction interface. This effect causes a
cryogenic two-dimensional electron gas systems is inherspin splitting® proportional tok.
ently a quantum mechanical phenomenon. Several experi- Recently, there has been a growing interest in electronic
ments have demonstrated certain aspects of this quantum béevices that rely on the spin properties of the electrons.
havior, whether it relies directly on the wave nature of theThese spin-dependent devices may be influenced by spin-
electron and can be probed through a current or conductan@bit coupling effects or may even rely on them as, for ex-
measuremente.g., quantized resistance in the quantum Hall@mple, in a coherent version of a spin-polarized field effect
effect! conduction modes of a quantum point comtdgpr  transistor®*! Experiments involving - Einstein-Podolsky-
on the particle nature and quantum statistics of the electron80sen(EPR) type entangled-electron states may also be in-
or the electron source and can be probed through a noigienced by spin-orbit coupling**With this motivation, we
measurement (e.g., Hanbury Brown and Twiss-type @nclude spin-orbit coupling in the coherent scattering formal-
experiment$;® electron collisiorf, observation of the frac- 1SM.
tional charge in the fractional quantum Hall effééy.In ad-
dition, two-dimensional electron gasé3DEG's) could be Il. SPIN-ORBIT COUPLING IN TWO-DIMENSIONAL
used to .study the fundamental nonlocal features of quantum ELECTRON GASES
mechanics through electron entanglentent.

These experiments can be successfully explained within Spin-orbit interactions are generally expressed in terms of
the coherent scattering formalisth!® a theoretical tool de- the spin-orbit Hamiltoniaff obtained through an expansion
scribing coherent and noninteracting particle transport. Thign v/c of the Dirac equation,
formalism relies on spin-independent stationary states in

the leads of the device and, therefore, describes spin- %
independent transport. Although it is possible to add a local |:||=—2VV~ (X p), (1)
spin-dependent effect directly in the scattering matrix, it is (2moc)

not possible in general to take into account spin effects oc-

curring over the whole system. One potentially importantwheremy is the free electron masp,is the momentum op-
spin effect occurring in the leads of the conductor is spin-erator,= (6,0, ,0,) are the Pauli spin matricey, is the
orbit (SO) coupling. Any electric field in the reference frame electromagnetic scalar potential, avids the gradient opera-

of the laboratory generates a magnetic field in the movingdor, so that—VV is the electric field. According to Eq1),
electron reference frame, coupling the electron’s orbital deelectron transport in the presence of an electric field results
grees of freedom with its spin. One can find several sourcei a spin-orbit energy due to the coupling of the electron spin
of electric fields in semiconductors. In three-dimensionaland orbital degrees of freedom through @& p term. Here,
crystals, the periodic crystal potential results in a bulk inver-we will neglect the bulk inversion asymmetfpresselhaus
sion asymmetnythe Dresselhaus efféé}, which induces a effect and consider only the the structure inversion asymme-
spin splitting of the conduction band that is proportional totry (Rashba effe¢t as the latter can dominate in the two-
k* (k is the momentum of the conduction electrom two-  dimensional heterostructures of interest in this paper.
dimensional systems, the dominant term is due to structurket z be the direction of confinement, perpendicular to the
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potential along thez direction was considered to be the

source of a nonzero average electric field along Ztaxis,

resulting in the Rashba spin-orbit coupliffjHowever, this *
mechanism underestimates the strength of the spin-orbit cou- — | \ X
pling, because the average electric field for the confined B | \ -
bound state in the quantum well is essentially Zeamd only \ \Pid
nonzero to the extent that the effective masses in the mate- .
rials that define the confining potential are different. Rather,
it has been shown through, for exampkep modelg®—3'that

the dominant structure inversion asymmetry mechanismis & — — — — — >

related to the differing band discontinuities at the hetero- xref
structure quantum well interfaces for the conduction bands .,

considered in th&-p model. In addition, these models show SI‘PE+>

that the spin-orbit coupling energy is not necessarily propor-

tional to — VV across the entire well. Elsewhere, the par- FIG. 1. Direction of the spin for thé¥¢ ) states. An electron

ticular role of an externally applied gate voltage to the tuningyith wave vectork feels a virtual fieldB(k,e) perpendicular tck.

of the Rashba spin-orbit coupling strength and its modificaThe spin directionS is aligned and antialigned to this field. The
tion of the interfacial electric field is also emphasifédg.s axesXes andy,r designate a fixed reference frame. The ajss
These various spin-orbit coupling mechanisms can be incolparallel to the momenturk, which makes an angle, with the y
porated using the following model Hamiltonigrather than  axis. In the extension to one-dimensional leagsll label the lead
Eq. (1)] for the structure inversion asymmetry we consider inandk will be the longitudinal momentum.

this paper:

plane of motion. Originally, the asymmetry of the confining Yt *
I

ei(kxx+kyy)
A a (. d 0 Yo V= @i 0211y 4 @=10y/2 , (6)
Hso=g(a><p>z=la(oya—x—oxa—y), @ Ve )=—7 [0 D]
where « is the Rashba parameter, which characterizes the i(kx+kyy)
aggregate strength of the various spin-orbit coupling mecha- |We >=—[ei 97/2|T>_e*iﬁy/2|l>], 7)
nisms. It takes values in the range 1110 *° eV cm for a B V2

large variety of systems[for example, InGa _,As/ , )
In,Al,_,As (Refs. 23 and 32 InAS/AISb (Ref. 34, |SAS/ wheregy is the angle between the in-plane moment_uand
GaSb(Ref. 25, and GaAs/AlGa, ,As (Ref. 39] depending the axisy,es of the reference laboratory franieee Fig. 1

on the shape of the confining well. To simplify the presenta—We have introduced the coordinate system in anticipation

tion, we considerw to be independent of the in-plane mo- of a multilead device in which leagt will have a particular
meﬁtum. orientation with respect to the reference laboratory frame.

Using the standard effective mass approximation, we cargj_ Th? electrons f_eel a virtual, in-pla_me magnetic fi_eld in a
deduce the system Hamiltonian as the free particle Hamil= irection pe_rpend|cular td_(‘ _The spins OT the stationary
tonian plus the spin-orbit coupling Hamiltonian states are aligned and antialigned to this fislele Fig. 1, so
that 2 (k,Sy_y)=m/2 and £ (k,Sy_,)=—m/2, where
E_ E,

£ (k,Sg_)) is the angle betweek and the spir§in the state
|We ). The amplitude of the magnetic field depends on the
wherem is taken to be the effective mass. Since the operator¥elocity of the electron and vanishes fio=0, preventing a

p, andp, commute withH, we can search for eigenstates of possible s_pin polarizgtion_ in the system. The Ia<_:k of sponta-
X Y ' neous spin polarization is a reflection of the time-reversal

Y
Pxtpy a

H= om _g(o'ypx_o'xpy)i ()

the form invariance of the model Hamiltoni&hin Eq. (2). The spin-
|$>:ei(kxx+kyy)[CT|T>+Cl|l>], (4) orbit splitting is usually small compared to the kinetic energy
of the electrons (0.15 me¥ake=<1.5 meV for Ef
where|1) and|]) label the up and down states of theom- =14 meV).
ponent of the spin. We can diagonalize the Hamiltonian Following Ref. 15, we will introduce a transverse confine-
- ment in the leads of the conductor, allowing us to address the
ﬁ ako+iak longitudinal transport modes for each transverse mode. Fo-
2m y X cusing on one leagl, we make two simplifying assumptions.
A= 72K2 (5) First, we consider only a single-independent transverse
aky—iaky =TS mode. Second, we neglect the 1D SO coupling effect that

this transverse confining potential could create, since, to our
knowledge, there is no experimental verification of this ef-
in this spin subspace. The eigenvalues Brgk)=#k?/2m  fect, and it is estimated to be much smaller than the Rashba
+ ak, and the associated eigenfunctions are effect® Within these approximations, we can use our previ-
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b,k -> |bk+> la, kb, +>  |ak->

T

k
-k =
0 Eo kO S|b,k,- >
mo
+ states ko= — FIG. 4. Direction of the spin of% . For notational convenience,
f . the lead directiorx, is aligned with the reference laboratory frame
B =states Ep=- mz Xref IN Sec. Il by moving the SO coupling angular dependence of
2h lead y into the scattering matrix.
FIG. 2. Energy dispersion diagram with SO coupling. The .
— n,Kg<k<x range @ states is defined in Eq(8). The —o<k B 17Xy 0.2 o2
<7,ko range b state is then deduced by mirror symmetry. |€e.k,0)=D(y,) 2 ['21)+ nenge™ "2 )],
ous analysis to deduce the eigenstates and the associated en- h2K?
ergy dispersion diagranisee Fig. 2, with k lying in the E= om tnsak,  —nokosk<e, ®)

directionx,, of the lead and making an anglg with they ¢
axis (see Figs. 1 and)3We will now introduce three labels Where ».=+1 (—1) corresponds toe=a (b), and 7,
for the eigenstates that will prove useful in writing the cre-==*1 corresponds ter==. Here ®(y,) is the normalized
ation and annihilation operators of these stafés:e labels  transverse wave function for the transverse mode under con-
the direction of propagation from the sign of the group ve-sideration. By conventionk is only taken in the range
locity vy: e=a if v,>0, e=b otherwise;(2) k labels the ~ — 7,;Ko=k< for both thea and b states. The remaining
longitudinal mode wave vector along the, axis; and(3) eigenvalues in Fig. 2 can be deduced by mirror symmetry.
o=+ is called the SO coupling label; it designates thand ~ We usen.=*1 to parametrize explicitly the appropriate
— branches of the energy dispersion diagrés illustrated ~wave vector range for the propagation direction in the
in Fig. 2 and, thereby, the spin direction for the SO stateseigenstate phase facter”<*. This convention allows us to
(see Figs. 3 and)4Using these labels, we find the following track the propagation direction throughout the calculation.
eigenstates and eigenvalues of the system from @jsnd We also notice in Fig. 2 that, for a given energy, the
(7): corresponding €,k, +) states do not have the same wave
vector,

yref$ 2ma
Ak=[k(e,E,+)~k(e,E ) =2ko=—5.

C)

| \ yX The |e,k, =) states have their spin perpendicular to the di-

B | \ R4 rection of propagatiorv, and in opposite directions, such
A N7 that £ (Vg,Sex—y) =72 and £ (Vg,Sck+))=— 72 (see

\ Figs. 3 and 4 It is important to notice that the spin direc-

tions for the|e,k, =) states do not necessarily coincide with

those of the|Wg ) states. The spin direction for the

————— —> |e,k, =) states is determined by, while the spin direction
X et for the |We ) states is determined by. The definition of

—_ spin direction is only consistent for states that share the same
S|ak+> direction for both the longitudinal momentuk and the
w group velocityv, . For example, this is the case illustrated in
FIG. 3. Direction of the spin for théa,k, +) states. The axes Figs. 1 and 3. However, from the dispersion relation in Fig.
Xres andy o designate a fixed reference frame. The axjss paral- 2, it |s'clear that there also exist energies for which pqsmve
lel to the momentunk, which makes an angle, with they s axis. ~ (negative k corresponds to negativ@ositive vy, and this
In the extension to one-dimensional leagiayill label the lead and means that the definitions of the spin direction are inconsis-
k will be the longitudinal momentum. tent for these energies. We choose here to link the direction
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of the spin tovy (rather thank) through the labelo=* ) ea . ea .
(rather tharE..), because it is the group velocity that deter- Jso=~ 7‘1' oy Wu,+ 7‘1’ oW uy . (14
mines the direction of the current. In the absence of SO o ]

because they always share the same direction. operator, which may be expanded using a convenient basis
such as the SO coupling stationary states.

I1l. SPIN-ORBIT COUPLING AND THE COHERENT . .
SCATTERING FORMALISM B. Expansion of the field operator
. ) ) The first step is to define the creation and annihilation
The Landauer-Biiiker coherent scattering formalism re- o0 4t0rs for the SO coupling stationary states. We begin by

lies on a second-quantization formulation of quantum mesnqqycing the creation operators in the original, noninter-

chanics. The current is expressed as a function of the field . : At 0t . . .
operator, which is expanded in the basis of the scatteringCtlng spin ba3|s_a7ks(b7ks)_creates an |ncom|_ng)l_thomg
states using the operators that create and destroy electrons |pctron W.'th spirs< {1, 1} in lead y with longitudinal mo-
the leads of the conductor. A scattering state is a cohereﬁ?ei”uf(rxnk in the statea,k,s), (|b.k,s),), where|ek,s),
sum of an incident wave in one lead and the outgoing waves € ' ’IS). These standard operators satisfy the anticom-
it generates in all leads. The amplitude of each outgoingnutation relatior{a, s, &/ o1+ = ik 8,50ss . Through
wave is given by the scattering matr whose elements EQ. (8), we now introducé.,,,, which creates an incoming
depend on the properties of the scatterer. As our final goal iglectron in leady with longitudinal momenturk and spin-

to study the fluctuations of the current, it is important to findorbit coupling labeloe{+,—} (not to be confused with the

a simple way to express the time dependence of the currespin s) satisfying the relation

operator. In our rederivation of the coherent scattering for- L

malism, we will follow the same approach as in Ref. 15, At 16122 Cio oAt

while introducing two important change:) we will derive a“/klf_ﬁ[e ’ Ayt 708 / Ay 1- (15)

an expression for the current operator that includes a new

contribution due to the spin-orbit couplin¢?) we will ex-  Knowing the anticommutation relationship in the spin basis,
pand the field operator in the new stationary basis of the S@e can calculate it in the new, stationary, spin-orbit coupling
coupling Hamiltonian. basis to be

[ék,y,a' 1él"5,g—’]+: 5kk’ 5(1[350'0" ’ (16)

where we used the relation,n, =26,,—1. This result
provides justification for our designation of the SO coupling
eigenstates and the usage of the spin-orbit coupling label
rather than the spis. The stationary states form a complete
basis, and we can use them to expand the field operator in
leady. For notational convenience, we will choose from here
(20 on to alignx, andy, with the reference axes¢;—x and
Yret—Y (SO thatd,=m/2) and specifically track the angular

where ¥ is a two-component spinor. The current opergtor gependence of the leads in the scattering matrix. The field
can be inferred from the conservation of charge equation gperator is

A. Calculation of the current operator

To find the current operator, we begin with the single-
particle Schrdinger equation and the Hamiltonian in E§),

ih— = +—

A w2 [ ov  o¥ L
ot 2m| g% ay? to

ov ov
Ty ox %Gy |

9 ) . * ei nEkX(D(y)
—[e¥™WP]+V.j=0, W(X,y).,= : cf——, (1
ot (¥)y=2 2 Eykoks T (17)
using Eq.(10) and its adjoint: wheree=a (b) is the annihilation operator in the incoming
t (outgoing states ang;, is a two-component spinor obtained
j =i SANA A e_a\pf(, p (11  from Eq.(8) by settingé, = /2,
X 2mi ax  ax fi vy
) 1+
eh v 9¥ ex . E—
Lo t7° ot v”kk"(b 2
il —
We can identify the usual kinetic term of the current density \/Z 7757707
j =i[qﬂvqf—vqﬂqf] (13) Xo
K™ 2mi '

SO coupling adds a new contribution proportionalatdéhat  As shown in Fig. 4, the spin of¢ depends on the SO cou-
we call the SO coupling current densjiyo: pling statec and on the direction of propagatian
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At this point, it is more convenient to go from a discrete

PHYSICAL REVIEW B 66, 155328 (2002

In the o=0¢' case, implying e=¢ and k(E’,o’)

sum ink space to a continuous integral in energy by defining~k(E, o), we find (see also Appendix A

the operatora'(E), which create electrons in the energy
guasicontinuum. As our labeling defines a one-to-one corre- e

spondence betweenr,k,o) and (¢,E,o), we can define un-
ambiguousha’ (E)=p(E)al,, . so that

[8,0(E), &, (EN]s=

wherep(E) is the density of states at enerBylt is shown in
Appendix A thatp(E) is independent of the spin-orbit cou-
pling label . Replacing the discrete sum oveby an inte-

0,50, 6(E—E"), (19

gral overE and introducing the new operators and their time

dependenc@(E,t)=e (M3 (E), we find

‘lf X,Vy,t - o
(X,y,1),= WZEOW’()X”
X el nEk(E,(r)xef i (E/h)t, (20)

with Eo=—ma?/2k2, andk has been replaced B(E,o)

to remind us thak depends on the spin-orbit coupling label

o for a given energy.

C. Current in the spin-orbit coupling basis

The current in leady is given by

~

- [ ayi= [ dyucthso=litiso. (21

We will begin by calculating the kinetic terirx . Using Eq.
(13), we have

Tk(t)= 2 2 dedE' < (EEel,(E)

(T(T EE

X;,},Ur(E’)ei[(E_E,)/ﬁ]t, (22)

/

o _ixx ————T [ k(E,0)
nKk(E,o
2m|h vg(E)v g(E
+ o K(E', o' )]l 7ekE o) = nek(E.0)]x
(23

We notice from Eq(22) that the frequency of the current
is given byhw=E—E’. Following Ref. 15, we calculate the

Koo (BB =

current and noise in the zero-frequency limit and make the

approximationk(E’,o)~k(E,o) (asE~E') for electrons
having the same SO coupling label and, using E4),
k(E',o')=k(E,o)+ n,Ak for electrons having different
SO coupling labels. From Eq.18), we also have(with
Sz =1 if e#€', 0 otherwise

Xa- ,,-/ 566 5(}'()"—’—559&6' oFo' " (24)

k(E,o)

K(r(r (E E’' )l(r o’ neﬁ (25)

ma
k(E,o)+ ey

In the o#0¢’ case, implying e#¢ and k(E’,o’)
~k(E,o)+ n,2malh?, so that ».k(E,o)+ 7 k' (E,o")
=—p.p,2malt? we find

Ma

e 770?

(E E’' |<T¢U ﬂsﬁ

Ku’u’

Ma
K(E,o)+ ey

Xe*iné[Zk(E,a)Jr nUAk]X. (26)

If we only consider the kinetic term of the current, a nonva-
nishing contribution fore#¢' leads to terms liked'b and

b'a in the expression of the current, corresponding to elec-
trons propagating in opposite directions.
We now consider the contribution of the spin—orbit cou-

pling currentiso. Using Eq.(14) to calculatel & saser IN EQ.
(22) with K— SO, we find

o
ee (E, E’ )= e z
SOo’o’
h Vug(E)vg(E")
XXg' O-yX el[né k(E',oc")— 7K(E, o’)]X
(27)
Usmg Nel Nt = 7757;(,, we have from Eg. (18) that
el e
O'yX — T 770")( and Xo OyXgr = — 775770'( 566’ 50’0”

+5E#5, »+o'), SO that

Mo
7]0’?

ce! , e
lSO(ra-’(EvE ): neﬁ [555’50'0"

Mma
k(E,o)+ vy

+ e—i 7 2K(E,0) + nUAk]Xaﬁﬁer 50.;&0.1].

(28)
We can now calculate the value of the total current from Egs.
(25), (26), and(28),

ee’ , e
(E E’ ) SOa'a-’(E’E ):7765566’50'0'/ .

(29

1 (E,E")=I

Ka'o'

This result is consistent with the fact that only electrons with

the same direction of propagation and the same spin-orbAlthough the spin-orbit coupling mixes electron states hav-
coupling label or opposite direction of propagation and op4ng different directions of propagation when we consider
posite spin-orbit coupling label have the same spin. only the kinetic term of the current, these contributions can-
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cel when we add the spin-orbit coupling currég, and we Beamsplitter
find the standard formula for the current operator, Lead 3 Lead 4

(t)— dedE’[aw(E)aw(E )

— b (E)D,(E")]e/l(E-ENAIL, (30)

The definition of thea (6) operators as corresponding to
states with positivénegative group velocity, and not neces-
sarily positive(negative wave vector, is consistent with the
fact that they carry the current in opposite directions. More
importantly, the final expression of the current is similar to
the one found in Ref. 15, but with the spin index replaced by
the spin-orbit coupling labed==*. The spin related to this
new index depends on the direction of propagation, that is,
the angled, of the lead. Therefore, we expectéadepen- Lead 1 Lead 2
dence in the scattering matrix relating the outgoing states in FIG. 5. Four-port electron beam splitter. The operayrgh,)

the outputs p states to the incident states at the inpud ( annihilate electrons enteririaving the device through poit It is
states, assumed that Fermi-degenerate, single-mode electron sources inject
electrons towards the beam splitter. The beam splitter is a sharp
potential barrier.

E Szz— ’ y!eﬁ)aﬁa( ) (31)

IV. SPIN-ORBIT COUPLING AND NOISE
where bothp and o indicate the spin-orbit coupling label. IN ELECTRON COLLISIONS

The current operator can then be written ) )
We will now use the expression of the current operator,

unilateral power spectral density, and the scattering matrix to
T, ()= n 2 > | dEdEEE-EIWE calculate the current, noise power, and Fano factor in several
P oo’ BY experiments using the four-port beam splitter setup. The ex-
~t a A , periments include an unpolarized electron collision, which
XaﬁU(E)Aﬁ’;W’(E’E 13,00 (EY), (32 has already been experimentally demonstraged Ref. §
and a spin-polarized electron collision. We will show that a

ﬁm (EE")=080560y0ps0p0 noise measurement upon collision of polarized electrons at
o e an electron beam splitter provides an experimental means to
=S, (E.04,05)S,,(E",0,.,6,). measure the Rashba parameterWe also consider a colli-

(33) sion between EPR-type entangled electrons. We show that
the degree of maximal bunching for the spin-singlet state
The unilateral power spectral density is defined as twice thelepends on the lead orientation of the beam splitter.
Fourier transform of the symmetrized correlator of the cur-
rent fluctuationd}! .
A. Electron beam splitter
. N « . - The electron beam splitter is a four-port deviogo input
Saﬁ(‘”):j d7e'"(5l 4(7) 8l 4(0) + 61 5(0) 5l o( 7)), and two output leadssuch as the one shown in Fig. 5. It is
(34) a “spatial beam splitter”; it only operates on the spatial or
R . . orbital subspace of the electrofsounterexample, a polar-
where sl ,(t)=1,(t)—(I,), and we have assumed stationar- ization beam splitter In the spin-independent transport case,
ity. In the following, we consider the noise power in the the scattering matrix does not mix different spins, because
»—0 limit and energy-independent scattering matrices in dhe beam splitter only acts on the electron orbital states and

particular leady, there is no spin-orbit coupling. In this case, the reflection and
transmission coefficients are independent of the spin. How-
2e? ever, the situation is more complicated when we include
SM(O)=T < E Ay&ro‘ (m o spin-orbit coupling, because the spin associated with the
PP oo

spin-orbit coupling labetr is different in each lea@the leads
having different orientations The beam splitter still only
XJ dEf,(E)[1-f5-(E)], (39  operates on the electron orbital states, but there is now a
connection from orbit to spin through the spin-orbit cou-
wheref,,(E) is the Fermi-Dirac distribution in leag for ~ pling. The conservation of the spin at the beam splitter im-
electrons with SO labet. plies that we have a mixing of the spin-orbit statesf-
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diagonal elements in the scattering matriand this mixing perature®=0, the input QPC’s act as single-mode, Fermi-

becomes more important when the angle between the leadegenerate sources. For the single transverse mode accomo-

increases. dated by the QPC's, the associated longitudinal modes in the
A beam splitter, with all leads oriented at the same angldéet-transport energy windofiE; ,E¢+eVys] are fully occu-

6 with respect to the beam splittéhe case illustrated in Fig. pied. On the output side, the modes in the same net-transport

5), is investigated in Appendix B, and the following scatter- €nergy window are unoccupied. Of course, all modes below

ing matrix is found after some simplifying assumptions: ~ the Fermi energj; are also fully occupied. For the finite-
temperature case, this physical picture remains valid for

by rcosd irsind ; 0 _eVdS> kBG)_. We note here that the precise means for achiev-_
’ ing a Fermi-degenerate source depends on the type of experi-
33,, irsinf rcosé 0 t ment (polarized collision, for examp)e For our purposes
b, = " 0 rcosf  —irsinf here, we yvill assume that an appropriate Fermi—degenerate
’ o source exists and injects electrons towards the beam splitter
b 0 t —irsin¢ rcoséf for each experiment described below.
3 Finally, the beam splitter is considered “linear,” in the
R sense that it operates on single-electron modes and does not
ai+ mix energies. In isolation, each electron mode that impinges
4 on the beam splitter will have a probabilityto be transmit-
| ted andR to be reflected. However, quantum mechanical
c;z,+ (36) interference effects between identical electPamsentangled
P electron statés! that impinge upon the beam splitter may
2

alter the single-particle transmission and reflection properties
in scattering experiments.

We note that the unitarity of thé& matrix requires|r|?
+|t|?>=R+T=1 andrt* +tr*=0. _ . .

As an example of an experimental realization of an elec- 1he coherent scattering formalism derived here can be
tron beam splitter, we consider the devices used in Refs. gsed _gener_ally for_several different experlmental reallzanons
and 6. In those experiments, each port of the electron beaff Spin-orbit coupling, for example, in the following cases
splitter comprises a quantum point cont8tQPQ defined (not_e that global spin-orbit coupling means that the entire
electrostatically by negative voltages applied to Schottkydevice is described by the SO Hamiltonian, whereas local
gates® At cryogenic temperatures, the input QPC'’s at leads spin-orbit coupling implies the SO Hamiltonian applies only
and 2 serve as Fermi-degenerate, single-mode eIectrdﬁCG}HY)- ) ) ) o
sources and are typically biasedHtor below!! the first (i) Global spin-orbit couplingo== equilibrium leads,
conductance plateau. The output QPC's at leads 3 and 4 a#Polarized and polarized=* state transport.
typically biased “wide open” to collect all electrons from the (i) Global spin-orbit couplingo=* equilibrium leads,
beam splitter device without reflecting any back towards the?olarized and unpolarizes=1| state transport injected at
beam splitter. The beam splitter itself is also defined electroenergies above the equilibrium leads.
statically by a narrow Schottky gate in close proximity to the (i) Global spin-orbit couplingg==* equilibrium leads,
2DEG to provide a sharp potential barffek.small voltage is ~ €ntangledr==* state transport. o
applied to tune the beam splitter transmission probabflity (iv) Global spin-orbit couplingg==+ equilibrium leads,

At cryogenic temperatures, the transport through the bearfintangleds=1| state transport.
splitter device is ballistic; the electrons are coherent across (V) Local spin-orbit couplings; equilibrium leads that
the entire devic&>** The total area of the beam splitter de- adiabatically and coherently enter and leave the local spin-
vice is smaller than xm X1 um, while the inelastic phonon 0rbit coupling region, unpolarized, polarized, and entangled
scattering and elastic ionized impurity scattering lengths ar6=11 state transport.
typically larger than this characteristic size. This leaves only Although this list is not exhaustive, it does represent the
the elastic scattering at the beam splitter itself. Furthermorevariety of systems that can be analyzed using the SO cou-
the screening lengtttypically 5 nm is assumed to be much Pling coherent scattering formalism. The experimental re-
smaller than the Fermi wavelengtitypically 40 nm, so Sults depend on the manner in which spin-orbit coupling
Coulomb interaction can be neglected. Consequently, the ifhanifests itself in the system and, of course, the particular
teractions related to quantum interference will occur in thisexperiment implemented. As examples, we consider below
device, while those related to the Coulomb charge of thdhe current and collision noise at an electron beam splitter for
electrons can be ignored. a few of the specific cases listed above.

In Refs. 5 and 6, the beam splitter is operated by applying
a drain-source voltag€, to leads 1 and/or 2 with respect to
leads 3 and 4. A modulation &fy is used with synchronous This experiment uses an electron beam splitter in a system
detection to allow the measurement of the low-frequencywith global spin-orbit coupling. The equilibrium stationary
(hw<<eVys) nonequilibrium transport noise due to electronsstates are the=* states, and, consequently, the equilibrium
in the net-transport energy windov; ,E;+eVys]. Attem-  leads at zero temperature are Fermi degenerate upto the

B. Manifestations of spin-orbit coupling

C. Electron partition noise: Case 1
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Fermi energy. A small bias voltagé,s is applied to lead 1 With spin-orbit coupling, we do not expect this result to
with respect to leads 2, 3, and 4. Bati++ ando=— states  be modified, because the leads remain Fermi degenerate for
impinge on the beam splitter from port 1 and are subseboth spinso== in the zero-temperature limit. To gain intu-
quently partitioned into ports 3 and 4 according to the scatition, we note that a linear beam splitter does not couple
tering matrix in Eq.(36). Using Egs.(32) and (35), we find  modes at different energies, and so the aggregate collision
the current, unilateral power spectral density, and Fano factaran be viewed as a two-particle collision for each mode that
in port 4 to be makes up the net-transport energy window. Therefore, we
consider the collision of four electrons at the same energy.

. e? The initial state is
(la)=—TVas, (37
[Wi)=a].(E)a; (E)aj, (E)aj (E)[0). (40
262 . .
844(0)=T2T(1—T)evds, (39) The output state is found using Ed81) and (36),
|W;)=[r[coshb}, +i singb]_1+tb], ]
S44(0 N N R
= 44(A ) —1-T. (39) X [r[i singb}, +cosob)_1+tb}_]
2e(l )
At Bt i cinaft
We have omitted the minus sign for the current which indi- X[tbg. +rlcosfb,, —isindb,_]]
cates that t_he current is Ieav!ng the device. We find standard ><[tB§,+r[—i sin 061++cos¢961,]]|0)
partition noise for this case, identical to the results expected
for a Fermi degenerate= 1| system in the absence of spin- = 5§+5§_51+61_|0>, (41)

orbit coupling. Analogously, injecting polarized electrons in
the o basis will halve the current and power spectral densitywhere we have used the relatiofi+t*—2r’t?=1. As ex-

but leave the Fano factor unchanged. We note that the simpected, a full occupation of the input states at enétdgads
larity between thes and o bases exists, in part, because weto a full occupation of the output states.

are effectively looking at the charge when measuring the For degenerate inputs at leads 1 and 2, we find the general
current and power spectral density. When we figurativelyresult for the current, unilateral spectral density, and Fano
count the charges that reflect to lead 3, we get the samf@ctor in lead 4 using Eq¢32), (35), and(36):

number in both cases. We can conclude that a partition noise

experiment using a spatial beam splitter under the conditions <f )= 2_62\/ (42)
of case 1 will not reveal experimentally the spin-orbit cou- 4 h “ds
pling effect.
S44(0)=0, (43
D. Spin-unpolarized electron collision: Case 1
We now consider the same system with leads 1 and 2 FESL(P):Q (44)
biased with respect to leads 3 and 4. Again, there is global 2e(l4)

spin-orbit coupling, and the equilibriunor== stationary  geca e the input leads are Fermi degenerate, a calculation
states are Fermi degenerate up to the Fermi energy. In addit yhe cyrrent noise in the output leads shows a complete

tion, the .modes in leads 1 and 2 IW'th'n th? r1Gt'tr"’mSporEuppression of the partition noise. Even though the beam
err11§zlrgth|ndc(>jvv[IE_F,EF+eVdS] are also Fermi deger_'e(;ate’_splitter in the presence of SO coupling will couple spin
while the modes in the same net-transport energy Window 1465 from the final-state point of view, the Pauli exclusion

leads 3 and 4 on the output side are unoccupied. Electrons Bl’inciple requires a Fermi-degenerate occupation of the

leads 1 and 2 within the net-transport energy window coIIideU:i states in leads 3 and 4 given a Fermi-degenerate input

at the beam splitter and, subsequently, exit through the Unst leads 1 and 2. The only difference with the spin-
occupied states n leads 3 and 4 . independent transport case is that the colliding electrons at
In the case without SO coupling, each electron mode iN,o same energy do not have the same momentu#k().

lead 1 has an identical partner in Ie_ad 2. During the COIIiSi(.)nTherefore, we can conclude that a collision experiment of
process, these electron modes impinge upon the beam Spl'ttﬁﬁpolarizedr=i electrons cannot reveal SO coupling in the

and qyantum mechanically ‘meffer.e- This quam“m intfarfer'system. Consequently, the nonideality in the noise suppres-
ence, i.e., the Pauli exclusion principle, forbids the two idenj,, ohserved in Ref. 6 cannot be attributed to SO coupling.
tical electrons to exit through the same output lead. There-
fore, the two identical electrons from leads 1 and 2 must
leave the device in an antibunched manner: one electron
through lead 3 and one electron through lead 4. This is true In the previous example, an unpolarized collision cannot
for each mode in the net-transport energy window. Since thehow any SO coupling effect, because, starting with two
input leads are Fermi degenerate and noiseless in the zerBermi-degenerate sources, the collision statistics are gov-
frequency limit, the outputs are also noiseless. We expect arned by the Pauli exclusion principle independent of the SO

total suppression of the partition noiS& coupling. The same argument holds true for a spin-polarized

E. Spin-polarized electron collision: Case 1
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collision in the absence of SO coupling. However, this is not E(ky ) =Ept ky E
the case for a spin-polarized collision in the presence of SC \
coupling.

We consider the same collision experiment as above, bu
we assume a means to inject electrons polarized with @pin
within the net-transport window from leads 1 and 2. These Ek,+=E;+ K L 2SS E,
polarized electron collide at the beam splitter and exity _g. _y_g . « S |
through ports 3 and 4. For example, we consider electrons © v Kk kp kK
polarized in theo=+ state. Thes=+ states are completely
occupied within the net-transport window, but tle=— E— [T 4 states (injected)

states are completely empty above the Fermi energy. Usinc
Egs.(32), (35 ;gnd(;é) Wg %nd » ’ B +and - states B + and - states (leads)

] - states (note: not to scale)

|  E,=Egteav

E(ky,) =Ep ko

2
(1= %Vds, (45 FIG. 6. Energy diagram for polarized-spin injection, case 2,
eAV=ak;+ ak, Spins=7 electrons are injected into an electron
. b_eam splitter device with equilibrium leads in_ th_e SO coupling l_)a-
Su(0)= —2T(1—T)sin20evds, (46) sis. Thes=1 electrons are assumed to fall within the energy win-
h dow [E;,E,=E;+eAV], such that the lowest-energy injectsd
=1 electron at energf =E; has ac=— component at the lead
S,40) _ Fermi energyEr=E;— ak;. In terms of the SO coupling stationary
———=2T(1-T)sir’6. (47)  states, the jointly occupied. states occur in the crosshatched en-
2e(l4) ergy range; these states will not contribute to the collision noise.
There is now residual partition noise at the outputs. Thelhe fractiona(k; +k;)/eAV=<1 of the total states are only unilat-
physics can be understood in the following way. Upon colli-erally occupieg(_diagor_lal lines only these states partiglly contrib-
sion, quantum interferencéhe Pauli exclusion principje Uté to t_he partition noise through the factor’sinlepending on the
forbids identical electrons from leaving through the same®2d orientation.
port. However, the beam splitter mixes the + states with
the o=— states upon reflection, while leaving the=+  energiesE,; and E,=E;+eAV in the absence of SO cou-
states unaltered upon transmission. Therefore, the quantupling. Here,eAV= ak;+ ak, is defined as the energy width
interference is imperfect. From the scattering matrix in Eq.of the net-transport window in analogy to an applied voltage.
(36), we find that the probability of a=+ state to be re- Once injected into the device with SO coupling, the spin-up
flected to ao=— state is (1 T)sirn?6. The probability that a  electrons with momentik,,k,] project onto ther= =+ states
o=+ state is transmitted to a=+ state isT. Therefore,  with energied E;*+ aky,E,+ ak,]. Note that we have cho-
identical o=+ electrons from leads 1 and 2 can both leavesen the energ§; to be the minimum energy a1 elec-
through port 4 as a transmitteg=+ and a reflectedr=— tron can have such that its=— component remains above
electron with probabilityT(1— T)sir?4. The same holds for the o. Fermilevel, i.e. Ep=E;— ak;.
both electrons leaving through port 3. The incomplete sup- As thes spin basis is not the stationary basis and because
pression of the partition noise is due to incomplete quantunthe SO coupling scattering matrix mixes different SO cou-
interference, and this is directly related to the incompletepnng states, we again expect some of the partition noise to
“overlap” (the degree to which they are no longer idenlical be recovered in a polarized-spin collision. The degree of par-
of the electrons at the output ports. If we considéf-al/2 tition noise recovery in this case depends on the SO coupling
beam splitter, we find a Fano factor constanta and on the angle between the colliding leads. We
1 will confirm this by calculating the nonequilibrium noise of
F(T=1/2=3sir0, (48) the electrons in the net-transport energy windi#y, E;

which corresponds to standard partition noise for the fraction €AV], assuming that the process of polarization does not

sirfg of the electrons which do not remain identical uponeffect the transport in the conduct@or example, if a mag-
collision. netic field is used to polarize the electrons, this field does not

leak into the beam splitter device regjotJsing Eqgs.(32),
(35), and(36) and the energy band diagram shown in Fig. 6,
we find

=

F. Spin-polarized electron collision: Case 2

We now consider a different version of the spin-polarized
collision experiment. In case 2, the leads remain Fermi de-
generate in the basis, but the injected spins are polarized in R g2
the spins basis. For example, we consids# | electrons (I4)= FAV’ (49
being injected into the beam splitter device from leads 1 and
2. For our purposes here, we assume these electrons are in-
jected in a degenerate manner; that is, the injected modes are 0e?
completely occupied. As shown in Fig. 6, the injected elec- _“c e
trons fall in a range of momenf&,,k,] with corresponding Sal0)= =271 T)sirf(ak, + aky), (50
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This experiment provides a new means to determine the
(51 Rashba splitting parameter. Depending on the bias voltage
AV and the angle between the leads, the device can span the
Jange from full noise suppression to the classical limit of the
partition noise. Tuning the applied bias voltage and measur-
ing the modification to the noise for a fixed lead orientation
in this type of polarized collision provides a new experimen-
12ak+2ak;  akitak; <1 tal method to measure the Rashba parameter
2 eAv eAv

ak1+ lekz

F=2T(1-T)sirte AV

The Fano factor is identical to the case 1 polarized collisio
[see Eq(47)] for which only a fraction

. .. . G. Entangled-electron collision: Case 3
of the states undergo a polarized collision, and as in case 1, g

the partition noise is recovered through the factor&in Finally, we consider the effect of global SO coupling on
Note that a factor 1/2 comes out from the projection of thethe collision of entangled-electron states. The collision of the
spin-up electrons onto the basis; the number of spin-up Spin-singlet(T| spin-tripley state from leads 1 and 2 at a
electrons in the energy windofiE, ,E,] is the same as the spatial beam splitter yields bunchéahtibuncheil electrons
number ofo=+ ando=— electrons in the energy window at the output states 3 andRefs. 9 and 1jldue to the orbital
[E;—aky,Ept aks]. symmetry of the entangled-state wave function. We consider

This result can be explained using Fig. 6. In the inputthe modifications to this proposed experimental result due to
leads, the spin-up electron states betwggmndE, are fully ~ global spin-orbit coupling.
occupied. However, in terms of the SO coupling states, only We consider the simple case of two energy-degenerate,
the states betweeB(k,,+) andE(k,,—) are jointly occu- €ntangled electrons in the basis,
pied; just as in the unpolarized capsee Eq.(44)], these
degenerate, identical states give no contribution to the noise 1 _
upon collision due to the Pauli exclusion principle, i.e., quan-  |¥;)=-—=[a], (E)a}_(E)—e'?al_(E)al, (E)]|0).
tum interference. V2

The fraction @k;+ ak,)/eAV<1 of the injected states, (52
however, is only unilaterally occupied; only the states are . )
filed betweerE(ky,—) andE(k,,+), and only the+ states T_he phase _shlft;{) allows tuning of the entanlgiled state f_rom
are filled betweerE(k,,—) and E(k,,+). These+ (—) singlet to triplet throug_h the_ factor c%(a&_/Z). _An experi-
states at the input will reflect to identical (—) states at the Mental proposal to realize this phase shift using a local spin-
output with a reflection amplitude modified by adslue to o_rb|t coupling effect is d|squssed in Ref. 42. This state im-
the lead orientation, while the transmission amplitude rePinges on the beam splitter and quantum mechanically
mains unmodified. In terms of probability, only the fractions interferes with itself. At an output lea@or example, lead 4
co of these unilaterally occupied states from leads 1 and £N€ measures the noise power as a functiop.dfsing Eqs.
remain identical in the output leads after collision. Therefore (32), (39, and(36), we find,
the noise suppression due to the Pauli exclusion principle,
quantum interference, occurs only for the faction’dasf the R e
identical, unilaterally occupied electrons. Conversely, as was (la)= (BN’ (53
noted in the case 1 polarized collision, the(—) states will
reflect to the opposite- (+) states with a reflection ampli-
tude modified by sim due to the lead orientation, while the
transmission amplitude preserves the(—) states. Because
these unilaterally occupied electron states are no longer iden-
tical after collision, the Pauli exclusion principle does not
a.pply; thefr.e is no quantum interference. Therefore, the clas- F=4T(1—T)co§ecos’-f, (55)
sical partition noise is partially recovered to the extent that 2
the unilaterally occupied states are not identical, i.e., through
the factor siff=1—co<é. wherep is the density of states. ForTe=1/2 beam splitter,

In this treatment, we have assumed that the SO couplinthis result indicates that the Fano factor will oscillate with
is small [ (ak;+ ak,)/eAV=<1], so thatE(k;,+)<E(ks,, the phasep between optimal antibunchindg-&0) and sub-
—). However, a typical value of the applied bias voltage isoptimal bunching F =cos6) according to the orientation of
eV=0.1-1.0 meV, which may be smaller than the typicalthe beam splitter leads. For a typical geometry withn/4,
values of the energy splitting caused by the Rashba effedhe oscillation will run between ideal antibunching=0)
(0.3 me\=2ak;<3 meV). In theeAV<ak;+ak, case, and standard partition nois& & 1/2). This simple example
none of the net-transport electrons interfere at the beam splitiustrates that the effects of global SO coupling should be
ter and so all of the electrons contribute to the partitionincluded when considering entangled-electron experiments.
noise,F=2T(1—T)sird. TheeAV<ak,+ ak, results are Interestingly, a similar Fano factor dependence was found in
identical to the case 1 polarized collision results in Egs.Ref. 42 through an additional phase shift due to local, inter-
(45)—(47) with eV, replaced byeAV. band SO coupling®

22

¢
p(T)hZT( 1-T)cosH co§5, (54)

S44(0)=
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V. CONCLUSION * Yier Transmitted wave

(lead 4)

We have studied the influence of Rashba SO coupling in  Reflected wave
the framework of the Landauer-Biker formalism. Its main (lead 3)
features are a spin splitting proportionalk@and stationary
states of the spin perpendicular to the direction of propaga-
tion. We included the effects of the Rashba SO coupling in
the Landauer-Bitiker coherent scattering formalism. The
Rashba SO coupling gave rise to two important modifica-
tions. First, the addition of a SO coupling term to the Hamil- - - = — — — — —
tonian modifies the expression of the current operator, result
ing in an additional term directly related to the SO coupling.
Second, the expansion of the current operator is performed it

Refracted wave

the basis of the Rashba SO coupling stationary states. Th Inc'g,f:mave

current operator was found to be identical to the one derivec

in the spin-independent transport case, but with the spin re Areal Arealll Area lll
placed by the SO coupling label. The main differences intro- input/output ports beamsplitier inputioutput ports
duced by the SO coupling then arise in the calculation of the potential V=0 potential barrier V=V, potential V = 0

scattering matrix relating the Rashba SO coupling stationary
states in different leads with different orientations. The direc-
tion of the spin depends on the direction of propagation, andP't"-
this may be different for each lead in general. Therefore, the
scattering matrix is shown to mix states with different SO _ 1 dE(k,0) #K(E,0) a
coupling labels, and the strength of this mixing depends on vgo(E)= £ dk  m * Mo -
the angle between the leads. The effect of SO coupling on
the current noise was then investigated in several exampldsom Eq.(9) we deduce
of electron collision. In the unpolarized-electron collision ex-
ample, it is shown that the SO coupling does not modify the ma
noise; this case is entirely determined by the Fermi degen- k(E,o)=k(E,+)+(1- 770)—2, (A3)
eracy and the Pauli exclusion principle. In contrast, the h
polarized-spins case exhibits a contribution to the noise
caused by SO coupling, which is proportional to the SO cou- Ak(E,*) «
pling constanir and depends on the angle between the leads. vgo(E)= “m igzvg(E)* (A4)
A polarized electron collision experiment provides another
means to measure the strength of the Rashba parameter

: : . . ; p(Kk) L 1
the case of a bunching-antibunching experiment with en- p(E)=r— = o ——
tangled electrons, the SO coupling also modifies the maximal hvg(E) 27 hvg(E)
degree of bunching one can achieve. Finally, this new for- =
mulation of the current operator can be applied to other co'Which is independent of.
herent scattering experiments in which one wants to investi-
gate or incorporate the effects of SO coupling. APPENDIX B: SCATTERING MATRIX IN THE FOUR-

PORT BEAM SPLITTER CASE

FIG. 7. Reflected, refracted, and transmitted waves in a beam

(A2)

(A5)
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Starting with an incident wave in lead 1, for example, we

APPENDIX A: DENSITY OF STATES can calculate the ref!ected, refra_cteq, and transmitted waves
WITH SPIN-ORBIT COUPLING in leads 3 and 4, using the continuity of the wave function
and its derivatives at the beam splitter interface=0Q
In this appendix, we calculate the density of states andndx=L). For example, let us start with an incident state
show that it does not depend on the SO coupling labels  at energyE with momentumk; in the SO coupling state
suggested by the symmetry between theand — states in  o=+. By the conservation of energy, the reflected wave in

the energy dispersion diagrafsee Fig. 2, lead 3 is a superposition of the statgs(E,+),+) and
|k, (E,—),—) with
E= —hzkz(E’U) + 5,0k(E Al
T 2m 700k(E, @), (AL) K (E,+)=Kk{(E,+)=k,(E,—)—Ak. (B1)
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| ]H (), +> where| W) is the transmitted wavénto lead 4 and|¥,) the
reflected wavdinto lead 3. As the transmitted wave has the

Reflected states

IRED . = > same direction of propagation as the incident wave, there is
r ’ .. -
kicos @y = Kk (E+)cos Or, no mixing of the SO coupling states, and we have only the
= K(E)cos ©, _ usual transmission coefficient For the reflected wave, the

direction is changed and we have to mix the different SO
coupling states to obtain the same spin as the incident wave
on the interface with the beam splitter. If we start now with a
— incident state, we find

Incldent state O |w)=tlk,—), |¥,)=r[ising]|k,+)+coss|k,—)].
| Kkj, +> (86)

FIG. 8. Angular separation after reflection at a beam splitter.  The same analysis can be done for an incident state in lead 2

_ _ _ ) with 6; replaced by— ¢, . We then deduce the whole scatter-
The translational invariance of the beam splitter alongythe jng matrix

axis leads to the conservation of tyecomponent of the

momentum: r cosé; ir siné; t 0
k; cosé, =k, (E,+)cosf, =k (E,—)cosd_. (B2) . ir sing; rcoso, 0 t
We deduce that cag=cosé, , , but cost#cos6, . There is t 0 r.co\?ei —irsing,
dispersion due to the SO coupling, leading to an angular 0 t —irsing; rcoso;
separation between the and — states after reflection at the (B7)
beam splitter(see Fig. 8.
This angular separation is given by APPENDIX C: ALTERNATIVE DERIVATION
OF POLARIZED COLLISION: CASE 2
9r=af000% 1- K(E D) _))0039i #6,+. (B3 In the main body of the text, we considered the direct

application of Eq.(35) in the SO coupling basis to the cal-
Starting with an incident state with SO coupling labglthe  culation of the Fano factor. Although the direct application is
angular separation is more convenient, for completeness, we present here an alter-
native calculation of the Fano factor for a polarized collision,
case 2[Eq. (51)] with all operators expressed in the spin
basis.
The input state comprises electrons with the same spin,
In analogy with the total reflection for incident angles for example spin up, betweeky, and k,=k(E,;+eAV) as
below the critical angle in classical optics, we can even havehown in Fig. 6. We consider the initial state for the net-
[1+Ak/k.(E,+)]cos6>1, leading to a suppression of the transport electrons and the current operator using the follow-
reflection in the+ state for a small enough incident angle. ing notation:
We note that starting with a mixture ef and — states in the
incident beam of electrons, one could suppress the reflection k2
of the + state, thus achieving a polarization of the beam. To lwy=I1 al(kal;k)]0), (CY
be effective, one would require a strong SO coupling such as K=k
a locally enhanced Rashba effect in the beam splitter
region?? i (t)=8 S S S [ dedEeiE-EvEpw
Here, we will neglect this effect of angular dispersion by “ h < = 5 Byoo!
considering only non-equilibrium electrons above the Fermi

coso,|#6,_. (B4

0r+ = arCCO% 1+ m

at A ’
energy for whichAk/k<1 (as the SO coupling is small com- Xag,(E)ay. (E"), (C2)
pared to the kinetic energyand the experimentally important
incident angles §;= w/4). In this case, the angular separa- AL ot = 0apOayPapo = Sha’Syor (C3

tion is very small A6=6,_—6,,.<1). The equations of o 5

continuity of the wave function and its derivative are thenWherek is given byE, +eAV=7k3/2m. We then use the
much easier to solve, and one can find that the incidenturrent fluctuationsl ,(t)=1,(t) —(I,(t)) to calculate the
refracted, and reflected waves have the same spi=dt  current fluctuation correlation function:

and the refracted and transmitted waves have the same spin

atx=L. Using Eq.(7) to find the spin overlap between dif- (81 ()81 ,(0))
ferent leads we find, starting with & incident state,
2
o e
|Toy=tlk,+), [¥,)=r[cosb|k,+)+ising|k,—)], ==> > 3 | dEdEdE'dE”
(BS) h2 P!), oo’ o Bydl
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1o _m

00" =(al,(E)a,q (E")AL .(E")an(E"))

_ <é-;r30( E)é-'yo'/ (E’ )><é;(r//( E”)ég(ﬂ/’( E™)).
(CH

Although we derived an expression for the current opera-
tor in the SO coupling basis, we choose here to express all of

the operators in the standard spin basis,

[€'%2aL (K(E,0)) + n,e %% (k(E,0))]

a,,(E)= ,
o) 2D ,(K)
(C6)
with D (k)=dE(k,o)/dk=%2k/m+ 7,a. Defining II
=D, (K)D,. (K)D,(KD,~(K"), we have
go' " 1
575{ :m{5[3{5755(kE,0_ kE/"|O'/")5(kE’,(T’
—Ker o)Ng(Kg o) [ 1Ny (ke o) ]+
+ No' 770'”5[35%5755( kE,(r_ kE"’,o’”’
>< 5( kE',g” - kEH‘OJ/)nBT(kE‘O.)}, (C?)
where kg ,=kg: ,» for E=E'+ak(n, —7n,), so that
5(kE,o'_ kE'”,(T'”) = Da.(k) 6[E_ E"+ ak( Neg— 7]0.177)]. After

integration overE” and E” and making the approximation

D, (k)~D_(k), we find

rono_m

f dE//dEH/Ag(;ﬁ(g (o8

= %[6ﬁ§575nﬁT(kE,o’)[l_ N, (Ker o)1

+ 761 1576,5Np1(Kg, o) |- (C9

We can replac® _(k) by D, (k), because

1%k
—
D_(kk m a
= =~ %1,
D, (k) #%k %2k
_J’_a R
m 2m
which follows from
a ak; Esa(ks)
< <1
h2k 2k2 Ec(ks)
ﬁ 2m
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as the SO coupling is small. We will now calculate the power
spectral density at zero frequency in output lead number 4,

S44(0),

S44(0)=

2 E 2 A?;’;UU/AL;’;MU’”

PP oo’ " B,y= 1,2

XJ’ dEnﬂT(kE,U)[l_nyT(kE,o’)+ 770’770"’]1
(C9

wherey=1 or 2, since we have ignored the scattering from
output lead to output leadhs; (kg ) is the number of elec-
trons in leadB with spin up and momenturke ,,

0 Iif
nﬁT(kE,rr): 1
0 |f E2+ 7]o.a’k2$

E< El+ ngakl,

if El+ naakl E<E2+ 770.6('(2,

Assuming that the SO coupling is weaker than the bias volt-
age that is,E1+ ak;<E,—ak,, we haveng (kg -)[1

n, (kg +)]#0  for  E;—ak;<E<E;+ak; and
Ngi(keg,+)[1—n, (kg -)]1#0 for E;—ak,<E<E,+ aks.
Therefore, Eq(C9) becomes

Si0)= E > XA LAY Dy meAV

U
P oo’ o " B,y

+ 5(,.+ 501_2ak2+ 60._ 50;+2ak1]. (ClO)

Given the scattering matrix calculated in Eg6), we find

2 2 2 AB’)/U'O' 7‘;’0./!0./// 770-’ 770-" = 0 (Cll)

pp’ ao'o"d” BY
and

> > BE A g A Bi 8y =ATRSIN0,
ppr o' """ By
(C12
so that

2

S,4(0)= T(Zakl-l- 2ak,)T(1—T)sirtg. (C13

After some calculation, we find the current and Fano factor
to be

Q2
(l)="1AV, 14
S44(0)
2e(l,)

This is identical to the the current and Fano factor shown in
Eqg. (51).

aky+ ak,
eAv |’

F= =2T(1-T)sirté (C15
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