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Rashba effect within the coherent scattering formalism
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The influence of spin-orbit coupling in two-dimensional systems is investigated within the framework of the
Landauer-Bu¨ttiker coherent scattering formalism. After a short review of the features of spin-orbit coupling in
two-dimensional electron gases, we define the creation and annihilation operators for the stationary states of
the Rashba spin-orbit coupling Hamiltonian and use them to calculate the current operator within the Landauer-
Büttiker formalism. The current is expressed as it is in the standard spin-independent case, but with the spin
label replaced by a new label, which we call the spin-orbit coupling label. The spin-orbit coupling effects can
then be represented in a scattering matrix that relates the spin-orbit coupling stationary states in different leads.
As an example, we calculate the scattering matrix in the case of a four-port beam splitter, and it is shown to
mix states with different spin-orbit coupling labels in a manner that depends on the angle between the leads. A
noise measurement after the collision of spin-polarized electrons at an electron beam splitter provides an
experimental means to measure the Rashba parametera. It is also shown that the degree of electron bunching
in an entangled-electron collision experiment is reduced by the spin-orbit coupling according to the beam
splitter lead angle.

DOI: 10.1103/PhysRevB.66.155328 PACS number~s!: 72.10.Bg, 71.70.Ej, 73.50.Td
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I. INTRODUCTION

Coherent electron transport through nanostructures
cryogenic two-dimensional electron gas systems is inh
ently a quantum mechanical phenomenon. Several exp
ments have demonstrated certain aspects of this quantum
havior, whether it relies directly on the wave nature of t
electron and can be probed through a current or conduct
measurement~e.g., quantized resistance in the quantum H
effect,1 conduction modes of a quantum point contact2,3! or
on the particle nature and quantum statistics of the elect
or the electron source and can be probed through a n
measurement ~e.g., Hanbury Brown and Twiss-typ
experiments,4,5 electron collision,6 observation of the frac-
tional charge in the fractional quantum Hall effect.7,8! In ad-
dition, two-dimensional electron gases~2DEG’s! could be
used to study the fundamental nonlocal features of quan
mechanics through electron entanglement.9–14

These experiments can be successfully explained wi
the coherent scattering formalism,15,16 a theoretical tool de-
scribing coherent and noninteracting particle transport. T
formalism relies on spin-independent stationary states
the leads of the device and, therefore, describes s
independent transport. Although it is possible to add a lo
spin-dependent effect directly in the scattering matrix, it
not possible in general to take into account spin effects
curring over the whole system. One potentially importa
spin effect occurring in the leads of the conductor is sp
orbit ~SO! coupling. Any electric field in the reference fram
of the laboratory generates a magnetic field in the mov
electron reference frame, coupling the electron’s orbital
grees of freedom with its spin. One can find several sour
of electric fields in semiconductors. In three-dimensio
crystals, the periodic crystal potential results in a bulk inv
sion asymmetry~the Dresselhaus effect17!, which induces a
spin splitting of the conduction band that is proportional
k3 (k is the momentum of the conduction electron!. In two-
dimensional systems, the dominant term is due to struc
0163-1829/2002/66~15!/155328~14!/$20.00 66 1553
in
r-
ri-
be-

ce
ll

ns
se

m

in

is
in
n-
al
s
c-
t
-

g
-

es
l
-

re

inversion asymmetry~the Rashba effect18!, resulting from
the asymmetry of the in-plane confining potential and, m
importantly, the heterojunction interface. This effect cause
spin splitting19 proportional tok.

Recently, there has been a growing interest in electro
devices that rely on the spin properties of the electro
These spin-dependent devices may be influenced by s
orbit coupling effects or may even rely on them as, for e
ample, in a coherent version of a spin-polarized field eff
transistor.20,21 Experiments involving Einstein-Podolsky
Rosen~EPR! type entangled-electron states may also be
fluenced by spin-orbit coupling.9–14With this motivation, we
include spin-orbit coupling in the coherent scattering form
ism.

II. SPIN-ORBIT COUPLING IN TWO-DIMENSIONAL
ELECTRON GASES

Spin-orbit interactions are generally expressed in term
the spin-orbit Hamiltonian22 obtained through an expansio
in v/c of the Dirac equation,

ĤI5
\

~2m0c!2
“V•~ŝ3p̂!, ~1!

wherem0 is the free electron mass,p̂ is the momentum op-
erator,ŝ5(ŝx ,ŝy ,ŝz) are the Pauli spin matrices,V is the
electromagnetic scalar potential, and“ is the gradient opera
tor, so that2“V is the electric field. According to Eq.~1!,
electron transport in the presence of an electric field res
in a spin-orbit energy due to the coupling of the electron s
and orbital degrees of freedom through theŝ3p̂ term. Here,
we will neglect the bulk inversion asymmetry~Dresselhaus
effect! and consider only the the structure inversion asymm
try ~Rashba effect!, as the latter can dominate in the two
dimensional heterostructures of interest in this paper.23–25

Let z be the direction of confinement, perpendicular to t
©2002 The American Physical Society28-1
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plane of motion. Originally, the asymmetry of the confinin
potential along thez direction was considered to be th
source of a nonzero average electric field along thez axis,
resulting in the Rashba spin-orbit coupling.26 However, this
mechanism underestimates the strength of the spin-orbit
pling, because the average electric field for the confin
bound state in the quantum well is essentially zero27 and only
nonzero to the extent that the effective masses in the m
rials that define the confining potential are different. Rath
it has been shown through, for example,k•p models28–31that
the dominant structure inversion asymmetry mechanism
related to the differing band discontinuities at the hete
structure quantum well interfaces for the conduction ba
considered in thek•p model. In addition, these models sho
that the spin-orbit coupling energy is not necessarily prop
tional to 2“V across the entire well.31 Elsewhere, the par
ticular role of an externally applied gate voltage to the tun
of the Rashba spin-orbit coupling strength and its modifi
tion of the interfacial electric field is also emphasized.32–38

These various spin-orbit coupling mechanisms can be in
porated using the following model Hamiltonian@rather than
Eq. ~1!# for the structure inversion asymmetry we consider
this paper:

ĤSO5
a

\
~ŝ3 p̂!z5 iaS ŝy

]

]x
2ŝx

]

]y
D , ~2!

where a is the Rashba parameter, which characterizes
aggregate strength of the various spin-orbit coupling mec
nisms. It takes values in the range 1 –10310210 eV cm for a
large variety of systems@for example, InxGa12xAs/
InyAl12yAs ~Refs. 23 and 32!, InAs/AlSb ~Ref. 34!, InAs/
GaSb~Ref. 25!, and GaAs/AlxGa12xAs ~Ref. 39!# depending
on the shape of the confining well. To simplify the presen
tion, we considera to be independent of the in-plane m
mentum.

Using the standard effective mass approximation, we
deduce the system Hamiltonian as the free particle Ha
tonian plus the spin-orbit coupling Hamiltonian

Ĥ5
p̂x

21 p̂y
2

2m
2

a

\
~ŝyp̂x2ŝxp̂y!, ~3!

wherem is taken to be the effective mass. Since the opera
p̂x andp̂y commute withĤ, we can search for eigenstates
the form

uc&5ei (kxx1kyy)@c↑u↑&1c↓u↓&], ~4!

whereu↑& and u↓& label the up and down states of thez com-
ponent of the spin. We can diagonalize the Hamiltonian

Ĥ5S \2k2

2m
aky1 iakx

aky2 iakx
\2k2

2m
D ~5!

in this spin subspace. The eigenvalues areE6(k)5\k2/2m
6ak, and the associated eigenfunctions are
15532
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uCE1
&5

ei (kxx1kyy)

A2
@eiug/2u↑&1e2 iug/2u↓&], ~6!

uCE2
&5

ei (kxx1kyy)

A2
@eiug/2u↑&2e2 iug/2u↓&], ~7!

whereug is the angle between the in-plane momentumk and
the axisyref of the reference laboratory frame~see Fig. 1!.
We have introduced theg coordinate system in anticipatio
of a multilead device in which leadg will have a particular
orientation with respect to the reference laboratory frame

The electrons feel a virtual, in-plane magnetic field in
direction perpendicular tok. The spins of the stationary
states are aligned and antialigned to this field~see Fig. 1!, so
that /(k,SuCE2

&)5p/2 and /(k,SuCE1
&)52p/2, where

/(k,SuE2&) is the angle betweenk and the spinS in the state

uCE2
&. The amplitude of the magnetic field depends on

velocity of the electron and vanishes fork50, preventing a
possible spin polarization in the system. The lack of spon
neous spin polarization is a reflection of the time-rever
invariance of the model Hamiltonian21 in Eq. ~2!. The spin-
orbit splitting is usually small compared to the kinetic ener
of the electrons (0.15 meV<akF<1.5 meV for EF
514 meV).

Following Ref. 15, we will introduce a transverse confin
ment in the leads of the conductor, allowing us to address
longitudinal transport modes for each transverse mode.
cusing on one leadg, we make two simplifying assumptions
First, we consider only a single-independent transve
mode. Second, we neglect the 1D SO coupling effect t
this transverse confining potential could create, since, to
knowledge, there is no experimental verification of this
fect, and it is estimated to be much smaller than the Ras
effect.40 Within these approximations, we can use our pre

FIG. 1. Direction of the spin for theuCE6
& states. An electron

with wave vectork feels a virtual fieldB~k,a! perpendicular tok.
The spin directionS is aligned and antialigned to this field. Th
axesxref andyref designate a fixed reference frame. The axisxg is
parallel to the momentumk, which makes an angleug with theyref

axis. In the extension to one-dimensional leads,g will label the lead
andk will be the longitudinal momentum.
8-2
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ous analysis to deduce the eigenstates and the associate
ergy dispersion diagram~see Fig. 2!, with k lying in the
directionxg of the lead and making an angleug with theyref
axis ~see Figs. 1 and 3!. We will now introduce three labels
for the eigenstates that will prove useful in writing the cr
ation and annihilation operators of these states:~1! e labels
the direction of propagation from the sign of the group v
locity vg : e[a if vg.0, e[b otherwise;~2! k labels the
longitudinal mode wave vector along thexg axis; and~3!
s[6 is called the SO coupling label; it designates the1 and
2 branches of the energy dispersion diagram~as illustrated
in Fig. 2! and, thereby, the spin direction for the SO sta
~see Figs. 3 and 4!. Using these labels, we find the followin
eigenstates and eigenvalues of the system from Eqs.~6! and
~7!:

FIG. 2. Energy dispersion diagram with SO coupling. Th
2hsk0<k,` range (a states! is defined in Eq.~8!. The 2`,k
,hsk0 range (b states! is then deduced by mirror symmetry.

FIG. 3. Direction of the spin for theua,k,6& states. The axes
xref andyref designate a fixed reference frame. The axisxg is paral-
lel to the momentumk, which makes an angleug with theyref axis.
In the extension to one-dimensional leads,g will label the lead and
k will be the longitudinal momentum.
15532
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ue,k,s&5F~yg!
eihekxg

A2
@eiug/2u↑&1hehse2 iug/2u↓&],

E5
\2k2

2m
1hsak, 2hsk0<k,`, ~8!

where he511 (21) corresponds toe5a (b), and hs

561 corresponds tos56. HereF(yg) is the normalized
transverse wave function for the transverse mode under
sideration. By convention,k is only taken in the range
2hsk0<k,` for both thea and b states. The remaining
eigenvalues in Fig. 2 can be deduced by mirror symme
We usehe561 to parametrize explicitly the appropriat
wave vector range for thee propagation direction in the
eigenstate phase factoreihekxg. This convention allows us to
track the propagation direction throughout the calculation

We also notice in Fig. 2 that, for a given energy, t
correspondingue,k,6& states do not have the same wa
vector,

Dk[uk~e,E,1 !2k~e,E,2 !u52k05
2ma

\2
. ~9!

The ue,k,6& states have their spin perpendicular to the
rection of propagationvg and in opposite directions, suc
that /(vg ,Sue,k,2&)5p/2 and /(vg ,Sue,k,1&)52p/2 ~see
Figs. 3 and 4!. It is important to notice that the spin direc
tions for theue,k,6& states do not necessarily coincide wi
those of the uCE6

& states. The spin direction for th

ue,k,6& states is determined byvg , while the spin direction
for the uCE6

& states is determined byk. The definition of
spin direction is only consistent for states that share the s
direction for both the longitudinal momentumk and the
group velocityvg . For example, this is the case illustrated
Figs. 1 and 3. However, from the dispersion relation in F
2, it is clear that there also exist energies for which posit
~negative! k corresponds to negative~positive! vg , and this
means that the definitions of the spin direction are incon
tent for these energies. We choose here to link the direc

FIG. 4. Direction of the spin ofxs
e . For notational convenience

the lead directionxg is aligned with the reference laboratory fram
xref in Sec. III by moving the SO coupling angular dependence
leadg into the scattering matrix.
8-3
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of the spin tovg ~rather thank! through the labels56
~rather thanE6), because it is the group velocity that dete
mines the direction of the current. In the absence of
coupling, no differentiation betweenvg and k is necessary,
because they always share the same direction.

III. SPIN-ORBIT COUPLING AND THE COHERENT
SCATTERING FORMALISM

The Landauer-Bu¨ttiker coherent scattering formalism re
lies on a second-quantization formulation of quantum m
chanics. The current is expressed as a function of the fi
operator, which is expanded in the basis of the scatte
states using the operators that create and destroy electro
the leads of the conductor. A scattering state is a cohe
sum of an incident wave in one lead and the outgoing wa
it generates in all leads. The amplitude of each outgo
wave is given by the scattering matrixS, whose elements
depend on the properties of the scatterer. As our final go
to study the fluctuations of the current, it is important to fi
a simple way to express the time dependence of the cur
operator. In our rederivation of the coherent scattering
malism, we will follow the same approach as in Ref. 1
while introducing two important changes:~1! we will derive
an expression for the current operator that includes a
contribution due to the spin-orbit coupling;~2! we will ex-
pand the field operator in the new stationary basis of the
coupling Hamiltonian.

A. Calculation of the current operator

To find the current operator, we begin with the sing
particle Schro¨dinger equation and the Hamiltonian in Eq.~5!,

i\
]C

]t
52

\2

2m S ]C

]x2
1

]C

]y2D 1 iaS sy

]C

]x
2sx

]C

]y D ,

~10!

whereC is a two-component spinor. The current operatoĵ
can be inferred from the conservation of charge equation

]

]t
@eC†C#1“• j50,

using Eq.~10! and its adjoint:

j x5
e\

2mi FC†
]C

]x
2

]C†

]x
CG2

ea

\
C†syC, ~11!

j y5
e\

2mi FC†
]C

]y
2

]C†

]y
CG1

ea

\
C†sxC. ~12!

We can identify the usual kinetic term of the current dens

jK5
e\

2mi
@C†¹C2¹C†C#. ~13!

SO coupling adds a new contribution proportional toa that
we call the SO coupling current densityjSO:
15532
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jSO52
ea

\
C†syCux1

ea

\
C†sxCuy . ~14!

In the framework of second quantization,C becomes a field
operator, which may be expanded using a convenient b
such as the SO coupling stationary states.

B. Expansion of the field operator

The first step is to define the creation and annihilat
operators for the SO coupling stationary states. We begin
introducing the creation operators in the original, nonint
acting spin basis:âgks

† (b̂gks
† ) creates an incoming~outgoing!

electron with spinsP$↑,↓% in leadg with longitudinal mo-
mentumk in the stateua,k,s&g (ub,k,s&g), where ue,k,s&g
5eihekxgus&. These standard operators satisfy the antico
mutation relation@ âg,k,s , âb,k8,s8

†
#15dkk8dgbdss8 . Through

Eq. ~8!, we now introduceâgks
† , which creates an incoming

electron in leadg with longitudinal momentumk and spin-
orbit coupling labelsP$1,2% ~not to be confused with the
spin s) satisfying the relation

âgks
† 5

1

A2
@eiug/2âgk↑

† 1hse2 iug/2âgk↓
† #. ~15!

Knowing the anticommutation relationship in the spin bas
we can calculate it in the new, stationary, spin-orbit coupl
basis to be

@ âk,g,s ,âk8,b,s8
†

#15dkk8dabdss8 , ~16!

where we used the relationhshs852dss821. This result
provides justification for our designation of the SO coupli
eigenstates and the usage of the spin-orbit coupling labs
rather than the spins. The stationary states form a comple
basis, and we can use them to expand the field operato
leadg. For notational convenience, we will choose from he
on to alignxg and yg with the reference axesxref →x and
yref →y ~so thatug5p/2) and specifically track the angula
dependence of the leads in the scattering matrix. The fi
operator is

Ĉ~x,y!g5(
s,e

(
k52hsko

`

êg,k,sxs
e eihekxF~y!

AL
, ~17!

whereê5â (b̂) is the annihilation operator in the incomin
~outgoing! states andxs

e is a two-component spinor obtaine
from Eq. ~8! by settingug5p/2,

~18!

As shown in Fig. 4, the spin ofxs
e depends on the SO cou

pling states and on the direction of propagatione.
8-4
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At this point, it is more convenient to go from a discre
sum ink space to a continuous integral in energy by defin
the operatorsâ†(E), which create electrons in the energ
quasicontinuum. As our labeling defines a one-to-one co
spondence between (e,k,s) and (e,E,s), we can define un-
ambiguouslyâgs

† (E)5Ar(E)âgks
† , so that

@ âg,s~E!, âb,s8
†

~E8!#15dgbdss8d~E2E8!, ~19!

wherer(E) is the density of states at energyE. It is shown in
Appendix A thatr(E) is independent of the spin-orbit cou
pling labels. Replacing the discrete sum overk by an inte-
gral overE and introducing the new operators and their tim
dependenceâ(E,t)5e2 i (E/\)tâ(E), we find

Ĉ~x,y,t !g5
1

A2p
(
s,e

E
E0

` dE

A\vg~E!
êg,s~E!xs

e F~y!

3eihek(E,s)xe2 i (E/\)t, ~20!

with E0[2ma2/2\2, and k has been replaced byk(E,s)
to remind us thatk depends on the spin-orbit coupling lab
s for a given energyE.

C. Current in the spin-orbit coupling basis

The current in leadg is given by

Î a5E dy ĵx5E dy~ ĵ xK1 ĵ xSO![ Î K1 Î SO. ~21!

We will begin by calculating the kinetic termÎ K . Using Eq.
~13!, we have

Î K~ t !5(
ss8

(
ee8

E dEdE8I Kss8
ee8 ~E,E8!êgs

1 ~E!

3 ê8gs8~E8!ei [(E2E8)/\] t, ~22!

I Kss8
ee8 ~E,E8!5

e\

2mi

ixs
e†

xs8
e8

hAvg~E!vg~E8!
@hek~E,s!

1he8k~E8,s8!#ei [he8k(E8,s8)2hek(E,s)]x.

~23!

We notice from Eq.~22! that the frequencyv of the current
is given by\v5E2E8. Following Ref. 15, we calculate th
current and noise in the zero-frequency limit and make
approximationk(E8,s)'k(E,s) ~as E'E8) for electrons
having the same SO coupling label and, using Eq.~9!,
k(E8,s8)5k(E,s)1hsDk for electrons having differen
SO coupling labels. From Eq.~18!, we also have~with
deÞe851 if eÞe8, 0 otherwise!

xs
e†

xs8
e8 5dee8dss81deÞe8dsÞs8 . ~24!

This result is consistent with the fact that only electrons w
the same direction of propagation and the same spin-o
coupling label or opposite direction of propagation and o
posite spin-orbit coupling label have the same spin.
15532
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In the s5s8 case, implying e5e8 and k(E8,s8)
'k(E,s), we find ~see also Appendix A!

I Kss8
ee8 ~E,E8!us5s85he

e

h

k~E,s!

k~E,s!1hs

ma

\2

. ~25!

In the sÞs8 case, implying eÞe8 and k(E8,s8)
'k(E,s)1hs2ma/\2, so that hek(E,s)1he8k8(E,s8)
52hehs2ma/\2, we find

I Kss8
ee8 ~E,E8!usÞs852he

e

h

hs

ma

\2

k~E,s!1hs

ma

\2

3e2 ihe[2k(E,s)1hsDk]x. ~26!

If we only consider the kinetic term of the current, a nonv
nishing contribution foreÞe8 leads to terms likeâ†b̂ and
b̂†â in the expression of the current, corresponding to el
trons propagating in opposite directions.

We now consider the contribution of the spin-orbit co

pling currentÎ SO. Using Eq.~14! to calculateI SOss8
ee8 in Eq.

~22! with K→SO, we find

I SOss8
ee8 ~E,E8!52

e

h

a

\

Avg~E!vg~E8!

3xs
e†

syxs8
e8 ei [he8k(E8,s8)2hek(E,s)]x.

~27!

Using he8hs85hehs , we have from Eq. ~18! that

syxs8
e8 52he8hs8xs8

e8 and xs
e†

syxs8
e8 52hehs(dee8dss8

1deÞe8dsÞs8), so that

I SOss8
ee8 ~E,E8!5he

e

h

hs

ma

\2

k~E,s!1hs

ma

\2

@dee8dss8

1e2 ihe[2k(E,s)1hsDk]xdeÞe8dsÞs8#.

~28!

We can now calculate the value of the total current from E
~25!, ~26!, and~28!,

I ss8
ee8 ~E,E8!5I Kss8

ee8 ~E,E8!1I SOss8
ee8 ~E,E8!5he

e

h
dee8dss8 .

~29!

Although the spin-orbit coupling mixes electron states h
ing different directions of propagation when we consid
only the kinetic term of the current, these contributions ca
8-5
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cel when we add the spin-orbit coupling currentI SO, and we
find the standard formula for the current operator,

Î a~ t !5
e

h (
s

E dEdE8@ âas
† ~E!âas~E8!

2b̂as
† ~E!b̂as~E8!#ei [(E2E8)/\] t. ~30!

The definition of theâ (b̂) operators as corresponding
states with positive~negative! group velocity, and not neces
sarily positive~negative! wave vector, is consistent with th
fact that they carry the current in opposite directions. Mo
importantly, the final expression of the current is similar
the one found in Ref. 15, but with the spin index replaced
the spin-orbit coupling labels56. The spin related to this
new index depends on the direction of propagation, tha
the angleug of the lead. Therefore, we expect au depen-
dence in the scattering matrix relating the outgoing state
the outputs (b̂ states! to the incident states at the input (â
states!,

b̂gr~E!5(
bs

Sbs
gr ~E,ug ,ub!âbs~E!, ~31!

where bothr and s indicate the spin-orbit coupling labe
The current operator can then be written

Î a~ t !5
e

h (
r

(
ss8

(
bg

E dEdE8ei (E2E8)t/\

3âbs
† ~E!Abgss8

ar
~E,E8!âgs8~E8!, ~32!

Abgss8
ar

~E,E8!5dabdagdrsdrs8

2Sbs* ar~E,ua ,ub!Sgs8
ar

~E8,ua ,ug!.

~33!

The unilateral power spectral density is defined as twice
Fourier transform of the symmetrized correlator of the c
rent fluctuations,41

Sab~v!5E dteivt^d Î a~t!d Î b~0!1d Î b~0!d Î a~t!&,

~34!

whered Î a(t)[ Î a(t)2^ Î a&, and we have assumed stationa
ity. In the following, we consider the noise power in th
v→0 limit and energy-independent scattering matrices i
particular leada,

Saa~0!5
2e2

h (
rr8

(
gd

(
ss8

Agdss8
ar Adgs8s

ar8

3E dE fgs~E!@12 f ds8~E!#, ~35!

where f gs(E) is the Fermi-Dirac distribution in leadg for
electrons with SO labels.
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IV. SPIN-ORBIT COUPLING AND NOISE
IN ELECTRON COLLISIONS

We will now use the expression of the current operat
unilateral power spectral density, and the scattering matri
calculate the current, noise power, and Fano factor in sev
experiments using the four-port beam splitter setup. The
periments include an unpolarized electron collision, wh
has already been experimentally demonstrated~see Ref. 6!,
and a spin-polarized electron collision. We will show tha
noise measurement upon collision of polarized electron
an electron beam splitter provides an experimental mean
measure the Rashba parametera. We also consider a colli-
sion between EPR-type entangled electrons. We show
the degree of maximal bunching for the spin-singlet st
depends on the lead orientation of the beam splitter.

A. Electron beam splitter

The electron beam splitter is a four-port device~two input
and two output leads!, such as the one shown in Fig. 5. It
a ‘‘spatial beam splitter’’; it only operates on the spatial
orbital subspace of the electrons~counterexample, a polar
ization beam splitter!. In the spin-independent transport cas
the scattering matrix does not mix different spins, beca
the beam splitter only acts on the electron orbital states
there is no spin-orbit coupling. In this case, the reflection a
transmission coefficients are independent of the spin. H
ever, the situation is more complicated when we inclu
spin-orbit coupling, because the spin associated with
spin-orbit coupling labels is different in each lead~the leads
having different orientations!. The beam splitter still only
operates on the electron orbital states, but there is no
connection from orbit to spin through the spin-orbit co
pling. The conservation of the spin at the beam splitter i
plies that we have a mixing of the spin-orbit states~off-

FIG. 5. Four-port electron beam splitter. The operatorsâi (b̂i)
annihilate electrons entering~leaving! the device through porti. It is
assumed that Fermi-degenerate, single-mode electron sources
electrons towards the beam splitter. The beam splitter is a s
potential barrier.
8-6
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diagonal elements in the scattering matrix!, and this mixing
becomes more important when the angle between the l
increases.

A beam splitter, with all leads oriented at the same an
u with respect to the beam splitter~the case illustrated in Fig
5!, is investigated in Appendix B, and the following scatte
ing matrix is found after some simplifying assumptions:

~36!

We note that the unitarity of theS matrix requiresur u2

1utu2[R1T51 andrt * 1tr * 50.
As an example of an experimental realization of an el

tron beam splitter, we consider the devices used in Ref
and 6. In those experiments, each port of the electron b
splitter comprises a quantum point contact2,3 ~QPC! defined
electrostatically by negative voltages applied to Schot
gates.6 At cryogenic temperatures, the input QPC’s at lead
and 2 serve as Fermi-degenerate, single-mode elec
sources and are typically biased at6,11 or below5,11 the first
conductance plateau. The output QPC’s at leads 3 and 4
typically biased ‘‘wide open’’ to collect all electrons from th
beam splitter device without reflecting any back towards
beam splitter. The beam splitter itself is also defined elec
statically by a narrow Schottky gate in close proximity to t
2DEG to provide a sharp potential barrier.6 A small voltage is
applied to tune the beam splitter transmission probabilityT.

At cryogenic temperatures, the transport through the be
splitter device is ballistic; the electrons are coherent acr
the entire device.6,5,11The total area of the beam splitter d
vice is smaller than 1mm 31 mm, while the inelastic phonon
scattering and elastic ionized impurity scattering lengths
typically larger than this characteristic size. This leaves o
the elastic scattering at the beam splitter itself. Furtherm
the screening length~typically 5 nm! is assumed to be muc
smaller than the Fermi wavelength~typically 40 nm!, so
Coulomb interaction can be neglected. Consequently, the
teractions related to quantum interference will occur in t
device, while those related to the Coulomb charge of
electrons can be ignored.

In Refs. 5 and 6, the beam splitter is operated by apply
a drain-source voltageVds to leads 1 and/or 2 with respect t
leads 3 and 4. A modulation ofVds is used with synchronou
detection to allow the measurement of the low-frequen
(\v!eVds) nonequilibrium transport noise due to electro
in the net-transport energy window@Ef ,Ef1eVds#. At tem-
15532
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peratureQ50, the input QPC’s act as single-mode, Ferm
degenerate sources. For the single transverse mode acc
dated by the QPC’s, the associated longitudinal modes in
net-transport energy window@Ef ,Ef1eVds# are fully occu-
pied. On the output side, the modes in the same net-trans
energy window are unoccupied. Of course, all modes be
the Fermi energyEf are also fully occupied. For the finite
temperature case, this physical picture remains valid
eVds@kBQ. We note here that the precise means for achi
ing a Fermi-degenerate source depends on the type of ex
ment ~polarized collision, for example!. For our purposes
here, we will assume that an appropriate Fermi-degene
source exists and injects electrons towards the beam sp
for each experiment described below.

Finally, the beam splitter is considered ‘‘linear,’’ in th
sense that it operates on single-electron modes and doe
mix energies. In isolation, each electron mode that impin
on the beam splitter will have a probabilityT to be transmit-
ted andR to be reflected. However, quantum mechani
interference effects between identical electrons6 or entangled
electron states9–11 that impinge upon the beam splitter ma
alter the single-particle transmission and reflection proper
in scattering experiments.

B. Manifestations of spin-orbit coupling

The coherent scattering formalism derived here can
used generally for several different experimental realizati
of spin-orbit coupling, for example, in the following case
~note that global spin-orbit coupling means that the en
device is described by the SO Hamiltonian, whereas lo
spin-orbit coupling implies the SO Hamiltonian applies on
locally!.

~i! Global spin-orbit coupling,s56 equilibrium leads,
unpolarized and polarizeds56 state transport.

~ii ! Global spin-orbit coupling,s56 equilibrium leads,
polarized and unpolarizeds5↑↓ state transport injected a
energies above the equilibrium leads.

~iii ! Global spin-orbit coupling,s56 equilibrium leads,
entangleds56 state transport.

~iv! Global spin-orbit coupling,s56 equilibrium leads,
entangleds5↑↓ state transport.

~v! Local spin-orbit coupling,s↑↓ equilibrium leads that
adiabatically and coherently enter and leave the local s
orbit coupling region, unpolarized, polarized, and entang
s5↑↓ state transport.

Although this list is not exhaustive, it does represent
variety of systems that can be analyzed using the SO c
pling coherent scattering formalism. The experimental
sults depend on the manner in which spin-orbit coupl
manifests itself in the system and, of course, the particu
experiment implemented. As examples, we consider be
the current and collision noise at an electron beam splitter
a few of the specific cases listed above.

C. Electron partition noise: Case 1

This experiment uses an electron beam splitter in a sys
with global spin-orbit coupling. The equilibrium stationar
states are thes56 states, and, consequently, the equilibriu
leads at zero temperature are Fermi degenerate upto
8-7
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Fermi energy. A small bias voltageVds is applied to lead 1
with respect to leads 2, 3, and 4. Boths51 ands52 states
impinge on the beam splitter from port 1 and are sub
quently partitioned into ports 3 and 4 according to the sc
tering matrix in Eq.~36!. Using Eqs.~32! and ~35!, we find
the current, unilateral power spectral density, and Fano fa
in port 4 to be

^ Î 4&5
2e2

h
TVds , ~37!

S44~0!5
2e2

h
2T~12T!eVds , ~38!

F[
S44~0!

2e^ Î 4&
512T. ~39!

We have omitted the minus sign for the current which in
cates that the current is leaving the device. We find stand
partition noise for this case, identical to the results expec
for a Fermi degenerates5↑↓ system in the absence of spin
orbit coupling. Analogously, injecting polarized electrons
thes basis will halve the current and power spectral dens
but leave the Fano factor unchanged. We note that the s
larity between thes ands bases exists, in part, because w
are effectively looking at the charge when measuring
current and power spectral density. When we figurativ
count the charges that reflect to lead 3, we get the s
number in both cases. We can conclude that a partition n
experiment using a spatial beam splitter under the condit
of case 1 will not reveal experimentally the spin-orbit co
pling effect.

D. Spin-unpolarized electron collision: Case 1

We now consider the same system with leads 1 an
biased with respect to leads 3 and 4. Again, there is glo
spin-orbit coupling, and the equilibriums56 stationary
states are Fermi degenerate up to the Fermi energy. In a
tion, the modes in leads 1 and 2 within the net-transp
energy window@EF ,EF1eVds# are also Fermi degenerat
while the modes in the same net-transport energy window
leads 3 and 4 on the output side are unoccupied. Electron
leads 1 and 2 within the net-transport energy window coll
at the beam splitter and, subsequently, exit through the
occupied states in leads 3 and 4.

In the case without SO coupling, each electron mode
lead 1 has an identical partner in lead 2. During the collis
process, these electron modes impinge upon the beam sp
and quantum mechanically interfere. This quantum inter
ence, i.e., the Pauli exclusion principle, forbids the two ide
tical electrons to exit through the same output lead. The
fore, the two identical electrons from leads 1 and 2 m
leave the device in an antibunched manner: one elec
through lead 3 and one electron through lead 4. This is
for each mode in the net-transport energy window. Since
input leads are Fermi degenerate and noiseless in the z
frequency limit, the outputs are also noiseless. We expe
total suppression of the partition noise.6,15
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With spin-orbit coupling, we do not expect this result
be modified, because the leads remain Fermi degenerat
both spinss56 in the zero-temperature limit. To gain intu
ition, we note that a linear beam splitter does not cou
modes at different energies, and so the aggregate colli
can be viewed as a two-particle collision for each mode t
makes up the net-transport energy window. Therefore,
consider the collision of four electrons at the same ene
The initial state is

uC i&5â11
† ~E!â12

† ~E!â21
† ~E!â22

† ~E!u0&. ~40!

The output state is found using Eqs.~31! and ~36!,

uC f&5@r @cosub̂31
† 1 i sinub̂32

† #1tb̂41
† #

3@r @ i sinub̂31
† 1cosub̂32

† #1tb̂42
† #

3@ tb̂31
† 1r @cosub̂41

† 2 i sinub̂42
† ##

3@ tb̂32
† 1r @2 i sinub̂41

† 1cosub̂42
† ##u0&

5b̂31
† b̂32

† b̂41
† b̂42

† u0&, ~41!

where we have used the relationr 41t422r 2t251. As ex-
pected, a full occupation of the input states at energyE leads
to a full occupation of the output states.

For degenerate inputs at leads 1 and 2, we find the gen
result for the current, unilateral spectral density, and Fa
factor in lead 4 using Eqs.~32!, ~35!, and~36!:

^ Î 4&5
2e2

h
Vds , ~42!

S44~0!50, ~43!

F[
S44~0!

2e^ Î 4&
50. ~44!

Because the input leads are Fermi degenerate, a calcul
of the current noise in the output leads shows a comp
suppression of the partition noise. Even though the be
splitter in the presence of SO coupling will couple sp
states, from the final-state point of view, the Pauli exclus
principle requires a Fermi-degenerate occupation of
s56 states in leads 3 and 4 given a Fermi-degenerate in
at leads 1 and 2. The only difference with the sp
independent transport case is that the colliding electron
the same energy do not have the same momentum (kÞk8).
Therefore, we can conclude that a collision experiment
unpolarizeds56 electrons cannot reveal SO coupling in th
system. Consequently, the nonideality in the noise supp
sion observed in Ref. 6 cannot be attributed to SO coupl

E. Spin-polarized electron collision: Case 1

In the previous example, an unpolarized collision can
show any SO coupling effect, because, starting with t
Fermi-degenerate sources, the collision statistics are g
erned by the Pauli exclusion principle independent of the
coupling. The same argument holds true for a spin-polari
8-8
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RASHBA EFFECT WITHIN THE COHERENT . . . PHYSICAL REVIEW B 66, 155328 ~2002!
collision in the absence of SO coupling. However, this is
the case for a spin-polarized collision in the presence of
coupling.

We consider the same collision experiment as above,
we assume a means to inject electrons polarized with sps
within the net-transport window from leads 1 and 2. The
polarized electron collide at the beam splitter and e
through ports 3 and 4. For example, we consider electr
polarized in thes51 state. Thes51 states are completel
occupied within the net-transport window, but thes52
states are completely empty above the Fermi energy. U
Eqs.~32!, ~35!, and~36!, we find

^ Î 4&5
e2

h
Vds , ~45!

S44~0!5
2e2

h
2T~12T!sin2ueVds , ~46!

F[
S44~0!

2e^ Î 4&
52T~12T!sin2u. ~47!

There is now residual partition noise at the outputs. T
physics can be understood in the following way. Upon co
sion, quantum interference~the Pauli exclusion principle!
forbids identical electrons from leaving through the sa
port. However, the beam splitter mixes thes51 states with
the s52 states upon reflection, while leaving thes51
states unaltered upon transmission. Therefore, the quan
interference is imperfect. From the scattering matrix in E
~36!, we find that the probability of as51 state to be re-
flected to as52 state is (12T)sin2u. The probability that a
s51 state is transmitted to as51 state isT. Therefore,
identicals51 electrons from leads 1 and 2 can both lea
through port 4 as a transmitteds51 and a reflecteds52
electron with probabilityT(12T)sin2u. The same holds for
both electrons leaving through port 3. The incomplete s
pression of the partition noise is due to incomplete quan
interference, and this is directly related to the incompl
‘‘overlap’’ ~the degree to which they are no longer identic!
of the electrons at the output ports. If we consider aT51/2
beam splitter, we find a Fano factor

F~T51/2!5 1
2 sin2u, ~48!

which corresponds to standard partition noise for the frac
sin2u of the electrons which do not remain identical up
collision.

F. Spin-polarized electron collision: Case 2

We now consider a different version of the spin-polariz
collision experiment. In case 2, the leads remain Fermi
generate in thes basis, but the injected spins are polarized
the spins basis. For example, we considers5↑ electrons
being injected into the beam splitter device from leads 1
2. For our purposes here, we assume these electrons a
jected in a degenerate manner; that is, the injected mode
completely occupied. As shown in Fig. 6, the injected el
trons fall in a range of momenta@k1,k2# with corresponding
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energiesE1 and E25E11eDV in the absence of SO cou
pling. Here,eDV>ak11ak2 is defined as the energy widt
of the net-transport window in analogy to an applied volta
Once injected into the device with SO coupling, the spin-
electrons with momenta@k1,k2# project onto thes56 states
with energies@E16ak1,E26ak2#. Note that we have cho
sen the energyE1 to be the minimum energy ans5↑ elec-
tron can have such that itss52 component remains abov
the s6 Fermi level, i.e.,EF5E12ak1.

As thes spin basis is not the stationary basis and beca
the SO coupling scattering matrix mixes different SO co
pling states, we again expect some of the partition noise
be recovered in a polarized-spin collision. The degree of p
tition noise recovery in this case depends on the SO coup
constanta and on the angle between the colliding leads. W
will confirm this by calculating the nonequilibrium noise o
the electrons in the net-transport energy window@E1 , E1
1eDV], assuming that the process of polarization does
effect the transport in the conductor~for example, if a mag-
netic field is used to polarize the electrons, this field does
leak into the beam splitter device region!. Using Eqs.~32!,
~35!, and~36! and the energy band diagram shown in Fig.
we find

^ Î 4&5
e2

h
DV, ~49!

S44~0!5
2e2

h
2T~12T!sin2u~ak11ak2!, ~50!

FIG. 6. Energy diagram for polarized-spin injection, case
eDV>ak11ak2. Spin s5↑ electrons are injected into an electro
beam splitter device with equilibrium leads in the SO coupling b
sis. Thes5↑ electrons are assumed to fall within the energy w
dow @E1 ,E2[E11eDV#, such that the lowest-energy injecteds
5↑ electron at energyE5E1 has as52 component at the lead
Fermi energyEF5E12ak1. In terms of the SO coupling stationar
states, the jointly occupieds6 states occur in the crosshatched e
ergy range; these states will not contribute to the collision no
The fractiona(k11k2)/eDV<1 of the total states are only unilat
erally occupied~diagonal lines only!; these states partially contrib
ute to the partition noise through the factor sin2u depending on the
lead orientation.
8-9
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F52T~12T!sin2uFak11ak2

eDV G . ~51!

The Fano factor is identical to the case 1 polarized collis
@see Eq.~47!# for which only a fraction

1

2

2ak112ak2

eDV
5

ak11ak2

eDV
<1

of the states undergo a polarized collision, and as in cas
the partition noise is recovered through the factor sin2u.
Note that a factor 1/2 comes out from the projection of
spin-up electrons onto thes basis; the number of spin-u
electrons in the energy window@E1 ,E2# is the same as the
number ofs51 ands52 electrons in the energy window
@E12ak1 ,E21ak2#.

This result can be explained using Fig. 6. In the inp
leads, the spin-up electron states betweenE1 andE2 are fully
occupied. However, in terms of the SO coupling states, o
the states betweenE(k1 ,1) andE(k2 ,2) are jointly occu-
pied; just as in the unpolarized case@see Eq.~44!#, these
degenerate, identical states give no contribution to the n
upon collision due to the Pauli exclusion principle, i.e., qua
tum interference.

The fraction (ak11ak2)/eDV<1 of the injected states
however, is only unilaterally occupied; only the2 states are
filled betweenE(k1 ,2) andE(k1 ,1), and only the1 states
are filled betweenE(k2 ,2) and E(k2 ,1). These1 ~2!
states at the input will reflect to identical1 ~2! states at the
output with a reflection amplitude modified by cosu due to
the lead orientation, while the transmission amplitude
mains unmodified. In terms of probability, only the fractio
cos2u of these unilaterally occupied states from leads 1 an
remain identical in the output leads after collision. Therefo
the noise suppression due to the Pauli exclusion princi
quantum interference, occurs only for the faction cos2u of the
identical, unilaterally occupied electrons. Conversely, as w
noted in the case 1 polarized collision, the1 ~2! states will
reflect to the opposite2 ~1! states with a reflection ampli
tude modified by sinu due to the lead orientation, while th
transmission amplitude preserves the1 ~2! states. Because
these unilaterally occupied electron states are no longer i
tical after collision, the Pauli exclusion principle does n
apply; there is no quantum interference. Therefore, the c
sical partition noise is partially recovered to the extent t
the unilaterally occupied states are not identical, i.e., thro
the factor sin2u512cos2u.

In this treatment, we have assumed that the SO coup
is small @(ak11ak2)/eDV<1#, so thatE(k1 ,1)<E(k2 ,
2). However, a typical value of the applied bias voltage
eV50.1–1.0 meV, which may be smaller than the typic
values of the energy splitting caused by the Rashba ef
(0.3 meV<2ak1<3 meV). In theeDV,ak11ak2 case,
none of the net-transport electrons interfere at the beam s
ter and so all of the electrons contribute to the partit
noise,F52T(12T)sin2u. The eDV,ak11ak2 results are
identical to the case 1 polarized collision results in E
~45!–~47! with eVds replaced byeDV.
15532
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This experiment provides a new means to determine
Rashba splitting parameter. Depending on the bias volt
DV and the angle between the leads, the device can spa
range from full noise suppression to the classical limit of t
partition noise. Tuning the applied bias voltage and mea
ing the modification to the noise for a fixed lead orientati
in this type of polarized collision provides a new experime
tal method to measure the Rashba parametera.

G. Entangled-electron collision: Case 3

Finally, we consider the effect of global SO coupling o
the collision of entangled-electron states. The collision of
spin-singlet~↑↓ spin-triplet! state from leads 1 and 2 at
spatial beam splitter yields bunched~antibunched! electrons
at the output states 3 and 4~Refs. 9 and 11! due to the orbital
symmetry of the entangled-state wave function. We cons
the modifications to this proposed experimental result due
global spin-orbit coupling.

We consider the simple case of two energy-degener
entangled electrons in thes basis,

uC i&5
1

A2
@ â11

† ~E!â22
† ~E!2eifâ12

† ~E!â21
† ~E!#u0&.

~52!

The phase shiftf allows tuning of the entangled state fro
singlet to triplet through the factor cos2(f/2).11 An experi-
mental proposal to realize this phase shift using a local s
orbit coupling effect is discussed in Ref. 42. This state i
pinges on the beam splitter and quantum mechanic
interferes with itself. At an output lead~for example, lead 4!,
one measures the noise power as a function off. Using Eqs.
~32!, ~35!, and~36!, we find,

^ Î 4&5
e

r~E!h
, ~53!

S44~0!5
2e2

r~E!h
2T~12T!cos2u cos2

f

2
, ~54!

F54T~12T!cos2u cos2
f

2
, ~55!

wherer is the density of states. For aT51/2 beam splitter,
this result indicates that the Fano factor will oscillate w
the phasef between optimal antibunching (F50) and sub-
optimal bunching (F5cos2u) according to the orientation o
the beam splitter leads. For a typical geometry withu5p/4,
the oscillation will run between ideal antibunching (F50)
and standard partition noise (F51/2). This simple example
illustrates that the effects of global SO coupling should
included when considering entangled-electron experime
Interestingly, a similar Fano factor dependence was foun
Ref. 42 through an additional phase shift due to local, int
band SO coupling.40
8-10
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V. CONCLUSION

We have studied the influence of Rashba SO coupling
the framework of the Landauer-Bu¨ttiker formalism. Its main
features are a spin splitting proportional tok and stationary
states of the spin perpendicular to the direction of propa
tion. We included the effects of the Rashba SO coupling
the Landauer-Bu¨ttiker coherent scattering formalism. Th
Rashba SO coupling gave rise to two important modifi
tions. First, the addition of a SO coupling term to the Ham
tonian modifies the expression of the current operator, res
ing in an additional term directly related to the SO couplin
Second, the expansion of the current operator is performe
the basis of the Rashba SO coupling stationary states.
current operator was found to be identical to the one deri
in the spin-independent transport case, but with the spin
placed by the SO coupling label. The main differences int
duced by the SO coupling then arise in the calculation of
scattering matrix relating the Rashba SO coupling station
states in different leads with different orientations. The dir
tion of the spin depends on the direction of propagation,
this may be different for each lead in general. Therefore,
scattering matrix is shown to mix states with different S
coupling labels, and the strength of this mixing depends
the angle between the leads. The effect of SO coupling
the current noise was then investigated in several exam
of electron collision. In the unpolarized-electron collision e
ample, it is shown that the SO coupling does not modify
noise; this case is entirely determined by the Fermi deg
eracy and the Pauli exclusion principle. In contrast,
polarized-spins case exhibits a contribution to the nois
caused by SO coupling, which is proportional to the SO c
pling constanta and depends on the angle between the lea
A polarized electron collision experiment provides anoth
means to measure the strength of the Rashba parametera. In
the case of a bunching-antibunching experiment with
tangled electrons, the SO coupling also modifies the maxi
degree of bunching one can achieve. Finally, this new
mulation of the current operator can be applied to other
herent scattering experiments in which one wants to inve
gate or incorporate the effects of SO coupling.
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APPENDIX A: DENSITY OF STATES
WITH SPIN-ORBIT COUPLING

In this appendix, we calculate the density of states a
show that it does not depend on the SO coupling labels, as
suggested by the symmetry between the1 and 2 states in
the energy dispersion diagram~see Fig. 2!,

E5
\2k2~E,s!

2m
1hsak~E,s!, ~A1!
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1

\

dE~k,s!

dk
5

\k~E,s!

m
1hs

a

\
. ~A2!

From Eq.~9! we deduce

k~E,s!5k~E,1 !1~12hs!
ma

\2
, ~A3!

vgs~E!5
\k~E,6 !

m
6

a

\
[vg~E!, ~A4!

r~E!5
r~k!

\vg~E!
5

L

2p

1

\vg~E!
, ~A5!

which is independent ofs.

APPENDIX B: SCATTERING MATRIX IN THE FOUR-
PORT BEAM SPLITTER CASE

Here, we determine the scattering matrix for the four-p
beam splitter described in Fig. 5. The beam splitter is v
simply approximated by a potential barrier atV5V0 of
lengthL. The plane is then divided into three areas of diffe
ent potential~see Fig. 7! in which the solution of the Schro¨-
dinger equation is known.

Starting with an incident wave in lead 1, for example, w
can calculate the reflected, refracted, and transmitted wa
in leads 3 and 4, using the continuity of the wave functi
and its derivatives at the beam splitter interface (x50
and x5L). For example, let us start with an incident sta
at energyE with momentumki in the SO coupling state
s51. By the conservation of energy, the reflected wave
lead 3 is a superposition of the statesukr(E,1),1& and
ukr(E,2),2& with

kr~E,1 !5ki~E,1 !5kr~E,2 !2Dk. ~B1!

FIG. 7. Reflected, refracted, and transmitted waves in a be
splitter.
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The translational invariance of the beam splitter along thy
axis leads to the conservation of they component of the
momentum:

ki cosu i5kr~E,1 !cosu15kr~E,2 !cosu2 . ~B2!

We deduce that cosui5cosur1 , but cosuiÞcosur2 . There is
dispersion due to the SO coupling, leading to an angu
separation between the1 and2 states after reflection at th
beam splitter~see Fig. 8!.

This angular separation is given by

u r 25arccosF S 12
Dk

kr~E,2 ! D cosu i GÞu r 1 . ~B3!

Starting with an incident state with SO coupling label2, the
angular separation is

u r 15arccosF S 11
Dk

kr~E,1 ! D cosu i GÞu r 2 . ~B4!

In analogy with the total reflection for incident angle
below the critical angle in classical optics, we can even h
@11Dk/kr(E,1)#cosui.1, leading to a suppression of th
reflection in the1 state for a small enough incident angl
We note that starting with a mixture of1 and2 states in the
incident beam of electrons, one could suppress the reflec
of the 1 state, thus achieving a polarization of the beam.
be effective, one would require a strong SO coupling such
a locally enhanced Rashba effect in the beam spli
region.42

Here, we will neglect this effect of angular dispersion
considering only non-equilibrium electrons above the Fe
energy for whichDk/k!1 ~as the SO coupling is small com
pared to the kinetic energy! and the experimentally importan
incident angles (u i5p/4). In this case, the angular separ
tion is very small (Du5u r 22u r 1!1). The equations of
continuity of the wave function and its derivative are th
much easier to solve, and one can find that the incid
refracted, and reflected waves have the same spin atx50
and the refracted and transmitted waves have the same
at x5L. Using Eq.~7! to find the spin overlap between di
ferent leads we find, starting with a1 incident state,

uC t&5tuk,1&, uC r&5r @cosu i uk,1&1 i sinu i uk,2&],
~B5!

FIG. 8. Angular separation after reflection at a beam splitter.
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whereuC t& is the transmitted wave~into lead 4! anduC r& the
reflected wave~into lead 3!. As the transmitted wave has th
same direction of propagation as the incident wave, ther
no mixing of the SO coupling states, and we have only
usual transmission coefficientt. For the reflected wave, th
direction is changed and we have to mix the different S
coupling states to obtain the same spin as the incident w
on the interface with the beam splitter. If we start now with
2 incident state, we find

uC t&5tuk,2&, uC r&5r @ i sinu i uk,1&1cosu i uk,2&].
~B6!

The same analysis can be done for an incident state in le
with u i replaced by2u i . We then deduce the whole scatte
ing matrix

S5F r cosu i i r sinu i t 0

ir sinu i r cosu i 0 t

t 0 r cosu i 2 ir sinu i

0 t 2 ir sinu i r cosu i

G .

~B7!

APPENDIX C: ALTERNATIVE DERIVATION
OF POLARIZED COLLISION: CASE 2

In the main body of the text, we considered the dire
application of Eq.~35! in the SO coupling basis to the ca
culation of the Fano factor. Although the direct application
more convenient, for completeness, we present here an a
native calculation of the Fano factor for a polarized collisio
case 2@Eq. ~51!# with all operators expressed in the spins
basis.

The input state comprises electrons with the same s
for example spin up, betweenk1 and k25k(E11eDV) as
shown in Fig. 6. We consider the initial state for the n
transport electrons and the current operator using the foll
ing notation:

uC i&5 )
k5k1

k2

â1↑
† ~k!â2↑

† ~k!u0&, ~C1!

Î a~ t !5
e

h (
r

(
ss8

(
bg

E dEdE8ei (E2E8)t/\Abgss8
ar

3âbs
† ~E!âgs8~E8!, ~C2!

Abgss8
ar

5dabdagdrsdrs82Sbs* arSgs8
ar , ~C3!

wherek2 is given byE11eDV5\2k2
2/2m. We then use the

current fluctuationd Î a(t)5 Î a(t)2^ Î a(t)& to calculate the
current fluctuation correlation function:

^d Î a~ t !d Î a~0!&

5
e2

h2 (
rr8

(
ss8s9s-

(
bgdz

E dEdE8dE9dE-
8-12
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3ei (E2E8)t/\Abgss8
ar Adzs9s-

ar8 Dbgdz
ss8s9s-, ~C4!

Dbgdz
ss8s9s-[^âbs

† ~E!âgs8~E8!âds9
†

~E9!âzs-~E-!&

2^âbs
† ~E!âgs8~E8!&^âds9

†
~E9!âzs-~E-!&.

~C5!

Although we derived an expression for the current ope
tor in the SO coupling basis, we choose here to express a
the operators in the standard spin basis,

âbs
† ~E!5

@eiub/2âb↑
† ~k~E,s!!1hse2 iub/2âb↓

†
„k~E,s!…#

A2Ds~k!
,

~C6!

with Ds(k)[dE(k,s)/dk5\2k/m1hsa. Defining P
[ADs(k)Ds8(k8)Ds9(k9)Ds-(k-), we have

Dbgdz
ss8s9s-5

1

4P
$dbzdgdd~kE,s2kE-,s-!d~kE8,s8

2kE9,s9!nb↑~kE,s!@12ng↑~kE8,s8!#1•••

1hs8hs9dbzdgdd~kE,s2kE-,s-!

3d~kE8,s82kE9,s9!nb↑~kE,s!%, ~C7!

where kE,s5kE8,s8 for E5E81ak(hs82hs), so that
d(kE,s2kE-,s-)5Ds(k)d@E2E-1ak(hs2hs-)#. After
integration overE9 and E- and making the approximatio
D1(k)'D2(k), we find

E dE9dE-Dbgdz
ss8s9s-

5 1
4 @dbzdgdnb↑~kE,s!@12ng↑~kE8,s8!#

1hs8hs9dgdnb↑~kE,s!#. ~C8!

We can replaceD2(k) by D1(k), because

D2~k!

D1~k!
5

\2k

m
2a

\2k

m
1a

'11
a

\2k

2m

'1,

which follows from

a

\2k

2m

<
akf

S \2kf
2

2m
D 5

ESO~kf !

Ec~kf !
!1
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-
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as the SO coupling is small. We will now calculate the pow
spectral density at zero frequency in output lead numbe
S44(0),

S44~0!5
e2

2h (
rr8

(
ss8s9s-

(
b,g51,2

Abgss8
4r Agbs9s-

4r8

3E dEnb↑~kE,s!@12ng↑~kE,s8!1hs8hs9#,

~C9!

whereg51 or 2, since we have ignored the scattering fro
output lead to output lead.nb↑(kE,s) is the number of elec-
trons in leadb with spin up and momentumkE,s ,

nb↑~kE,s!5H 0 if E<E11hsak1 ,

1 if E11hsak1<E<E21hsak2 ,

0 if E21hsak2<E.

Assuming that the SO coupling is weaker than the bias v
age, that is,E11ak1<E22ak2, we have nb↑(kE,2)@1
2ng↑(kE,1)#Þ0 for E12ak1<E<E11ak1 and
nb↑(kE,1)@12ng↑(kE,2)#Þ0 for E22ak2<E<E21ak2.
Therefore, Eq.~C9! becomes

S44~0!5
e2

2h (
rr8

(
ss8s9s-

(
b,g

Abgss8
4r Agbs9s-

4r8 @hs8hs9eDV

1ds1ds822ak21ds2ds812ak1#. ~C10!

Given the scattering matrix calculated in Eq.~36!, we find

(
rr8

(
ss8s9s-

(
b,g

Abgss8
4r Agbs9s-

4r8 hs8hs950 ~C11!

and

(
rr8

(
ss8s9s-

(
b,g

Abgss8
4r Agbs9s-

4r8 ds1ds8254TRsin2u,

~C12!

so that

S44~0!5
2e2

h
~2ak112ak2!T~12T!sin2u. ~C13!

After some calculation, we find the current and Fano fac
to be

^I 4&5
e2

h
DV, ~C14!

F[
S44~0!

2e^I 4&
52T~12T!sin2uFak11ak2

eDV G . ~C15!

This is identical to the the current and Fano factor shown
Eq. ~51!.
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