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Anisotropic scattering in quantum magnetotransport calculations for two-dimensional electron
systems in a one-dimensional superlattice

Johannes Groß and Rolf R. Gerhardts
Max-Planck-Institut fu¨r Festkörperforschung, Heisenbergstrasse 1, D-70569 Stuttgart, Germany

~Received 11 December 2001; published 23 October 2002!

Based on the self-consistent Born approximation for the evaluation of Kubo formulas, we develop and
evaluate a consistent approximation scheme that allows us to calculate the magnetoconductivity tensor for a
high-mobility two-dimensional electron system, subjected to a weak periodic potential modulation in one
lateral direction, under due consideration of anisotropic impurity scattering. We demonstrate that our approach
avoids the inconsistencies observed with previous calculations based on ac-number approximation for the
self-energy operator, and that it is able to reproduce, with reasonable assumptions for the finite-range impurity
potentials, nearly quantitatively the experimental results for all components of the magnetoresistance tensor in
the regime of moderate and strong magnetic fields, which are characterized by commensurability and
Shubnikov–de Haas oscillations, respectively.
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I. INTRODUCTION

The importance of anisotropic scattering for a quantitat
understanding of magnetotransport experiments in mo
lated two-dimensional electron systems~2DES’s! was re-
cently emphasized in classical magnetotransp
calculations.1,2 To include this anisotropy, one has to go co
ceptually beyond the assumption of a constant~i.e., energy-
and magnetic-field independent! transport relaxation time
that had been the basis of early quantum3 and classical4 cal-
culations, which could explain the observed commensura
ity oscillations qualitatively. However, because of the n
merical difficulties, quantum calculations includin
anisotropic impurity scattering within the framework of th
self-consistent Born approximation~SCBA! were attempted
only recently,5 whereas most approaches used the so-ca
c-number approximation~CNA!,6,7 which was introduced by
Zhang and Gerhardts.6 Unfortunately, this approximation
which neglects vertex corrections to the transport coe
cients, is questionable since it violates the continuity eq
tion for the modulated system, as is known from the cor
sponding classical relaxation time approximatio1

Furthermore, it can describe only isotropic scattering, le
ing to a coarse, unsatisfactory picture of the experime
data. On the other hand, the CNA allows an intuitive und
standing of the experiment in terms of a band and a sca
ing conductivity,6 which is appropriate for small and mode
ate values of the magnetic fieldB, where, at least for short
range impurity scattering, the vertex corrections a
relatively small.1

To overcome the problems with the CNA, one can try
solve the full SCBA. Because of the complexity of the r
quired numerics, this has been possible only for a very l
ited and unrealistic parameter range.5 On the other hand, due
to the complicated nature of the self-consistent Dyson
Bethe-Salpeter equations, which govern the equilibrium
the transport regime, respectively, the results are hard to
terpret. We, therefore, do not try to solve the full SCBA, b
improve the CNA to achieve a consistent approximat
0163-1829/2002/66~15!/155321~13!/$20.00 66 1553
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which describes correctly the impurity-scattering proces
in the 2DES. Our approximation scheme assumes a w
potential modulation and a high mobility, i.e., small collisio
broadening of the Landau levels. In contrast to previo
work,6,5 we present also a careful consistent treatment of
Hall conductivitysH , which allows us to relate the differen
appearances ofsH-versus-B traces measured on S
MOSFET’s and on~AlGa!As heterostructures to the differen
properties of the relevant impurity-scattering in both mate
als. Some preliminary results of our approach have alre
been published elsewhere.8

The paper is organized as follows. In Sec. II we brie
recall the basic results of the~Kubo-type! linear response
theory within the SCBA as applied to magnetotransport i
laterally modulated 2DES. In Sec. III we formulate our ba
approximation and exploit its consequences for the cond
tivity tensor. Typical results of our numerical calculations a
presented in Sec. IV A, and an explicit comparison with e
periment is given in Sec. IV B. In Appendix A we sketch th
derivation of the SCBA kernel~Appendix A1!, exploit the
Ward identities for the calculation of the SCBA conductiv
ties ~Appendix A2! and show that the quantum correction
the Hall conductivity is a Fermi edge quantity~Appendix
A3!. In Appendix B we specify these results to our wea
modulation approximation.

II. THEORETICAL FRAMEWORK

Our aim is to extend the approach of Ref. 9, which tre
homogeneous systems, to the case of a noninteracting 2
in a weak modulation potential, e.g.,V(x)5V0cosKx, with
perioda52p/K. We will take into account the modulatio
effects to lowest order in the small parameterV0 /\v0,
wherev05eB0 /m is the cyclotron frequency in the applie
perpendicular magnetic fieldB0. But before we enter the
corresponding perturbation expansion, we briefly recall
underlying Kubo-type magnetotransport theory.

A. Green and vertex operators

We describe the ‘‘clean’’ system without impurities by th
Hamiltonian
©2002 The American Physical Society21-1
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H5~m/2!v21V~x!, v5@p1eA~x!#/m, ~1!

with the vector potentialA(x)5(0, xB0), so that the Hamil-
tonian has translational invariance iny direction andpy is a
constant of motion. To describe the effect of random imp
rity scattering, we first introduce a random configuration
impurities defining the potential energyVi(r ) for a conduc-
tion electron, and express equilibrium and transport qua
ties in terms of the Green operatorG 6(E)5(E2H2Vi
6 i0)21. Using conventional perturbation expansion with r
spect toVi , we carry out the average over all possible im
purity configurations term by term and resum the pertur
tion series to obtain Dyson’s equation for the averaged Gr
function and the Bethe-Salpeter equation for the trans
quantities.

The effect of random impurity scattering on equilibriu
quantities is given by the averaged Green operator

G6~E!5^G 6~E!&5@E2H2S6~E!#21, ~2!

which usually is expressed in terms of the self-energy op
tor S6(E). The components of the static conductivity tens
are calculated from the vertex operators

Fn
ss8~E,E8!5^G s~E!vnG s8~E8!&, ~3!

with s,s8P$1,2%, according to9

smn5
e2\

4pSE dEF2d f

dE
fmn

(1)~E!1 f ~E!fmn
(2)~E!G , ~4!

fmn
(1)~E!5Tr vm~2Fn

122Fn
112Fn

22!, ~5!

fmn
(2)~E!5Tr vm~Dn

22Dn
1!, ~6!

where n,mP$x,y%, vm5(pm1eAm)/m is a component of
the velocity operator,S the area of the 2DES, andf (E) the
Fermi function. Here we use the notation

Fn
ss85Fn

ss8~E,E!, ~7!

Dn
s5~]/]E2]/]E8!Fn

ss~E,E8!uE5E8 . ~8!

It can be shown easily~cyclic invariance of the trace! that the
diagonal termsfmm

(2)(E) vanish, so that contributions to th
diagonal components of the conductivity come only from
Fermi edge

smm5E
2`

`

dEF2
d f

dEGsmm~E!. ~9!

In evaluating the impurity-averaged Green and vertex op
tors, certain concistency relations~‘‘Ward identities’’! have
to be obeyed, which can be derived from the equation
continuity.10 The simplest of these reads

Fn
ss5

i

\
@Gs~E!,r n#, ~10!

where r n is a component of the position operato
i @H,r n#5\vn , and follows from @G s,r n#5G s@H,r n#G s

52 i\G svnG s.
15532
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B. SCBA

We evaluate impurity averages within the self-consist
Born approximation~SCBA!, the simplest approximation
scheme that allows to satisfy the Ward identities. For s
plicity we assume a potential landscapeVi(r )5( ju(r2Rj )
of only one type of impuritiesu(r ) located at positionsRj .
Then the SCBA expression for the self-energy is

S6~E!5I @G6~E!#, ~11!

I @O#5niE dRu~r2R!Ou~r2R!, ~12!

with ni the impurity density andO an arbitrary operator.
Thus Eq.~2! becomes the nonlinear Dyson equation fro
which self-energy and Green operator must be calculate
these are known, one has to calculate the vertex opera
from the linear Bethe-Salpeter equations

Fn
ss85Gs~E!$vn1I @Fn

ss8#%Gs8~E8!, ~13!

where the energy arguments ofFn
ss8(E,E8) are suppressed

The vertex correctionsI @Fn
ss8# do in general not vanish, an

the vertex operatorFn
12 can in general not be expressed

terms of the Green operatorsG6(E). With Eqs.~2! and~13!,
the Ward identities~10! read

@Ss,r n#5I @@Gs,r n##. ~14!

1. Landau representation

As a convenient basis for numerical calculations,
choose the Landau basisun,X& of eigenstates of the homo
geneous system, wheren counts the Landau levels with en
ergies en5\v0(n11/2) and the ‘‘center coordinate’’X5
2py /(mv0) is given by the eigenvaluespy of the canonical
momentum. The conservation of this momentum is an imm
diate consequence of the translation invariance iny direction
and holds also for the impurity averaged and inx direction
modulated systems to be considered in the following.

Due to the translation invariance iny direction,
both Green function and self-energy must have Land
matrix elements of the form ^n,XuG6(E)un8,X8&
5dX8,XGn,n8

6 (E;X). Since the energy eigenvalues of th
Hamiltonian~1!, En(X)5En(X1a), are periodic,11 one can
employ methods as in Ref. 9 to show that also the ma
elementsGn,n8

6 (E;X) and the corresponding matrix elemen
of self-energy and vertex operators are periodic inX with the
perioda of the modulation inx direction. Using Fourier ex-
pansions ofSn,n8

6 (E;X) andGn,n8
6 (E;X), we show in Appen-

dix A1 that Eq.~11! can be written in the convolution form

Sn,m
6 ~E;X!5(

k,l
E

0

adX8

a
Kk,l

n,m~X2X8!Gk,l
6 ~E;X8!,

~15!

where the kernel obtained from the SCBA definition~12! is
also periodic with respect to its argument. It has the Fou
expansion and the symmetry properties
1-2
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Kk,l
n,m~X!5(

l
Kk,l

l;n,meilKX5Kl ,k
m,n~X!5Kn,m

k,l ~2X!.

~16!

This kernel also determines the vertex corrections, i.e.,
integral operator, in the Bethe-Salpeter equation~13!.

2. Conductivities in SCBA

Due to the Ward identities~10! there is no need to solv
the Bethe-Salpeter equations forFn

ss . However, one has to
evaluate the Ward identities with some care, since the c
tributions of theFn

ss to the diagonal components of the co
ductivity tensor diverge and must cancel corresponding c
tributions toFn

12 .9 The evaluation is easiest forsxx . Since
Gs(E) is diagonal in the center coordinateX and, according
to Eq. ~1!, the operator identity

r x[x5X1vy /v0 ~17!

holds, we obtain from Eq.~10!

Fx
ss5

i

\v0
@Gs~E!,vy#. ~18!

Following Ref. 9, we make the ansatz@suppressing the en
ergy arguments#

Fx
125F̃x

121
i

\v0
~G1vy2vyG

2! ~19!

and obtain

sxx~E!5
e2\

2pS
TrFvxF̃x

121
p

\v0
$vx ,vy%AG , ~20!

with the notations$vx ,vy%5vxvy1vyvx for the anticommu-
tator andA(E)5@G2(E)2G1(E)#/(2p i ) for the spectral
operator. Inserting the ansatz~19! into Eq. ~13!, we obtain
the integral equation

F̃x
125G1~2C@vy#/v01I @ F̃x

12# !G2, ~21!

where the inhomogeneous term is now given in terms of
‘‘generalized collision operator’’9

C@f#5
i

\
~S1f2fS22I @G1f2fG2# !. ~22!

With the notationS22S15 iG, this collision operator is the
sum of two termsC5C11C2, the first of which

C1@f#5
1

2\
~Gf1fG!2

p

\
I @Af1fA#, ~23!

resembles the collision operator of the Boltzmann equa
and reduces in the simplest approximation to a relaxa
rate,9 while the second

C2@f#5
i

2\
~@S21S1,f#2I @@G21G1,f##!, ~24!
15532
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has a commutator structure. The solutionF̃x
12(E) of Eq.

~21! completely determinessxx .
To evaluate the contribution of the Ward identities tosyy

we cannot use the same type of arguments, as we dem
strate in Appendix A2. Nevertheless, we can derive

Tr vyFy
ss5Tr vyF2

i

\v0
@Gs~E!,vx#G ~25!

as a weaker analog of Eq.~18!. Then with the ansatz

Fy
125F̃y

122
i

\v0
~G1vx2vxG

2!, ~26!

similar to Eq.~19!, we get

syy~E!5
e2\

2pS
TrFvyF̃y

122
p

\v0
$vx ,vy%AG . ~27!

Introducing Eq.~26! into Eq. ~13! and exploiting the equa
tion @vx ,H#52 i\v0vy2 i (\/m)dV(x)/dx @see Eq. ~1!#,
we now obtain

F̃y
125G1S C@vx#

v0
2

1

mv0

dV

dx
1I @ F̃x

12# DG2, ~28!

where the explicit appearance of the modulation poten
destroys the symmetry between Eqs.~21! and ~28!.

We can further show~Appendix A3! that the off-diagonal
components of the conductivity tensor can be written as

smn5smn
(0)1E dEF2

d f

dEGsmn
sc ~E!, ~29!

where

syx
(0)52sxy

(0)5e2nel /~mv0! ~30!

is the Hall conductivity of a homogenous 2DES of dens
nel in the absence of impurity scattering. The contributi
due to impurity scattering effects can be written~see Appen-
dix A3!

sxy
sc~E!5

e2\

4pS
TrS 2vxF̃y

122
4p

\v0
~vx

22vy
2!A~E!

2
]~G21G1!

]py

C1@vy#

v0
D ~31!

and

syx
sc~E!5

e2\

4pS
TrS 2vyF̃x

121
]~G21G1!

]py

C1@vy#

v0
D .

~32!

Note that, in addition to the second term on the right-ha
side of Eq.~31!, there is an asymmetry in the integral equ
tions ~28! and~21! definingF̃y

12 andF̃x
12 , respectively. We

will not further investigate the relation betweensyx
sc(E) and

sxy
sc(E) in the general SCBA, since we will introduce a

additional approximation for the numerical calculations th
will yield sxy

sc(E)52syx
sc(E).
1-3
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3. Homogeneous 2DES

In the homogeneous system the Green oper
Gn,m

6 (E;X)5dn,mGn
6(E) is diagonal in the Landau basis

provided the impurity potentials have rotational symmet
and the matrix elements of bothG and the vertex operator

Fm
ss8 are independent ofX.9,10 As a consequence, the SCB

kernel ~16! reduces to

Kk,l
n,m~X!5Kk,l

l50;n,m}dn2m,k2 l , ~33!

see Eq.~A3!. Owing to these selection rules, Eq.~15! re-
duces to

Sn
6~E!5(

k
Kk,k

0;n,nGk
6~E!, ~34!

i.e., the self-energy becomes diagonal and independent oX,
and the matrix elements of the vertex operators in the L
dau representation have the same structure as the vel
operators

^n,Xuv6um,X&[^n,Xu~vx6 ivy!um,X&

56 i l 0v0A2m1161dn,m61 , ~35!

where l 05A\/(mv0) is the magnetic length. These matr
elements are purely off-diagonal with respect to the Lan
quantum numbersn and m, with nonzero values only be
tween adjacent Landau levels. This simple matrix struct
simplifies the solution of the Bethe-Salpeter equation con
erably. Since the anticommutator$vx ,vy%5(v1

2 2v2
2 )/(2i )

and the differencevx
22vy

25(v1
2 1v2

2 )/2 have no diagona
Landau matrix elements, the corresponding terms in E
~20!, ~27!, and ~31! vanish. Thex and y directions are now
physically equivalent, and one obtains

sxx
hom~E!5syy

hom~E!5
e2\

2pS
Tr vxF̃x

12~E!. ~36!

One can also show that the homogeneous system obe
the SCBA9

syx
sc~E!52sxy

sc~E!5
e2\

2pS
Tr

C@vx#

v0
F̃x

12~E!. ~37!

For isotropic scattering, i.e.,d-potential impurities,S be-
comes also independent of the Landau quantum numben,
which leads to

S6~E!5
niu0

2p l 0
2 (

k
Gk

6~E!, ~38!

where a high-energy cutoff needs to be introduced to m
the sum convergent. In this case the vertex corrections va

and Eq.~13! reduces toFn
ss8(E,E8)5Gs(E)vnGs8(E). The

relation between Hall and diagonal conductivity, Eq.~37!,
simplifies in this case to

syx
sc~E!52sxy

sc~E!5
G~E!

\v0
sxx

hom~E!. ~39!
15532
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All this is no longer true for anisotropic scattering, and,
general, also not for periodically modulated systems, eve
the scattering potentials ared-function-like. Moreover, in
general, there is no shared eigensystem ofH, G, andS.

III. H-DIAGONAL APPROXIMATION „HDA …

A. Motivation

Compared with the homogeneous Landau system,
modulation potentialV(x) introduces as a qualitatively new
phenomenon current carrying energy eigenstatesun,X),
Hun,X)5En(X)un,X), with a finite group velocity in they
direction

~n,Xuvyun,X!52
1

mv0

dEn~X!

dX
, ~40!

while (n,Xuvxun,X)50 still holds, as in the unmodulate
system.@We denote the eigenstates of the modulated sys
by un,X) to distinguish them from the Landau statesun,X&,
with ^n,Xuvmun,X&50 for m5x and m5y.# In high-
mobility systems, this unbounded motion in energy eige
states leads to a ‘‘band conductivity’’ contribution6 to syy
that increases with decreasing impurity-scattering rate~just
as the conductivity in the absence of a magnetic fie!,
whereas the usual diffusive magnetoconductivity~‘‘scatter-
ing conductivity’’! is nonzero only because of impurity sca
tering and decreases with decreasing scattering rate.8 For a
rough estimate, we may neglect vertex corrections to ob

syy~E!;
pe2\

S
Tr vyA~E!vyA~E!. ~41!

Furthermore, we may assume that the spectral operato
dominated by its diagonal elements, which we estimate
An(E;X)'(Gn/2p)/@(E2En)21(Gn/2)2# with uEn
2\v0(n11/2)u!\v0 and Gn!\v0, as is reasonable fo
weakly modulated high-mobility systems. Then, a typic
contribution to the scattering conductivity is of the form

u~n,Xuvyun61,X!u2An~E;X!An61~E;X!

with En'E5EF , the Fermi energy. Here we may estima

An61~E'En ;X!'Gn61 /@2p~\v0!2#.

On the other hand, the corresponding contribution to
band conductivity is

@~n,Xuvyun,X!An~EF ;X!#2.

Since@An(EF ;X)#2;An(EF ;X)2/@pGn#, the product of the
spectral function factors is now by a facto
4(\v0)2/(GnGn61);4(v0t)2 larger. Since for a mobility
m*100 m2/V s the productv0t5mB*10 becomes large
for B.0.1 T, the band conductivity can be very importa
even for a weak modulationV(x)5V0cosKX, where accord-
ing to Eqs. ~40! and ~35! the ratio of diagonal and off-
diagonal velocity matrix elements can be estimated
@KV0 /(mv0)#/@ l 0v0A2n11#'KR V0/2EF , with R
5vF /v0 the cyclotron radius at the Fermi energy.
1-4
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Since the electrostatic modulation does not change
velocity operators, their matrix elements in the Landau r
resentation are also not changed. As a consequence, the
conductivity does not show up explicitly in the formalism
Sec. II B. To clearly separate the band conductivity from
scattering conductivity, we work in the following in the en
ergy eigenbasisun,X) of the modulated system with th
Hamiltonian of Eq.~1!, the ‘‘H representation.’’ However
we will consider only weak modulations, which we treat
lowest order perturbation expansion starting from the Lan
basis of the unperturbed homogeneous system.

B. Basic approximation

Our simplified approach is based on theH-representation
which allows to decompose the velocity operator

vy5(
m,n

un,X)~n,Xuvyum,X!~m,Xu5vy
dia1vy

off ~42!

into a H-diagonal part vy
dia defined by (n,Xuvy

diaun,X)
5(n,Xuvyun,X) and the remaining off-diagonal partvy

off .
The approximation scheme basically consists of three st

First, we assume that, for weak enough modulation, o
the diagonal matrix elements (n,XuGun,X) and (n,XuSun,X)
contribute essentially to the expectation values we wan
calculate. Therefore, we approximate the self-energy to
diagonal in the eigenbasis of the HamiltonianH. Then it
follows from Eq.~2! that G is diagonal, too

~n,XuGs~E!um,X!5dn,mGn
s~E;X!. ~43!

This is exact for vanishing modulation and expected to b
very good approximation for weak modulation. In view
Ward identities such as Eq.~18!, diagonality ofG requires
that the vertex operators should have the same matrix s
ture as the velocity operators. We come back to this requ
ment.

Second, we use lowest order perturbation theory, to
press matrix elements in theH representation by those of th
Landau representation. Thus, we approximate the en
spectrum byEn(X)5^n,XuHun,X&,

En~X!5en1V0Jn,n~ l 0
2K2/2!cos~KX!, ~44!

with Jn,n defined in Eq.~A4!, and the energy eigenstates b

un,X)5un,X&1 (
m(Þn)

^m,XuV0cosKxun,X&
en2em

um,X&,

~45!

but we keep the terms of first order inV0 only if the terms of
zeroth order vanish. To be specific, we calculate the diago
matrix elementsvy;n,n(X)5(nXuvyunX) from Eq. ~45! to
first order inV0, obtaining Eq.~40! with En(X) given by Eq.
~44!. For vy

off , vx , G, andS we use Eq.~45! to zeroth order
in V0 to replace the matrix elements in theH representation
by the corresponding Landau matrix elementsvy;n,m

off

5^n,Xuvyum,X&, vx;n,m5^n,Xuvxum,X&, etc.
In the third and last step we approximate the SCBA k

nel. First, we use Eq.~45! to replace the matrix elements o
15532
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the kernel in theH representation by the corresponding La
dau matrix elements. This means that we neglect modula
effects on the ‘‘collision operator’’ describing the rando
impurity scattering. A similar approximation was made in t
classical calculations,1 where the collision operator of Bolt
zmann’s equation was taken as that of the unmodulated
tem. Next we note that, even if the Green operator is dia
nal, the right-hand side of Eq.~15! still has off-diagonal
entries. Requiring the self-energy to be diagonal, theref
means to neglect certain parts of the kernel. We make
neglection manifest by imposing selection rules similar
those in the homogeneous system, Eq.~33!, and we replace
Kk,l

n,m(X) with ~see Appendix A1!

K̃k,l
n,m~X!5dn2m,k2 lKk,l

n,m~X!

5dn2m,k2 l(
l

eilKX
ni

2p l 0
2E0

`

dQuuqu2

3Jn,k~Q!Jl ,m~Q!J0~lKl 0A2Q!. ~46!

However, in contrast to the homogeneous system, we c
sider also the terms withlÞ0.

Within this approximation scheme the vertex operat
defined in Eq.~7! have the same matrix structure as the c
responding components of the velocity operator. As a con
quence, band and scattering conductivities can still be dis
guished and the Ward identities are fulfilled~see Appendix
B1!. We call this approximation scheme theH-diagonal ap-
proximation~HDA!.

C. Conductivity

The HDA contains several restrictive approximations
addition to the general SCBA formalism sketched in S
II B. Therefore, we have to make sure that the relevant W
identities remain satisfied with the modified kernel~46!. The
self-energy is now determined by

Sn
s~E;X!5(

m
E

0

adX8

a
K̃m,m

n,n ~X2X8!Gm
s ~E;X8!, ~47!

with Gn
s(E;X)51/@E2En(X)2Sn

s(E;X)# ~for s56).
The velocity matrix elements, which we denote b

vn;n,m(X)5(n,Xuvnum,X), are taken in leading order of th
modulation, which means zeroth order for the off-diagon
elements, being thus identical with the Landau matrix e
ments, and first order for the diagonal matrix elements.
cause of Eq.~46! and the diagonality of the Green operato
the Bethe-Salpeter equation transfers the matrix structur
the velocity operator onto the vertex operator and the con
bution ofvy;n,n(X) to the conductivity can be separated fro
the contribution of the off-diagonal elements. Following R
6, we call them band and scattering conductivities,syy

bd , and
snn

sc respectively.
The Bethe-Salpeter equation Eq.~13! now reads
1-5
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Fn;nm
ss8 ~E;X!5Gn

sH vn;n,m~X!

1(
k,l

E
0

adX8

a
K̃k,l

n,m~X2X8!Fn;kl
ss8~E;X8!J Gm

s8 ,

~48!

whereFn;nm
ss8 (E;X) denote the approximated matrix elemen

of the vertex operators.
For the off-diagonal contributions, the derivation of th

Ward identities is sketched in Appendix B. The diagon
components of the conductivity tensor are given by Eqs.~20!
and~27!, but sinceA(E) is diagonal, the contributions of th
anticommutator terms vanish. The vertex operators are d
mined by Eqs.~21! and~28!, however, the integral operator
are given by the reduced kernel~46! and, in our lowest order
approximation, the term}dV/dx in Eq. ~28! is neglected.
Due to the explicit form of the Landau matrix elements, E
~35!, and the properties of the linear integral equations o
finds that the scattering conductivities in the HDA are equ

sxx
sc~E!5syy

sc~E!5
e2\

2pS
Tr vxF̃x

12~E!. ~49!

Thus, the longitudinal conductivities have the followin
structure:

sxx5sxx
sc , ~50!

syy5sxx
sc1syy

bd . ~51!

Next, we consider the band conductivitysyy
bd . The rel-

evant Ward identity for the evaluation of the diagonal part
vx(Fy

111Fy
22) is the diagonal part of Eq.~A7!. Now only

the term with theX derivative survives, since due to th
diagonality ofG the commutator term is off-diagonal,

Fy;nn
ss ~E;X!52

1

mv0

d

dX
Gn

s~E;X!. ~52!

The resulting contribution to the band conductivity is

dsyy
bd~E!52

e2l 0
2gs

8p2\
(

n
E

0

adX

a

dEn

dX

d~Gn
21Gn

1!

dX
,

~53!

where gs52 accounts for spin degeneracy. Thus, the to
band conductivity is given by

syy
bd~E!5dsyy

bd~E!

1
e2\2gs

~2p l 0!2 (
n
E

0

adX

a
vy;n,n~X!Fy;n,n

12 ~E;X!,

~54!

where the diagonal part of the vertex operatorFy
12 has to be

calculated from the Bethe-Salpeter equation~48!.
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The Eqs.~31! and ~32! for the Hall conductivities also
simplify in the HDA. As we show in Appendix B2, they ca
be combined to

syx
sc~E!52sxy

sc~E!5
e2\

2pv0S
Tr C1@vx#F̃x

12 . ~55!

In summary, to calculate within the HDA all components
the conductivity tensor according to Eqs.~9! and ~29!, one
has to solve in addition to the nonlinear Dyson equation
the ~diagonal! Green operator two linear integral equation
namely, Eq.~21! for F̃x

12 and the diagonal part of Eq.~48!
for Fy;n,n

12 (E;X). Of course, all results obtained within th
HDA become exact~within the SCBA! in the limit of an
unmodulated, homogeneous 2DES.

IV. NUMERICAL RESULTS

A. Characteristic examples

For numerical calculations we use the material parame
of GaAs (m50.067m0) and impurity potentials of Gaussia
shape12,13

u~r !5
u0

pr 0
2

e2(r /r 0)2
. ~56!

In the limit r 0→0 this leads to a delta-like potential, whic
describes isotropic scattering, whereas with increasingr 0
forward scattering becomes predominant. For a quantita
comparison with experiments, we also consider a scree
Coulomb potential with Fourier components

uq5u0

e2quzu

q/qTF11
, ~57!

whereqTF52/aB* , andaB* '10 nm is the effective Bohr ra
dius in GaAs. This is a better approximation to the poten
induced by charged donors behind a spacer of thicknessz.

In the following we examine the influence of the verte
corrections on the resistance of a modulated 2DES. As
have already demonstrated elsewhere,8 even in unmodulated
systems the vertex corrections become important in the p
ence of anisotropic scattering. We were able to show that
garland like structures in the Hall resistance, which we
calculated in early papers14,15 and have been observed
experiments on Si-MOSFET’s inversion layers15–18 but
never in GaAs heterostructures, are a typical effect of sh
range impurity scattering and do not occur for long-ran
scattering potentials as those due to donors behind a sp
in typical AlGaAs heterostructures.

In Fig. 1 we compare the density of states~DOS! at the
Fermi energy@D(B), upper part# and the resistances~upper
and middle part! for CNA and HDA. For the resistances w
also include HDA calculations without vertex corrections.
characterize the impurity scattering, we have in princip
three parameters, the density of impurities and strength
range of the impurity potential. Density and strength a
combined in the ‘‘scattering strength’’G05niu0

2m/(2p\2),
1-6
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which has the dimension energy. The range determines
transport~or momentum relaxation! time t tr ,

\

t tr
5G0E

2p

p

dwUuq

u0
U

q5kFA222cosw

2

~12cosw!, ~58!

which enters the Drude formula for the conductivity~at B0
50) of the unmodulated system,r05m/(e2t trnel). For ex-
tremely short-range potentialsuq'u0 one has\/t tr52pG0
and r05(h/e2)pG0 /EF , with EF5nel /D0 and D0
5gsm/(2p\2)52.7931010 (meV cm2)21 the density of
states of the 2DES in GaAs atB050. With increasing range
of the impurity potential\/(2pG0t tr) decreases rapidly. Fo
model ~56!, \/(2pG0t tr)5g@(kFr 0)2# is given by modified
Bessel functionsg(z)5exp(2z)@I0(z)2I1(z)#.

Already in the DOS differences between the two appro
mations show up. The van Hove singularities are much
pronounced in HDA than in CNA and the band edges
more rounded. But these subtleties are no longer visibl
higher temperatures. On the other hand, the peak heig
similar in both approximations.

This is no longer true forryy , the ‘‘scattering resistance.
In the upper magnetic field range (2.5&B/T,3.4), CNA

FIG. 1. ~a! DOS at the Fermi energyD(B) and resistivityryy

and~b! resistivitiesrxy andrxx for different approximations assum
ing isotropic scattering withG051 meV (r0511V), and V0

50.16 meV,a5500 nm,nel5231015 m22, T50 K. ~c! Resistiv-
ities in HDA with the same values ofV0 , a, nel , andT, for aniso-
tropic scattering according to Eq.~56! with r 0520 nm andG0

552 meV, i.e.,r0'11V ~dashed lines! and for isotropic scattering
with G052 meV, i.e.,r0523V ~solid lines!.
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and HDA without vertex corrections differ by a factor o
about 2. Apparently the vertex corrections lower the scat
ing resistance significantly in the center of the Landau ba
where the dispersion is maximum. An increase of tempe
ture smears out this dip and at 1 K the vertex corrections lead
to a lowering ofryy everywhere~not only in the center!.

As seen in Fig. 1~b!, the effect of vertex corrections on th
band conductivity is much more drastic. In CNA and HD
without vertex corrections,rxx and ryy differ only margin-
ally, since the band conductivity is almost zero. But in t
full HDA, there are huge contributions of the band condu
tivity to rxx exceeding the scattering conductivity by a fact
of 4 at high magnetic fields. These peaks increase rap
with the magnetic field as they depend sensitively on
dispersion, which is high for low Landau indices and f
away from the flat-band conditions,6 at which the width of
the modulation broadened Landau bands shrinks to z
@Jn,n( l 0

2K2/2)'0, see Eq.~44!#. The peculiar shapes of th
bands are caused by the superposition of broad scatte
contributions and large, narrow peaks due to the band c
ductivity. Again, such structures vanish rapidly with increa
ing temperature. The dips in the Hall resistance result, a
tensor inversion, from the large values ofsyy .

Not only the energy dispersion but also the broadening
the Landau bands due to scattering influences the magni
of the vertex corrections strongly. In the lower part of Fig.
the resistances are plotted for a higher scattering strengtG0

~solid lines!, corresponding to a largerr0. For such a line
broadening the van Hove singularities are no longer visi
in DOS andryy . The increase ofG0 by a factor of 2 leads
only to a weak increase of the scattering conductivity, but
drastic reduction ofrxx shows the sensitive dependences
the band conductivity on the scattering strength. Therefo
the difference betweenrxx andryy vanishes rapidly.

The anisotropy of the impurity scattering is another p
rameter which influences the ratio ofrxx andryy greatly. In
the lower part of Fig. 1 also the resistances for anisotro
scattering withr 0520 nm are plotted~dashed lines! with the
same zero-field resistancer0 as in the situation of the uppe
panel. For givenr0 the scattering strengthG0 must be cho-
sen much higher in the anisotropic case than in the isotro
one. Consequently, the band conductivity is much sma
But at the same time, anisotropic scattering leads to a m
weaker increase of the scattering resistance with magn
field. This means, in the high magnetic field range there
still a considerable anisotropy betweenrxx and ryy for an-
isotropic scattering, as opposed to the situation we con
ered before, whereG0 was only slightly increased butr 0 was
held constant. In the Hall resistance the garlandlike str
tures vanish as in the homogenous system.8

This discussion shows that even for isotropic scatter
the vertex corrections, which are neglected in the c-num
approximation, lead to important contributions to the ba
conductivity if the scattering rate is not too high. We no
discuss the case of anisotropic scattering in more detail a
is important for interpreting experiments in GaAs hete
structures.
1-7
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B. Comparison with experimental results

Classical calculations can explain the commensurab
oscillations19 of rxx ~also called ‘‘Weiss oscillations’’! both
for isotropic and for anisotropic scattering. The antipha
oscillations inryy and the Shubnikov–de Haas~SdH! oscil-
lations, on the other hand, are of a purely quantum mech
cal origin. They are dominated by the DOS, which sho
modulation-induced amplitude oscillations owing to the o
cillatory (n andB dependent! width of the Landau levels. As
has been discussed in detail in Ref. 6, within the CNA
scattering conductivity, which dominatesryy , is given by the
thermal average of the square of the DOS, and exhibits
commensurability oscillations to much higher temperatu
than the thermodynamic DOS. Within the HDA the relati
between scattering conductivity and DOS is not so obvi
due to the vertex corrections, but Fig. 1~a! shows clearly that
the oscillations ofryy still follow closely those ofD(B). The
CNA, which includes these quantum effects, is however o
in a rough qualitative agreement with experiments and ha
rely on an unrealistic choice of system parameters which
reproduce some aspects of the experiment at the price
disagreement with others. If, e.g., the damping is cho
small enough to reproduce the zero-field resistance,
width of the Landau levels comes out too small, i.e.,
amplitude of the SdH oscillations comes out too large.6 If, on
the other hand, the latter are fitted well, the zero-field re
tance comes out much too large. We now give an exam
showing that a correct treatment of the vertex corrections
yield a nearly quantitative agreement with experiment for
oscillatory quantum effects. To do so, we compare with
early experiment by D. Weisset al. @Fig. 3 of Ref. 19~a!, Fig.
2 of Ref. 19~b!, and Fig. 6.1 of Ref. 19~c!# and choose a
weak modulation strength,V050.45 meV, in agreemen
with a previous estimate19 based on the maximum of th
largest commensurability peak. The only adjustable par
eter is the scattering anisotropy, which cannot be determ
so easily from the experiment.

In Fig. 2 the resistances for parameters similar to the
perimental situation19 are plotted for different ranges of th
impurity potential. The solid lines in the upper panel den
rxx and ryy in CNA. They show strong oscillations, upo
which at higher field values SdH oscillations are super
posed. At the flat-band conditionsryy , which is dominated
by the scattering conductivity, shows maxima as expec
Taking the differencerxx2ryy as a measure for the ban
conductivity, this shows also the expected Weiss oscillati
of opposite phase, with minima at the flat-band conditio
But apparently the amplitude of the scattering conductiv
oscillations is much larger than that of the band conductiv
oscillations, so thatrxx exhibits maxima at the flat-band con
ditions, which are caused by the scattering conductivity,
stead of the expected minima. These findings are no
agreement with the experimental observations. Also the
erage increase of the longitudinal resistances with increa
magnetic field is much stronger for the CNA results than
the experiment. The amplitudes of the Weiss oscillation
crease linearly with magnetic field, in correspondence
15532
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classical calculations for isotropic scattering,1 but in dis-
agreement with the experiment.19

Here we should comment on an apparent error in the
sults of Ref. 6, which can not be reproduced as has b
asserted by several independent workers.20 For the given pa-
rameter values the oscillatory scattering conductivity o
tained in Ref. 6 seems too small as compared with the b
conductivity. We obtain for their parameter values a res
similar to the CNA calculation in Fig. 2~a!, where the oscil-
lations of the scattering conductivity are larger than those
the band conductivity, and lead to pronounced in-ph
maxima ofrxx andryy at the flat-band conditions.

Including vertex corrections within a HDA calculation fo
isotropic scattering@broken lines in Fig. 2~a!# does not
change the CNA picture qualitatively. We now consider a
isotropic scattering due to finite-range impurity potentia
~dotted lines!, leading to the same zero-field resistancer0.
This results in a slower increase of the resistances with
magnetic field. But at the same time the oscillation amp
tudes decrease drastically. This effect is stronger for the
tiphase oscillations of the scattering conductivity than for

FIG. 2. Effect of scattering anisotropy.~a! Resistivities for iso-
tropic scattering in CNA and in HDA both withG051.85meV, and
for anisotropic scattering in HDA withr 0515 nm and G0

592.5meV, yielding all r0512.3V. ~b! Thick lines: calculated
resistivities for Coulomb scattering, Eq.~57!, with z514 nm, G0

50.8 meV, i.e.,r0512V. Remaining parameters in~a! and ~b! T
54.2 K, nel53.431015 m22, V050.45 meV, a5294 nm. The
vertical lines indicate the minima of the Weiss oscillations~flat-
band conditions!. Thin lines: experimental results after Ref. 19~see
text!.
1-8
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ANISOTROPIC SCATTERING IN QUANTUM . . . PHYSICAL REVIEW B66, 155321 ~2002!
Weiss oscillations and causes the unexpected structure inrxx
to vanish. Obviously the scattering anisotropy is an imp
tant parameter for describing the experimental situation.

For the lower part of Fig. 2 we tried to adjust the anis
ropy to get close agreement with the experiment. Here
used the screened Coulomb potential, which leads to a r
of band and scattering conductivity corresponding m
closely to the experimental findings. The calculated cond
tivities are shown by thick lines, as indicated in the legend
Fig. 2~b!. Also shown are experimental results19 obtained
from holographic modulation of anL-shaped sample. Th
thin long-dashed line forryy and the thin solid line forryx
are measured in that leg of the sample, where the cur
flows parallel to the equipotentials of the modulation. T
dotted lines forrxx ~lower oscillating line! and forrxy ~upper
nearly straight line! are taken from the other leg where th
current flows perpendicular to the equipotentials. From b
the position of the SdH minima and the Hall resistivity w
conclude that in this leg the electron density is about
larger than in the other leg. Moreover, the oscillations ofrxx
seem to be superimposed on a slowly varying, quasiparab
background, which is attributed by the experimentalists19 to
the effect of sample inhomogeneities, and is not taken
account in our theory. To correct for these effects, we fi
interpret the horizontal~B! axis as a 1/n axis ~with n the
Landau level filling factorB@T#514.1/n) and reduce the ab
scissa values of the dotted curves by the factor 0.96, so
the positions of the SdH minima coincide with those ofryy
and therxy practically coincides with theryx trace.~Due to
this scaling the flat-band conditions shift to marginally low
values, by about 2%.! Then we tentatively subtract from th
scaledrxx curve the smooth backgroundDrxx@V#52219x
112.5x2, with x5B@T#, and obtain the thin solid line as th
correctedrxx curve. Apart from a smooth quasiparabolic i
crease at largeB values~probably still due to inhomogene
ities!, the agreement between theory and experiment is n
very good, at least in the regime 0.1 T,B,1 T which is
determined by the commensurability and the SdH osci
tions. The amplitudes of the Weiss oscillations decrease w
decreasingB much faster than linearly, in agreement wi
classical calculations1,2,21,22for anisotropic impurity scatter
ing. The positive magnetoresistance at very smallB values is
well understood from classical calculations.1,22 The garland-
like structures in the Hall resistance of previo
calculations14,15 are suppressed by anisotropic scattering,
in the homogenous system.

V. SUMMARY

We have developed an approximation scheme for w
modulation potentials and showed that it is consistent w
Ward identities. This ‘‘H-diagonal approximation’’~HDA!
can be summarized as follows. We work in the energy eig
basisun,X) of the HamiltonianH including the modulation,
Eq. ~1!, and assume that self-energy and, conseque
Green operator are diagonal. In the spirit of a lowest or
perturbation expansion with respect to the modulation po
tial V(x)5V0cosKx, we calculate energy spectrumEn(X)
and diagonal elements of the velocity (n,Xuvyun,X)5
15532
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2(mv0)
21dEn(X)/dX up to first order inV0. On the other

hand, we neglect the modulation in the off-diagonal comp
nents of the velocity operators and in the collision opera
describing random impurity scattering, i.e., we replace th
matrix elements by the corresponding matrix elements in
Landau representation. To achieve consistency, we impo
selection rules on the collision operator, similar to tho
valid in homogeneous systems.

Our approximation scheme allows the separation of b
and scattering conductivities, giving rise to a simple exp
nation of Weiss and antiphase oscillations as in previous
culations using ac-number approximation~CNA! for the
self-energy. On the other hand, it does not suffer from
problems of the CNA. For the calculation of the conductiv
tensor two transport equations have to be solved, one for
scattering and the Hall conductivities, and another one
the band conductivity. Furthermore, the HDA includes ani
tropic scattering. Numerical comparisons have shown t
the corrections due to the Ward identities give important c
tributions especially to the band conductivity, and in the hi
magnetic field range even for isotropic scattering.

We showed that, with a correct treatment of small-an
scattering, quantum mechanical transport calculations
able to reproduce the experimental results with a minim
number and realistic values of material parameters to a v
high quantitative accuracy. Contrary to classical calculatio
not only the Weiss oscillations ofrxx but also the antiphase
of ryy and the SdH oscillations are obtained. Furthermo
we obtain realistic results for the Hall resistance and not
garlandlike structures which are typical for isotropic imp
rity scattering.8
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APPENDIX A: SCBA RESULTS

1. SCBA kernel

Inserting the Fourier expansion

Gn,m
6 ~E;X!5(

l
exp~ ilKX!Gl;n,m

6 ~E!

into Eq. ~11! and calculating the Fourier coefficien
Sl;n,m

6 (E), we obtain with Eq.~12! for the Fourier coeffi-
cients of the general kernel

Kn8,m8
n,m

~l;l8!

5E
0

adX

a (
ky8

e2 ilKXniE d2R^n,Xuu~rÀR!un8,X8&

3eil8KX8^m8,X8uu~rÀR!um,X& ~A1!
1-9
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5dl8,l

ni

S (
q

uuqu2e2 il l 0
2KqyLn,n8~q!Lm8,m~2q!,

~A2!

where l 05A\/mv0. Here we have inserted the Fouri
transformuq5*Sd2ru(r )e2 iq•r of the impurity potential, in-
troduced intermediate states of the formun8,X852 l 0

2ky8&,
and taken into account the properties of the ma
elements23

^n,Xueiq"run8,X8&5dky ,k
y81qy

e2 iqx(X1X8)/2Ln,n8~q!,

in order to perform the integrations over the impurity po
tions R and the center coordinatesX. Assuming rotationally
invariant impurity potentials,uq5uq , we can replace theq
sum by an integral and perform its angular part to obtain
the kernelKk,l

l;n,m[Kk,l
n,m(l;l):

Kk,l
l;n,m5 i un2ku2u l 2mu ni

2p l 0
2E0

`

dQuuqu2

3Jn,k~Q!Jl ,m~Q!Jk2 l 2n1m~lKl 0A2Q!,

~A3!

Jn,m~Q!5
min~n,m!!

An!m!
Q(1/2)un2mue(1/2)QLmin(n,m)

un2mu ~Q!,

~A4!

where q5uqu5A2Q/ l 0
2 and La

n(Q) denotes the Laguerr
polynomials24 andJn(x) the Bessel functions.9,23Apparently

Kk,l
l;n,m5Kl ,k

l;m,n5Kn,m
2l;k,l . ~A5!

Equivalent results have been obtained in Ref. 5, Appendix

2. Ward and related identities in SCBA

In order to evaluate the contribution ofFy
ss to syy we

cannot proceed as for thex components, since there exists n
analog of Eq.~17! for the y component of the position op
erator. Moreover, commutators including the position ope
tor r y[y must be handeled with great care, first since
matrix elements ofy in the Landau representation are
defined, second because naive application of the cyclic
variance of the trace may lead to unjustified manipulations
divergent sums and invalid result. To avoid such proble
we may work in the momentum representation, wherey
5 i\]/]py and they component of Eq.~10! reads

Fy
ss5]Gs~E!/]py . ~A6!

To evaluate the Landau matrix elements of this express
we take the derivative of̂m,XuGs(E)un,X& with respect to
X52 l 0

2py /\. Calculating the derivatives of the Landa
wave functions]^xun,X&/]X directly from the Hermite poly-
nomials, we obtain
15532
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n,

^m,XuFy
ssun,X&52

1

mv0

d

dX
^m,XuGsun,X&

2
i

\v0
^m,Xu@Gs,vx#un,X&. ~A7!

Evaluating contributions of the form

1

S
Tr vyFy

ss5
gs

2p l 0
2 (

n,m
E

0

adX

a
^n,Xuvyum,X&^m,XuFy

ssun,X&

~A8!

and noting that the velocity matrix elements are independ
of X, we see that the contribution due to theX derivative in
Eq. ~A7! is the integral of the derivative of a periodic func
tion of X over a full perioda, and thus vanishes. Therefor
we obtain Eq.~25! as an analog of Eq.~18! and proceed as
for sxx to derive Eq.~27!.

Several other useful identities follow directly from th
form ~12! of the SCBA integral operator. Using the identi
@vm ,u(rÀR)#5( i\/m)]u(rÀR)/]Rm we obtain for m
P$x,y%

Ssvm2I @Gsvm#52
i\ni

m E d2Ru~rÀR!Gs
]u

]Rm

5vmSs2I @vmGs#, ~A9!

where we have integrated by parts with respect toRm and
assumed that the boundary terms vanish in the limit of la
sample area. As an immediate consequence we note
identity

@Ss,vm#5I @@Gs,vm##, ~A10!

which for m5y follows for r n5x from Eqs.~14! and ~17!.
According to Eq.~24!, this impliesC2@vm#50, i.e.,C@vm#
5C1@vm#.

From the cyclic invariance of the trace, one has furthe

Tr O1I @O2#5Tr O2I @O1#. ~A11!

Combining this with Eq.~A9!, one derives

Tr Gs8~E8!~$Ss~E!,vm%2I @$Gs~E!,vm%#!

52Tr Gs~E!~$Ss8~E8!,vm%2I @$Gs8~E8!,vm%#!,

~A12!

and, with arguments similar to those leading to Eq.~A9! but
including second derivatives with respect to the compone
of R,

Tr@Gs8~E8!,vn#~$Ss~E!,vm%2I @$Gs~E!,vm%#!

5Tr@Gs~E!,vn#~$Ss8~E8!,vm%2I @$Gs8~E8!,vm%#!.

~A13!

Using this forvn5vx , we obtain with Eq.~A7! finally
1-10
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Tr
]Gs8~E8!

]py
~$Ss~E!,vm%2I @$Gs~E!,vm%#!

5Tr
]Gs~E!

]py
~$Ss8~E8!,vm%2I @$Gs8~E8!,vm%#!,

~A14!

where we have evaluated derivatives with respect toX ex-
plicitly in the Landau representation under due considera
of the symmetry properties~16! of the SCBA kernel.

3. Hall conductivities

Arguing as for the derivation of Eq.~25! @see below Eq.
~A8!#, we may write the contribution of Eq.~5! to sxy as

fxy
(1)~E!5Tr vxF2F̃y

122
2p

\v0
$vx ,A~E!%G . ~A15!

The contributionfxy
(2)(E) of Eq. ~6! contains the operator

Dy
s which, according to their definition~8! and the Bethe-

Salpeter equation~13!, satisfy the linear integral equation

Dm
s5Gs~Gm

s1I @Dm
s#!Gs, ~A16!

where the inhomogeneity has been written in the form

GGm
sG5

dG

dE
G21Fm

ss2Fm
ssG21

dG

dE
. ~A17!

In Eq. ~A17! we have omitted the energy argument and
superscripts of the Green operators.

We now show that, for the calculation offxy
(2)(E), we do

not need to solve Eq.~A16! for Dy
s . To this end we derive

from Eq. ~1!

i\v0vx5@vy ,H#5@~Gs!211Ss,vy# ~A18!

and write~again suppressing the superscriptss)

i\v0Tr vxDy5Tr$@G21,vy#G~Gy1I @Dy# !G1@S,vy#Dy%

5Tr$@vy ,G#~Gy1I @Dy# !1@S,vy#Dy%.

~A19!

The last two terms in Eq.~A19! cancel because of Eqs.~A11!
and ~A10!. Consequently,

i\v0Tr vxDy
s5Tr@vy ,Gs#Gy

s5Tr vy@Gs,Gy
s#,

~A20!

and fxy
(2)(E) can be expressed completely in terms of t

Green operator.
Next we show thatsxy can be written in the form of Eq

~29!. To do so we use Eqs.~A17! and ~A6! together with
dG/dE52G(12dS/dE)G and

vy5
i

\
@H,y#5

]H

]py
52

]G21

]py
2

]S

]py
, ~A21!

which can also be written as
15532
n

e

]G

]py
52G

]G21

]py
G5GS vy1

]S

]py
DG, ~A22!

to obtain

@G,Gy#52
]G

]py
1H vy ,

dG

dEJ 1H dG

dE
,

]S

]py
J 2H ]G

]py
,
dS

dEJ .

~A23!

The contribution of the first term on the right-hand side
fxy

(2)(E) is, according to Eq.~A7! and the arguments on th
explicit X dependence of the factors leading to Eq.~25!,

2 i

\v0
Tr vy2

]

]py
~G22G1!

5
24p i

~\v0!2
Tr vy@A~E!,vx#52

4p

m\v0
Tr A~E!.

The corresponding contribution to the Hall conductivity
sxy

(0)52e2nel /(mv0). The contribution of the second term
in Eq. ~A23! to fxy

(2)(E) is

2 i

\v0
Tr vyH vy ,

d~G22G1!

dE J 5
d

dE

4p

\v0
Tr vy

2A~E!.

~A24!

The contribution due to the last two terms of Eq.~A23! can
also be written as a total energy derivative

2 i

\v0
Tr vyS 2H ]G

]py
,
dS

dEJ 1H dG

dE
,

]S

]py
J D

5
i

\v0
Tr

]G

]py
S H dS

dE
,vyJ 2I F H dG

dE
,vyJ G D

5
d

dE

i

2\v0
Tr

]G

]py
~$S,vy%2I @$G,vy%#!.

To see the last equality, we take the derivative of iden
~A14! with respect toE8 and then putE85E ~and s8
5s). Collecting terms we obtain Eq.~31!, where we again
used identity~A14!, but now withE85E ands852s.

The evaluation ofsyx follows similar lines. First we use
Eqs.~A16! and ~A21! to eliminateDx

s ,

Tr vyDx
s5Tr

]Gs

]py
Gx

s . ~A25!

With Eqs.~18! and ~A22! we then obtain

Tr vyDx5
i

\v0
TrF ]G

]py
S 2vy2H dS

dE
,vyJ D

1S vy1
]S

]py
D H dG

dE
,vyJ G , ~A26!

and proceed as above to derive Eq.~32!.
1-11
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APPENDIX B: HDA RESULTS

1. Ward identities

Since within the HDAG is diagonal, the off-diagonal par
of Eq. ~A7! reduces to

Fy
off;ss52

i

\v0
@Gs,vx#, ~B1!

similar to Eq.~18!, whereas the diagonal part yields Eq.~52!.
To prove that both Eqs.~18! and ~B1! hold within the

HDA, we have to show~for n5x,y)

@Ss~E!,vn#5I @@Gs~E!,vn##. ~B2!

Inserting the explicit velocity matrix elements, Eq.~35!, and
performing a Fourier transformation ofSn

s(E;X) and
Gn

s(E;X) with respect toX, we find that, in order to prove
Eq. ~B2! for bothn5x andn5y, it is sufficient to show that

@Sn
l;s~E!2Sm

l;s~E!#A2n111edm,n1e

5(
k,l

K̃k,l
l;n,m@Gk

l;s~E!2Gl
l;s~E!#A2k111ed l ,k1e

~B3!

holds fore561, where the symbols with superscriptl de-
note the Fourier transforms of the actual quantity. With D
on’s equation in the HDA,

Sn
l;s~E!5(

k
K̃k,k

l;n,nGk
l;s~E!, ~B4!

and a relabeling in the last sum of Eq.~B3!, we find that Eq.
~B3! holds if the kernel of the HDA satisfies the consisten
relation

A2n111e~K̃k,k
l;n,n2K̃k,k

l;n1e,n1e!

5A2k111eK̃k,k1e
l;n,n1e2A2k112eK̃k2e,k

l;n,n1e .

~B5!

The validity of this equation is seen with the definition of t
HDA kernel, Eq.~46!, and the recursion relations of the La
guerre polynomials.24

To demonstrate that the diagonal Ward identity~52! holds
within our HDA, we express the left-hand side by the Beth
Salpeter equation~48! and calculate the right-hand side fro
Dyson’s equation. Then, Eq.~52! is seen to be equivalen
with the derivative of Eq.~15! with respect toX.

2. Hall conductivity in HDA

Sincevx andFx
ss8 are off-diagonal, only the off-diagona

parts ofvy andFy
ss8 contribute to the Hall conductivities in

Eqs. ~31! and ~32! . In the HDA the second term on th
right-hand side of Eq.~31! vanishes, sinceA(E) is diagonal
15532
-

-

andvx
22vy

25(v1
2 1v2

2 )/2 has no diagonal elements. Due
Eqs.~21! and~28!, where the higher order term}dV/dx has
to be neglected in the HDA, and in view of Eqs.~35! and
~46!, we can write

F̃x
125

i

2
~F12F2!, F̃y

125
1

2
~F11F2!, ~B6!

where the auxiliary operatorsF6 satisfy

F62G1I @F6#G25G1C1@v6#G2 ~B7!

and have the same matrix structure as the velocity opera
v6 . As a consequence, we find

Tr vxF̃y
125

1

4
Tr~v1F21v2F1!52Tr vyF̃x

12 , ~B8!

and therefore, with Eqs.~31! and ~32!,

syx
sc~E!52sxy

sc~E!

5
e2\

2pS
TrS vyF̃x

122
i

\v0
2 ~G2vx2vxG

1!C1@vy
off# D .

~B9!

To obtain the last line from Eq.~32!, we have replaced
](G21G1)/]py with its off-diagonal part in the HDA,
2 i @(G21G1),vx#/(\v0) @see Eqs.~A7! and ~B1!#, to
which we have added2 i @(G22G1),vx#/(\v0) without
changing the value of the trace, since in the HDA

Tr$A,vx%C1@vy
off#5

1

8i\
Tr@v1 ,v2#@A,G#50. ~B10!

The trace of the last term in Eq.~B9! can be evaluated as

2
i

\v0
2
Tr G2~@H,vx#1S2vx2vxS

1!G1C1@vy
off#

52
i

\v0
Tr~@H,vx#1S2vx2vxS

1!

3~G1I @ F̃x
12#G22F̃x

12!

52
i

\v0
Tr@$I @G2vx2vxG

1#2~S2vx2vxS
1!%

3F̃x
122@H,vx#F̃x

12#.

In the second version of the equation we have used Eq.~21!.
The last term cancelsvyF̃x

12 in Eq. ~B9!, since in the equa-
tion @vx ,H#52 i\v0vy2 i (\/m)dV(x)/dx @see Eq.~1!# we
have to neglect the term includingdV(x)/dx in our lowest
order HDA . The term in the curly brackets equa
2C1@vx#1C2@vx#52C1@vx#, so that we finally obtain
Eq. ~55!.
1-12
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