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Anisotropic scattering in quantum magnetotransport calculations for two-dimensional electron
systems in a one-dimensional superlattice
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Based on the self-consistent Born approximation for the evaluation of Kubo formulas, we develop and
evaluate a consistent approximation scheme that allows us to calculate the magnetoconductivity tensor for a
high-mobility two-dimensional electron system, subjected to a weak periodic potential modulation in one
lateral direction, under due consideration of anisotropic impurity scattering. We demonstrate that our approach
avoids the inconsistencies observed with previous calculations based-oraber approximation for the
self-energy operator, and that it is able to reproduce, with reasonable assumptions for the finite-range impurity
potentials, nearly quantitatively the experimental results for all components of the magnetoresistance tensor in
the regime of moderate and strong magnetic fields, which are characterized by commensurability and
Shubnikov—de Haas oscillations, respectively.
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[. INTRODUCTION which describes correctly the impurity-scattering processes
y purity gp
in the 2DES. Our approximation scheme assumes a weak
The importance of anisotropic scattering for a quantitativePotential modulation and a high mobility, i.e., small collision
understanding of magnetotransport experiments in moduRroadening of the Landau levels. In contrast to previous
lated two-dimensional electron systerf@DES'§ was re- work,”” we present also a careful consistent treatment of the
cently emphasized in classical magnetotranspor{_'a” conductivity oy, which allows us to relate the different

calculations-2 To include this anisotropy, one has to go con- 2PPEarances ofo-versusB traces measured on Si-
' . Py, . 9 MOSFET's and onfAlGa)As heterostructures to the different
ceptually beyond the assumption of a constaet, energy-

properties of the relevant impurity-scattering in both materi-

and magnetic-field independgrtransport relaxation time, ais. Some preliminary results of our approach have already
that had been the basis of early quantiand classicdical-  peen published elsewhéfte.

culations, which could explain the observed commensurabil- The paper is organized as follows. In Sec. Il we briefly
ity oscillations qualitatively. However, because of the nu-recall the basic results of th@&ubo-type linear response
merical difficulties, quantum calculations including theory within the SCBA as applied to magnetotransport in a
anisotropic impurity scattering within the framework of the laterally modulated 2DES. In Sec. IIl we formulate our basic
self-consistent Born approximatiqSCBA) were attempted ~@Pproximation and exploit its consequences for the conduc-
only recently’ whereas most approaches used the so-calleVity tensor. Typical results of our numerical calculations are
c-number approximatiofCNA),®7 which was introduced by presented in Sec. IV A, and an explicit comparison with ex-

Zhang and GerhardfsUnfortunately, this approximation, gg::\r?a?gtnlsogfjl\tlﬁg QCSB?QZrEqup@EﬁS&dK])A V;ipsllc:ﬁt(t::ethe
Wh'Ch negleCts. vertex: corrections to the transport Coeﬁcl'Ward identities for the calculation of the SCBA conductivi-
cients, is questionable since it violates the continuity equag.¢ (Appendix A2 and show that the quantum correction to
tion for the modulated system, as is known from the COI€ihe Hall conductivity is a Fermi edge quantibpppendix
sponding classical relaxation time approximatton. A3). In Appendix B we specify these results to our weak-
Furthermore, it can describe only isotropic scattering, leady,qdulation approximation.

ing to a coarse, unsatisfactory picture of the experimental

data. On the other hand, the CNA allows an intuitive under- II. THEORETICAL FRAMEWORK

standing of the experiment in terms of a band and a scatter-

ing conductivity® which is appropriate for small and moder- ~ ©Our aim is to extend the approach of Ref. 9, which treats
ate values of the magnetic fieB| where, at least for short- nomogeneous systems, to the case of a noninteracting 2DES

range impurity scattering, the vertex corrections areén @ weak modulation potential, €.9/(x)=V,oCosKx, with
relatively smalf* perioda=2#/K. We will t_ake into account the modulation

To overcome the problems with the CNA, one can try toeffects to lowest order in the small parameds/h wo,
solve the full SCBA. Because of the complexity of the re-Wherewo=eBy/mis the cyclotron frequency in the applied
quired numerics, this has been possible only for a very limPerpendicular magnetic field,. But before we enter the
ited and unrealistic parameter rarg®n the other hand, due corresppndmg perturbation expansion, we briefly recall the
to the complicated nature of the self-consistent Dyson an&nderlying Kubo-type magnetotransport theory.
Bethe-Salpeter equations, which govern the equilibrium and
the transport regime, respectively, the results are hard to in-
terpret. We, therefore, do not try to solve the full SCBA, but We describe the “clean” system without impurities by the
improve the CNA to achieve a consistent approximationHamiltonian

A. Green and vertex operators
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H=(m/i2v?+V(x), v=[p+eA(x)]/m, (1) B. SCBA

with the vector potentiah(x) = (0, xBy), so that the Hamil- We evaluqte ir_npurity averages yvithin the self—gonsistent
tonian has translational invariance yrdirection andp, is a Born approximation(SCBA), the simplest approximation
constant of motion. To describe the effect of random impu-Scheéme that allows to satisfy the Ward identities. For sim-
rity scattering, we first introduce a random configuration ofPliCity we assume a potential landscaggr) ==;u(r —R;)
impurities defining the potential energ(r) for a conduc- ©f only one type of impuritiesi(r) located at positions; .

tion electron, and express equilibrium and transport quanti] Nén the SCBA expression for the self-energy is

ties in terms of the Green operat6t™(E)=(E—H-V, . +

+i0) 1. Using conventional perturbation expansion with re- 2EE)=IGTE)] 1D
spect toV;, we carry out the average over all possible im-

purity configurations term by term and resum the perturba- |[o]:nif dRu(r—R)Ou(r —R), (12)
tion series to obtain Dyson’s equation for the averaged Green

function and the Bethe-Salpeter equation for the transpokyith n, the impurity density andd an arbitrary operator.

quantities. ) ) ) _ Thus Eg.(2) becomes the nonlinear Dyson equation from
The effect of random impurity scattering on equilibrium which self-energy and Green operator must be calculated. If
quantities is given by the averaged Green operator these are known, one has to calculate the vertex operators
+ + + _ from the linear Bethe-Salpeter equations
G*(E)=(G(E)=[E-H-3*(E)]"Y, (2 peter e
which usually is expressed in terms of the self-energy opera- F‘V"" =G%(E){v,+I [F‘V""]}G"'(E’), (13
tor >~ (E). The components of the static conductivity tensor )
are calculated from the vertex operators where the energy arguments Bf” (E,E’) are suppressed.
o' ) " o e The vertex correctionE[F‘V”/] do in general not vanish, and
FU7 (E,E)=(G7(E)v,G" (E"), 3 the vertex operatoF; ~ can in general not be expressed in
with o,¢’ e {+,—1, according t0 terms of the Green operatd®" (E). With Egs.(2) and(13),
the Ward identitieg10) read
e’t —df @)
=7 —c| dE g ¢u(B)+H(E)9L(E) (4 [29r,]1=1[[Gr,]]. (14)
¢§L1V)( E)=Tr vM(ZF: - F;’ +_ Foo), (5) 1. Landau representation
@) B . As a convenient basis for numerical calculations, we
¢u(BE)=Trv,(D, -D,), (6)  choose the Landau badis,X) of eigenstates of the homo-

where v, e {x,y}, v,=(p,+eA,)/m is a component of 9JENEOUS system, wherecounts the Landau levels with en-
! AR iz " : _ “ : _
the velocity operatorS the area of the 2DES, arfdE) the ~ ©rdies ex=fiwo(n+1/2) and the “center coordinateX =

Fermi function. Here we use the notation —Py/(mwy) is given by the eigenvalugs, of the canonical
momentum. The conservation of this momentum is an imme-
poo’ — Fw'(E E) (7) diate consequence of the translation invarianceg direction
Y v T and holds also for the impurity averaged andxidirection
D7=(dlJE—alJE")F 7 (E,E")|e_p: . ®) modulated systems to be considered in the following.

Due to the translation invariance iry direction,
It can be shown easilfcyclic invariance of the tragehat the  both Green function and self-energy must have Landau
diagonal termsdaff,i(E) vanish, so that contributions to the matrix elements of the form (n,X|G*(E)|n’,X")
diagonal components of the conductivity come only from the= 5x',fo,nr(EJX)- Since the energy eigenvalues of the

Fermi edge Hamiltonian(1), E,(X)=E,(X+a), are periodi¢! one can
. employ methods as in Ref. 9 to show that also the matrix
UW:J dEl — ((jj_lfz 0 uu(E). (9 elementi;rf,n,(E;X) and the corresponding matrix elements

- of self-energy and vertex operators are periodiX iith the

In evaluating the impurity-averaged Green and vertex operal€roda of the modulation inx direction. Using Fourier ex-
tors, certain concistency relatioiéVard identities”) have ~ Pansions ok - (E;X) andG ., (E;X), we show in Appen-
to be obeyed, which can be derived from the equation oflix Al that Eq.(11) can be written in the convolution form
continuity'® The simplest of these reads

+ adx, +
i Er{m(E:X)=; J()?KE:F‘(X—X’)G@(E:X’),
FV _%[G (E)arv]v (10) (15)
where r, is a component of the position operator, where the kernel obtained from the SCBA definitid®) is
i[H,r,]J=Av,, and follows from[G?,r, ]=G°[H,r 1G” also periodic with respect to its argument. It has the Fourier
=—ihG%,G°. expansion and the symmetry properties
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has a commutator structure. The squtiﬁ;‘j‘(E) of Eq.
(21) completely determines, .
(16) To evaluate the contribution of the Ward identitiesotg,

) ) ] ] we cannot use the same type of arguments, as we demon-
This kernel also determines the vertex corrections, i.e., thgiate in Appendix A2. Nevertheless, we can derive

integral operator, in the Bethe-Salpeter equatitd).

KR =2 KM MeM =K = Kin(=X).

i
2. Conductivities in SCBA Tro Fy7=Troy| — h_wo[Gg(E)'vX] (25

Due to the Ward identitie§10) there is no need to solve
the Bethe-Salpeter equations f6f”. However, one has to
evaluate the Ward identities with some care, since the con- _ i
tributions of theF 7 to the diagonal components of the con- Fy =Fy —+—(G v,—v,G7), (26)
ductivity tensor diverge and must cancel corresponding con-
tributions toF ;| ~ .° The evaluation is easiest for,,. Since  similar to Eq.(19), we get
GY(E) is diagonal in the center coordinaXeand, according
to Eq. (1), the operator identity

as a weaker analog of E¢L8). Then with the ansatz

e’h
ay(E)= _ZwSTr

- 7
vyFy —ﬁ—wo{vx,vy}A. (27)

=x=X+v,/ 1
Fx=X vyl@o @n Introducing Eq.(26) into Eq. (13) and exploiting the equa-
holds, we obtain from Eq.10) tion [vy,H]=—ihwe,—i(A/M)dV(x)/dx [see Eq.(1)],
we now obtain

Clv,] 1 dVv

oo _m_w(,&“[ﬁ;_])(s_’ (28)

i
Fx :ﬁ_wo[G (B),vy]. (18

F +-_ G+<
Following Ref. 9, we make the ansdtzuppressing the en-
ergy arguments where the explicit appearance of the modulation potential
destroys the symmetry between E@&1) and (28).
We can further showAppendix A3 that the off-diagonal

Loy _

Fo=F 4+ ﬁwO(GH’y_UyG ) (19 components of the conductivity tensor can be written as

and obtain 0 fl «
; 0'#,,—0'/“/4‘ dE ~dE O'#V(E), (29
E)= o ﬁT Brog A 20 h
Tl B) = 5—5Tr 0y hwo{vx,vy} , (200 where
. . . 0)_ _ (0)_ a2

with the notationgv, vy} =vyv,+v,vy for the anticommu- Oyx =~ Oxy = €Ng/ (Mwy) (30)

tator andA(E) =[G (E)—G" (E)]/(2i) for the spectral s the Hall conductivity of a homogenous 2DES of density
operator. Inserting the ansaf9) into Eq. (13), we obtain  _ in the absence of impurity scattering. The contribution

the integral equation due to impurity scattering effects can be writtesee Appen-
~ - dix A3)
Fi =G (=Clvyllwo+I[F{ ]G, (21
2
eh ~ T
where the inhomogeneous term is now given in terms of the U§§(E)= 4_778Tr( 2vXF;’ — m(vi—vi)A(E)
0

“generalized collision operator”

. d(G +G") Cl[vy]) (31)
I J—
C[¢]=%(2+¢—¢27—|[G+¢—¢Gf])- (22) IPy @o
and
With the notatior> ~—3 *=iT, this collision operator is the , N
sum of two terms€C=C;+C,, the first of which s, €T ~,_ dG +G") Cqlvy]
a'yX(E)—47TSTr 2vF, + o, oy |
(32)

1 T
C1[¢>]=E(F¢+¢F)—%|[Aq§+ PA], (23) _ N .
Note that, in addition to the second term on the right-hand
resembles the collision operator of the Boltzmann equatiofide Of Eq.(31), there is an asymmetry in the integral equa-
and reduces in the simplest approximation to a relaxatiotions (28) and(21) definingF; ~ andF; ~, respectively. We
rate? while the second will not further investigate the relation betweetj;(E) and
_ oyw(E) in the general SCBA, since we will introduce an
I _ _ additional approximation for the numerical calculations that
_ + _ +
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3. Homogeneous 2DES All this is no longer true for anisotropic scattering, and, in
In the homogeneous system the Green operatoge”eral' al.f,o not for periodically mpdulgted systems, even if
G- (E:X)=8, G- (E) is diagonal in the Landau basis, the scattering _potentlals aré-_funchon-llke. Moreover, in
prdvided the ifnpurity potentials have rotational symmetry,general' there is no shared eigensysteriioG, and=..
and the matrix elements of both and the vertex operators

F;”' are independent of.%'°As a consequence, the SCBA
kernel (16) reduces to A. Motivation

Ill. H-DIAGONAL APPROXIMATION (HDA)

KDMX)=KA=0nmye s 33 Compared With the homogeneous Landgu §ystem, the
(X =K n=m,k=l 33 hodulation potentiaV/(x) introduces as a qualitatively new
see EQ.(A3). Owing to these selection rules, E(L5) re-  phenomenon current carrying energy eigenstdtes),

duces to H|n,X)=E,(X)|n,X), with a finite group velocity in the
direction
* — o;n,n~=*
30 (B)=2 KLi"Gy (B, (34) Cloofnx)— - L EX) w0
(n, Uy n1 )_ m(l)o dX ’

i.e., the self-energy becomes diagonal and independexit of
and the matrix elements of the vertex operators in the Lanwhile (n,X|v,|n,X)=0 still holds, as in the unmodulated
dau representation have the same structure as the velocigystem[We denote the eigenstates of the modulated system

operators by |n,X) to distinguish them from the Landau statesX),
, with (n,X|v ,|n,X)=0 for u=x and w=y.] In high-
(n,Xv +|m,X)y=(n,X|(v,*ivy)|m,X) mobility systMems, this unbounded motion in energy eigen-

- tates leads to a “band conductivity” contributfoto o
= *ilowo\2M+ 1518, ey, (35 A : ductivity” 11D Iy
0o nmes (39 that increases with decreasing impurity-scattering (atst

wherel,= JA/(mw,) is the magnetic length. These matrix as the conductivity in the absence of a magnetic fjeld
elements are purely off-diagonal with respect to the Landawhereas the usual diffusive magnetoconductivitycatter-
quantum numbers and m, with nonzero values only be- ing conductivity”) is nonzero only because of impurity scat-
tween adjacent Landau levels. This simple matrix structuréering and decreases with decreasing scattering® rete. a
simplifies the solution of the Bethe-Salpeter equation considrough estimate, we may neglect vertex corrections to obtain
erably. Since the anticommutats, v} = (v —v2)/(2i)

and the difference;f—v)2,=(v2++v2,)/2 have no diagonal oy (E)
Landau matrix elements, the corresponding terms in Egs. v
(20), (27), and (31) vanish. Thex andy directions are now
physically equivalent, and one obtains

me’h
~—5 1T 0y A(B)u,A(E). (41)
Furthermore, we may assume that the spectral operator is
dominated by its diagonal elements, which we estimate as
i ) o2 ~ AL(E;X)=~ (T /2m)I[(E—E,) 2+ (I'/2)?] with |E,
oy (E)=0y(E)= 2—STr vy Fy " (E). (36) —fwo(n+1/2)|<hiwy and ', <%w,y, as is reasonable for
& weakly modulated high-mobility systems. Then, a typical
One can also show that the homogeneous system obeys @@ntribution to the scattering conductivity is of the form
the SCBA
[(n,X]oyIn=1.X)[2A0(E; X)An-1(E;X)
et Cluy)~. . B . .
af,i(E): _gii(E): 2_7_rs'|'rw_0"|:;r (E). (37) with E,~E=Eg, the Fermi energy. Here we may estimate
A (E~E; X)=~T .1 /[27(hwg)?].
For isotropic scattering, i.ed-potential impuritiess, be- =1l niX)= Loz /[2m(fioo)]
comes also independent of the Landau quantum numper On the other hand, the corresponding contribution to the

which leads to band conductivity is
. nu . [(n,X[vy[n,X)An(E ;X) 1
SH(E)=——3 > Gi(E), 38 ,
2mlg K Since[An(Eg; X)]°~AL(Eg; X)2[ #I",,], the product of the

. . spectral  function factors is now b a factor
where a high-energy cutoff needs to be introduced to mak b y

h * In thi th " i P (hawg)?l (I y[ 1) ~4(wor)? larger. Since for a mobility
e sum convergent. In this case the vertex corrections vanish_ 1 5 12y < the productwgr—B=10 becomes large

and Eq.(13) reduces td=7” (E{E'):G”(E)UVG_‘T’.(E)- The  for B>0.1 T, the band conductivity can be very important
relation between Hall and diagonal conductivity, E87),  even for a weak modulatiovi(x) = V,cosKX, where accord-

simplifies in this case to ing to Egs.(40) and (35) the ratio of diagonal and off-
diagonal velocity matrix elements can be estimated as
So(E)— — o5 (E)— LE) _hom e 39 [KVo/(Mwo)l/[lgwpy2n T 1]~KR Vo/2E¢,  with R
oE)=—0(E)=——o¥NE). (39 . j
Wo =ve/wq the cyclotron radius at the Fermi energy.
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Since the electrostatic modulation does not change ththe kernel in theH representation by the corresponding Lan-
velocity operators, their matrix elements in the Landau repdau matrix elements. This means that we neglect modulation
resentation are also not changed. As a consequence, the bagftects on the “collision operator” describing the random
conductivity does not show up explicitly in the formalism of impurity scattering. A similar approximation was made in the
Sec. Il B. To clearly separate the band conductivity from theclassical calculationswhere the collision operator of Bolt-
scattering conductivity, we work in the following in the en- zmann’s equation was taken as that of the unmodulated sys-
ergy eigenbasign,X) of the modulated system with the tem. Next we note that, even if the Green operator is diago-
Hamiltonian of Eq.(1), the “H representation.” However, nal, the right-hand side of Eq15) still has off-diagonal
we will consider only weak modulations, which we treat in entries. Requiring the self-energy to be diagonal, therefore
lowest order perturbation expansion starting from the Landameans to neglect certain parts of the kernel. We make this

basis of the unperturbed homogeneous system. neglection manifest by imposing selection rules similar to
those in the homogeneous system, B8), and we replace
B. Basic approximation Ke"(X) with (see Appendix AL
Our simplified approach is based on tHerepresentation
which allows to decompose the velocity operator RE,Hm(X): S mk_ 1 KEM(X)
vy=2 [N, X)(n,X[vy|m,X)(m,X| =09+ (42) inkx_Mi [ 2
y m,n Y y y :5n7m,kflg e 277'2 0 dQ|uq|
0

into a H-diagonal partvy® defined by @,X[vJn,X)
=(n,X|vyIn,X) and the remaining off-diagonal past)" . X Tok(Q) T m(Q)Io(AKIpy2Q).  (46)
The approximation scheme basically consists of three steps.

First, we assume that, for weak enough modulation, onijHowever, in contrast to the homogeneous system, we con-
the diagonal matrix elements (X|G|n,X) and (0, X|X|n,X)  sider also the terms with#0.
contribute essentially to the expectation values we want to Within this approximation scheme the vertex operators
calculate. Therefore, we approximate the self-energy to bdefined in Eq(7) have the same matrix structure as the cor-
diagonal in the eigenbasis of the Hamiltonigh Then it  responding components of the velocity operator. As a conse-

follows from Eq.(2) thatG is diagonal, too guence, band and scattering conductivities can still be distin-
guished and the Ward identities are fulfillésee Appendix
(n,X|G7(E)[m,X)= 8, mGp(E;X). (43)  B1). We call this approximation scheme thidiagonal ap-
This is exact for vanishing modulation and expected to be é)rOX|mat|on(HDA).

very good approximation for weak modulation. In view of
Ward identities such as E@18), diagonality ofG requires C. Conductivity
that the vertex operators should have the same matrix struc-

; ; : The HDA contains several restrictive approximations in
ture as the velocity operators. We come back to this require- |’ : .
ment. Y op g addition to the general SCBA formalism sketched in Sec.

Second, we use lowest order perturbation theory, to eXI_I B. Therefore, we have to make sure that the relevant Ward

press matrix elements in thé representation by those of the identities rer_nain satisfied \.Nith the modified ker#f). The
Landau representation. Thus, we approximate the energiF"€Nergy is now determined by
spectrum byE,(X) =(n,X|H|n,X),

adX'_
En(X)= €0+ VoTnn(15K?/2)cOg KX), (44 SO(E;X)=2, f ?K{:;,”m(x—x’)eg'n(E;X’), (47)
m 0
with 7, , defined in Eq(A4), and the energy eigenstates by

(m,X|VocosKx|n,X) with Gy (E; X) =1[E—E(X)—37(E;X)] (for o= *).
InX)=[nX)+ > P Im,X), The velocity matrix elements, which we denote by
mEm noom (45) v,nm(X)=(n,X|v,/m,X), are taken in leading order of the
modulation, which means zeroth order for the off-diagonal
but we keep the terms of first orderV\y only if the terms of  elements, being thus identical with the Landau matrix ele-
zeroth order vanish. To be specific, we calculate the diagonahents, and first order for the diagonal matrix elements. Be-
matrix elementsvy., n(X)=(nX|v,|nX) from Eq. (45) to  cause of Eq(46) and the diagonality of the Green operator,
first order inVq, obtaining Eq(40) with E,(X) given by Eq.  the Bethe-Salpeter equation transfers the matrix structure of
(44). Forvgﬁ, vy, G, and3 we use Eq(45) to zeroth order the velocity operator onto the vertex operator and the contri-
in Vo to replace the matrix elements in therepresentation ~bution ofv,., ,(X) to the conductivity can be separated from
by the corresponding Landau matrix eIememz@ffn'm the contribution of the off-diagonal elements. Following Ref.
=<n,X|vy|m,X), vx;n'm:<n,x|vx|m,x>, etc. 6, we call them band and scattering conductivitie%, and
In the third and last step we approximate the SCBA ker-o5. respectively.

nel. First, we use Eq45) to replace the matrix elements of = The Bethe-Salpeter equation E43) now reads
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The Egs.(31) and (32) for the Hall conductivities also
U yinm(X) simplify in the HDA. As we show in Appendix B2, they can
be combined to

For (E:X)=Gy

v,

a ’
+2> f dTXRE:{WX—X')F‘;‘Li(E;x') Gy, e?h .
k1 Jo _27TwOSTr Cilug]Fy . (59
(48)
) In summary, to calculate within the HDA all components of
whereF 7 (E;X) denote the approximated matrix elementsthe conductivity tensor according to Eq8) and (29), one
of the vertex operators. has to solve in addition to the nonlinear Dyson equation for
For the off-diagonal contributions, the derivation of the the (diagonal Green operator two linear integral equations,

Ward identities is sketched in Appendix B. The diagonalnamely, Eq.(21) for |”:;r— and the diagonal part of E@48)
components of the conductivity tensor are given by B28.  for F* ~ (E;X). Of course, all results obtained within the
and(27), but sinceA(E) is diagonal, the contributions of the Hpa ’pecome exactwithin the SCBA in the limit of an
anticommutator terms vanish. The vertex operators are deteﬂ'nmodulated, homogeneous 2DES.

mined by Egs(21) and(28), however, the integral operators
are given by the reduced kernd) and, in our lowest order
approximation, the termcdV/dx in Eqg. (28) is neglected.
Due to the explicit form of the Landau matrix elements, Eq. A. Characteristic examples
(35), and the properties of the linear integral equations one

' . L For numerical calculations we use the material parameters
finds that the scattering conductivities in the HDA are equal, X ) . .
9 q of GaAs (m=0.0671n,) and impurity potentials of Gaussian

IV. NUMERICAL RESULTS

o2 _ shapé?!3
oyl E) = aji,(E) = ﬁsﬂ vy Fy (E). (49
_ Yo (g2 (56)

Thus, the longitudinal conductivities have the following u(r) 71.r2e '

structure: 0
In the limit rp— O this leads to a delta-like potential, which

Oyx= O (50) describes isotropic scattering, whereas with increasing
forward scattering becomes predominant. For a quantitative
o= oot g*y’g_ (52) comparison with experiments, we also consider a screened

Coulomb potential with Fourier components

Next, we consider the band conductivityfy. The rel-
evant Ward identity for the evaluation of the diagonal part of
vx(Fy "+F, ") is the diagonal part of EqA7). Now only
the term with theX derivative survives, since due to the
diagonality ofG the commutator term is off-diagonal, whereqqre=2/ag , andag~10 nm is the effective Bohr ra-

dius in GaAs. This is a better approximation to the potential
induced by charged donors behind a spacer of thickness

e_qlzl

Ug———, 5
%q/gme+1 57

Uq:

Fyinn(E:X)= = —— 1 Gr(E;X). (52) In the following we examine the influence of the vertex
0 corrections on the resistance of a modulated 2DES. As we
The resulting contribution to the band conductivity is have already demonstrated elsewHeesen in unmodulated
systems the vertex corrections become important in the pres-

adX dE, d(G; +G;") ence of anisotropic scattering. We were able to show that the
J — _ garland like structures in the Hall resistance, which were
o a dX dXx calculated in early papéfs’® and have been observed in
(53)  experiments on Si-MOSFET’s inversion lay&rd® but
where gs=2 accounts for spin degeneracy. Thus, the totaf'€Ve" i_n GaAs heteros_tructures, are a typical effect of short-
band conductivity is given by range !mpurlty sg:atterlng and do not occur for [ong—range
scattering potentials as those due to donors behind a spacer
oP(E) = 554 E) in typical AlGaAs heterostructures.
vy Yy In Fig. 1 we compare the density of stal@0S) at the

e?l2g
bd _ 0Ys
SobY(E)= Py ;

2429, adX . Fermi energy D(B), upper partand the resista_nce(spper
+ > > — Uynn(X)Fynn(E;X), and middle pajtfor CNA and HDA. For the resistances we
(2mlg)*n Jo @ also include HDA calculations without vertex corrections. To

(54) characterize the impurity scattering, we have in principle
three parameters, the density of impurities and strength and
where the diagonal part of the vertex operéfg)’r’ has to be range of the impurity potential. Density and strength are
calculated from the Bethe-Salpeter equatid8). combined in the “scattering strengtﬂ“ozniugm/(Zﬂzz),
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FIG. 1. (8 DOS at the Fermi energp (B) and resistivityp,,
and(b) resistivitiesp,, andp, for different approximations assum-
ing isotropic scattering withl'y;=1 ueV (ppy=11Q), and V,
=0.16 meV,a=500 nm,ny=2x 10" m~2, T=0 K. (c) Resistiv-
ities in HDA with the same values &fy, a, ng, andT, for aniso-
tropic scattering according to E¢56) with r,=20 nm and[l’,
=52 ueV, i.e.,pg~11Q (dashed lingsand for isotropic scattering

with T'y=2 peV, i.e.,pp=23Q (solid lines.

D/D,

Pyy [KQ]
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and HDA without vertex corrections differ by a factor of
about 2. Apparently the vertex corrections lower the scatter-
ing resistance significantly in the center of the Landau band,
where the dispersion is maximum. An increase of tempera-
ture smears out this dip antl &K the vertex corrections lead

to a lowering ofp,, everywhere(not only in the center

As seen in Fig. (b), the effect of vertex corrections on the
band conductivity is much more drastic. In CNA and HDA
without vertex correctionsp,, and p,, differ only margin-
ally, since the band conductivity is almost zero. But in the
full HDA, there are huge contributions of the band conduc-
tivity to p,, exceeding the scattering conductivity by a factor
of 4 at high magnetic fields. These peaks increase rapidly
with the magnetic field as they depend sensitively on the
dispersion, which is high for low Landau indices and far
away from the flat-band conditiofisat which the width of
the modulation broadened Landau bands shrinks to zero
[jn,n(ngZ/z)mo, see Eq(44)]. The peculiar shapes of the
bands are caused by the superposition of broad scattering
contributions and large, narrow peaks due to the band con-
ductivity. Again, such structures vanish rapidly with increas-
ing temperature. The dips in the Hall resistance result, after
tensor inversion, from the large values @f, .

Not only the energy dispersion but also the broadening of
the Landau bands due to scattering influences the magnitude
of the vertex corrections strongly. In the lower part of Fig. 1
the resistances are plotted for a higher scattering strdngth
(solid lines, corresponding to a larggr,. For such a line
broadening the van Hove singularities are no longer visible
in DOS andp,, . The increase of’, by a factor of 2 leads
only to a weak increase of the scattering conductivity, but the
drastic reduction op,, shows the sensitive dependences of
the band conductivity on the scattering strength. Therefore,
the difference betweep,, andp,, vanishes rapidly.

which has the dimension energy. The range determines the The anisotropy of the impurity scattering is another pa-

transport(or momentum relaxatiortime 7,

A P
_:Fof de

Tr -

2
Yq

Up

q=KkgvV2—2cose

which enters the Drude formula for the conductivigt B,
=0) of the unmodulated systemg=m/(e?r,Ny). For ex-
tremely short-range potentialg,~uy one hasi/7,=2mIy
a.nd p0=(h/ez)7TF0/E|:, W|th E|:=ne|/D0
=gm/(27h?)=2.79x 10" (meVcnf) "1 the density of

states of the 2DES in GaAs B =0. With increasing range
of the impurity potentiak/(27I" y7,) decreases rapidly. For
model (56), /(27T o7y) =0 (Kero)?] is given by modified

Bessel functiong)() =exp(—=[1o()—11(D].

(1—cose),

(58)

and D

rameter which influences the ratio pf, andp,, greatly. In

the lower part of Fig. 1 also the resistances for anisotropic
scattering withr ;=20 nm are plotteddashed lineswith the
same zero-field resistangg as in the situation of the upper
panel. For giverp, the scattering strengthiy must be cho-
sen much higher in the anisotropic case than in the isotropic
one. Consequently, the band conductivity is much smaller.
But at the same time, anisotropic scattering leads to a much
weaker increase of the scattering resistance with magnetic
field. This means, in the high magnetic field range there is
still a considerable anisotropy betwepg, and p,, for an-
isotropic scattering, as opposed to the situation we consid-
ered before, wherEy was only slightly increased buf was

held constant. In the Hall resistance the garlandlike struc-

Already in the DOS differences between the two approxi-tures vanish as in the homogenous system.
mations show up. The van Hove singularities are much less This discussion shows that even for isotropic scattering
pronounced in HDA than in CNA and the band edges arehe vertex corrections, which are neglected in the c-number
more rounded. But these subtleties are no longer visible approximation, lead to important contributions to the band
higher temperatures. On the other hand, the peak height sonductivity if the scattering rate is not too high. We now

similar in both approximations.

This is no longer true fop,,, the “scattering resistance.”
In the upper magnetic field range (ZB/T<3.4), CNA

discuss the case of anisotropic scattering in more detail as it
is important for interpreting experiments in GaAs hetero-
structures.
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B. Comparison with experimental results 120

Classical calculations can explain the commensurability
oscillationg® of p,, (also called “Weiss oscillationg”both [ oNA—
for isotropic and for anisotropic scattering. The antiphase . | an:zg::gg:g zgzgz::zg -
oscillations inpy, and the Shubnikov—de HaaSdH) oscil- _
lations, on the other hand, are of a purely quantum mechani&.
cal origin. They are dominated by the DOS, which shows &
modulation-induced amplitude oscillations owing to the os- 44|
cillatory (n andB dependentwidth of the Landau levels. As
has been discussed in detail in Ref. 6, within the CNA the 5 |
scattering conductivity, which dominatgg, , is given by the
thermal average of the square of the DOS, and exhibits the 0
commensurability oscillations to much higher temperatures
than the thermodynamic DOS. Within the HDA the relation
between scattering conductivity and DOS is not so obvious 3o |
due to the vertex corrections, but Figallshows clearly that
the oscillations op,, still follow closely those oD (B). The =
CNA, which includes these quantum effects, is however only“zg 20
in a rough qualitative agreement with experiments and has t¢*
rely on an unrealistic choice of system parameters which car
reproduce some aspects of the experiment at the price of 10}
disagreement with others. If, e.g., the damping is choser
small enough to reproduce the zero-field resistance, the
width of the Landau levels comes out too small, i.e., the 0
amplitude of the SdH oscillations comes out too ldtdfe.on
the other hand, the latter are fitted well, the zero-field resis-
tance comes out much too large. We now give an example FIG. 2. Effect of scattering anisotropfa) Resistivities for iso-
showing that a correct treatment of the vertex corrections catopic scattering in CNA and in HDA both witfi,=1.85 eV, and
yield a nearly quantitative agreement with experiment for alffor anisotropic scattering in HDA withro=15 nm and I,
oscillatory quantum effects. To do so, we compare with an— 9.2.t.5,f:.eV,fyieC|;iin? a'I'OPOZtltZ-?n- géﬁ;hicktrllineslzalcu'?ed
early experiment by D. Weisst al.[Fig. 3 of Ref. 19a), Fig. ~ "eSistiviies for Loulomb scatiering, » with =24 nm, 1 o
2 ofy Re?. 19b), an)éi Fig. 6.1 of Re?‘. 1@)] and choosg a ig'g rI?eV, ';63;’202131259‘ iemle%g4garaT/etets§rgzand(b)TI
weak modulation strengthy,=0.45 meV, in agreement . .. ..o > IR Vo= 045 MEY, a=294 am. e

. . imatd . vertical lines indicate the minima of the Weiss oscillatidfiat-
with a previous estimate based on the maximum of the ,nq conditions Thin lines: experimental results after Ref. (s@e

largest commensurability peak. The only adjustable paramgyg).
eter is the scattering anisotropy, which cannot be determined
so easily from the experiment. classical calculations for isotropic scatterihdput in dis-

In Fig. 2 the resistances for parameters similar to the eXagreement with the experimetit.
perimental situatiol? are plotted for different ranges of the Here we should comment on an apparent error in the re-
impurity potential. The solid lines in the upper panel denotesults of Ref. 6, which can not be reproduced as has been
pxx and py, in CNA. They show strong oscillations, upon asserted by several independent work&iSor the given pa-
which at higher field values SdH oscillations are superimrtameter values the oscillatory scattering conductivity ob-
posed. At the flat-band conditions,,, which is dominated tained in Ref. 6 seems too small as compared with the band
by the scattering conductivity, shows maxima as expectedconductivity. We obtain for their parameter values a result
Taking the differencep,—py, as a measure for the band similar to the CNA calculation in Fig.(@), where the oscil-
conductivity, this shows also the expected Weiss oscillationgations of the scattering conductivity are larger than those of
of opposite phase, with minima at the flat-band conditionsthe band conductivity, and lead to pronounced in-phase
But apparently the amplitude of the scattering conductivitymaxima ofp,, andpy, at the flat-band conditions.
oscillations is much larger than that of the band conductivity Including vertex corrections within a HDA calculation for
oscillations, so thap,, exhibits maxima at the flat-band con- isotropic scattering[broken lines in Fig. @)] does not
ditions, which are caused by the scattering conductivity, inchange the CNA picture qualitatively. We now consider an-
stead of the expected minima. These findings are not iisotropic scattering due to finite-range impurity potentials
agreement with the experimental observations. Also the awdotted lineg, leading to the same zero-field resistange
erage increase of the longitudinal resistances with increasinghis results in a slower increase of the resistances with the
magnetic field is much stronger for the CNA results than inmagnetic field. But at the same time the oscillation ampli-
the experiment. The amplitudes of the Weiss oscillation intudes decrease drastically. This effect is stronger for the an-
crease linearly with magnetic field, in correspondence tdiphase oscillations of the scattering conductivity than for the

Dy KO

BI[T]
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Weiss oscillations and causes the unexpected structyrg in  —(mwg) 1dE,(X)/dX up to first order inV,. On the other
to vanish. Obviously the scattering anisotropy is an imporhand, we neglect the modulation in the off-diagonal compo-
tant parameter for describing the experimental situation. nents of the velocity operators and in the collision operator
For the lower part of Fig. 2 we tried to adjust the anisot-describing random impurity scattering, i.e., we replace their
ropy to get close agreement with the experiment. Here wenatrix elements by the corresponding matrix elements in the
used the screened Coulomb potential, which leads to a ratibandau representation. To achieve consistency, we imposed
of band and scattering conductivity corresponding moreselection rules on the collision operator, similar to those
closely to the experimental findings. The calculated conducvalid in homogeneous systems.
tivities are shown by thick lines, as indicated in the legend of Our approximation scheme allows the separation of band
Fig. 2(b). Also shown are experimental restdftobtained and scattering conductivities, giving rise to a simple expla-
from holographic modulation of ah-shaped sample. The nation of Weiss and antiphase oscillations as in previous cal-
thin long-dashed line fop,, and the thin solid line fop,,  culations using ac-number approximatio(CNA) for the
are measured in that leg of the sample, where the curremsielf-energy. On the other hand, it does not suffer from the
flows parallel to the equipotentials of the modulation. Theproblems of the CNA. For the calculation of the conductivity
dotted lines fomp,, (lower oscillating ling and forp,, (upper  tensor two transport equations have to be solved, one for the
nearly straight ling are taken from the other leg where the scattering and the Hall conductivities, and another one for
current flows perpendicular to the equipotentials. From bothhe band conductivity. Furthermore, the HDA includes aniso-
the position of the SdH minima and the Hall resistivity we tropic scattering. Numerical comparisons have shown that
conclude that in this leg the electron density is about 4%he corrections due to the Ward identities give important con-
larger than in the other leg. Moreover, the oscillationggf  tributions especially to the band conductivity, and in the high
seem to be superimposed on a slowly varying, quasiparabolimagnetic field range even for isotropic scattering.
background, which is attributed by the experimentalists We showed that, with a correct treatment of small-angle
the effect of sample inhomogeneities, and is not taken intscattering, quantum mechanical transport calculations are
account in our theory. To correct for these effects, we firs@ble to reproduce the experimental results with a minimum
interpret the horizonta(B) axis as a I axis (with v the  number and realistic values of material parameters to a very
Landau level filling factoB[ T]= 14.1/) and reduce the ab- high quantitative accuracy. Contrary to classical calculations
scissa values of the dotted curves by the factor 0.96, so thaot only the Weiss oscillations ¢f,, but also the antiphase
the positions of the SdH minima coincide with thosepgf  of py, and the SdH oscillations are obtained. Furthermore,
and thep,, practically coincides with the,, trace.(Due to ~ we obtain realistic results for the Hall resistance and not the
this scaling the flat-band conditions shift to marginally lower garlandlike structures which are typical for isotropic impu-
values, by about 2% Then we tentatively subtract from the rity scattering®
scaledpy, curve the smooth backgrountp,,[ ]=2—19%
+12.5¢?, with x=B[T], and obtain the thin solid line as the ACKNOWLEDGMENTS
correctedp,, curve. Apart from a smooth quasiparabolic in-
crease at larg® values(probably still due to inhomogene-

ities), the agreement between theory and experiment is no he authors thank S. D. M. Zwerschke for help with the

very good, at least in the regime 0.kB=1 T which is CNA calculations, U. Gossmann for illuminating discussions
determined by the commensurability and the SdH oscilla; bout the calculation of the Hall conductivity in SCBA, D.

tions. The amplitudes of the Weiss oscillations decrease witfi,, . - . .
decreasingB much faster than linearly, in agreement with eISs _for prowd_mg t_he experimental data, and M. Geisler
classical calculatiort$'?*?2for anisotropic impurity scatter- for assistance with Fig.(B).
ing. The positive magnetoresistance at very siBalalues is
well understood from classical calculatioh@ The garland- APPENDIX A: SCBA RESULTS
like structures in the Hall resistance of previous 1. SCBA kernel
calculation$**® are suppressed by anisotropic scattering, as
in the homogenous system.

This work was supported by the Deutsche Forschungsge-
einschaft SPP 1092Quanten-Hall-Systeme), GE 306/4.

Inserting the Fourier expansion

V. SUMMARY Gm(EsX) =2 eXpliNKX) G m(E)

We have developed an approximation scheme for weakito Eq. (11) and calculating the Fourier coefficient
modulation potentials and showed that it is consistent witt® ", ,(E), we obtain with Eq.(12) for the Fourier coeffi-
Ward identities. This H-diagonal approximation(HDA) cients of the general kernel
can be summarized as follows. We work in the energy eigen-

basis|n,X) of the HamiltonianH including the modulation, Koy (NNT)

Eqg. (1), and assume that self-energy and, consequently, adX

Green operator are diagonal. In the spirit of a lowest order = => e*”KXnJ d2R(n,X|u(r—R)|n’,X")
perturbation expansion with respect to the modulation poten- oa

tial V(x)=VycosKx, we calculate energy spectrub,(X) /

and diagonal elements of the velocityn,K|v,|n,X)= x e X (m’ X’ |u(r—R)|m,X) (A1)
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n; 2 1 d
=g 2 lugle MLy (@) Ll — ), (MXIFF7In,X)= = 2o G (mX|GIn.X)

(A2)

i
where = JAi/Mmwy. Here we have inserted the Fourier _ﬁw0<m’x|[G [N X). (A7)

transformuq=fsdzru(r)e“q'r of the impurity potential, in-

troduced intermediate states of the fopm ,X'=—12k;), ~ Evaluating contributions of the form
and taken into account the properties of the matrix
element&® 1 vo Os fadX oo
| | STroyFy —zwlngm a (n,Xlv,lm,X)(m,X|F77n,X)
(X[ X =8 ke, 87 BT L e (@), (A8)

in order to perform the intearations over the impurit OSi_and noting that the velocity matrix elements are independent
P g purity post- ¢ X, we see that the contribution due to tHederivative in

tions R and the center coordinatés Assuming rotationally Eq. (A7) is the integral of the derivative of a periodic func-

Invariant |mpur|ty potentlalsungq, we can replace thq tion of X over a full perioda, and thus vanishes. Therefore,
sum by an |{1_Eeng1;ral ilr:nd perform its angular part to obtain for, " J,. i Eq.(25) as an analog of Eq18) and proceed as
the kernelKj =K (VM) for oy to derive Eq.(27).

Several other useful identities follow directly from the

xinm_ -k —fl—m M [* ’ form (12) of the SCBA integral operator. Using the identity
K "=i —zﬂlzjon|Uq| [0, ,u(r—R)]=(iA/m)au(r—R)/dR, we obtain for
° e{xy}
X Ik Q)T m( Q) Ik—1-n+m(AKlpy2Q), o u
(o _ o :__i 2 _ o__
(A3) 3% ,—1[G%,] p fd Ru(r—R)G R,
. — T o Al
(@)= "M o= mgzep -l () 0u2 v, G, (A9)
n,m Tl min(n,m) ’ . .
vnim: where we have integrated by parts with respecRfpand

(A4)  assumed that the boundary terms vanish in the limit of large

N sample area. As an immediate consequence we note the
where q=|q|=2Q/IZ and L"(Q) denotes the Laguerre identity
polynomial€* andJ,(x) the Bessel function$?3 Apparently

[37,0,]=1[[G"v,]], (A10)

which for =y follows for r ,=x from Egs.(14) and(17).
Equivalent results have been obtained in Ref. 5, Appendix AAccording to Eq.(24), this impliesC,[v,]=0, i.e.,C[v ]

=Calv,] o
From the cyclic invariance of the trace, one has further

K}i;;ln,mz I)\Yi(m,nzKr;i;];k,l ) (A5)

2. Ward and related identities in SCBA

In order to evaluate the contribution 6@”’ to oy, we Tr O41[0,]=Tr 0,I[O,]. (A11)
cannot proceed as for thecomponents, since there exists no
analog of Eq.(17) for the y component of the position op- Combining this with Eq(A9), one derives
erator. Moreover, commutators including the position opera-
tor ry=y must be handeled with great care, first since the  Tr G”'(E’)({E”(E),u#}—I[{G‘T(E),vﬂ}])
matrix elements ofy in the Landau representation are ill ) )
defined, second because naive application of the cyclic in- =—Tr G (E){27 (E"), v, —I[{G7 (E"),v .} ],
variance of the trace may lead to unjustified manipulations of (A12)
divergent sums and invalid result. To avoid such problems,
we may work in the momentum representation, whgre and, with arguments similar to those leading to Ep) but
=ifhaldp, and they component of Eq(10) reads including second derivatives with respect to the components

of R,
Fy7=dG(E)/dpy. (AB) ,
_ _ - TG (E),v, J{Z(E),v b~ H{G(E), vt

To evaluate the Landau matrix elements of this expression,

we take the derivative ofm,X|G“(E)|n,X) with respect to =T G(E),v,]({Z (E"),v,}—1[{G" (E"),v,}]).
X= —Igpy/h. Calculating the derivatives of the Landau (A13)
wave functionsy(x|n,X)/dX directly from the Hermite poly-

nomials, we obtain Using this forv ,=v,, we obtain with Eq(A7) finally
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"()

Tr———({27(E),v )~ I[{G"(E),v,}])

=Tr

{S7(ENw, —1[{G" (E"),v,}]),

(A14)

where we have evaluated derivatives with respecX tex-

&G"(E
ap

PHYSICAL REVIEW B56, 155321(2002

aG_ G&G_lG—G +62)G (A22)
apy apy Uy apy)
to obtain
or —zaG+ dG N dG 9 G dY
[ ) y]_ [?—py Uy’d_E d_E’o'?_py r?_py’d_E
(A23)

plicitly in the Landau representation under due consideration

of the symmetry propertie€l6) of the SCBA kernel.

3. Hall conductivities

Arguing as for the derivation of Eq25) [see below Eq.
(A8)], we may write the contribution of Ed5) to oy, as

¢y (E)=Tr vy 2F, AE)}|. (A15)

an
ﬁwo{vx !
The contributionqbg,)(E) of Eqg. (6) contains the operators
Dg which, according to their definitio8) and the Bethe-
Salpeter equatiofil3), satisfy the linear integral equation

=G(I'7+1[D7])G", (A16)

where the inhomogeneity has been written in the form

FO’O’G ldG

GI9G= 4G G Fg7-
T dE dE"

i (A17)

In Eq. (A17) we have omitted the energy argument and the
superscripto of the Green operators.

We now show that, for the calculation g£2)(E), we do
not need to solve E¢A16) for Dy . To this end we derive
from Eq. (1)

ihweuy=[vy,H]=[(G") *+2%v,]

and write (again suppressing the superscripls

(A18)

ihwoTr v Dy=Tr{[G ™ 1v,]G(I'y+I[Dy])G+[Z,v,]D}
=Tr{[vy,G](I'y+1[D,])+[Z,0,]Dy}.
(A19)

The last two terms in EqA19) cancel because of EQ#11)
and (A10). Consequently,

ihwgTr vXD§'=Tr[vy,G“]F§,’=Tr vy[GU.Fi,r], (420

and ¢§(§)(E) can be expressed completely in terms of the

Green operator.

Next we show thatr,, can be written in the form of Eq.
(29). To do so we use EqgAl7) and (A6) together with
dG/dE=—-G(1-dX/dE)G and

[H = dH aG‘l
Uy=ptny apy apy

which can also be written as

)
apy’

(A21)

The contribution of the first term on the right-hand side to
(2)(E) is, according to Eq(A7) and the arguments on the
epr|C|t X dependence of the factors leading to E2f),

. Ter (G -G")
—_47TiT AE)wyl=— —T 11 AE
—m roy[A( )1Ux]__m r A(E).

The corresponding contribution to the Hall conductivity is
afg)= —e’ng/(Mmwy). The contribution of the second term
in Eq. (A23) to ¢)(E) is

d 4m
dE o

_ 2
hrog Trv yA(E).

(A24)

d(G‘—G*)]

Trvy[vy, dE

The contribution due to the last two terms of E423) can
also be written as a total energy derivative
dG 93

G d3 )
~op, aE| " aE 7,

pont i 32| (32

dE de""Y
d i _ 4G
= ap, (o= IHG. D).

=i
—Tr
ha)o Uy

dE 2%

To see the last equality, we take the derivative of identity
(A14) with respect toE’ and then putE’=E (and o’
=0¢). Collecting terms we obtain E431), where we again
used identity(A14), but now withE’'=E and¢’'=—o.

The evaluation ofry, follows similar lines. First we use
Egs.(A16) and(A21) to eliminateDy,

o

Trov,DY

P
=Tr— -Ty. (A25)

y
With Egs.(18) and (A22) we then obtain
dx

(ZUV (dE

)

and proceed as above to derive E8R).

aG

Jpy
%
ap

i
TroyDy= o Tr[
wo

gl

+| vyt (A26)
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APPENDIX B: HDA RESULTS andv—v;=(v5 +v?)/2 has no diagonal elements. Due to
1. Ward identities Egs.(21) and(28), where the higher order termdV/dx has

) o o ) to be neglected in the HDA, and in view of Eq85) and
Since within the HDAG is diagonal, the off-diagonal part (46), we can write

of Eq. (A7) reduces to

: i i 1
offco_ _ ___rge =y Et-_
Fy ﬁwo[G Uxl, (B1) Fi =5(F.—F.), Fj =5(F,+F.)., (B6)

similar to Eq.(18), whereas the diagonal part yields E52).  where the auxiliary operatois. satisfy
To prove that both Egs(18) and (B1) hold within the

HDA, we have to showfor v=x,y) F.—G'I[F.]G =G"Cy[v.]G" (B7)
and have the same matrix structure as the velocity operators
[E”(E),U,,]z|[[G0(E),UV]:|. (BZ) U+. As a consequence, we find

Inserting the explicit velocity matrix elements, E§5), and
performing a Fourier transformation ok (E;X) and
G/ (E;X) with respect toX, we find that, in order to prove
Eq. (B2) for bothv=x andv=Yy, it is sufficient to show that and therefore, with Eq€31) and (32),

~ 1 [=
Tr UXF;_ZzTr(U+F_+U_F+): =Tr UyF:_ . (Bg)

[SNO(E)—SN(E) V20T 1+ €dmns e o55(E) = — 03(E)
~. . . e2f B i
=2 KiMMIGK " (B)~ G (B)]V2K+ 1+ €0y ~ 5T oFL = (G o n,G I C g .
0
(B3) (89)

holds fore=+1, where the symbols with superscriptde-  To obtain the last line from Eq(32), we have replaced
note the Fourier transforms of the actual quantity. With DyS-a(G*JrG*)/apy with its off-diagonal part in the HDA,

on’s equation in the HDA, —i[(GT+G"),v,]/(hwy) [see Egs.(A7) and (B1)], to
which we have added-i[(G™—G™),v,]/(hwy) without
SMNOEY = RQ;Q'"GQ;"(E) (B4) changing the value of the trace, since in the HDA
n " s ’
and a relabeling in the last sum of E&3), we find that Eq. of 1
(B3) holds if the kernel of the HDA satisfies the consistency T{Av,3Cylvy 1= g2 Trv v J[AT']=0. (B10)
relation

The trace of the last term in E¢B9) can be evaluated as
2n+1+ G(R)k\’;c,n_kﬁ’:&w e,n+5) i
. .. — ——Tr G ([H,v,]+3 vy—0v,2 )G Cq [0
= 2K LT RN e 2k 1 eRAN had " C (IHOd T 0 GGy

B5 i

. . L . s (85 :_I_Tr([Har]+Eivx_Ux2+)

The validity of this equation is seen with the definition of the fiwg

HDA kernel, Eq.(46), and the recursion relations of the La- PR 4o

guerre polynomialé? X(GTI[F 116G —F )

To demonstrate that the diagonal Ward identi) holds i

within our HDA, we express the left-hand side by the Bethe- =— ﬁ_Tr[{I [G vy—v,GT = (2 vy—v, 2 )}

Salpeter equatiof¥8) and calculate the right-hand side from @o

Dyson’s equation. Then, Eq52) is seen to be equivalent KB [Hoo,JE ]

with the derivative of Eq(15) with respect toX. x XA x o
In the second version of the equation we have used 2.

2. Hall conductivity in HDA The last term cancehsyT:;‘ in Eq. (B9), since in the equa-

. oo . _ tion [vy,H]=—ifiwe,—i(A/m)dV(x)/dx [see Eq(l)] we
Sincevy andF,” are off-diagonal, only the off-diagonal \3\e 1o neglect the term includirt/(x)/dx in our lowest
parts ofv, andFy” contribute to the Hall conductivities in  order HDA . The term in the curly brackets equals
Egs. (31) and (32) . In the HDA the second term on the —Cj[v,]+C,[vy]=—Cy[vy], SO that we finally obtain

right-hand side of Eq(31) vanishes, sincé(E) is diagonal Eg. (55).
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