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Decay rates ofN-electron resonant states in a double-barrier quantum dot under the influence
of electric and magnetic fields
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Resonant energies and decay rates of interacting electrons in a double-barrier quantum dot subjected to
parallel electric and magnetic fields are investigated via a complex coordinate rotation method. We show that
the decay rate increases monotonically with the electric field, but changes discontinuously with the magnetic
field. The discontinuous jumps correspond to changes in the orbital angular momentum and spin.
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Resonant tunnelings through double-barrier semicond
tor quantum dots, driven by a bias voltage, are highly se
tive to the electronic structures of the dots. Experiments c
ducted on these devices, so-called single-electron transi
~SET’s!, to date have yielded rich data,1–3 the full under-
standing of which requires a quantum-mechanical treatm
of the electron-electron~e-e! interactions and the effects o
external fields. To our knowledge, the existing theoreti
investigations of quantum dot transport properties are
based on the tunneling Hamiltonian approach.4–6 In this pa-
per, we report our first-principles calculations of the lifetim
of quasibound states~resonances! of a double-barrier con-
fined quantum dot. For convenience in calculation, the s
tem is embedded in a quantum wire, so the motion in thex-y
plane is quantized both inside and outside the quantum
However, many interesting predictions obtained by t
model should remain qualitatively valid for a quantum d
sandwiched between planar junctions as in typical exp
mental setups for SET’s. To emphasize the effects ofe-e
interactions and external fields, we consider systems
which the strengths ofe-einteractions and external fields a
comparable with the barrier heights. We demonstrate th
combination of thee-e interactions and a varying magnet
field can lead to dramatic changes in the tunneling ra
Overall, the magnetic field tends to suppress the tunnel
of interacting electrons, in agreement with the experimen
observation by Ashooriet al.7

For the calculations ofN-electron resonances (N.1), the
traditional phase-shift analysis8,9 and the complex-energ
methods10 are not applicable due to the unavailability of e
act N-body wave functions. The stabilization-diagra
approach11 is computationally too demanding, and its app
cability in the region of strong electric fields i
problematic.12 In this paper, we employ the complex coord
nate rotation~CCR! method, which emerged about 30 yea
ago and has been successfully applied to some ato
resonances.13 The original CCR method, its mathematical a
guments from the spectrum theory of operators14–16 and its
hitherto applications have relied on a complex rotation of
same angle a for all coordinates, i.e., (xj ,yj ,zj )
→(eiaxj ,eiayj ,eiazj ) ( j 51,...,N). This global rotation of
coordinates is most suitable for spherically symmetric s
tems, such as atomic systems in which the particles inte
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via the isotropic Coulumb potentials 1/r ,17 but is unsuitable
for anisotropic systems such as the quantum dots to
studied in this paper, because of its extremely slow conv
gence. Here we generalize this method and point out
the resonant states of a system can be obtained by a m
general complex coordinate rotation (xj ,yj ,zj )
→(eiax jxj ,eiay jy j ,eiaz jzj ), which allows us to avoid unnec
essary computation requirements by optimizing the para
eters$am j um5x,y,z; j 51,...,N%,18 since the wave functions
of an anisotropic system can be extended more in some
rections than in others. Under a CCR, the HamiltonianH of
a system becomes a non-Hermitian operatorH̄. For suffi-
ciently largeam j in the domain 0<am j<p/2, the spatially
extended wave functionC res of a resonant state becomes
square-integrable functionC̄ res. Hence the resonant state
and the associated energies and lifetimes can be obtaine
diagonalizing the rotated HamiltonianH̄ in a model space
spanned by discrete, square-integrable basis functions.
spatial wave functionCsc of a scattering state is rotated int
another extended functionC̄sc, the expansion of which in
terms of discrete, square-integrable basis functions would
verge. After the diagonalization, the resonant states can
identified from the spectrum$z̄1 ,z̄2 ,...,z̄n ,...% of H̄ by
implementing the stabilization conditions]z̄n /]am j50, or
by changing the number of basis functions. The comp
eigenenergyz̄n associated with a resonant state can be w
ten asz̄n5(en ,2Gn/2), in which the real parten is the reso-
nant energy,Gn is the decay rate (\/Gn gives the lifetime!.

The quantum dot model considered here has two symm
ric barriers along the transport~z! direction, sandwiching a
potential well atz50, which is parametrized as a sum of tw
Gaussian functions,

v~z!5v01e
2z2/a1

2
1v02e

2z2/a2
2
. ~1!

The parameters can be tailored to match the quantum
systems used in actual experiments. The numerical res
presented in this paper are forv015261 meV, v02
530 meV,a1512 nm, anda2530 nm, which are so chose
as to support a bound state similar to the experimental de
described in Fig. 3 of Ref. 2. The barrier height~see Fig. 1!
is of the same order as the strength ofe-e interactions in the
©2002 The American Physical Society11-1
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dot so that the tunneling rates will be significantly enhanc
by the e-e repulsions. Similar to the systems considered
Refs. 19 and 20, the confinement potential in thex-y plane,
for all z, is approximated by a parabolic potential1

2 me* v0
2r2,

with r5(x21y2)1/2. The electric~E! and magnetic~B! fields
are oriented parallel to thez direction. The single-electron
Hamiltonian separates,h(r )5h(x,y)1h(z),

h~x,y!52
1

2me*
~p1eA!21 1

2 me* v0
2r21ge* mBBŜz ,

~2!

h~z!52
\2

2me*
]2

]z2 1v~z!1eEz, ~3!

where me* is the effective mass of the electron,A5(B
3r )/2 is the vector potential of the magnetic field,g* is the
effectiveg factor,mB is the Bohr magneton. Obviouslyh(r )
describes the motion of an electron in a double-barrier qu
tum dot embedded in a quantum wire. We ignore the elec
mass difference between the dot and the barrier mater
The eigenequation of operatorh(x,y) is exactly solvable,
yielding

fnl~rY !5F 2n!

a2~n1u l u!! G
1/2

~r/a! u l uLn
~2u l u!~r2/a2!e2r2/2a2 eil w

A2p
,

~4!

enl5~2n1u l u11!\v2 l
\vc

2
1ge* mBBsz , ~5!

wherea5(\/vme* )1/2 is the effective magnetic length,vc

5eB/me* is the cyclotron frequencyv5(v0
21ve

2/4)1/2,
Ln

(2u l u) are Laguerre polynomials. The nontrivial problem is
find out the resonant states ofh(z). We diagonalize the ro-
tated Hamiltonian (eiaz) in the model space spanned by t
one-dimensional~1D! oscillator harmonics,

Fk~z!5F 1

bp1/22kk! G
1/2

Hk@~z2z0!/b#e2~z2z0!2/2b2
, ~6!

FIG. 1. Double-barrier potential along the tunneling directio
The horizontal lines give the two lowest states supported by
potential, the ground state is a bound state, the first excited sta
a resonant state.
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where b5(\/me* V)1/2, Hk are Hermite polynomials. The
equilibrium point z0 of the oscillator is determined by
d@v(z)1eEz#/dz50, and the oscillator frequency by

V5H 1

me*
d2@v~z!1eEz#

dz2 J
z5z0

1/2

.

We estimate the accuracy of the calculated complex eigen
ergies by varying the parametera and the number of basi
functions used. For example, using 51 harmonics withuku
<25 and setting the electric field toE520 kV/cm yield a
ground- ~resonant! state eigenenergyz̄15(223.467251,
20.56897935) meV, which remains unchanged~up to eight
significant digits of both its real and imaginary parts! with a
varied in the range ofp/60<a<p/4. When the number of
basis functions is further increased, the calculated comp
eigenenergies of resonant states become even less sen
to the variation ofa. If we takea to be the optimum value
aop'p/8, the number of basis functions can be reduced
31, while maintaining the same accuracy. In our calculatio
althoughaop is found to vary withE, there is no noticeable
deterioration of convergence due to increasingE. For a
.p/4, since the rotated potential v(eiaz)

5v01e
2(cos 2a1i sin 2a)z2/a1

2
1v02e

2(cos 2a1i sin 2a)z2/a2
2

oscillates
with ever increasing amplitudes asz→6`, the convergence
slows down significantly with increasinga. Figure 2 exhibits
the resonant energies and decay rates of the two lowest r
nant states ofh(z) as a function ofE. The energies of the
resonant states decrease quadratically with increasingE, dis-
playing a second-order Stark effect, while the decay rates~or
resonant widths! increase monotonically, with the highe
lying state much more susceptible to the electric field. Ot
resonant states lie beyond the scope of the figure.

We now considerN interacting electrons in the dot. Th
Hamiltonian reads

H5(
i 51

N

h~r i !1
e2

4pe (
i . j

N
1

~r i j
2 1zi j

2 !1/2. ~7!

An important feature of Eq.~7! is that the~x, y! motion and
thez motion are now coupled via thee-e interactions. Hence
unlike a single-electron dot, the tunneling ofN electrons will
be tuned by the magnetic field. We diagonalize the rota

.
e
is

FIG. 2. The resonant energies and decay rates of the two lo
resonant states ofh(z) as a function of electric-field strength,E.
1-2
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Hamiltonian H̄ to obtain the resonant states as before. T
antisymmetric basis functions we use are Slater determin
composed of single-particle basis functions, each of whic
the product of a 2D oscillator harmonics@given by Eq.~4!#,
a 1D oscillator harmonics@given by Eq.~6!#, and an electron
spinor. The complex rotation angles (ax j ,ay j ,az j) are inde-
pendent ofj owing to the identity of electrons, the optimum
values of which turn out, from our numerical calculations,
haveax50 anday50. This is understandable since there
no wave-function leakage along thex and/or y directions.
The only nonvanishingaz depends on the field strength
Approximately, the convergence is 13N21 times faster than
the global CCR of assumingax5ay5az5a for the present
cases.

Figures 3 and 4 exhibit the resonant energies and de
rates ofN52 and 3 in their ground states. They have be
calculated using parameters appropriate for GaAs an
value of 3.6 meV for\v0 , and the electric-field strengthE
510 kV/cm. The effect of a varying electric field on th
N-electron resonances is qualitatively similar to that ofN
51 reported above, except that thee-e interactions further
enhance the decay rates. Here we focus on the effect
varying magnetic field on the resonant tunneling through
ground state~i.e., tunneling at zero temperature!. Since the
e-einteractions conserve the total azimuthal angular mom
tum L and the total spinS, we use them to label the eigen
states. The resonant energies of few electrons in a quan
dot in a magnetic field have been calculated by several
thors by treating the systems as bound-state problems.19–24In
the case ofN.1, there are typically several tunneling pr
cesses.G represents the total decay rate via all processes

FIG. 3. ~a! Resonant energy of the ground state as a function
the magnetic-field strength forN52. The arrows point to locations
where a switching in orbital angular momentumL and spinS oc-
curs. The numbers in the brackets give~L,S!. ~b! Decay rate~solid
curve! and averaged Coulumb energy divided by a factor
~dashed curve! as functions of the magnetic field. The horizont
line gives the decay rates in the absence of thee-e interactions.
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The application of magnetic field brings about an impo
tant change to the single-particle wave functions in thex-y
plane@see Eq.~4! and the subsequent definition of magne
lengtha#. States of alll shrink in radius as the magnetic fiel
is increased. Hence the average spacing between elec
tends to decrease with increasingB. To avoid being com-
pressed to a point at the dot’s center, the electrons trans
states of higherl values at certain criticalB values at which
the transitions can occur without causing any increase in
total energy~i.e., level crossings!,25–27 thereby a series o
kinks develop in the resonant energies@see Figs. 3~a! and
4~a!#. In each of these transitions, a sudden increase in
kinetic and confinement energies is accompanied by a s
den drop of the same amount of Coulumb energy. ForN
52, the energetically most favorable configuration is for t
electrons to be on the opposite sides and their center
mass located at the potential minimum point (0,0,z0), in
which a rotation ofp about thez axis is equivalent to the
exchange of the two electrons, i.e.,R(p)C05P12C0 , where
C0 is the probability amplitude of the configuration. How
ever, R(p)C05eiLpC0 and P12C05(2)SC0 leads to
@eiLp2(2)S#C050. In other words, the nodeless groun
states can occur only whenL1S5even. Applying the simi-
lar arguments toN53 leads us to the conclusion that th
nodeless ground state occurs whenL is a multiple of 3 (L
53,6,9,12,...) forS5 3

2 and whenL is not a multiple of 3
(L51,2,4,5,7,...) forS5 1

2 . All the ground states in Figs. 3
and 4 obey these rules. In low magnetic field, both the s
polarized and spin unpolarized states compete to be
ground state. Due to the presence of the Zeeman term
spin unpolarized states have shorter ranges of magnetic-
strength to form the ground state than the spin polari

f

0

FIG. 4. ~a! Resonant energy of the ground state as a function
the magnetic-field strength forN53. ~b! Decay rate as a function o
the magnetic field. The horizontal line gives the decay rates in
absence of thee-e interactions.
1-3
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states in intermediate magnetic field, and are completely
cluded from forming the ground state in high magnetic fie

There is a simple way to interpret the sawtooth structu
of the decay rates exhibited in Figs. 3~b! and 4~b!. The in-
teracting electrons can be thought of as a droplet of inco
pressible liquid. A shrink~expansion! of its size in thex-y
plane brings about an expansion~shrink! of its size in thez
direction, and vice versa. Since the tunneling rate depend
the amount of wave-function leakage through the barr
separating the dot from the leads, it varies in much the sa
way as the Coulumb energy@see Fig. 3~b!# in a varying
magnetic field.

With the application of magnetic field there is anoth
important change in the single-particle states. States with
same Landau-level index,@n1(u l u2 l )/2#, but with different
l tend to be degenerate to form Landau levels@see Eq.~5!#.
The single-particle energy difference between statesl 11
and l, \@(v0

21vc
2/4)1/22vc/2#, tends to vanish asB→`. It
og

e

n,

.

te

ev
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becomes energetically less costly to transit to a higherl or-
bital as the magnetic-field strength is increased. Con
quently, the spacing between electrons gains a net incr
and the decay rate gains a net decrease from each trans
This elucidates a previous unexplained phenomenon
served in Ref. 7.

In conclusion, we have investigated the transport prop
ties of a quantum dot containing a few electrons and coup
to leads through soft barriers using a generalized C
method. We show that thee-e interactions and an externa
magnetic field cause discrete changes of the tunneling ra
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