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Almost all quantum Hall effect to date can be understoodngegral quantum Hall effect of appropriate
particles, namely, electrons or composite fermions. This paper investigates theoretically the feasibility of nested
states of composite fermions which would lead to a quantum Hall effect that cannot be understood as integral
guantum Hall effect of composite fermions. The weak residual interaction between composite fermions will
play a crucial role in the establishment of such quantum Hall states by opening a gap in a partially filled
composite-fermion level. To treat the problem of interacting composite fermions, we develop a powerful
method that allows us to obtain the low-energy spectra at composite-fermion fiIIing§=oh+;without
making any assumption regarding the structure of composite fermions in the topmost partially filled level. The
method is exact aside from neglecting the composite-fermion Landau level mixing, and enables us to study
rather large systems, for example, 24 particles at a total flux df®@&, for which the dimension of the lowest
Landau level Hilbert space is-10'". We have investigated, for fully spin-polarized composite fermions,
several filling factors between 1/3 and 2/5 using this approach. The results indicate that any possible incom-
pressibility at these fractions is likely to have a fundamentally different origin than that considered earlier.
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[. INTRODUCTION The wave functions for composite fermions are giver by
If electrons did not interact, only the integral quantum 2
| | v =P Zi—2,)PD ., 3
Hall effect (IQHE) would occur in nature. The discovery of v LLL,-EIK (2= 2)7, &)

the fractional quantum Hall efféctFQHE) signaled the ex- . . . .
istence of a correlated state of matter, the essence of whicf{nere zj=x;—ly; denotes the position of thith particle,
lies in the formation of quantum particles called composite®»+ 1S @n antisymmetric wave function for fermions at the
fermions® which are bound states of electrons and an evefgftective filling »*, and P, is the lowest Landau level
number of quantized vortices. Electrons avoid each otheftLL) projection operator. The wave functiow, is of
most efficiently by turning into composite fermions, which, course the wave function of correlateq eIectrons,dﬂuF can
in turn, interact much more weakly than electrons. For @IS0 be interpreted as the wave function of composite fermi-
large number of phenomena, it is a valid first approximatiorons at filling factor*, because on the right-hand side, each
to neglect the interaction between composite fermions alto€lectron has @ vortices bound to it through the multiplica-
gether, indicating that the interaction between composite ferive factorllj-(z;—z,)??, which converts each electron into
mions can often be treated perturbatively and does not caugecomposite fermion. . _ .
any phase transitions. Let us begin by neglecting the interaction between com-
The fundamental property of composite fermions, whichPosite fermions. In this case, a gap opens up when the com-
dimensional systems in high magnetic fields, is that as they™ =N, Which corresponds to electron filling factors given by
move about, the Aharonov Bohm phase is partly canceled by
the phase produced by the vortices tied to other composite =
fermions and as a result they experienceeffiectivemag- 2pn+1’
netic fieldB* given by

n

4

wheren is a positive or negative integdThe negative val-

. ues ofn give v=|n|/(2p|n|—1), and correspond to the situ-
B*=B—2ppdo, (1) ation in which the effective fiel* is opposite to the exter-
nal fieldB.] The model of noninteracting composite fermions

whereB is the external magnetic fiel@, is the electron den- ;5 predicts quantum Hall effe@@HE) of electrons at these
sity (in two dimensiong the even integer 2 is the vorticity  factions. and also at

of composite fermion$CF'’s), and ¢o=hc/e. (The compos-

ite fermion with vorticity 2p is denoted by??CF or CF-2.) n
They form Landau-like levels in this reduced magnetic field, v=1- 2pnT1 6)
with their filling factor (»*) related to the electron filling
factor (v) by due to particle-hole symmetry in the lowest Landau level.
[The fractions in Eq(5) can be obtained by formulating the
" problem in terms oholesrather than electrons in the lowest
= V—_ (2)  Landau level, and then making composite fermions out of
2pr*£1 them] The QHE at these filling factors will be termed “CF-
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2p QHE.” CF-2 QHE, and CF-4 QHE are routine, and CF-6

QHE and CF-8 QHE have also been obsef2@These se-
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Recently, Paret al1° have reported observation of 4/11
and 5/13, heralding a new generation of quantum Hall effect

guences exhaust most of the more than 50 observed fractiofisat cannot be understood as the IQHE of composite fermi-
to date in the lowest Landau level. The wave functions havens. This discovery has given fresh impetus to the issue of
been tested in detail for finite systems, and are very accurat®QHE, especially because it is possible that more NQHE

without involving any adjustable parametér:®

states will be observed in the future as the sample quality

In short, most of the QHE can be understood as the inteimproves and the temperature drops, reminiscent of how the
gral QHE of appropriate fermions. It ought to be noted thatrQHE appeared on top of the IQHE. What other nested
the QHE of higher-order composite fermions can be viewedstates are possible? What is the true nature of these states?
as a consequence of interactions between lower-order congych questions have motivated us to investigate this topic
posite fermions. For example, the CF-4 QHE originates fronyy ther.

interactions between CF-2's. Nonetheless, the physics of all gyen though the theoretical scenario described above is

states at filling factors of Eqg4) and (5) is correctly de-

plausible, and indeed natural, there isa@riori guarantee

scribed in terms of non-interacting composite fermions of thenhat it actually occurs, and it is important to carry out quan-

appropriate kind.

titative tests to ascertain its applicability to the real world. It

While the above fractions are obtained most immediatelys worth recalling here that not all fractions that can odeur

in the CF theory, it has been known since the very beginnin

%rinciple do really occur in nature. For example, FQHE can

ruled out>® New QHE betweertwo successive integral Hall

factors, but is preempted by Wigner crystal for the Coulomb

states of composite fermions will be called NQHE, where Ninteraction, and in higher Landau levels the FQHE is often

stands for “nested.” A simple scenario for NQHE is as fol-
lows. Consider electrons in the filling factor range

n+1 . n 5
2p(n+1)+1 v 2pn+1’ ®

which map into?CF’s in the range
n+1>v*>n (7)

containingn levels fully occupied and then( 1)th level

believed to be unstable to charge-density-wave-type state.
Therefore, it would require further theoretical work before
one could claim with any degree of confidence that NQHE
based on the physics described above is actually possible.
The quantitative theoretical investigations so far suggest
that there should beo FQHE at fractions other than those in
Egs.(4) and (5) for fully spin-polarized electrons. An exact
diagonalization study of N=8 electrons at 4/11 finds a
nonuniform ground state, which is an evidence against
FQHE liquid. In another approach!? a model has been

partially occupied. It is a natural conjecture that inter-CFdeveloped for the effective interaction between composite

interaction can possibly cause gaps at

n
2pn+1

8

v*=n+

which will produce new fractions between the familiar frac-
tions n/(2pn+1) and ©+21)[2p(n+1)+1]. Here, the
2PCF’s in the topmost partially filled level capture /orti-
ces(as a result of the residudPCF-*CF interaction to turn

into higher-order composite fermionsP( 2°PCF’s) and con-

fermions in the second level. In Ref. 11 it was argued that no
new FQHE is obtainel Reference 12 found that the form
of this interaction favors a “bubble crystal” of composite
fermions at filling factors like 4/11 rather than the quantum
Hall effect. These studies indicate that the effective interac-
tion between composite fermions is not sufficiently strongly
repulsive to stabilize FQHE at 4/11 and several other frac-
tions. Both approaches have their problems. In exact diago-
nalization, the system is effectively small, with onty3
composite fermions in the second level, and one may ques-
tion if the conclusion based on this system will hold up\as

dense inton levels, thereby opening a gap and producingincreases. The effective interaction model involves several
guantum Hall effect. This QHE state is a nested state wittassumptions, because of which the results are plausible but
higher-order composite fermions forming in the backgroundnot conclusive.

of the original composite fermions.

Reference 13 showed that FQHE at 4/11 is very likely

Certain qualitative consequences of the above scenaripossible for apartially spin-polarized system or a spin-
are as follows. The NQHE of composite fermions is analo-unpolarized system. It is not yet known for sure if the FQHE
gous to QHE of electrons between two successive IQHEstates at 4/11 and 5/13 are partially or fully polarized in the

states of electrons, that is, to FQHEHRgherelectronic Lan-

experiments of Paret al,'® but given the relatively high

dau levels. It is known that FQHE is rare in second elec-magnetic fields at which these states have been observed, it

tronic Landau leveldi.e., in the range # v>2, including
spin degeneragyand nonexistent in third or higher Landau

is quite possible that they are fully spin polarized, and there-
fore it is worth revisiting the issue of whether fully polarized

levels; by analogy, NQHE is expected to be rare. Extendingncompressible states can be found theoretically at these fill-
the analogy further, the strongest NQHE states for fully spining fractions. That is the prime motivation behind our present

polarized composite fermions are expected to be*at 1
+1/3 andv* =1+ 2/3, which correspond to electron filling

factorsv=4/11 andv=>5/13; these are expected to be the

strongest nested CF stafts.

study. In this work, we will look for FQHE at several filling
fractions in the range between 1/3 and 2/5.

We will study finite systems dfl particles at total flux 2
(in units of the flux quantumby,=hc/e), where the relation
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FIG. 1. The configurations included in our study. Each compos- (a)
ite fermions is depicted as an electron carrying two flux quanta. The
lowest composite-fermion level is fully occupied and the second n
one is partially occupied.

betweenN and Q for a given filling factor will be derived —n ﬁ n
from the physics described above. The most reliable theoret-

ical method would be exact diagonalization. However, be-
cause of the exponentially growing Hilbert space, exact di- W

agonalization is possible only for very small systems, and

very few filling factors. For example, for=4/11, exact di- (b)
agonalization has been possible fde=8 electrons? The
next system containsl=12 (in the spherical geometry, dis- FIG. 2. The configurations neglected in our study. These have

cussed beloyy for which the lowest Landau level Hilbert higher “kinetic” energy than the configurations shown in Fig. 1.
space contains a total of 8<6.0" Slater determinant basis
states; the diagonalization of matrices of such sizes is beyonehlculation is rather involved, requiring extensive Monte
the reach of present day computers. We have developed @arlo; but is still numerically stable, and yields reliable re-
powerful method, namely, diagonalization in low-energysults.
composite-fermion basid.ECFB), which we believe gives The present method is a significant advance over the
accurate results. It exploits the fact that the compositevariational method of Ref. 12. It is much more reliable be-
fermion theory allows us to directly identify low-energy cause it eliminates several approximations made in that
states of the full Hilbert space, which lets us work within awork. In Ref. 12, the problem of composite fermionsyét
subspace much smaller than the full Hilbert space. For ex=p 17, was mapped into that of fermions at Further, it
ample, we have been able to obtain the low-energy Spectrufjas assumed that the interaction energy of the system of
for the 4/11 state with as many as 24 electrons, where thgomposite fermions in the partially filled level can be ap-
dimension of the full Hilbert space is 10 proximated by a sum of two-body interactions. The interac-
A brief outline of the method is as follows. Consider the tjon petween composite fermions was obtained by keeping
fiIIing factor range given in .Eq(6). Given tha.t the two ends  gnly two composite fermions in then@-1)th level and inte-
of this range are well described as-1 andn filled levels of  grating out the composite fermions of the lower filled levels.
composite fermions, it is natural to expect that the low-n general, when there are many composite fermions in the
energy states at containn composite-fermion levels com- (4 1)th level, the integrating out of the lower-level com-
pletely occupied, and the remaining composite fermions imhosite fermions will produce a quite complex interaction,
the (n+1)th level. The configurations that involve promo- ith two-, three-, and-body terms, because the full system
tion of composite fermions to higher kinetic energy levels;g strongly correlated. The hope was that tHeody terms do
are expected to cost substantially higher energy and are ngy,i .a,5e any phase transitions, in which case the two-body
glected. In other words, we include all configurations of YP€arms will produce the correct st’ate. However, this approxi-
;hovyn n Fig.. 1, but neglect configgrations .Of the type ShoWr}nation was untested. Finally, the method Waé a variational
n F.'g' .2' This neglect of ponjp05|te-ferm|on Lan_dau IeveIstudy, in which the energies of certain wave functions were
mixing is the only assumption in our approach, which can be

compared to determine which had the lowest energy; there

tested for consistency at the end of the calculation. Othe\yvas, of course no guarantee that this state would describe the

than that, the method is exact. The most important point herﬁ'ue ground state. In contrast, in the present study, we work

is that we do not make any assumption with regard to th?/vith the full composite-fermion system and do not assume

interaction between composite fermions, or their structure Mnything about the form of the interaction between compos-
the partially filled level. In our calculation, we first construct ite fermions or the nature of their ground state

all states of composite fermions at =n+ v, with the low- The following section contains a discussion of how we

Estn levels fu”y OCCUpied and the next one with f|”|ng factor construct the |ow_energy Composite fermion basis and hOW
v, and then diagonalize the Coulomb Hamiltonian withinwe carry out the Gram-Schmid orthogonalization and diago-
this sector to obtain the spectrum of low-energy states. Thaalization. The reader not interested in the technical details
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can skip this section and directly proceed to the subsequent , (Q) =N (_1)q*+s—meiq* $yd* +my,a* —m
section, wherein the results are given and their implications 9™ arsm ! !

are discussed. s *
S 2% +s
_ r
<3 ol g i
Il. DIAGONALIZATION IN LOW-ENERGY COMPOSITE-
FERMION BASIS X(v¥v;)s " (ufu)), (12)

We first summarize certain relevant facts from the Intro-where
duction. The electron filling factor given by

(2g* +2s5+1) (q* +s—m)!(q* +s+m)! |
v* Nq* sm— 4 .
P (9) ™ sl(2g* +s)!

2pr*+1 (13

corresponds to composite-fermion filling factet. We will The quantitys=0,1,2 .. . is theLandau levelLL) index, to
be interested below in the specific valuesudf given by be differentiated frorm, the number of filled Landau levels.

o (); represents the angular coordinatgsand ¢; of the jth

— n electron, and
v =n+rv=n+ ——. (20
2pn+1 U;=cog 6,/2)exp — i ¢;/2) (14)

Here, composite fermions fifl levels completely and occupy
v fraction of the fi+ 1)th level. If the?PCF’s in the partially

occupied level captureEZadditionaI vortices and condense |t was shown in Ref. 7 tha¥ o, the wave function of
into n filled Landau level state, then a gap would open upinteracting electrons @=q* + p(N—1), is obtained from

and NQHE would be obtained. The question is whether thisb .. by replacingY g« s m by Ygfs n defined as
mechanism really occurs in nature. v
_ In the composite-fermion theory, there are sevgral pos- YqC*F,S’m(QJ-)=Nq*sm(—l)q**s’m
sible approaches for constructing a low-energy basis. In this
work, we construct a LECFB odll states atv*=n+v in (2Q+1)! a* +m g* —m
whichn 2PCF levels are fully occupied and the next level has (2Q+s+1)t ! J
filing ». We do not make any approximation regarding the s og*
structure of2PCF's in the partially filled level. This basis is, xS (- 1)r(5>( Jcarts )urv_Sf
in principle, straightforward: we simply need to takeeltc- r=0 rj\gs+s—m—r/-1"l
tronic states atv* =n+ v and attach P vortices to obtain g\ g \sT
the composite-fermion states. The method, however, is tech- X —) (—) J]P , (16)
nically rather demanding, and the present section is devoted du;j/ \ v,
to It. where
A. Wave functions '
We will employ the spherical geometry in whidh elec- Jj:l_kl (Ujoic— 0. (17
trons move on the surface of a sphere under the influence of . o
a radial magnetic fiel® created by a magnetic monopole at Here the prime denotes the conditikos .
the center. The magnitude of thB field is given by
2Q¢, /47R?, where ¢o=hcle is known as the flux quan- B. Low-energy composite-fermion basis
tum, R is the radius of the sphere, afis called the mono- — . I
pole strength that should be either an integer or a half-integer For »=0, that is at the special filling factors
because of Dirac’s quantization condition. n
The interacting electron system at monopole strer@th p=— (18
2pn+1l’

maps into a system of weakly interacting composite fermions

at an effective monopole strengff =Q—p(N—1). The  the wave function for the ground state has the simple form
wave functions for interacting electrons@tare given by
GS

_ 2p

WQ:PLLLq)ipq)q*’ (11 \Pz_p:ﬂ_PLLLCDl Pn: 19
whered, is the wave function for the fully occupied lowest where®,, is the Slater-determinant wave function fofilled
Landau level, andb« are antisymmetric wave functions at Landau levels. SinceP, is unique, the wave function
gq*. @ is, in general, a linear superposition of Slater-W¥ ...y also contains no adjustable parameters. It has
determinant basis states made up of the monopole harmobeen tested in the past and was found to be remarkably
icS, Yqr sm. given by® accurate:’
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Of interest in this work is the situation when# 0. Here, N
we obtain the low-energy spectrum through the following l\ll'mxﬁ_”’ (23
steps. -

(1) We perform exact diagonalization fot particles at where 2 is the number of flux quantum. For finite systems,
filling factor » in the lowest Landau level to get all eigen- however, the ratid\/2Q is not exactly equal to, and the
state. The form of the interaction used for the diagonalizatiofidentification of what filling factor a finite system corre-
is of no significance, because its only role is to produce basi§PONds to requires additional theoretical input. N
wave functions, but we work with the Coulomb interaction. L€t us first consider the incompressible states at filling
Let us denote these states @y, wherea labels different ~ factorv=n/(2pn+1), the wave function for which is given
states. by ®3Pd,. For these states, the relation betwe@mnd N

(2) We then promote each eigenstate to the-(L)th Lan-  can be obtained by noting that the product of two monopole
dau level, and fill the lowen Landau levels completely with harmonics aty’ andq” gives a monopole harmonic at
additional particles to get thi-particle state av* =n+». +0q", i.e., the monopole strengths add. For reasons that will
This givesall wave functions®®, for which the lowest become clear below, let us denote the number of particles by
Landau levels are fully occupied and the next Landau levelN @and the monopole strength by The lowest LL projection
has filling ». These states are denoted lbyd<, whereL, IS unimportant for the question of the relationship betwien
denotes addition ofi Landau levels. It ought to be remem- andg, as it does not alteq. In the spherical geometry, for
bered that the operatdr, changes the number of particles. Monopole strengtly the degeneracy of the lowest Landau

(3) We then multiply each wave function bgpip and levelis 2g9+1, for the next LL it is 21+ 3, and so on. From
carry out the lowest Landau level projection by the methodhat, it is clear that the filled LL state is obtained fogy,
discussed in Sec. Il A. This gives us correlated basis funcgiven by
tions ¥ at v. These steps are summarized as

N—n?
- B J* y=—— (24
v=v¥=nt+r=v= ——, (20) 2n
2pr*+1 . ' . .
In particular, one filled LL is obtained at
Vo=P  PPLDY. (22) N_1
The advantage of constructing basis states in this way is that W= (25

it directly gives us basis functions with well-defined orbital _
angular momentunt, which is a good quantum number in From the addition rule, the monopole strengthdef’®;, is
for N electrons only.

the spherical geometry. We can work within edclsector  given by
Y. 26
pr5). (29
(4) The basis thus obtained is not orthogonal. We obtain

independently, because they are not coupled by the interac-
tion. (Note that in the above equatio®; is a wave function — = _

v q=2pQg;+qn=
an orthogonal basis following the Gram-Schmid procedurelt can be verified that @/N gives the filling factorv in the

_+1)ﬁ
P 2n,

Some relevant details are outlined below. thermodynamic limit.
(5) We construct the Hamiltonian matrix. Now we ask what is the monopole strengih for the
(6) Diagonalization of the Hamiltonian gives the low- state atv* =n+wv=n+n/(2pn+1) for N electrons. Let us
energy eigenspectrum at denote byN the number of fermions in thea@ 1)th partially

If an incompressible state is obtained, the ground-stat(ﬁ"ed Landau level

S i In order folN fermions to form the
wave function is likely to be well approximated by

- n/(2pn+1) state, the degeneracy in this level must satisfy
PLLLOPL DS ~P || D2PL [P, DPDL], (22 -

LLL™*1 &n V_ LLL*1 n[ LLL*1 n] ( ) 2q* +2n+1=2q+ 1’ (27)
where d)%s~ P,_,_,_(I)fpd); is the wave function for the \yhich implies that

ground state foN particles atv=n/(2pn+1). B
g*=g-n. (29)

C. NQHE states on sphere The total number of fermions, including the fermions in the

Since our goal is to look the feasibility of NQHE de- lowestn fully occupied Landau levels is
scribed above, we do our calculations at those value® of
where it is possible fofPCF’s in the partially filled level to N=N+ 2ng* +n2, (29
condense into a standard-type of FQHE state. For that, we o
first need to determine the relation betwe@rand N for a  Eliminating N, one gets the following relation betwedh
given filling factor. Clearly, in the limitN—o we must have andqg*:
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1 TABLE I. The monopole strengtl) as a function oiN for the
o p+ §n+ n NQHE states studied in this work. The quantitiesand v* are the
N=2g*| n+ — +n2. (30) the filling factors of electrons and composite fermions, witheing
2pn+1 = 1 the CF filling factor in the partially filled leveN is the total num-
on ber of composite fermions, ard is the number of composite fer-

o mions in the partially filled level, at fiIIin97. Q andg* are the
The state av* =n+n/(2pn+1) is obtained for all vaules monopole strengths for the electrons and composite fermions.
of (N, g*) related by the above equation, providdds an

integer andg* is an integer or a half integer. The statevat v v =n+v N N q Q
=v*/(2pv* +1) in turn is obtained for all values of\(, Q)
with Q:q* + p(N—l) 4/11 1+1/3 8 3 2 9
We have considered in this work the following filling fac- 12 4 3.5 14.5
tors. 16 5 5 20
(1) v=1;. Here,»*=1+3. The parameters arp=p 52 g 6é5 2351'5
=n=n=1, which gives 5/13 1+2/3 14 6 35 165
3N—-8 1IN—-16 19 8 5 23
q* =T, Q= T (31 7/19 1+2/5 16 6 4.5 19.5
23 8 7 29
(2) v=13. Here,»*=1+%. The parameters arp=p 617 s 11§ 43 645 21355
=n=1 andn= -2, which gives o4 5 9 32
. 3N—-7 0 13N—17 32)
q*=—, =
10 10 (¢1IVIdm)
(3) v=15. Here,»*=1+£. The parameters arp=p A1+ dnlVIdi+ b)) —(h|V]d) — (Dl VD)
=n=1 andn=2, which gives B 2 ’
. 5N-17  1oN-31 a (36)

whereV denotes the Coulomb interaction Hamiltonian.

(4 v=2. Here, v*=1+%. The parameters arp=n

T i ) E. Orthogonalization
=n=1 andp=2, which gives

We denote{u,} as the unorthogonal but normalized basis
5N—-12 17N—24 set obtained from the s¢t;}, and define

*
12 Q 12 (34)
Of course, only integer values are allowed fgr 2q*, g T ol o
and 2. The Table | explicitly lists the systems that we have
studied below. and
. AV b
D. Matrix elements Vij E<ui|v|uj>: % (39
il Pj

The basis obtained in the way described above is not or-
thogonal for a given angular momentum sectorWe or-  these are real numbers.
thogonalize these using the Gram-Schmid procedure and We then follow the Gram-Schmid procedure to construct
then diagonalize the Coulomb Hamiltonian in the orthogonakn orthogonal basis s€i);} in terms of the unorthogonal
basis. These require the knowledge of matrix elements of thbasis se{u;}. The former can be expressed as
type (| ) and(e|H|dp), whereg; and ¢y, (1 m) are
unorthonormalized wave functions, which we obtain by
Monte Carlo. Since the Monte Carlo evaluation is most effi- i =Uj—2 —2<'//i|Uj>¢i ;
cient when the integrand is positive definite, we determine -1 N;

-1

these using the equatidfis’ -1
Eu.—z flﬁ', (39)
(= S Bl 91t b (il 1)~ (bl b s
| m/ ’
2 (35) with N2= (| 4;) and f;;=(y;|u;)/N?. While the above re-
lation allows an iterative evaluation ¢#;}, we find it more
and convenient to work with the following expressions:
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i-1 -0.429 ~—r————— —————
NZ=(ul iy =1— f2 N2 40 N=16
i <¢’I|lpl> kzl ki' Yk ( ) 0430 = I‘ - . |
= * 9
and - - =
-1 = o PRI ]
<wi|uj> 1 2 s = o
fi=— = | | ui= 2 fudiy S s = aFE ]
Ni Ni k=1 - ¥ == Iln == )
= 9 L}
i-1 0.433 | el ]
=U. T & !
L uij— > FifiNE|- (41 :II:I il
N? k=1 o434 Lo Tl
0 4 8 12 16 20
Equation(39) was used to obtain these expressions, as well L
as the fact that;; andf;; are real. The Hamiltonian matrix . i .
lement ! ) FIG. 4. The low-energy spectrum of interacting composite fer-
elements mions at (N,2Q) = (16,40), identified with 4/11.
R, )
4 NiN; tive to the L=0 state which is obtained from the lowest
. . . energy state ab*. We typically perform six to ten Monte
in the basis sefy;} are thus obtained as Carlo runs for eachN, Q) with (0.6—1.0)< 10° Monte Carlo
j-1 iterations in each run. For larger systems, we use parallel
Vij :_{Vij -> i EiNiNg computer_s(We divide all of the Monte Carlo steps into sev-
N;iN; k=1 eral configurations with each configuration placed on a

i1 -1 single node of a Beowolf class PC cluster. One node consists
f a dual 1 GHZ Pentium Ill Processor. To obtain one data
= fi{EpNINi+ > fERNINGf |, @3 O .
21 "| LR kzl ki=lk k” “3 point, at a particulaN, we use as many as 30 nodes repeat-
: , . , . ) , .__edly until the standard deviation in energies is sufficiently
which are again obtgmed |tgrat|vely. We finally d|agon<'.;1I|ze|OW to produce the desired accurdcppproximately 80
the matrixV;; to obtain the eigenvalue spectrum for a given cpy gays were needed for the calculation of the spectrum

L sector. for (N,Q)=(24,31). The computation time increases very
_ quickly with N, approximately adN*2.
F. Computation It is difficult to ascertain how the statistical error in each

The major computation time is spent in calculating theelement of the matrix would propagate into the eigenvalues.
matrix elements || ¢m) and(¢|V| ¢, in the Monte Carlo We instead obtain the spectrum in several different runs, and
method, because at each Step we must evalhbi8later use the Eigenvalues from those different runs to obtain the
determinantsM being the size of the LECFB. To give an average and the standard deviation for each eigenvalue.
example, at K,Q)=(24,31) we haveM =1656. To mini-

mize the computational time, we sample all the states rela- IIl. RESULTS AND DISCUSSION
0435 —— . T . T We have considered the low-energy spectra at several val-
0436 | = ] ues of (N,2Q) which were identified earlier with systems at
* 20=29 special filling factors 4/11, 5/13, 7/19, and 6/17. Figures 3—6
—0.437 | - = E
*
Eo _0.438 } - - J -0.425 T T T T T T T T
= = N=20
2. 0439 | b « = Y I } I 20=51 | ]
_ L * ] 1z i
0.440 . o | II; II% fiig % % ]
0441 | = . e Iiliirzil%llf
—_ Iliiﬂ %1 3 : % i.3F II
_0.442 1 1 1 L I E _0.428 | §§III£%§§ £ IIII i
o 8 6 9 12 N ;ii%gi i iII i1
) - 0.429 | : ilgi; % i éé% H -
FIG. 3. The low-energy spectrum of interacting composite fer- - i ;;%g% H 1 i T3iiigst
mions at N,2Q)=(12,29), identified with 4/11, wherdl is the RN HH R
number of composite fermions and2is total flux penetrating the -0.430 . eex T
sample. The energies in this and subsequent figures are quoted in
units of e2/e|0, where € is the dielectric constant for the back- -0.431 (') "1 é 1'2 1'6 2'0 2'4 2'8 3
ground material é~13 for GaAg andl,= J7ic/eB is the magnetic L
length at the relevant filling factof4/11 in this casg Spherical
geometry is employed for the calculation, ahds the orbital an- FIG. 5. The low-energy spectrum of interacting composite fer-
gular momentum of the state. mions at (\,2Q) =(20,51), identified with 4/11.
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20,420 et -0.434 — . . . . .
I 1 } N=24 -
{ } H{ m 20-62 N=19
—0.422 { 1 -0.435 | - 2Q-=46 1
{ { % = -
! il o436} = T T x |
- -0.424 -: {{m . 3 ; =,
o H {} H ‘o, :‘ = = II
o : 1}{ } o o-os7p ®EEE 7 |
-0.426 |1 i 1 =% X" 3 i3
i Pt J = e )
H L 3
i 1) tit =% STw
! E}{ H —0.438 | IilIxIt;QI s -
-0.428 | i }{} . = 3
e | R

—0.430 1 L 1 1 1 L

FIG. 8. The low-energy spectrum of interacting composite fer-

FIG. 6. The low-energy spectrum of interacting composite fer-mions at {N,2Q) =(19,46), identified with 5/13.

mions at (\,2Q) =(24,62), identified with 4/11.
lie within the 1/3 gap. This justifies our approximation of

show results for 4/11; Figs. 7 and 8 for 5/13; Figs. 9 and 101eglecting the states that involve transitions between
for 7/19; and Figs. 11-13 for 6/17. The energy spectra focomposite-fermion Landau levels, which are expected to cost
(8,18) have been given in the past both from exact diagonaenergy of order 0&/el,. _ _ o
ization and the composite-fermion the8&! The accuracy Now we ask whether the spectra imply incompressibility.
of the energies is good enough to be able to state whether techaracteristic feature @l incompressible states known to
ground state has=0 or not. The error increases with in- date is that they have an=0 ground state, which is sepa-
creasingL, which is a consequence of our use of las 0 rated by a gap from other states; in addition, there is also a
state for importance sampling; in principle, the error at largevell-defined pranch of neutral excitgtion. Furthgrmore, the
L can be reduced by sampling with another reference statground state is extremely weIIi described as a f|I.Ied. Landau
but we do not see any need for it for the question of interestevel state of composite fermions, and the excitation as a
in this work. particle-hole-pair excitation of composite fermidf8 This

The orthogonalization makes a qualitative difference inis the case, with no exception, for systems wi,K) re-
the spectrum. Figs. 14 and 15 show the energies of the badigted by Q=(1*=1/2n)N—(1=n/2), which are identified

statesprior to orthogonalization, which ought to be com- with v=n/(2n*1).
pared to the spectra in Figs. 5 and 6, respectively. None of the spectra have these standard features of an

The results explicitly confirm that our method indeed incompressible state. Even in_cases When_ the ground states
gives very low energy states. For example, consider 4/11hasL =0, there is no well-defined CF-exciton branch. The
The ground-state energy is approximatelp.41%?%/ el, per  final spectrum av thus bears little resemblance to the spec-
particle, ~which compares very favorably  with trum atv that we started out with, implying that the interac-
—0.42032/_6|o, which is what one would get from 2a linear tion between composite fermions in the partially filled level
extrapolation between the enerdient 1/3 (—0.41®%/elo)  is quite different from that of electrons atin the lowest
and 2/5 (-0.433%elo). Further, a large fraction of the | andau level. The scenario described in the Introduction for
states considered here are within an energy band less than tR&)HE is thus not borne out.

effective cyclotron gap at 1/3, which is on the order of Tnhe ground states at the flux values considered above are,
0.1e%/ el 5. In other words, most of the states considered here

0432 . . T .
_0-438 L} T T T T T T
0433 * N=16 .
0430 | * N=14 . = L 2Q=39
20=33 -0.434 - g
-0.440 | - . =E -
-2 — L x - -
= 044 | e » 1 g 08 - * It = 3
& 3 BN =
‘o, _oas2 L * ] o o4 ==+ E_ % T 3 -
o o* - s} % SULE :II kX
»x & >
-0.443 | 2 T o= - 0437 | * X Itil§lt = '
* &
444l = * . 0438 | * .
~0.445 1 1 1 1 1 1 1 -0.439 | f . 4 \
O 2 4 6 8 10 12 14 0 4 8 12 16 20
L L

FIG. 7. The low-energy spectrum of interacting composite fer- FIG. 9. The low-energy spectrum of interacting composite fer-
mions at (\,2Q) =(14,33), identified with 5/13. mions at (\,2Q) =(16,39), identified with 7/19.
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-0.425

-0.427

-0.429

Ele’/el,]

-0.431

-0.433

=
.t

-0.435 1 1 1 1 1

FIG. 10. The low-energy spectrum of interacting composite fer-
mions at (\,2Q) =(23,58), identified with 7/19.

in general, not incompressible uniform states witk 0.
Consider 4/11 for example. It has been kn8&i that for
N =28 particle system & =9, which is identified above with
4/11, the ground state does not have-0. However, the

system is effectively very small here, with onN~=3 com-
posite fermions in the second level, and one may question if
the conclusion will hold adN increases. We find that fax
=12 and 20 the ground state Has 0, but forN=16 and 24
it does not. This provides an illustration for why a study of
several values oN is crucial; if one had only studiet\
=12, that would have led one to exactly the opposite con-
clusion. Another example is the 12-particle system at 6/17,
which has arL. =0 ground state and might suggest FQHE at
6/17; however, the spectra fof=18 and 24 at 6/17 explic-
itly clarify that this is only a finite-size effect that does not
survive in the thermodynamic limit.

Our study implies that even though the ground state

PHYSICAL REVIEW B6, 155302 (2002

—0422 T T T T T T T
N=18
-0.423 | 5047 .
-0.424 | .
- _ { ] { t ?
= L
& -0425 F } { Q}EE E ¢ 4
2, [)
m : ses I TTIIE LA
0426 ¥ Iiiilgiigiiii N
i -
3 3 g;i ;;§§!§§§§§§ L]
0427 o s 33 58 ° -
_0428 1 1 1 1 1 1 1
0 4 8 12 16 20 24
L

FIG. 12. The low energy spectrum of interacting composite fer-

mions at (\,2Q) =(18,47), identified with 6/17.

-0.419 T T T T T T
-0.420

-0.421

-0.422

Ele’el;]

-0.423

—0.424

—0.425 1 n . 2 1 1 1
16 24
L

FIG. 13. The low-energy spectrum of interacting composite fer-

sometimes hak =0, it doesnot describe an incompressible mions at (,20)=(24,62), identified with 6/17.

state at any of the filling factors considered here. The follow-
ing observations support this statement.
(1) When the ground state has# 0, theL=0 state is a

_0-425 1 M 1 M 1 N 1 v 1 M 1 v 1 v 1
rather highly excited state.
(2) In the plot of the ground-state energy withiNl/the 0.426 | N=20 1
energies of thee=0 ground states are not particularly low. I 2Q=51
See Fig. 16 for 4/11. 2 ¢ {
0427 F o = GBE § e 75 i
o ] ] §
~0.432 ———————————— - gz g8 s ¢
s " 2 sl ” §n§$n§n§ gﬁn% ﬁ st i
[} "o e L ] s
o o3 & gi i § ® }§ }
-0.433 | - I sEilgdonni=1ty g 374
—0.429-§l§n§§ sigis LX)
3 * % §§§§ §§§ ®
2 044 - * - ~0.430 |- 1
T K 3
N =t 0.431
-0. 3 1 1 1 1 1 1 1 1
0435 - - ggio 1 0 4 8 12 16 20 24 28 32
= L
=
-0.436 (') é "1 é é 1'0 1'2 14 FIG. 14. The low-energy spectrum of composite fermions at
L (N,2Q) =(20,51) prior to orthogonalization. The corresponding

spectrum after orthogonalization is given in Fig. 5. The spectra
FIG. 11. The low-energy spectrum of interacting composite fer-shown here and in Fig. 5 are not physically meaningful, but are

mions at (\,2Q) =(12,30), identified with 6/17.

given here only to show the effect of orthogonalization.
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_0.424 L] 1 L] :{ Ll T 1 _0409
L % —0.411 |
-0.425 .
. 3 _gas}
- % k . 0.413 .
& -0426 ] : w .
% -0.415
L .
-0.427 | i 040 o0 o008 ot
N=24 ' ' ’ '
2Q=62 N
-0.428 “ L L L L L FIG. 16. The ground-state energy per particle as a function of
0 8 16 24 32 40 1/N for 4/11. The energies plotted here have been multiplied by the
L factor \pn/p, Wherepy is the density of the finite system apds

FIG. 15. The low-energy spectrum of composite fermions a,[the density in the thermodynamic limit, to account for the depen-

(N,2Q) =(24,62) prior to orthogonalization. It should be compared dence of density Ol.N' It ought to be noted that the ground state
to the spectrum in Fig. 6. does not havé =0 in general.

_ . independent confirmation worthwhile. Unfortunately, the
(3) The ground state ait generally produces an excited spherical geometry used here is not convenient for the study
state atv, even in theL=0 sector(prior to orthogonaliza- of charge-density-wave states. We do note in passing that a

tion), which indicates a breakdown of analogy between crucial step in Ref. 12 was to model the statesain+ v in

andv. o _ terms of fermions at with an effective two-body interac-
(4) The energy per particle is not a smooth function oftjon A close similarity between our Fig. 11 and Fig. 5 of Ref.
1/N, but instead shows fluctuations characteristic of a COM11, obtained from the two-body interaction moglebth for

pressible state. See Fig. 16. _ (N,2Q)=(12,30)] provides support to the validity of this
() Itis not inconceivable for a compressible state to haveyggel.

L=0, because a uniform state avoids Hartree energy Ccost, |, the end, we note that the above calculations assume a

but it would be difficult to understand how an incompressiblestricﬂy two-dimensional systerfwith zero width, no disor-

state might havé. #0. o der, and no mixing with higher electron Landau levels. These
As aresult, the physical mechanism, in which some of theypproximations represent an idealization of the actual experi-

composite fermions turn into higher-order composite fermi-mental system. It is expected that the idealized model, while

ons and condense into Landau levels to exhibit QHE, doegot accurateguantitatively should give the correct qualita-
not appear to be relevant for fully spin-polarized electronsyjye pehavior.

The interaction between composite fermions in the second

level is thus not of a form to produce NQHE. It must be

stressed, however, that the results miat rule out NQHE ACKNOWLEDGMENTS
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