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Theoretical search for the nested quantum Hall effect of composite fermions
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Almost all quantum Hall effect to date can be understood asintegral quantum Hall effect of appropriate
particles, namely, electrons or composite fermions. This paper investigates theoretically the feasibility of nested
states of composite fermions which would lead to a quantum Hall effect that cannot be understood as integral
quantum Hall effect of composite fermions. The weak residual interaction between composite fermions will
play a crucial role in the establishment of such quantum Hall states by opening a gap in a partially filled
composite-fermion level. To treat the problem of interacting composite fermions, we develop a powerful

method that allows us to obtain the low-energy spectra at composite-fermion fillings ofn* 5n1 n̄ without
making any assumption regarding the structure of composite fermions in the topmost partially filled level. The
method is exact aside from neglecting the composite-fermion Landau level mixing, and enables us to study
rather large systems, for example, 24 particles at a total flux of 62hc/e, for which the dimension of the lowest
Landau level Hilbert space is;1017. We have investigated, for fully spin-polarized composite fermions,
several filling factors between 1/3 and 2/5 using this approach. The results indicate that any possible incom-
pressibility at these fractions is likely to have a fundamentally different origin than that considered earlier.

DOI: 10.1103/PhysRevB.66.155302 PACS number~s!: 71.10.Pm, 73.43.2f
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I. INTRODUCTION

If electrons did not interact, only the integral quantu
Hall effect1 ~IQHE! would occur in nature. The discovery o
the fractional quantum Hall effect2 ~FQHE! signaled the ex-
istence of a correlated state of matter, the essence of w
lies in the formation of quantum particles called compos
fermions,3 which are bound states of electrons and an e
number of quantized vortices. Electrons avoid each ot
most efficiently by turning into composite fermions, whic
in turn, interact much more weakly than electrons. Fo
large number of phenomena, it is a valid first approximat
to neglect the interaction between composite fermions a
gether, indicating that the interaction between composite
mions can often be treated perturbatively and does not c
any phase transitions.

The fundamental property of composite fermions, wh
is responsible for the dramatic phenomenology of tw
dimensional systems in high magnetic fields, is that as t
move about, the Aharonov Bohm phase is partly canceled
the phase produced by the vortices tied to other compo
fermions and as a result they experience aneffectivemag-
netic fieldB* given by

B* 5B22prf0 , ~1!

whereB is the external magnetic field,r is the electron den-
sity ~in two dimensions!, the even integer 2p is the vorticity
of composite fermions~CF’s!, andf05hc/e. ~The compos-
ite fermion with vorticity 2p is denoted by2pCF or CF-2p.)
They form Landau-like levels in this reduced magnetic fie
with their filling factor (n* ) related to the electron filling
factor (n) by

n5
n*

2pn* 61
. ~2!
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The wave functions for composite fermions are given by3

Cn5PLLL)
j ,k

~zj2zk!
2pFn* , ~3!

where zj5xj2 iy j denotes the position of thej th particle,
Fn* is an antisymmetric wave function for fermions at th
effective filling n* , and PLLL is the lowest Landau leve
~LLL ! projection operator. The wave functionCn is of
course the wave function of correlated electrons atn, but can
also be interpreted as the wave function of composite fer
ons at filling factorn* , because on the right-hand side, ea
electron has 2p vortices bound to it through the multiplica
tive factor) j ,k(zj2zk)

2p, which converts each electron int
a composite fermion.

Let us begin by neglecting the interaction between co
posite fermions. In this case, a gap opens up when the c
posite fermions fill an integral number of levels, i.e., wh
n* 5n, which corresponds to electron filling factors given b

n5
n

2pn11
, ~4!

wheren is a positive or negative integer.@The negative val-
ues ofn give n5unu/(2punu21), and correspond to the situ
ation in which the effective fieldB* is opposite to the exter
nal fieldB.# The model of noninteracting composite fermio
thus predicts quantum Hall effect~QHE! of electrons at these
fractions, and also at

n512
n

2pn11
~5!

due to particle-hole symmetry in the lowest Landau lev
@The fractions in Eq.~5! can be obtained by formulating th
problem in terms ofholesrather than electrons in the lowe
Landau level, and then making composite fermions out
them.# The QHE at these filling factors will be termed ‘‘CF
©2002 The American Physical Society02-1



-6

tio
av
ra

t
a
e
o
om
f a

th

el
in
no
ll

N
l-

F

c-

ng
it
n

a
lo
H

ec

u
in
in

g
he

1
ect
mi-

of
HE
lity
the

ted
ates?
pic

e is

n-
It

an
g
b

en
ate.
re
E

le.
est

in
t

nst

site
no

e
m
ac-
ly

ac-
go-

es-

ral
but

ly
-
E

he

d, it
re-
d
fill-

ent
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2p QHE.’’ CF-2 QHE, and CF-4 QHE are routine, and CF
QHE and CF-8 QHE have also been observed.4,5 These se-
quences exhaust most of the more than 50 observed frac
to date in the lowest Landau level. The wave functions h
been tested in detail for finite systems, and are very accu
without involving any adjustable parameter.3,6–8

In short, most of the QHE can be understood as the in
gral QHE of appropriate fermions. It ought to be noted th
the QHE of higher-order composite fermions can be view
as a consequence of interactions between lower-order c
posite fermions. For example, the CF-4 QHE originates fr
interactions between CF-2’s. Nonetheless, the physics o
states at filling factors of Eqs.~4! and ~5! is correctly de-
scribed in terms of non-interacting composite fermions of
appropriate kind.

While the above fractions are obtained most immediat
in the CF theory, it has been known since the very beginn
of the composite-fermion theory that other fractions are
ruled out.3,9 New QHEbetweentwo successive integral Ha
states of composite fermions will be called NQHE, where
stands for ‘‘nested.’’ A simple scenario for NQHE is as fo
lows. Consider electrons in the filling factor range

n11

2p~n11!11
.n.

n

2pn11
, ~6!

which map into2pCF’s in the range

n11.n* .n ~7!

containingn levels fully occupied and the (n11)th level
partially occupied. It is a natural conjecture that inter-C
interaction can possibly cause gaps at

n* 5n1
n̄

2p̄n̄11
~8!

which will produce new fractions between the familiar fra
tions n/(2pn11) and (n11)/@2p(n11)11#. Here, the
2pCF’s in the topmost partially filled level capture 2p̄ vorti-
ces~as a result of the residual2pCF-2pCF interaction! to turn
into higher-order composite fermions (2p12p̄CF’s! and con-
dense inton̄ levels, thereby opening a gap and produci
quantum Hall effect. This QHE state is a nested state w
higher-order composite fermions forming in the backgrou
of the original composite fermions.

Certain qualitative consequences of the above scen
are as follows. The NQHE of composite fermions is ana
gous to QHE of electrons between two successive IQ
states of electrons, that is, to FQHE inhigherelectronic Lan-
dau levels. It is known that FQHE is rare in second el
tronic Landau levels~i.e., in the range 4.n.2, including
spin degeneracy! and nonexistent in third or higher Landa
levels; by analogy, NQHE is expected to be rare. Extend
the analogy further, the strongest NQHE states for fully sp
polarized composite fermions are expected to be atn* 51
11/3 andn* 5112/3, which correspond to electron fillin
factorsn54/11 andn55/13; these are expected to be t
strongest nested CF states.3,9
15530
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Recently, Panet al.10 have reported observation of 4/1
and 5/13, heralding a new generation of quantum Hall eff
that cannot be understood as the IQHE of composite fer
ons. This discovery has given fresh impetus to the issue
NQHE, especially because it is possible that more NQ
states will be observed in the future as the sample qua
improves and the temperature drops, reminiscent of how
FQHE appeared on top of the IQHE. What other nes
states are possible? What is the true nature of these st
Such questions have motivated us to investigate this to
further.

Even though the theoretical scenario described abov
plausible, and indeed natural, there is noa priori guarantee
that it actually occurs, and it is important to carry out qua
titative tests to ascertain its applicability to the real world.
is worth recalling here that not all fractions that can occurin
principle do really occur in nature. For example, FQHE c
occur for some hypothetical interaction at very small fillin
factors, but is preempted by Wigner crystal for the Coulom
interaction, and in higher Landau levels the FQHE is oft
believed to be unstable to charge-density-wave-type st
Therefore, it would require further theoretical work befo
one could claim with any degree of confidence that NQH
based on the physics described above is actually possib

The quantitative theoretical investigations so far sugg
that there should beno FQHE at fractions other than those
Eqs. ~4! and ~5! for fully spin-polarized electrons. An exac
diagonalization study11 of N58 electrons at 4/11 finds a
nonuniform ground state, which is an evidence agai
FQHE liquid. In another approach,11,12 a model has been
developed for the effective interaction between compo
fermions in the second level. In Ref. 11 it was argued that
new FQHE is obtained.11 Reference 12 found that the form
of this interaction favors a ‘‘bubble crystal’’ of composit
fermions at filling factors like 4/11 rather than the quantu
Hall effect. These studies indicate that the effective inter
tion between composite fermions is not sufficiently strong
repulsive to stabilize FQHE at 4/11 and several other fr
tions. Both approaches have their problems. In exact dia
nalization, the system is effectively small, with only;3
composite fermions in the second level, and one may qu
tion if the conclusion based on this system will hold up asN
increases. The effective interaction model involves seve
assumptions, because of which the results are plausible
not conclusive.

Reference 13 showed that FQHE at 4/11 is very like
possible for apartially spin-polarized system or a spin
unpolarized system. It is not yet known for sure if the FQH
states at 4/11 and 5/13 are partially or fully polarized in t
experiments of Panet al.,10 but given the relatively high
magnetic fields at which these states have been observe
is quite possible that they are fully spin polarized, and the
fore it is worth revisiting the issue of whether fully polarize
incompressible states can be found theoretically at these
ing fractions. That is the prime motivation behind our pres
study. In this work, we will look for FQHE at several filling
fractions in the range between 1/3 and 2/5.

We will study finite systems ofN particles at total flux 2Q
~in units of the flux quantumf05hc/e), where the relation
2-2
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THEORETICAL SEARCH FOR THE NESTED QUANTUM . . . PHYSICAL REVIEW B66, 155302 ~2002!
betweenN and Q for a given filling factor will be derived
from the physics described above. The most reliable theo
ical method would be exact diagonalization. However,
cause of the exponentially growing Hilbert space, exact
agonalization is possible only for very small systems, a
very few filling factors. For example, forn54/11, exact di-
agonalization has been possible forN58 electrons.14 The
next system containsN512 ~in the spherical geometry, dis
cussed below!, for which the lowest Landau level Hilber
space contains a total of 8.63107 Slater determinant basi
states; the diagonalization of matrices of such sizes is bey
the reach of present day computers. We have develop
powerful method, namely, diagonalization in low-ener
composite-fermion basis~LECFB!, which we believe gives
accurate results. It exploits the fact that the compos
fermion theory allows us to directly identify low-energ
states of the full Hilbert space, which lets us work within
subspace much smaller than the full Hilbert space. For
ample, we have been able to obtain the low-energy spect
for the 4/11 state with as many as 24 electrons, where
dimension of the full Hilbert space is;1017.

A brief outline of the method is as follows. Consider th
filling factor range given in Eq.~6!. Given that the two ends
of this range are well described asn11 andn filled levels of
composite fermions, it is natural to expect that the lo
energy states atn containn composite-fermion levels com
pletely occupied, and the remaining composite fermions
the (n11)th level. The configurations that involve prom
tion of composite fermions to higher kinetic energy leve
are expected to cost substantially higher energy and are
glected. In other words, we include all configurations of ty
shown in Fig. 1, but neglect configurations of the type sho
in Fig. 2. This neglect of composite-fermion Landau lev
mixing is the only assumption in our approach, which can
tested for consistency at the end of the calculation. Ot
than that, the method is exact. The most important point h
is that we do not make any assumption with regard to
interaction between composite fermions, or their structure
the partially filled level. In our calculation, we first constru
all states of composite fermions atn* 5n1 n̄, with the low-
estn levels fully occupied and the next one with filling facto
n̄, and then diagonalize the Coulomb Hamiltonian with
this sector to obtain the spectrum of low-energy states.

FIG. 1. The configurations included in our study. Each comp
ite fermions is depicted as an electron carrying two flux quanta.
lowest composite-fermion level is fully occupied and the seco
one is partially occupied.
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calculation is rather involved, requiring extensive Mon
Carlo; but is still numerically stable, and yields reliable r
sults.

The present method is a significant advance over
variational method of Ref. 12. It is much more reliable b
cause it eliminates several approximations made in
work. In Ref. 12, the problem of composite fermions atn*

5n1 n̄ was mapped into that of fermions atn̄. Further, it
was assumed that the interaction energy of the system
composite fermions in the partially filled level can be a
proximated by a sum of two-body interactions. The intera
tion between composite fermions was obtained by keep
only two composite fermions in the (n11)th level and inte-
grating out the composite fermions of the lower filled leve
In general, when there are many composite fermions in
(n11)th level, the integrating out of the lower-level com
posite fermions will produce a quite complex interactio
with two-, three-, andn-body terms, because the full syste
is strongly correlated. The hope was that then-body terms do
not cause any phase transitions, in which case the two-b
terms will produce the correct state. However, this appro
mation was untested. Finally, the method was a variatio
study, in which the energies of certain wave functions w
compared to determine which had the lowest energy; th
was, of course no guarantee that this state would describe
true ground state. In contrast, in the present study, we w
with the full composite-fermion system and do not assu
anything about the form of the interaction between comp
ite fermions or the nature of their ground state.

The following section contains a discussion of how w
construct the low-energy composite fermion basis and h
we carry out the Gram-Schmid orthogonalization and dia
nalization. The reader not interested in the technical det

-
e
d

FIG. 2. The configurations neglected in our study. These h
higher ‘‘kinetic’’ energy than the configurations shown in Fig. 1.
2-3
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can skip this section and directly proceed to the subseq
section, wherein the results are given and their implicati
are discussed.

II. DIAGONALIZATION IN LOW-ENERGY COMPOSITE-
FERMION BASIS

We first summarize certain relevant facts from the Int
duction. The electron filling factorn given by

n5
n*

2pn* 61
~9!

corresponds to composite-fermion filling factorn* . We will
be interested below in the specific values ofn* given by

n* 5n1 n̄5n1
n̄

2p̄n̄11
. ~10!

Here, composite fermions filln levels completely and occup
n̄ fraction of the (n11)th level. If the2pCF’s in the partially
occupied level capture 2p̄ additional vortices and condens
into n̄ filled Landau level state, then a gap would open
and NQHE would be obtained. The question is whether
mechanism really occurs in nature.

In the composite-fermion theory, there are several p
sible approaches for constructing a low-energy basis. In
work, we construct a LECFB ofall states atn* 5n1 n̄ in
whichn 2pCF levels are fully occupied and the next level h
filling n̄. We do not make any approximation regarding t
structure of2pCF’s in the partially filled level. This basis is
in principle, straightforward: we simply need to take allelec-

tronic states atn* 5n1 n̄ and attach 2p vortices to obtain
the composite-fermion states. The method, however, is te
nically rather demanding, and the present section is dev
to it.

A. Wave functions

We will employ the spherical geometry in whichN elec-
trons move on the surface of a sphere under the influenc
a radial magnetic fieldB created by a magnetic monopole
the center. The magnitude of theB field is given by
2Qf0 /4pR2, wheref05hc/e is known as the flux quan
tum, R is the radius of the sphere, andQ is called the mono-
pole strength that should be either an integer or a half-inte
because of Dirac’s quantization condition.

The interacting electron system at monopole strengthQ
maps into a system of weakly interacting composite fermi
at an effective monopole strengthq* 5Q2p(N21). The
wave functions for interacting electrons atQ are given by

CQ5PLLLF1
2pFq* , ~11!

whereF1 is the wave function for the fully occupied lowe
Landau level, andFq* are antisymmetric wave functions a
q* . F is, in general, a linear superposition of Slate
determinant basis states made up of the monopole harm
ics, Yq* ,s,m , given by15
15530
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Yq* ,s,m~V j !5Nq* sm~21!q* 1s2meiq* f juj
q* 1mv j

q* 2m

3(
r 50

s

~21!r S s
r D S 2q* 1s

q* 1s2m2r D
3~v j* v j !

s2r~uj* uj !
r , ~12!

where

Nq* sm5S ~2q* 12s11!

4p

~q* 1s2m!! ~q* 1s1m!!

s! ~2q* 1s!!
D 1/2

.

~13!

The quantitys50,1,2, . . . is theLandau level~LL ! index, to
be differentiated fromn, the number of filled Landau levels
V j represents the angular coordinatesu j and f j of the j th
electron, and

uj[cos~u j /2!exp~2 if j /2! ~14!

v j[sin~u j /2!exp~ if j /2!. ~15!

It was shown in Ref. 7 thatCQ , the wave function of
interacting electrons atQ5q* 1p(N21), is obtained from
Fq* by replacingYq* ,s,m by Yq* ,s,m

CF , defined as

Yq* ,s,m
CF

~V j !5Nq* sm~21!q* 1s2m

3
~2Q11!!

~2Q1s11!!
uj

q* 1mv j
q* 2m

3(
r 50

s

~21!r S s
r D S 2q* 1s

q* 1s2m2r Duj
rv j

s2r

3F S ]

]uj
D r S ]

]v j
D s2r

Jj
pG , ~16!

where

Jj5)
k

8

~ujvk2v juk!. ~17!

Here the prime denotes the conditionkÞ j .

B. Low-energy composite-fermion basis

For n̄50, that is at the special filling factors

n5
n

2pn61
, ~18!

the wave function for the ground state has the simple for

C n
2pn61

GS
5PLLLF1

2pFn , ~19!

whereFn is the Slater-determinant wave function forn filled
Landau levels. SinceFn is unique, the wave function
Cn/(2pn61) also contains no adjustable parameters. It h
been tested in the past and was found to be remark
accurate.6,7
2-4
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Of interest in this work is the situation whenn̄Þ0. Here,
we obtain the low-energy spectrum through the followi
steps.

~1! We perform exact diagonalization forN̄ particles at
filling factor n̄ in the lowest Landau level to get all eigen
state. The form of the interaction used for the diagonalizat
is of no significance, because its only role is to produce b
wave functions, but we work with the Coulomb interactio
Let us denote these states byFn̄

a , wherea labels different
states.

~2! We then promote each eigenstate to the (n11)th Lan-
dau level, and fill the lowern Landau levels completely with
additional particles to get theN-particle state atn* 5n1 n̄.
This givesall wave functionsFn*

a for which the lowestn
Landau levels are fully occupied and the next Landau le
has filling n̄. These states are denoted byLnFn̄

a , whereLn

denotes addition ofn Landau levels. It ought to be remem
bered that the operatorLn changes the number of particles

~3! We then multiply each wave function byF1
2p and

carry out the lowest Landau level projection by the meth
discussed in Sec. II A. This gives us correlated basis fu
tions Cn

a at n. These steps are summarized as

n̄⇒n* 5n1 n̄⇒n5
n*

2pn* 11
, ~20!

Cn
a5PLLLF1

2pLnFn̄
a . ~21!

The advantage of constructing basis states in this way is
it directly gives us basis functions with well-defined orbit
angular momentumL, which is a good quantum number i
the spherical geometry. We can work within eachL sector
independently, because they are not coupled by the inte
tion. ~Note that in the above equation,Fn̄

a is a wave function

for N̄ electrons only.!
~4! The basis thus obtained is not orthogonal. We obt

an orthogonal basis following the Gram-Schmid procedu
Some relevant details are outlined below.

~5! We construct the Hamiltonian matrix.
~6! Diagonalization of the Hamiltonian gives the low

energy eigenspectrum atn.
If an incompressible state is obtained, the ground-s

wave function is likely to be well approximated by

PLLLF1
2pLnFn̄

GS
'PLLLF1

2pLn@PLLLF1
2p̄F n̄#, ~22!

where Fn̄
GS

'PLLLF1
2p̄F n̄ is the wave function for the

ground state forN̄ particles atn̄5n̄/(2p̄n̄11).

C. NQHE states on sphere

Since our goal is to look the feasibility of NQHE de
scribed above, we do our calculations at those values oQ
where it is possible for2pCF’s in the partially filled level to
condense into a standard-type of FQHE state. For that,
first need to determine the relation betweenQ and N for a
given filling factor. Clearly, in the limitN→` we must have
15530
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N

2Q
5n, ~23!

where 2Q is the number of flux quantum. For finite system
however, the ratioN/2Q is not exactly equal ton, and the
identification of what filling factor a finite system corre
sponds to requires additional theoretical input.

Let us first consider the incompressible states at fill
factor n̄5n̄/(2p̄n̄11), the wave function for which is given

by F1
2p̄F n̄ . For these states, the relation betweenQ and N

can be obtained by noting that the product of two monop
harmonics atq8 and q9 gives a monopole harmonic atq8
1q9, i.e., the monopole strengths add. For reasons that
become clear below, let us denote the number of particles
N̄ and the monopole strength byq̄. The lowest LL projection
is unimportant for the question of the relationship betweenN̄

and q̄, as it does not alterq̄. In the spherical geometry, fo
monopole strengthq the degeneracy of the lowest Landa
level is 2q11, for the next LL it is 2q13, and so on. From
that, it is clear that then̄ filled LL state is obtained forqn̄
given by

qn̄5
N̄2n̄2

2n̄
. ~24!

In particular, one filled LL is obtained at

q15
N̄21

2
. ~25!

From the addition rule, the monopole strength ofF1
2p̄F n̄ is

given by

q̄52p̄q11qn̄5S p̄1
1

2n̄
D N̄2S p̄1

n̄

2
D . ~26!

It can be verified that 2q̄/N̄ gives the filling factorn̄ in the
thermodynamic limit.

Now we ask what is the monopole strengthq* for the
state atn* 5n1 n̄5n1n̄/(2p̄n̄11) for N electrons. Let us
denote byN̄ the number of fermions in the (n11)th partially
filled Landau level. In order forN̄ fermions to form the
n̄/(2p̄n̄11) state, the degeneracy in this level must satis

2q* 12n1152q̄11, ~27!

which implies that

q* 5q̄2n. ~28!

The total number of fermions, including the fermions in t
lowestn fully occupied Landau levels is

N5N̄12nq* 1n2. ~29!

Eliminating N̄, one gets the following relation betweenN
andq* :
2-5
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N52q* S n1
n̄

2p̄n̄11
D 1

p̄1
1

2
n̄1n

p̄1
1

2n̄

1n2. ~30!

The state atn* 5n1n̄/(2p̄n̄11) is obtained for all vaules
of (N, q* ) related by the above equation, providedN is an
integer andq* is an integer or a half integer. The state atn
5n* /(2pn* 11) in turn is obtained for all values of (N, Q)
with Q5q* 1p(N21).

We have considered in this work the following filling fac
tors.

~1! n5 4
11 . Here, n* 511 1

3 . The parameters arep5 p̄

5n5n̄51, which gives

q* 5
3N28

8
, Q5

11N216

8
. ~31!

~2! n5 5
13 . Here, n* 511 2

3 . The parameters arep5 p̄

5n51 andn̄522, which gives

q* 5
3N27

10
, Q5

13N217

10
. ~32!

~3! n5 7
19 . Here, n* 511 2

5 . The parameters arep5 p̄

5n51 andn̄52, which gives

q* 5
5N217

14
, Q5

19N231

14
. ~33!

~4! n5 6
17 . Here, n* 511 1

5 . The parameters arep5n

5n̄51 andp̄52, which gives

q* 5
5N212

12
, Q5

17N224

12
. ~34!

Of course, only integer values are allowed forN, 2q* ,
and 2Q. The Table I explicitly lists the systems that we ha
studied below.

D. Matrix elements

The basis obtained in the way described above is not
thogonal for a given angular momentum sectorL. We or-
thogonalize these using the Gram-Schmid procedure
then diagonalize the Coulomb Hamiltonian in the orthogo
basis. These require the knowledge of matrix elements of
type ^f l ufm& and^f l uHufm&, wheref l andfm ( lÞm) are
unorthonormalized wave functions, which we obtain
Monte Carlo. Since the Monte Carlo evaluation is most e
cient when the integrand is positive definite, we determ
these using the equations16,17

^f l ufm&5
^f l1fmuf l1fm&2^f l uf l&2^fmufm&

2
,

~35!

and
15530
r-

nd
l
e

-
e

^f l uVufm&

5
^f l1fmuVuf l1fm&2^f l uVuf l&2^fmuVufm&

2
,

~36!

whereV denotes the Coulomb interaction Hamiltonian.

E. Orthogonalization

We denote$ul% as the unorthogonal but normalized bas
set obtained from the set$f l%, and define

ui j [^ui uuj&5
^f i uf j&
uf i uuf j u

~37!

and

Vi j [^ui uVuuj&5
^f i uVuf j&
uf i uuf j u

; ~38!

these are real numbers.
We then follow the Gram-Schmid procedure to constr

an orthogonal basis set$c i% in terms of the unorthogona
basis set$ui%. The former can be expressed as

c j5uj2(
i 51

j 21
1

Ni
2 ^c i uuj&c i ,

[uj2(
i 51

j 21

f i j c i , ~39!

with Ni
25^c i uc i& and f i j 5^c i uuj&/Ni

2 . While the above re-
lation allows an iterative evaluation of$c i%, we find it more
convenient to work with the following expressions:

TABLE I. The monopole strengthQ as a function ofN for the
NQHE states studied in this work. The quantitiesn andn* are the

the filling factors of electrons and composite fermions, withn̄ being
the CF filling factor in the partially filled level.N is the total num-

ber of composite fermions, andN̄ is the number of composite fer

mions in the partially filled level, at fillingn̄. Q and q* are the
monopole strengths for the electrons and composite fermions.

n n* 5n1 n̄ N N̄ q* Q

4/11 111/3 8 3 2 9
12 4 3.5 14.5
16 5 5 20
20 6 6.5 25.5
24 7 8 31

5/13 112/3 14 6 3.5 16.5
19 8 5 23

7/19 112/5 16 6 4.5 19.5
23 8 7 29

6/17 111/5 12 3 4 15
18 4 6.5 23.5
24 5 9 32
2-6
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Ni
25^c i uc i&512 (

k51

i 21

f ki
2 Nk

2 ~40!

and

f i j 5
^c i uuj&

Ni
2

5
1

Ni
2 F K ui2 (

k51

i 21

f kickUuj L G
5

1

Ni
2 Fui j 2 (

k51

i 21

f ki f k jNk
2G . ~41!

Equation~39! was used to obtain these expressions, as w
as the fact thatui j and f i j are real. The Hamiltonian matrix
elements

Vi j 5
^c i uVuc j&

NiNj
~42!

in the basis set$c i% are thus obtained as

Vi j 5
1

NiNj
FVi j 2 (

k51

j 21

f k jEikNiNk

2(
l 51

i 21

f l i H El j NlNj1 (
k51

j 21

f k jElkNlNkJ G , ~43!

which are again obtained iteratively. We finally diagonali
the matrixVi j to obtain the eigenvalue spectrum for a giv
L sector.

F. Computation

The major computation time is spent in calculating t
matrix elementŝf l ufm& and^f l uVufm& in the Monte Carlo
method, because at each step we must evaluateM Slater
determinants,M being the size of the LECFB. To give a
example, at (N,Q)5(24,31) we haveM51656. To mini-
mize the computational time, we sample all the states r

FIG. 3. The low-energy spectrum of interacting composite f
mions at (N,2Q)5(12,29), identified with 4/11, whereN is the
number of composite fermions and 2Q is total flux penetrating the
sample. The energies in this and subsequent figures are quot
units of e2/e l 0 , where e is the dielectric constant for the back
ground material (e'13 for GaAs! andl 05A\c/eB is the magnetic
length at the relevant filling factor~4/11 in this case!. Spherical
geometry is employed for the calculation, andL is the orbital an-
gular momentum of the state.
15530
ll

a-

tive to the L50 state which is obtained from the lowe
energy state atn* . We typically perform six to ten Monte
Carlo runs for each (N,Q) with (0.6–1.0)3106 Monte Carlo
iterations in each run. For larger systems, we use para
computers.~We divide all of the Monte Carlo steps into se
eral configurations with each configuration placed on
single node of a Beowolf class PC cluster. One node cons
of a dual 1 GHZ Pentium III Processor. To obtain one d
point, at a particularN, we use as many as 30 nodes repe
edly until the standard deviation in energies is sufficien
low to produce the desired accuracy.! Approximately 80
CPU days were needed for the calculation of the spect
for (N,Q)5(24,31). The computation time increases ve
quickly with N, approximately asN12.

It is difficult to ascertain how the statistical error in ea
element of the matrix would propagate into the eigenvalu
We instead obtain the spectrum in several different runs,
use the eigenvalues from those different runs to obtain
average and the standard deviation for each eigenvalue.

III. RESULTS AND DISCUSSION

We have considered the low-energy spectra at several
ues of (N,2Q) which were identified earlier with systems
special filling factors 4/11, 5/13, 7/19, and 6/17. Figures 3

-

in

FIG. 4. The low-energy spectrum of interacting composite f
mions at (N,2Q)5(16,40), identified with 4/11.

FIG. 5. The low-energy spectrum of interacting composite f
mions at (N,2Q)5(20,51), identified with 4/11.
2-7
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show results for 4/11; Figs. 7 and 8 for 5/13; Figs. 9 and
for 7/19; and Figs. 11–13 for 6/17. The energy spectra
(8,18) have been given in the past both from exact diago
ization and the composite-fermion theory.6,8,11 The accuracy
of the energies is good enough to be able to state whethe
ground state hasL50 or not. The error increases with in
creasingL, which is a consequence of our use of anL50
state for importance sampling; in principle, the error at la
L can be reduced by sampling with another reference s
but we do not see any need for it for the question of inter
in this work.

The orthogonalization makes a qualitative difference
the spectrum. Figs. 14 and 15 show the energies of the b
statesprior to orthogonalization, which ought to be com
pared to the spectra in Figs. 5 and 6, respectively.

The results explicitly confirm that our method inde
gives very low energy states. For example, consider 4
The ground-state energy is approximately20.419e2/e l 0 per
particle, which compares very favorably wit
20.420e2/e l 0 , which is what one would get from a linea
extrapolation between the energies7 at 1/3 (20.410e2/e l 0)
and 2/5 (20.433e2/e l 0). Further, a large fraction of the
states considered here are within an energy band less tha
effective cyclotron gap at 1/3, which is on the order
0.1e2/e l 0 . In other words, most of the states considered h

FIG. 6. The low-energy spectrum of interacting composite f
mions at (N,2Q)5(24,62), identified with 4/11.

FIG. 7. The low-energy spectrum of interacting composite f
mions at (N,2Q)5(14,33), identified with 5/13.
15530
0
r
l-

he

e
te,
st

sis

1.

the
f
e

lie within the 1/3 gap. This justifies our approximation
neglecting the states that involve transitions betwe
composite-fermion Landau levels, which are expected to c
energy of order 0.1e2/e l 0 .

Now we ask whether the spectra imply incompressibili
A characteristic feature ofall incompressible states known t
date is that they have anL50 ground state, which is sepa
rated by a gap from other states; in addition, there is als
well-defined branch of neutral excitation. Furthermore,
ground state is extremely well described as a filled Land
level state of composite fermions, and the excitation a
particle-hole-pair excitation of composite fermion.6,8,18 This
is the case, with no exception, for systems with (Q,N) re-
lated by Q5(161/2n)N2(16n/2), which are identified
with n5n/(2n61).

None of the spectra have these standard features o
incompressible state. Even in cases when the ground s
hasL50, there is no well-defined CF-exciton branch. T
final spectrum atn thus bears little resemblance to the spe
trum at n̄ that we started out with, implying that the intera
tion between composite fermions in the partially filled lev
is quite different from that of electrons atn̄ in the lowest
Landau level. The scenario described in the Introduction
NQHE is thus not borne out.

The ground states at the flux values considered above

-

-

FIG. 8. The low-energy spectrum of interacting composite f
mions at (N,2Q)5(19,46), identified with 5/13.

FIG. 9. The low-energy spectrum of interacting composite f
mions at (N,2Q)5(16,39), identified with 7/19.
2-8
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THEORETICAL SEARCH FOR THE NESTED QUANTUM . . . PHYSICAL REVIEW B66, 155302 ~2002!
in general, not incompressible uniform states withL50.
Consider 4/11 for example. It has been known6,8,11 that for
N58 particle system atQ59, which is identified above with
4/11, the ground state does not haveL50. However, the
system is effectively very small here, with onlyN̄53 com-
posite fermions in the second level, and one may questio
the conclusion will hold asN increases. We find that forN
512 and 20 the ground state hasL50, but forN516 and 24
it does not. This provides an illustration for why a study
several values ofN is crucial; if one had only studiedN
512, that would have led one to exactly the opposite c
clusion. Another example is the 12-particle system at 6/
which has anL50 ground state and might suggest FQHE
6/17; however, the spectra forN518 and 24 at 6/17 explic
itly clarify that this is only a finite-size effect that does n
survive in the thermodynamic limit.

Our study implies that even though the ground st
sometimes hasL50, it doesnot describe an incompressibl
state at any of the filling factors considered here. The follo
ing observations support this statement.

~1! When the ground state hasLÞ0, theL50 state is a
rather highly excited state.

~2! In the plot of the ground-state energy with 1/N, the
energies of theL50 ground states are not particularly low
See Fig. 16 for 4/11.

FIG. 10. The low-energy spectrum of interacting composite f
mions at (N,2Q)5(23,58), identified with 7/19.

FIG. 11. The low-energy spectrum of interacting composite f
mions at (N,2Q)5(12,30), identified with 6/17.
15530
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FIG. 12. The low energy spectrum of interacting composite f
mions at (N,2Q)5(18,47), identified with 6/17.

FIG. 13. The low-energy spectrum of interacting composite f
mions at (N,2Q)5(24,62), identified with 6/17.

FIG. 14. The low-energy spectrum of composite fermions
(N,2Q)5(20,51) prior to orthogonalization. The correspondin
spectrum after orthogonalization is given in Fig. 5. The spec
shown here and in Fig. 5 are not physically meaningful, but
given here only to show the effect of orthogonalization.
2-9
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~3! The ground state atn̄ generally produces an excite
state atn, even in theL50 sector~prior to orthogonaliza-
tion!, which indicates a breakdown of analogy betweenn̄
andn.

~4! The energy per particle is not a smooth function
1/N, but instead shows fluctuations characteristic of a co
pressible state. See Fig. 16.

~5! It is not inconceivable for a compressible state to ha
L50, because a uniform state avoids Hartree energy c
but it would be difficult to understand how an incompressi
state might haveLÞ0.

As a result, the physical mechanism, in which some of
composite fermions turn into higher-order composite ferm
ons and condense into Landau levels to exhibit QHE, d
not appear to be relevant for fully spin-polarized electro
The interaction between composite fermions in the sec
level is thus not of a form to produce NQHE. It must b
stressed, however, that the results donot rule out NQHE
through some hitherto unknown mechanism, which wo
imply a different relation between 2Q and N for a given
filling factor than the one assumed above.

In Ref. 12, which also investigated some of the abo
fractions, it was predicted that the ground state is a bub
crystal of composite fermions, similar to what was found
Hartree-Fock studies of corresponding electronic state
higher Landau levels.19 Aside from several approximations
the results of that study were also predicated upon the q
titative validity of certain trial wave functions, making a

FIG. 15. The low-energy spectrum of composite fermions
(N,2Q)5(24,62)prior to orthogonalization. It should be compare
to the spectrum in Fig. 6.
15530
f
-

e
st,

e
-
s
.
d

d

e
le

in

n-

independent confirmation worthwhile. Unfortunately, t
spherical geometry used here is not convenient for the st
of charge-density-wave states. We do note in passing th
crucial step in Ref. 12 was to model the states atn5n1 n̄ in
terms of fermions atn̄ with an effective two-body interac
tion. A close similarity between our Fig. 11 and Fig. 5 of Re
11, obtained from the two-body interaction model@both for
(N,2Q)5(12,30)] provides support to the validity of thi
model.

In the end, we note that the above calculations assum
strictly two-dimensional system~with zero width!, no disor-
der, and no mixing with higher electron Landau levels. The
approximations represent an idealization of the actual exp
mental system. It is expected that the idealized model, w
not accuratequantitatively, should give the correct qualita
tive behavior.
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FIG. 16. The ground-state energy per particle as a function
1/N for 4/11. The energies plotted here have been multiplied by
factorArN /r, whererN is the density of the finite system andr is
the density in the thermodynamic limit, to account for the dep
dence of density onN. It ought to be noted that the ground sta
does not haveL50 in general.
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