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Hardness conserving semilocal pseudopotentials

B. Delley
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~Received 23 April 2002; revised manuscript received 26 August 2002; published 31 October 2002!

A new type of pseudopotentials for local orbital methods is presented. Hardness conserving semilocal
pseudopotentials have been generated for all elements from H to Am. The construction is based on a minimi-
zation of errors with the norm conservation conditions for 2–3 relevant ionic configurations of the atom.
Besides the transferability between atomic states, the portability among density functionals is also of interest.
This paper explores if the norm-conservation errors can be kept reasonably small when minimized for two
functionals, e.g., the generalized gradient approximation~GGA! and local density approximation, simulta-
neously. It is found that the errors can be kept at roughly the same low level as for a single functional. Since
these pseudopotentials are mainly designed for use with local orbital methods, semicore functions may be
treated as valence functions, helping to increase the accuracy and portability. Therefore the name density
functional semicore pseudopotential or DSPP is suggested. To further improve portability and, importantly,
also aid numerical stability with GGA’s, a core density~nonlinear core correction! is used. As with other
pseudopotentials, scalar relativistic corrections to atomic scattering properties can easily be incorporated into
this PP. Finally performance DSPP’s versus all electron DSPP’s with the same method, will be shown for an
extensive set of test calculations. It is found that the DSPP is a very well behaved pseudo-potential.

DOI: 10.1103/PhysRevB.66.155125 PACS number~s!: 71.15.Dx, 31.15.Ar, 71.15.Nc
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I. INTRODUCTION

Pseudopotentials have a long history both in solid s
electronic structure calculations and in quantum chemi
calculations for molecules. It is clear that the pseudopoten
~PP! is an additional approximation on top of approximatio
that are usually made in all electron~AE! calculations, i.e.,
Born-Oppenheimer approximations, density functional
proximations, and truncations of the wave function and
bitals. In solid state plane wave calculations the PP is
essential ingredient to make plane wave expansions conv
reasonably fast. PP’s designed for plane wave usage
mally incorporate semicore states into the core. This is in
interest of fast convergence and at the loss of a more a
rate description of the polarizability and magnetic mome
due to the shallow core states. The introduction of no
conserving PP’s~Ref. 1! was a great step forward towar
first principles PP’s with improved transferability from on
system to another. The norm conservation condition gua
tees the exact scattering properties of the ionic core a
particular energy and for a particular electronic configurat
of the element. The norm conservation condition can be
plied to several angular momentum channels, which lead
a semilocal form of the PP involving projectors. The la
development of extended norm conserving PP achieves c
pliance with the norm conservation property at several en
gies of the reference state of the element. This further con
of scattering properties is particularly important for ultras
PP’s which further speed up plane wave convergence.

Norm conservation and extended norm conservation
phasize a modeling of the atomic scattering properties
range of energies for a given potential. Another appro
seeks to model the scattering properties of an atom in dif
ent charge states. This was initiated by Teter,2 emphasizing
the importance of hardness for the transferability of the
The need to preserve correct atomic scattering properties
function of occupation was stressed again recently.3
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Quantum chemistry PP’s were designed for use with
calized basis set Hartree-Fock and wave-function metho
Because of the high power of the scaling law for comput
time with the number of basis functions in wave-functio
methods, the elimination of core functions aids greatly
speeding up calculations even on medium sized syst
treated with a modest basis set. Quantum chemistry P
often are made to produce eigenstates which are shape
sistent with the tails of AE orbitals.4 In these PP’s it is well
established that semicore functions are not pseudized aw

The present PP’s are intended for use with density fu
tional local orbital methods such as the DMol~Ref. 3!
approach.5,6 Contrary to the requirements of plane wa
methods it is desirable to use short ranged PP’s. The sep
bility of the PP, which is crucial for efficacity with plane
waves, can be abandoned in favor of the more robust sem
cal PP’s when projectors are to be evaluated in real sp
The local orbital approach permits core to keep semic
states as valence functions, which is useful for good ac
racy, transferability, and local magnetic moments. It is p
posed to call the present PP’s ‘‘density functional semic
pseudopotentials’’~DSPP’s!. DSPP’s can be obtained from
the author by email request.7

II. FORMALISM

A. Form of the pseudopotential

The present pseudopotential has a semilocal cusp
form. The PP is localized inside a cutoff radiusr c depending
on the element. For each partial wave the external potent
an even polynomial inside the cutoff radiusr c,, . The exter-
nal potential for the highest partial wave studied becomes
local potentialVloc5V,max

, and the projector potentials for
partial wave, are then defined as the difference of the e
ternal potential for, and the local potential:
©2002 The American Physical Society25-1
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Vps5Vloc1 (
,50

,max21

u,m&~V,2Vloc!^,mu.

In the case of a real space evaluation of the projectors wi
local orbital basis, the use of separable8 PP’s would not re-
duce the operation count. The details concerning the form
the present PP are not essential; they are given here for c
pleteness. The cusplessV,(r ) functions are conveniently ex
panded in even Legendre polynomials. Atr c,, the pseudopo-
tential matches the bare potential2z* /r up to the third
derivative. Because of the boundary condition atr c,, , the
four highest Legendre coefficientsai ,, need not to be tabu
lated:

V,~r !5(
i 50

ai ,,L2i~r /r c,,!, r ,r c,, .

The PP is then defined to within tabulation accuracy, e
micro-Hartree, which is amply enough. The order for th
expansion need not be very high. It is found that a lot can
achieved even with the minimal expansion length: two
rameters for each partial wave,r c,, , and one free Legendr
coefficient. Sometimes significant improvement is obtain
with more coefficients. The present versions of DSPP’s
five free Legendre coefficients.

It was opted to include a core density9 to improve trans-
ferability and magnetic properties. In addition, the core d
sity avoids the occurrence of a very small electron den
near the nucleus, a situation which sometimes may lea
numerical problems with gradient dependent density fu
tionals. A few parameters are sufficient to define the imp
tant tail region of the core density. The model core densit
thus defined as

log@rc~r !#5(
i 51

n

ci~r /r d!22 i , r .r d

outside the core density matching radiusr d . The coefficients
are determined by a least squares fitting to the core densi
the all electron calculation. Forr ,r d the model core density
is an even polynomial determined from the matching con
tions up to the third derivative.

B. Reference states

The pseudopotential should give a good approximation
the scattering properties of all atomic states of interest
particular it should properly represent the change of an a
under charge transfer. This can be seen as a conservati
hardness. The basic such quantity is the absolute hardne
an atom, defined ash05(I 2A)/2, half the difference of the
ionization potential and the electron affinity.10 In order to
define charge states of particular practical relevance to
culations of compounds it is useful to remember how eff
tive localized basis sets can be constructed.5 The variational
basis functions must span an appropriate function spac
describe an atomic response to charge transfer. The pola
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tion functions are chosen to describe an atomic response
volving partial waves in unoccupied orbitals. Two criter
guide the actual selection of basis functions:~a! the total
energies of a reference set of molecules should be minim
for a given basis set size, and~b! the basis functions must no
give rise to a near singular overlap matrix or have otherw
pathological properties. This can be fulfilled very well b
deriving the variational basis function set from the neut
atom and from positive ions.5 It seems natural to take th
same ionic states, that are useful for generating basis fu
tions, as atomic reference configurations to define the s
tering properties for the PP.

For light atoms the most effectived-polarization functions
were found to be of Slater type form. For PP reference sta
use of ionic states is preferred. With that exception
choice of reference states follows closely the choice
variational basis functions for double numerical set plus
larization function.5

For the generation of reference states as well as for
pseudo partial waves a standard numerical density-funct
theory spherical atom program is used. Some details pert
ing to gradient dependent functionals was given in Ref.
Our program relies on the predictor corrector method a
normally uses 501 radial mesh points to solve partial wa
differential equations. In a similar spirit it is tried here
span the variations of reference states across a class of
sity functionals by optimizing the PP’s simultaneously f
two representative functionals.

C. Norm conserving condition

In the present approach bound atomic configurations
always used as reference states as in most construction m
ods for PP’s. The original formulation of norm conservin
properties1 by Hamann, Schlu¨ter, and Chiang~HSC! allows
for scattering type partial waves:~1! real and pseudo valenc
eigenvalues agree.~2! real and pseudo partial waves agr
beyond somer c , ~3! real and pseudo charge densities in
grated out tor .r c agree, and~4! the logarithmic derivative
of real and pseudo partial waves and their first energy der
tive agree beyondr c .

As described by HSC properties~1!–~4! are related. In the
case of bound states, these properties can be obtained
simplified set of conditions. Since the bound state can
normalized, agreement at some sufficiently large radiusr b
implies a fulfillment of conditions~2! and ~3!. r b is always
chosen at~or larger than! the largest radius of classical turn
ing point for the orbitals of interest. The bound state orbit
are all decaying beyond that point and the self consis
potential is equal to the all electron potential. Property~4!
must be fulfilled on the basis of the Shaw-Harrison-Lu¨ders
~Refs. 11 and 12! sum rule discussed by HSC. This proper
guarantees that partial waves behave properly in the vici
of the reference energy used for the construction of the
Extended norm conservation requires partial waves of
same potential to fulfill the properties at a set of energi
This can be obtained in the framework of an ultrasoft
construction.13 Here we attempt to fulfill norm conservin
conditions for different ionic configurations of an atom. Th
5-2
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HARDNESS CONSERVING SEMILOCAL PSEUDOPOTENTIALS PHYSICAL REVIEW B66, 155125 ~2002!
amounts to seeking hardness conserving PP’s.2 The closest
approximation to such a PP must be sought by an optim
tion procedure. With the optimization, information on th
transferability of the PP is gained as a byproduct.

D. Optimization

The target function to be minimized is chosen as the r
deviation from the norm conserving conditions for the set
target states,

D0
25

1

2Nt21 (
a

~ea
ps2ea!21@fa

ps~r b!2fa~r b!#2, ~1!

wherea is a combined index which enumerates valence
polarization orbitals for the ionic configurations and fun
tionals under consideration as the target set. The targe
consists ofNt pairsea ,fa(r b). The first term aims to make
the pseudoeigenvaluesea

ps agree with the all electron ones
The second term relates to the charge conservation by c
paring the pseudo and real amplitudes atr b , according to the
discussion in the Sec. II C.D0 gives an idea of the accurac
of the pseudoeigenvalues~in atomic units! and less directly
on the charge conservation across the target set. In princ
one might introduce weight factors for the two kinds
terms enteringD0. If atomic units~a.u.! are chosen, the mag
nitudes of either term are of the same order and a reason
ratio of the weights should be of order unity. Therefore t
weights for the calculation in a.u. were chosen to be equa
1. Other reasonable choices of the weights do not lead
away from a local minimum found with the unity weight
Properties remain so similar to the original DSPP that furt
investigation was dropped. The basic problem appears t
that no perfect transferability among different charge sta
can be obtained within the class of semilocal PP’s.

It turned out to be necessary to add penalty functions
the target function to prevent the optimization from bei
trapped in an undesirable local minimum. The penalty fu
tions used here are designed to vanish exactly for the clas
desired PP. The desirable properties and the associated
alty function are discussed below. It is desirable that
cutoff radiusr c of the PP not be too large. The matrix el
ment between two localized basis functions is generally n
vanishing if the two functions can interact via a P
^f i uVnonlocuf j&Þ0 if ur i2rVu,r c,f i

1r c,V and ur j2rVu
,r c,f j

1r c,V . The short ranged character of the pres
pseudopotential is useful to achieve good accuracy. At
same time it aids in a speedy evaluation of matrix eleme
in real space. For the present hard PP, a dual space repr
tation ~real and reciprocal space! ~Ref. 14! would still not
make DSPP’s very appealing for plane wave methods. To
the cutoff radius under control, a penalty function is intr
duced:

D1,,5H w1~r c,,2r max! if r c,,.r max

0 if r c,,<r max.
~2!

A value w15104 a.u. was used. The cutoff radius of the P
must not be smaller than the radius of the outermost nod
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be pseudized. However, no penalty function needed to
introduced for this. A cuspless PP need not be very stron
should not be, because strong variations of the PP may cr
high Fourier components for the orbital which may requ
additional numerical effort. That should be spent only if t
strong PP is physically well motivated. The penalty belo
helps to guide the optimization toward PP’s which are in
range of function values@V2 ,V1#,

D2,,5w2E
0

r c,,
p@V,~r !#dr,

wherew2 is a weight factor and the functionp(V) is defined
as

p~V!5H ~V2V1!2 if V.V1

~V2V2!2 if V,V2

0 else.

~3!

The optimization of the PP might go astray and end up w
a wiggly function for the potentialV,(r ) acting on scattering
channel,. This is not desirable. The optimization can b
guided by a penalty function involving a measure of t
wiggliness. A measure of wiggliness for a functionV(r ) is

J5E
r 1

r 2
@V9~r !#2dr, ~4!

where the integral is taken in principle from the origin
r c,, . However, with this basic definition only a linear func
tion of the radius in each channel would go without pena
One needs to exclude from the penalty function the type
curvature that must necessarily appear inV, for an accept-
able PP. If a partial measureJi is taken between subseque
turning points separately, a suitable measure of wigglin
can be defined. The cuspless form of the PP leads to at
one turning point in the interval@0,̀ #. If the PP for a partial
wave is repulsive near the core, two turning points neces
ily appear. Therefore, the penalty function is defined to v
ish for up to two turning points betweenr 50 andr 5r c,, . If
there are more than two turning pointsnw.2 the measures
Ji are added up, except for the two end parts and for
largest intermediate partJm :

D3,,5H w3S (
i 52

nw21

Ji D 2Jm , n.2

0 else.

~5!

The total target function for each element isD
(PP parameters)5D01(,D1,,1D2,,1D3,, , where the sum
over, should run over the projector channels and include
local potential once. The local potential acts on all part
wave channels beyond the maximum projector channel.
minimization is done using the downhill simplex method.
was found that increasing the Legendre expansion order
by step using the converged lower order PP as a startup
5-3
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B. DELLEY PHYSICAL REVIEW B 66, 155125 ~2002!
reasonably robust procedure. As mentioned above, the
tribution of the penalty functionD11D21D3 always be-
comes small when compared toD0 for the completed opti-
mization. Usually the value of the penalty function at t
optimum is zero.

The primary density functional used here to define the
reference is the Perdew-Burke-Ernzerhof~PBE! functional.15

This is a functional with an explicit dependence on the d
sity gradients. Koelling Harmon scalar relativistic avera
radial equations16 are used to define AE radial functions. F
the corresponding PP the abbreviation DSPP_s_PBE is u
In attempting to span a large class of functionals a lo
density functional approximation~LDA ! in the form of the
Perdew Wang local correlation17 ~PWC! plus local exchange
functional is used to define the duplicated set of target or
als. For this two functional scalar relativistic PP’s the abb
viation DSPP_s is used.

Some of the points raised above are illustrated in F
1~a!, which shows the external potentials acting on each p
tial wave. The external potentials match smoothly with t
z* /r bare potential at the cutoff radiusr c,, . The local poten-
tial acts on all partial waves from,max up. The projector

FIG. 1. ~a! DSPP_s_PBE for Fe: external potentials fors, p, d,
and all higher, partial waves. Also shown is thez*/ r potential for
z* 516. ~b! Pseudo~dashed curves! and all electron~full lines!
partial waves for a neutral atom and for 21 ion. Shown are the
cutoff radiusr c of the PP and the radiusr b , where the matching of
the partial wave amplitude is measured. The inner maximum
longs to the radial function for a positive ion, the outer maximum
the neutral atom.
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functions are the differencesV,2Vloc and vanish atr c . Fig-
ure 1~b! shows thes partial wave for the atom and a ioni
state. Outsider c all-electron and pseudopartial waves a
almost identical. The figure suggests that the exact valu
r b , where the amplitude difference is minimized, is not cri
cal. Figure 2 shows the minimized values of the target fu
tion D for scalar relativistic radial functions. Also shown
the value of the PP cutoff radius and the, value associated
with the local part of the PP for each element. The lower p
in each panel shows thatD is of the order of 0.001 a.u. o
smaller for most elements. In factD andD0 are shown, but
for most elements only a single point can be seen on
graph. The comparison of panels~a! for a single functional
PP and~b! for two functionals spanning from the LDA to th
generalized gradient approximation~GGA! suggests that~b!
is somewhat less close to fulfilling norm-conserving con
tions. The application tests below will show, however, th
the degradation of the PP due to the functional-portabi
requirement is not important. The elements C–Ne
DSPP_s are all above 0.001 a.u., which says that the n
conserving conditions have been fulfilled less precisely th
for almost all other elements. A choice may be to treat
elements up to Ne with the all electron approach, especi
since only the 1s core is pseudized in Be–Ne. A cuspless

e-

FIG. 2. Characteristics of DSPP~a! scalar relativistic pseudo
potential for optimized for the PBE functional~DSPP_s_PBE! ~up-
per part!; black dots: cutoff radius; gray dots: number of, projec-
tors; lower part: accuracy measure for the PP of each element; b
dots: excluding penalty function; gray dots: accuracy measure
cluding penalty function.~b! For DSPP_s the information is simila
to ~a!, but the PP is targeted for two functionals: PBE and PWC
5-4
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FIG. 3. ~a! Bond length errors with
DSPP_s_PBE vs errors with all-electron calcu
tion for functional PBE.~b! Same for AREP.
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electron PP can be~and has been! constructed for H–Li, but
there appears to be no advantage using such a PP with
orbitals. It is interesting to note that the minimumD(N)
reached for the 2p, 3d, and 4f elements is larger in value
and thus less good, than for thep, d, and f elements with
higher principal numbers. For some elements it appears t
difficult to obtain equally low minima as for neighbor ele
ments: e.g., Cd~48!. This obviously depends on the config
rations used to define the target function. Not surprisingly
was found that the value of the minimum can be reduced
choosing target configurations with smaller differences
ionicity. Thus Fig. 2~a! gives information on the transferabi
ity among ionic states, and Fig. 2~b! contains information on
transferability among functionals in addition. The tests on
performance in the following section should set the rig
expectations for applications.

III. PERFORMANCE OF DSPP

A. Molecules

There is a number of diatomic molecules for which acc
rate spectroscopic data are known. For the present be
marking purpose we select the diatomic molecules wh
data sets of bond length, ground state vibrational freque
and dissociation energy are known experimentally. Mos
these data can be found in the review of Huber a
Herzberg.18 Some more molecules for which similarly goo
data are available have been added to the data set, no
Cr2 and Mo2.19,20 In the case of Ag2 an estimated bond
length of 252 pm is used. This test set consists of a tota
201 cases. 117 are treated with the spin unrestricted fu
tional. The unrestricted case includes also antiferromagn
15512
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singlet states which are handled allowingC`,V symmetry for
the spin dependent part of the effective potential. The test
includes furthermore 30 cations and 15 anions.

Since this test set provides well established experime
data, it is interesting to put the inaccuracies for calcula
properties using the pseudopotential in perspective with
errors for the all electron calculation. The numerical erro
are small as compared to the ones from the approxim
density functionals that can be used in practical calculatio

Figure 3 shows a correlation plot for errors of calculat
bond length with DSPP_s_PBE. against errors from the
electron calculation with the PBE functional. The all electr
calculations incorporate scalar relativistic corrections.21 If
the points in the figure are perfectly aligned along the di
onal, this would mean that errors from the PP would be n
ligible against the errors still present in the all electron c
culation. The errors in the present all electron calculation
clearly dominated by approximations due to the function
The majority of points in the plot falls near the diagona
This means that the largest error on average is from the fu
tional. The errors from the PP are smaller, but no
negligible. The graph suggests that the DSPP results hav
significant bias as compared to the all electron results. Th
are 12 cases where the difference of calculated bond le
between PP and all electron exceeds 3 pm. The largest
ference occurs for Cr2. Incidentally, the DSPP bond length
closer to experiment on average. For a statistical analy
cases with bond lengths differing more than 10 pm fro
experiment are considered outliers. In this analysis the m
deviation of PP vs AE is20.2 pm and AE vs exp11.8. rms
deviations are 1.6 and 3.4 pm, respectively. When suc
graph is plotted for a semicore PP derived from Hartree F
rs
.

FIG. 4. ~a! Binding energy errors for 201 di-
atomic molecules with DSPP_s_PBE vs erro
with all-electron calculation for functional PBE
~b! Same for AREP.
5-5
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B. DELLEY PHYSICAL REVIEW B 66, 155125 ~2002!
~HF! atomic calculations,22,23 a systematic bias is found a
shown in Fig. 3~b! for the average relativistic effective cor
potential ~AREP!. The bond length turns out to be system
atically large, the binding energies too small and the vib
tional energies too small. For this set of diatomic molecu
a HF derived semicore PP represents a major approxima
with an error somewhat larger than the one from the gen
alized gradient approximation.

Figure 4 correlates PP errors in the binding energy (D0)
against the respective errors for an all electron calcula
with the PBE functional. The data points scattered along
positive diagonal show that for many of these molecules
PBE functional overestimates the binding energy. The co
lation of errors between PP and all electron cases is v
close. The PP has a slight tendency to overestimate b
energies less, which is nice, superficially. There are n
cases where the difference in binding energy exceeds 0.3
The largest case is N2; the PP result happens to fall ver
close to the experimental value. The inaccuracies introdu
by the PP should be put in perspective with the errors for
PBE functional. The figure clearly shows an accumulation
points along the diagonal, with a number of cases overbou
A smaller number of cases turns out under-bound as c
pared with experiment. Figure 4~b! shows the correlation o
binding energy errors with AREP PP against the AE erro
The AREP errors involve error components to be ascribe
the PP which are of the same magnitude as the ones from
density functional.

The value of the vibrational frequencyve has been cal-
culated in a harmonic approximation for this survey. If ou
liers involving errors greater than 100 cm21 are not counted,
one finds a mean error of27 cm21 and an rms error of
35 cm21. The difference from all electron frequencies
again excluding outliers, mean17 and rms 24. The error
with respect to experiment happen to be slightly larger w

TABLE I. Performance for a test set of 148 neutral molecules
kcal/mol.

Calculation Mean error rms error Abs. avg. erro

All electron 0.9 7.7 5.8
DSPP_s 22.0 7.5 5.8
DSPP_s_PBE 23.1 8.0 6.3
TMPP 3.9 12.1 9.6
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all electron calculation than with PP. This means that
errors for DSPP’s partially compensate for functional err
for the PBE functional. The results for DSPP_s are vexin
similar to the ones calculated with the DSPP_s_PBE; the
fore, no extra figures for DSPP_s are shown here.

The test set proposed by Curtisset al.24 consists of 148
neutral molecules with well established enthalpies of form
tion ~the G2 set!. The heaviest element in that set is Cl. T
importance of elements by number of occurrences is H, C
F, Cl, N, S, Si . . . . He, Ne, and Mg do not occur. This te
set emphasizes the elements for which the quality measu
the present construction procedure is not pleasingly goo
case of the DSPP_s. The test is done using fixed M
geometries24 and scaled HF frequencies24 for thermal correc-
tions. Here the performance of theBECKE88 ~Ref. 25! PER-

DEW91 ~Ref. 26! ~BP! functional is compared between a
electron and DSPP calculations. Table I shows a compari
It is clear from the table that the error characteristics w
all-electron or with DSPP calculations are very similar. F
comparison Troullier-Martins pseudopotentials~TMPP’s!
~Ref. 27! were used for this test. Performance is less go
than for DSPP’s. The most important differences with t
DSPP are that the TMPP has a significantly larger cu
radius of the PP, which may affect accuracy for the sh
molecular bonds in this test set. For the heavier atoms Al
more electrons are pseudized in the TMPP. Figure 5~a! shows
the correlation of DSPP errors vs AE errors for the G2 te
The points remain in an area close to the diagonal indica
predominance of errors due to the functional. For the TM
@Fig. 5~b!# an error of larger magnitude than with DSP
shows up. This is also shown by the summary numbers
Table I.

B. Solids

Monoelemental simple solids provide a useful testi
ground to put PP errors into perspective with the dens
functional approximation. The calculations were done w
shiftedk-point meshes of even order. The default6 resolution
in k-space results in an 8 8 8Monkhorst Pack mesh for Fe
Ni, etc., and a 4 4 4mesh for Cs. The atomic cutoff param
eter was set to (6.53V)1/3 ~a.u.!, whereV is the atomic vol-
ume. This yieldsRc56.3 a.u. for diamond, 8.0 a.u. for Fe
and 16.9 a.u. for Cs. Experimental data are taken fr
Kittel28 and the inorganic crystal structure data base.29 The
results in Table II suggest that the two PP’s presented h
t
h
or
FIG. 5. ~a! Binding energy errors for a G2 se
of 148 neutral polyatomic molecules wit
DSPP_s vs errors with all-electron calculation f
functional B88P91. ~b! Same for Troullier-
Martins PP (23.061 kcal/mol51 eV).
5-6
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perform almost equally. The DSPP’s produce a 0.5% aver
stretching of the calculated lattice constant as compare
the all electron calculation with scalar relativist
corrections.21 The average error of the all electron calcu
tion is 10.4%. The rms error is near 1.5% for DSPP and
electron calculations. The LDA leads to a 2.4% contract
as compared to the experimental reference data, and the
rms error is at 2.9%. The difference between the PP and
electron results is significantly smaller than the differen
between LDA and GGA functionals. Certain lattice consta
from the PBE functional appear to be off by an alarmi
amount. The one of gray tin is notable12.9%. For compari-
son the value from FLAPW~full potential linearized aug-
mented plane wave density functional method! with PBE
functional30 is 13.4%. In the case of gold there is a larg
difference between the DSPP~12.6%! and the scalar relativ
istic all-electron result (21.3%). In this case the FLAPW
value30 of 13.2% and the DSPP value are again close.

A further test set consists of elemental semiconduc
and zinc-blende semiconductor compounds. The same
fault parameter settings as for elemental solids were used
these calculations. The average error with the PBE functio
using all electrons with scalar relativistic corrections
11.8% with a rms value of 2.0%. The values with bo
DSPP’s are very similar:11.8% average and 2.0% rms; th
rms difference with the all electron calculation is 0.7%. Th
can again be put into perspective with PWC-LDA all ele
tron calculations which estimate lattice constants too sh
by 20.8% on average with an rms error of 1.3%; the r
difference with respect to PBE calculations is 2.9%. Perc
errors of calculated lattice constants as compared to the
perimental lattice constant are shown in Table III. The r
difference between all electron and DSPP calculations ar
mainly from outlier HgSe. The difference between DSPP a
AE calculations for the Hg compound may again be due t
shortcoming of the scalar relativistic corrections similar
the gold solid seen in Table II. The semiconductor cryst
have been an application area for PP’s for a long time. F
comparison with existing pseudo-potentials, TMPP with no
linear core corrections were generated for the PBE functio
using theFHI98PP program31,32 with default settings other
wise. Table III also shows errors for lattice constants w
this TMPP. The TMPP calculation differs from the AE ca
culation by 1.5% rms, while the DSPP calculation differs
0.8% rms.

Among the semiconductor vibrational properties, vib
tions at theX point appear to be particularly sensitive to P
approximations. GaAs appears to be a bad case, with a
dency to show spurious soft phonons atX in PP calculations.
This can be traced back to the relatively strongly attract
potential showing up in thed partial wave channel. By de
fault, thed channel would also define the local potential f
the present PP constructs. These spurious vibrational pro
ties were eliminated by introducing anf-channel potential
which is less attractive than the one for thed channel. Thef
potential is taken as the local potential acting on all hig
partial waves. This type of modification was introduced
elements As, Se, and Br. Phonons were calculated at sp
points in the Brillouin zone for all semiconductors studi
15512
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here, and were found to be in good agreement with AE c
culations and the available experimental data. Phonon dis
sion relations for GaAs calculated with PBE an
DSPP_s_PBE are shown in Fig. 6. Phonons were calcul

TABLE II. Experimental lattice constants and errors~%! for
calculated lattice constants for monoatomic solids,~b! bcc, ~f! fcc,
and ~h! hcp stacking sequences changed to cubic fcc~fcc lattice
const shown!. DSPP_s, DSPP_s_PBE, and all electron calculatio
all with a PBE functional. Last column: all electron calculatio
with, PWC functional; see the text.

A(Å) DSPP_s DSPP_s_PBE AE PBE AE PW

3 Li b 3.4910 20.14 20.14 20.11 22.90
4 Be h 3.1885 2.21 2.27 20.39 21.52
11 Na b 4.2250 0.14 0.13 20.08 23.82
12 Mg h 4.5301 0.11 0.13 20.07 21.61
13 Al f 4.0500 0.00 0.00 20.78 21.92
19 K b 5.2250 0.74 0.90 0.75 23.39
20 Ca f 5.5800 1.77 1.78 0.06 22.05
21 Sc h 4.6384 21.01 21.00 20.36 23.64
22 Ti h 4.1342 20.60 20.71 20.30 23.14
23 V b 3.0300 21.45 21.40 21.09 23.25
24 Cr c 2.8800 20.48 20.48 1.67 22.78
26 Fe b 2.8700 20.41 20.77 21.17 23.92
27 Co h 3.5413 1.00 0.95 0.47 23.18
28 Ni f 3.5200 0.80 0.77 0.49 22.55
29 Cu f 3.6100 0.86 0.91 0.78 22.61
30 Zn h 3.9293 1.17 1.16 0.50 23.39
37 Rb b 5.5850 2.02 2.02 0.86 24.04
38 Sr f 6.0800 1.22 1.20 21.04 24.96
39 Y h 5.0901 20.65 20.64 20.40 23.62
40 Zr h 4.5317 1.06 1.00 0.56 22.08
41 Nb b 3.3000 0.38 0.36 0.71 21.42
42 Mo b 3.1500 1.00 0.99 1.08 20.57
43 Tc h 3.8533 1.15 1.14 0.84 20.73
44 Ru h 3.7901 1.36 1.40 0.94 20.77
45 Rh f 3.8000 1.63 1.59 1.13 20.85
46 Pd f 3.8900 2.13 2.07 1.76 20.98
47 Ag f 4.0900 2.46 2.43 1.78 21.99
48 Cd h 4.4216 3.81 3.72 2.30 22.34
55 Cs b 6.0450 3.31 3.36 1.59 24.37
56 Ba b 5.0200 21.58 21.65 21.80 26.05
64 Gd h 5.0906 0.13 0.06 20.59 25.00
71 Lu h 4.9015 0.03 20.01 20.72 24.67
72 Hf h 4.4649 20.25 20.31 20.81 23.70
73 Ta b 3.3000 0.01 20.01 20.84 23.06
74 W b 3.1600 0.51 0.56 20.66 22.11
75 Re h 3.8896 0.79 0.77 0.39 21.01
76 Os h 3.8298 0.91 0.91 20.03 21.41
77 Ir f 3.8400 1.03 1.06 0.28 21.26
78 Pt f 3.9200 1.75 1.78 20.41 22.28
79 Au f 4.0800 2.64 2.65 21.26 23.72
81 Tl h 4.8553 3.12 3.14 5.59 20.39
82 Pb f 4.9500 2.12 2.23 3.59 20.30
90 Th f 5.0800 1.07 1.04 21.32 23.83
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TABLE III. Experimental lattice constants and errors~%! for
calculated lattice constants for zinc blende semi-conductor crys
Calculations with DSPP_s, DSPP_s_PBE, and TMPP, includ
nonlinear core corrections, and all electron with PBE functional a
last column all electron with PWC functional; see the text.

PP: A(Å) DSPP DSPP TMPP AE AE
functional: _s _s_PBE c_PBE PBE PWC

Group IV
C 3.5670 0.22 0.25 0.21 0.2020.98
Si 5.4300 0.74 0.77 0.14 0.7820.45
Ge 5.6580 0.99 1.02 1.43 2.0620.40
Sn 6.4900 2.95 2.93 1.42 2.93 0.1
III-V
AlP 5.4200 1.63 1.65 1.41 1.70 0.28
AlAs 5.6200 1.71 1.73 1.47 1.99 0.15
AlSb 6.1260 1.67 1.67 1.31 1.6420.36
GaP 5.4499 0.81 0.81 2.72 1.2920.80
GaAs 5.6531 1.13 1.14 3.23 1.8620.67
GaSb 6.0950 2.34 2.33 3.55 2.2920.44
InP 5.8610 1.64 1.76 3.03 2.0720.25
InAs 6.0583 1.78 1.88 3.17 2.4520.14
InSb 6.4782 2.75 2.85 3.43 2.8320.01
II-VI
ZnS 5.4145 0.92 0.92 2.55 0.9921.78
ZnSe 5.6700 1.37 1.41 2.87 1.6121.29
ZnTe 6.0980 2.29 2.26 3.13 1.9021.07
CdS 5.8100 2.52 2.53 3.94 2.4920.50
CdSe 6.0770 2.44 2.47 3.75 2.6020.47
CdTe 6.4800 3.42 3.39 3.96 2.8320.33
HgSe 6.0840 3.64 3.68 4.15 0.6422.46
I-VII
CuCl 5.4203 0.70 0.66 3.23 0.7823.35
CuBr 5.6840 1.60 1.52 3.44 1.4122.55
CuI 6.0590 1.82 1.79 3.69 1.5322.14
AgI 6.4950 4.12 4.11 4.93 3.39 21.00

FIG. 6. Phonon dispersion relations for GaAs, with PBE fun
tional and DSPP_s_PBE. Transverse polarization: hollow symb
longitudinal polarization or mixed along~110! X-K-G: full sym-
bols.
15512
with the frozen phonon approach at the experimental lat
constant using suitably shaped supercells for the three
panels in the figure. The longitudinal optical~LO! frequency
at G was taken as the numericalq→0 limit. A comparison
between experiment and calculations of PP and AE types
be seen in Table IV. Agreement of calculated frequencies
the Table IV with experiment is consistently better than 5
and typically near the 2% level of agreement. The transve
acoustical~TA! mode at theX point in reciprocal space is
particularly sensitive. Also shown is the bulk modulus.

ls.
g
d

-
ls,

TABLE IV. Frequencies of some selected modes for Ga
~THz!. Also shown is the bulk modulusB ~GPa!.

Mode Wave vector exp DSPP_s_PBE PBE AE PWC A

TO G ~0,0,0! 8.02 8.18 8.22 8.11
LO G ~0,0,0! 8.55 8.73 8.88 8.78
TA X ~1,0,0! 2.36 2.59 2.25 2.48
LA X ~1,0,0! 6.80 6.58 6.70 6.68
LO X ~1,0,0! 7.22 7.28 7.21 7.15
TO X ~1,0,0! 7.56 7.61 7.76 7.56
TA L ~.5,.5,.5! 1.86 1.98 1.81 1.92
LA L ~.5,.5,.5! 6.26 6.30 6.22 6.25
LO L ~.5,.5,.5! 7.15 7.14 7.24 7.10
TO L ~.5,.5,.5! 7.84 7.91 8.00 7.88

B 76 63 60 80

TABLE V. Lattice constants for rock salt structure ionic com
pounds. Errors in percent as compared to exp lattice constan
DSPP_s, DSPP_s_PBE, AE PBE, and AE PWC calculations.

A(Å) DSPP_s SPP_s_PBE AE PBE AE PWC

LiH 4.0834 21.99 21.86 21.99 25.11

LiF 4.01 1.31 1.53 1.27 21.46

LiCl 5.11 0.90 0.91 0.79 23.26

LiBr 5.46 1.91 1.42 1.46 22.68

LiI 5.95 1.81 1.82 1.53 21.89

NaH 4.89 21.65 21.59 21.96 22.43

NaF 4.61 2.14 2.22 2.16 21.91

NaCl 5.60 2.33 2.34 2.32 21.80

NaBr 5.93 2.50 2.33 2.18 21.50

NaI 6.41 2.30 2.32 2.05 22.01

KF 5.31 2.07 2.18 2.26 22.42

KCl 6.25 2.11 2.11 2.39 22.44

KBr 6.54 2.57 2.69 2.72 22.32

KI 6.99 3.43 3.41 3.45 21.93

RbF 5.59 2.82 2.83 2.17 22.33

RbCl 6.53 3.00 3.00 2.81 22.02

RbBr 6.82 3.70 3.56 3.05 21.94

RbI 7.26 3.80 3.79 3.15 21.74

AgCl 5.5490 1.91 1.91 1.84 22.95

AgBr 5.7403 2.86 2.89 2.50 22.09

PbS 5.9340 1.41 1.47 2.55 20.82
5-8
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Ionic compounds present an interesting test for the tra
ferability of the atomic scattering properties to the ion
state, see Table V.This may also be termed hardness co
vation. The PBE functional overestimates the lattice c
stants with the notable exception of the hydrides LiH, Na
The overestimation is 1.84% on average for the AE calcu
tion and 1.96% for the DSPP; the rms deviation from expe
ment is 2.4% and 2.5%, respectively. The rms deviation
both DSPP’s from AE is 0.4% in this set of compound
There is nearly a constant difference of 4.1% between P
and PWC results, again showing the importance of the fu
tional approximation. There is a systematic trend in co
puted results tending to yield larger lattice constants as c
pared to experiment when heavier elements are involved

IV. CONCLUSIONS

A hard pseudopotential~PP! suitable for local orbital
methods is presented. Such PP’s have been constructed
tested here for all elements from H to Am. The author r
ommends using all electron calculations for light elemen
For elements from Tl,Pb . . . up, theneglect of spin-orbit cor-
rections is expected to be a more important approxima
than for the other elements. The main emphasis is on a
racy, so semicore states are left as valence states to a
extent. In addition, a model core density correction is use
maintain a realistic total density profile near the nucle
This helps to make gradient dependent functionals beh
well. For good portability among different ionic states, ha
d
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ness conservation was built in by optimizing the PP for
atomic configuration and at least one ionic configuration. F
portability between functionals two representative functio
als were used in the construction process for a single PP.
requirement does not lead to a significant degradation of
PP accuracy. In comparing results for various test sets w
experiment and all electron calculations, it was found t
the most important approximation on the whole remains
density functional approximation. The PP approximation
clearly less severe than the density functional approximat
The PP remains a significantly more severe approxima
than the other numerical approximations and truncations
herent in the DMol~Ref. 3! all electron approach. The pa
rametrization of the DSPP and its core corrections result
a small data set to be handled. Yet there is enough flexib
to assure that no significant improvements in accuracy co
be obtained by a more extensive parametrization.
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