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A new type of pseudopotentials for local orbital methods is presented. Hardness conserving semilocal
pseudopotentials have been generated for all elements from H to Am. The construction is based on a minimi-
zation of errors with the norm conservation conditions for 2—3 relevant ionic configurations of the atom.
Besides the transferability between atomic states, the portability among density functionals is also of interest.
This paper explores if the norm-conservation errors can be kept reasonably small when minimized for two
functionals, e.g., the generalized gradient approximat®@A) and local density approximation, simulta-
neously. It is found that the errors can be kept at roughly the same low level as for a single functional. Since
these pseudopotentials are mainly designed for use with local orbital methods, semicore functions may be
treated as valence functions, helping to increase the accuracy and portability. Therefore the name density
functional semicore pseudopotential or DSPP is suggested. To further improve portability and, importantly,
also aid numerical stability with GGA's, a core densityonlinear core correctionis used. As with other
pseudopotentials, scalar relativistic corrections to atomic scattering properties can easily be incorporated into
this PP. Finally performance DSPP’s versus all electron DSPP’s with the same method, will be shown for an
extensive set of test calculations. It is found that the DSPP is a very well behaved pseudo-potential.
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[. INTRODUCTION Quantum chemistry PP’s were designed for use with lo-
calized basis set Hartree-Fock and wave-function methods.
Pseudopotentials have a long history both in solid stat@ecause of the high power of the scaling law for computing
electronic structure calculations and in quantum chemistryime with the number of basis functions in wave-function
calculations for molecules. It is clear that the pseudopotentiainethods, the elimination of core functions aids greatly in
(PP is an additional approximation on top of approximationsspeeding up calculations even on medium sized systems
that are usually made in all electrdAE) calculations, i.e., treated with a modest basis set. Quantum chemistry PP’s
Born-Oppenheimer approximations, density functional ap-often are made to produce eigenstates which are shape con-
proximations, and truncations of the wave function and orsistent with the tails of AE orbital$In these PP’s it is well
bitals. In solid state plane wave calculations the PP is agstablished that semicore functions are not pseudized away.
essential ingredient to make plane wave expansions converge The present PP’s are intended for use with density func-
reasonably fast. PP’s designed for plane wave usage nofipnal local orbital methods such as the DM¢Ref. 3
_maIIy incorporate semicore states into the core. This is i”th%pproacﬁ’:e Contrary to the requirements of plane wave
interest of fast convergence and at the loss of a more acCiyzethods it is desirable to use short ranged PP’s. The separa-
rate description of the polarizability anq magnetic momentsbi”ty of the PP, which is crucial for efficacity with plane
due to _the Sh?”OW core states. The introduction of NOMyaves, can be abandoned in favor of the more robust semilo-
conserving PP'YRef. 1) was a great step forward toward cal PP’s when projectors are to be evaluated in real space.

first principles PP’s with improved trangferablhty _from ON€ +15 [ocal orbital approach permits core to keep semicore
system to another. The norm conservation condition guaran-

tees the exact scattering properties of the ionic core at Statest as \;alert;gﬁ funcg(?ns, IWh'Ch 'S;. useful fort gol?(_i accu-
particular energy and for a particular electronic configurationracy’ ransterability, and local magnetic moments. 1t IS pro-

of the element. The norm conservation condition can be apr_)osed to call _the present PP’s “density functiongl semicore
plied to several angular momentum channels, which leads t seudopotentialsTDSPP’3. DSPP's can be obtained from

a semilocal form of the PP involving projectors. The later N® author by email request.

development of extended norm conserving PP achieves com-

pliance with the norm conservation property at several ener-

gies of the reference state of the element. This further control Il. FORMALISM

of scattering properties is particularly important for ultrasoft A. Form of the pseudopotential
PP’s which further speed up plane wave convergence. ) )

Norm conservation and extended norm conservation em- 1he present pseudopotential has a semilocal cuspless
phasize a modeling of the atomic scattering properties in £rm- The PP is localized inside a cutoff radiusdepending
range of energies for a given potential. Another approact?” the element. Fpr gagh partial wave thg external potentialis
seeks to model the scattering properties of an atom in differdn €ven polynomial inside the cutoff radiug, . The exter-
ent charge states. This was initiated by Tétemphasizing Nal potential for the highest partial wave studied becomes the
the importance of hardness for the transferability of the PAOCal potentialVi,.=V,__, and the projector potentials for a
The need to preserve correct atomic scattering properties agartial wave{ are then defined as the difference of the ex-
function of occupation was stressed again recently. ternal potential for and the local potential:
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Cmax—1 tion functions are chosen to describe an atomic response in-
Vps=Viect 2 [€m)(V =V o) {€m|. volving partial waves in unoccupied orbitals. Two criteria
=0 guide the actual selection of basis functiofia) the total
energies of a reference set of molecules should be minimized

In the case of a real space evaluation of the projectors with [ @ given basis set size, aflu) the basis functions must not
local orbital basis, the use of separdRP’s would not re-  91Ve rise to a near S|_ngular _overlap matrix or have otherwise
duce the operation count. The details concerning the form o?athqlogmal properties. Th'.s can pe fulfilled very well by
the present PP are not essential; they are given here for corfleriving the variational basis function set from the neutral
pleteness. The cusple¥s(r) functions are conveniently ex- atom and' from positive ionsit seems natural'to takg the
panded in even Legendre polynomials.rA the pseudopo- S&me ionic states, that are useful for generating basis func-
tential matches the bare potentialz*/r up to the third tions, as atomic reference configurations to define the scat-
derivative. Because of the boundary conditionrgt, the tering properties for the PP.

four highest Legendre coefficiengs , need not to be tabu- For light atoms the most effectiviepolarization functions
lated: ¢ were found to be of Slater type form. For PP reference states

use of ionic states is preferred. With that exception the

choice of reference states follows closely the choice for

V()= aj (Loi(rfree), r<rcy. variational basis functions for double numerical set plus po-
1=0 larization functiorr

The PP is then defined to within tabulation accuracy, e.g. For the g'eneration of reference states as Wel,l as for.the
micro-Hartree, which is amply enough. The order for thispseudo partial waves a standard numerical density-function-

expansion need not be very high. It is found that a lot can béheow sphe_rical atom program is_ used. Some_ deta_ils pertain-
achieved even with the minimal expansion length: two paind t0 gradient dependent functionals was given in Ref. 6.
rameters for each partial wave, ,, and one free Legendre Our program relies on the pred|ct_or corrector method and
coefficient. Sometimes significant improvement is obtainedqorrnally uses 501 radial mesh points to solve partial wave

with more coefficients. The present versions of DSPP’s usdifferential equgtions. In a similar spirit it is tried here to
five free Legendre coefficients span the variations of reference states across a class of den-

It was opted to include a core denSity improve trans- sity functionals by optimizing the PP’s simultaneously for

ferability and magnetic properties. In addition, the core den!WO répresentative functionals.

sity avoids the occurrence of a very small electron density
near the nucleus, a situation which sometimes may lead to
numerical problems with gradient dependent density func-
tionals. A few parameters are sufficient to define the impor- In the present approach bound atomic configurations are
tant tail region of the core density. The model core density iflways used as reference states as in most construction meth-
thus defined as ods for PP’s. The original formulation of norm conserving
propertie$ by Hamann, Schiker, and ChiangHSC) allows
n . for scattering type partial waveét) real and pseudo valence
Iog[pc(r)]=z Ci(rirg)®™ ", r>ry eigenvalues agred?) real and pseudo partial waves agree
=1 beyond some ., (3) real and pseudo charge densities inte-
grated out tar >r . agree, and4) the logarithmic derivative
outside the core density matching radiys The coefficients qf real and pseudo partial waves and their first energy deriva-
are determined by a least squares fitting to the core density i€ agree beyond. . _
the all electron calculation. For<r, the model core density ~ AS described by HSC properti€®)—(4) are related. In the

is an even polynomial determined from the matching condi @€ of bound states, these properties can be obtained by a
tions up to the third derivative. simplified set of conditions. Since the bound state can be

normalized, agreement at some sufficiently large radjus
implies a fulfilment of conditiong2) and(3). ry, is always
chosen ator larger thanthe largest radius of classical turn-
The pseudopotential should give a good approximation ofng point for the orbitals of interest. The bound state orbitals
the scattering properties of all atomic states of interest. lrare all decaying beyond that point and the self consistent
particular it should properly represent the change of an atorpotential is equal to the all electron potential. Propdrty
under charge transfer. This can be seen as a conservation miist be fulfilled on the basis of the Shaw-Harrisorders
hardness. The basic such quantity is the absolute hardness(®efs. 11 and 1Psum rule discussed by HSC. This property
an atom, defined agy,= (1 —A)/2, half the difference of the guarantees that partial waves behave properly in the vicinity
ionization potential and the electron affinff}.In order to  of the reference energy used for the construction of the PP.
define charge states of particular practical relevance to caExtended norm conservation requires partial waves of the
culations of compounds it is useful to remember how effecsame potential to fulfill the properties at a set of energies.
tive localized basis sets can be construct@the variational This can be obtained in the framework of an ultrasoft PP
basis functions must span an appropriate function space wonstruction:> Here we attempt to fulfill norm conserving
describe an atomic response to charge transfer. The polarizeenditions for different ionic configurations of an atom. This

C. Norm conserving condition

B. Reference states
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amounts to seeking hardness conserving PAke closest be pseudized. However, no penalty function needed to be
approximation to such a PP must be sought by an optimizantroduced for this. A cuspless PP need not be very strong. It
tion procedure. With the optimization, information on the should not be, because strong variations of the PP may create

transferability of the PP is gained as a byproduct. high Fourier components for the orbital which may require
additional numerical effort. That should be spent only if the
D. Optimization strong PP is physically well motivated. The penalty below

. L i helps to guide the optimization toward PP’s which are in the
The target function to be minimized is chosen as the M$ange of function valuegV V. ]

deviation from the norm conserving conditions for the set of
target states, Fe
Dz,ezwzfo PLV(r)]dr,
2 1 s 2 S, 2
D= 2 (D= €)?H[¢Rrp) — du(rp) 12, (1)
2N, —1 4 e @

wherew, is a weight factor and the functignV) is defined

wherea is a combined index which enumerates valence anas
polarization orbitals for the ionic configurations and func- .
tionals under consideration as the target set. The target set (V=V,)? if V>V,
consists ofN, pairse,,®,(r,). The first term aims to make p(V)= (V=V_)? if V<V_ 3)
the pseudoeigenvalued® agree with the all electron ones.
The second term relates to the charge conservation by com-
paring the pseudo and real amplitudesataccording to the
discussion in the Sec. Il @, gives an idea of the accuracy The optimization of the PP might go astray and end up with
of the pseudoeigenvalugs atomic unit3 and less directly a wiggly function for the potentiaV,(r) acting on scattering
on the charge conservation across the target set. In principlghannel¢. This is not desirable. The optimization can be
one might introduce weight factors for the two kinds of guided by a penalty function involving a measure of the
terms entering . If atomic units(a.u) are chosen, the mag- wiggliness. A measure of wiggliness for a functiviir) is
nitudes of either term are of the same order and a reasonable
ratio of the weights should be of order unity. Therefore the J— frz[v”(r)]zdr @
weights for the calculation in a.u. were chosen to be equal to r '
1. Other reasonable choices of the weights do not lead far
away from a local minimum found with the unity weights.
Properties remain so similar to the original DSPP that furthetvhere the integral is taken in principle from the origin to
investigation was dropped. The basic problem appears to be,¢. However, with this basic definition only a linear func-
that no perfect transferability among different charge state§on of the radius in each channel would go without penalty.
can be obtained within the class of semilocal PP’s. One needs to exclude from the penalty function the type of

It turned out to be necessary to add penalty functions tgurvature that must necessarily appeavinfor an accept-
the target function to prevent the optimization from beingable PP. If a partial measudg is taken between subsequent
trapped in an undesirable local minimum. The penalty functurning points separately, a suitable measure of wiggliness
tions used here are designed to vanish exactly for the class 6&n be defined. The cuspless form of the PP leads to at least
desired PP. The desirable properties and the associated p@me turning point in the intervg,<]. If the PP for a partial
alty function are discussed below. It is desirable that thevave is repulsive near the core, two turning points necessar-
cutoff radiusr, of the PP not be too large. The matrix ele- ily appear. Therefore, the penalty function is defined to van-
ment between two localized basis functions is generally nonish for up to two turning points betweer-0 andr=r ;. If
vanishing if the two functions can interact via a PP:there are more than two turning poimg>2 the measures
(DilVioniod ) #0 if [ri—ry[<rc4+reyv and [rj—ry|  Ji are added up, except for the two end parts and for the

<rcg,+Tcy. The short ranged character of the presentargest intermediate padf,:

0 else.

pseudopotential is useful to achieve good accuracy. At the ny—1

same time it aids in a speedy evaluation of matrix elements Ws( 2 Ji) -J,, h>2

in real space. For the present hard PP, a dual space represen- D3c= =2 5
tation (real and reciprocal spacéRef. 14 would still not 0 else.

make DSPP’s very appealing for plane wave methods. To put
the cutoff radius under control, a penalty function is intro- The total target function for each element B

duced: (PP parameters)Dg+>¢D;+D,,+D3,, Where the sum
over{ should run over the projector channels and include the
Wil e=Tma) If Tee>Tmax local potential once. The local potential acts on all partial
D= 0 i re=<rmax- (2 wave channels beyond the maximum projector channel. The

minimization is done using the downhill simplex method. It
A valuew;=10* a.u. was used. The cutoff radius of the PPwas found that increasing the Legendre expansion order step
must not be smaller than the radius of the outermost node tby step using the converged lower order PP as a startup is a
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FIG. 2. Characteristics of DSP@) scalar relativistic pseudo-
potential for optimized for the PBE functionedDSPP_s_PBE(up-
per parj; black dots: cutoff radius; gray dots: numberfrojec-
tors; lower part: accuracy measure for the PP of each element; black
cutoff radiusr . of the PP and the radiug , where the matching of dots_: excluding pene_tlty function; gray dOIS:. accuracy measure in-
the partial wave amplitude is measured. The inner maximum be‘-:IUdIng penalty fur_1ct|on(b) For DSPP_s th_e information is similar
longs to the radial function for a positive ion, the outer maximum to'© (@), but the PP is targeted for two functionals: PBE and PWC.

the neutral atom.

FIG. 1. (a) DSPP_s_PBE for Fe: external potentials $pp, d,
and all higher¢ partial waves. Also shown is the/r potential for
z* =16. (b) Pseudo(dashed curvgsand all electron(full lines)
partial waves for a neutral atom and for-2on. Shown are the

functions are the differencés, — V.. and vanish at .. Fig-
ure 1(b) shows thes partial wave for the atom and a ionic

reasonably robust procedure. As mentioned above, the coBtate. Outside . all-electron and pseudopartial waves are
tribution of the penalty functiorD,+D,+D3 always be- almost identical. The figure suggests that the exact value of
comes small when compared i, for the completed opti- r,, where the amplitude difference is minimized, is not criti-
mization. Usually the value of the penalty function at thecal. Figure 2 shows the minimized values of the target func-
optimum is zero. tion D for scalar relativistic radial functions. Also shown is

The primary density functional used here to define the AEthe value of the PP cutoff radius and thevalue associated
reference is the Perdew-Burke-Ernzerti®BE) functional®®  with the local part of the PP for each element. The lower part
This is a functional with an explicit dependence on the denin each panel shows thé&t is of the order of 0.001 a.u. or
sity gradients. Koelling Harmon scalar relativistic averagesmaller for most elements. In fabt andD, are shown, but
radial equation¥ are used to define AE radial functions. For for most elements only a single point can be seen on the
the corresponding PP the abbreviation DSPP_s_PBE is usegkaph. The comparison of pandk for a single functional
In attempting to span a large class of functionals a locaPP andb) for two functionals spanning from the LDA to the
density functional approximatiofLDA) in the form of the  generalized gradient approximatioB8GA) suggests thath)
Perdew Wang local correlatibh(PWC) plus local exchange is somewhat less close to fulfilling norm-conserving condi-
functional is used to define the duplicated set of target orbittions. The application tests below will show, however, that
als. For this two functional scalar relativistic PP’s the abbrethe degradation of the PP due to the functional-portability
viation DSPP_s is used. requirement is not important. The elements C—Ne for

Some of the points raised above are illustrated in FigDSPP_s are all above 0.001 a.u., which says that the norm
1(a), which shows the external potentials acting on each pareonserving conditions have been fulfilled less precisely than
tial wave. The external potentials match smoothly with thefor almost all other elements. A choice may be to treat the
z*/r bare potential at the cutoff radiug ,. The local poten- elements up to Ne with the all electron approach, especially
tial acts on all partial waves fronf,,,, up. The projector since only the & core is pseudized in Be—Ne. A cuspless all
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electron PP can b@nd has begrconstructed for H-Li, but  singlet states which are handled allowi8g ,, symmetry for
there appears to be no advantage using such a PP with loctle spin dependent part of the effective potential. The test set
orbitals. It is interesting to note that the minimubyN) includes furthermore 30 cations and 15 anions.

reached for the @, 3d, and 4 elements is larger in value,  Since this test set provides well established experimental
and thus less good, than for tipe d, andf elements with  data, it is interesting to put the inaccuracies for calculated
higher principal numbers. For some elements it appears to hgroperties using the pseudopotential in perspective with the
difficult to obtain equally low minima as for neighbor ele- errors for the all electron calculation. The numerical errors
ments: e.g., Cd48). This obviously depends on the configu- are small as compared to the ones from the approximate
rations used to define the target function. Not surprisingly, itdensity functionals that can be used in practical calculations.
was found that the value of the minimum can be reduced by Figure 3 shows a correlation plot for errors of calculated
choosing target configurations with smaller differences ofbond length with DSPP_s_PBE. against errors from the all
ionicity. Thus Fig. 2a) gives information on the transferabil- electron calculation with the PBE functional. The all electron
ity among ionic states, and Fig(l2 contains information on  calculations incorporate scalar relativistic correcti®hsf
transferability among functionals in addition. The tests on PRhe points in the figure are perfectly aligned along the diag-
performance in the following section should set the rightonal, this would mean that errors from the PP would be neg-

expectations for applications. ligible against the errors still present in the all electron cal-
culation. The errors in the present all electron calculation are
Ill. PERFORMANCE OF DSPP clearly dominated by approximations due to the functional.

The majority of points in the plot falls near the diagonal.
This means that the largest error on average is from the func-
There is a number of diatomic molecules for which accu-tional. The errors from the PP are smaller, but non-
rate spectroscopic data are known. For the present benchegligible. The graph suggests that the DSPP results have no
marking purpose we select the diatomic molecules whersignificant bias as compared to the all electron results. There
data sets of bond length, ground state vibrational frequencgre 12 cases where the difference of calculated bond length
and dissociation energy are known experimentally. Most obetween PP and all electron exceeds 3 pm. The largest dif-
these data can be found in the review of Huber anderence occurs for Gr Incidentally, the DSPP bond length is
Herzberg® Some more molecules for which similarly good closer to experiment on average. For a statistical analysis,
data are available have been added to the data set, notaldgises with bond lengths differing more than 10 pm from
Cr, and M,.>% In the case of Ag an estimated bond experiment are considered outliers. In this analysis the mean
length of 252 pm is used. This test set consists of a total ofleviation of PP vs AE is-0.2 pm and AE vs exp-1.8. rms
201 cases. 117 are treated with the spin unrestricted funaeviations are 1.6 and 3.4 pm, respectively. When such a
tional. The unrestricted case includes also antiferromagnetigraph is plotted for a semicore PP derived from Hartree Fock

A. Molecules

8
1.0 % 10
DSPP_s_PBE i HF-PP
& AREP d
505 o2 = 0.5 ‘
A Yy iC2 L .
(Ll . M . . .
& - & . °© FIG. 4. (a) Binding energy errors for 201 di-
S 0.0 ce, S 0.0 f . . .
5 . 5 * atomic molecules with DSPP_s_PBE vs errors
> o ° = . . -, .
- S 5 s with all-electron calculation for functional PBE.
® S ® . (b) Same for AREP.
1.0 e -1.0 ‘
4 ° ’ ot . °
, 3 R L * b
-1.5 L2 . . . . " 1.5 L2 . i
-15 -1.0 -0.5 0.0 0.5 1.0 -1.5 -1.0 -0.5 0.0 0.5 1.0
energy error all-el [eV] energy error all-el [eV]
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TABLE |. Performance for a test set of 148 neutral molecules inall electron calculation than with PP. This means that PP

kcal/mol. errors for DSPP’s partially compensate for functional errors
: for the PBE functional. The results for DSPP_s are vexingly

Calculation Mean error  rms error  Abs. avg. error - gjmilar to the ones calculated with the DSPP_s_PBE; there-
All electron 0.9 77 58 fore, no extra figures for DSPP_s_are sonwn here.
DSPP s 20 75 58 The test set proposed by Curtissal=" consists of 148

- ' ' ' neutral molecules with well established enthalpies of forma-
DSPP_s_PBE -3l 8.0 6.3 tion (the G2 set The heaviest element in that set is Cl. The
TMPP 3.9 12.1 9.6 '

importance of elements by number of occurrences is H, C, O,
F,CI,N, S, Si ... . He, Ne, and Mg do not occur. This test
set emphasizes the elements for which the quality measure of

shown in Fig. 8b) for the average relativistic effective core Egesgrifetuzc%nssggczon.l_?]rgct:t'rfs Isdcr)]r?(ta- plljz?sén%lze%o?\%g
potential (AREP). The bond length turns out to be system- geometrie¥ and scaled HF frequenciédor thermal correc-

atically large, the binding energies too small and the vibra-=
tional energies too small. For this set of diatomic moleculestlons' Here the performance of theECkess (Ref. 29 PER-

a HF derived semicore PP represents a major approximati pEwol (Ref. 26 (BP) functional is compared between all

: %lectron and DSPP calculations. Table I shows a comparison
with an error somewhat larger than the one from the 9€N€l is clear from the table that tﬁe error characteristics with .
alized gradient approximation.

. . - all-electron or with DSPP calculations are very similar. For
Figure 4 correlates PP errors in the binding enerQy)( comparison Troullier-Martins pseudopotentia(@MPP’s)
against the respective errors for an all electron calculatio P P P

: ; . Ref. 27 were used for this test. Performance is less good
W'th. Fhe P.BE functional. The data points scattered along th an for DSPP’s. The most important differences with the
positive diagonal show that for many of these molecules th%

. . R SPP are that the TMPP has a significantly larger cutoff
PBE functional overestimates the binding energy. The corre-_ . .
. . radius of the PP, which may affect accuracy for the short
lation of errors between PP and all electron cases is ver

close. The PP has a slight tendency to overestimate bor| olecular bonds in this test set. For the heavier atoms Al—-CI

energies less, which is nice, superficially. There are nin%ﬁjre electrons are pseudized in the TMPP. Figuag shows

cases where the difference in binding energy exceeds 0.3 e e correlation of DSPP errors vs AE errors for the G2 test.

The largest case is N the PP result happens to fall ver e points remain in an area close to the diagonal indicating
9 iy napp o Y aredominance of errors due to the functional. For the TMPP
close to the experimental value. The inaccuracies introduceg-.

by the PP should be put in perspective with the errors for th i9. 5(b)] an error of larger magnitude than with DSPP.
5hows up. This is also shown by the summary numbers in

(HF) atomic calculationg??® a systematic bias is found as

PBE functional. The figure clearly shows an accumulation o

. . . able I.
points along the diagonal, with a number of cases overbound.
A smaller number of cases turns out under-bound as com-
pared with experiment. Figurgld) shows the correlation of
binding energy errors with AREP PP against the AE errors. Monoelemental simple solids provide a useful testing
The AREP errors involve error components to be ascribed tground to put PP errors into perspective with the density
the PP which are of the same magnitude as the ones from thenctional approximation. The calculations were done with
density functional. shiftedk-point meshes of even order. The defluétsolution

The value of the vibrational frequeney, has been cal- in k-space results inra8 8 8 Monkhorst Pack mesh for Fe,
culated in a harmonic approximation for this survey. If out-Ni, etc., anl a 4 4 4mesh for Cs. The atomic cutoff param-
liers involving errors greater than 100 chare not counted, eter was set to (6:5V)Y2 (a.u), whereV is the atomic vol-
one finds a mean error of 7 cm* and an rms error of ume. This yieldsR,=6.3 a.u. for diamond, 8.0 a.u. for Fe,
35 cm 1. The difference from all electron frequencies is,and 16.9 a.u. for Cs. Experimental data are taken from
again excluding outliers, mean7 and rms 24. The errors Kittel?® and the inorganic crystal structure data b&s€he
with respect to experiment happen to be slightly larger withresults in Table Il suggest that the two PP’s presented here

B. Solids

30| 30 I
DSPP_s y TMPP & b
3 20| 3 20 . e .
E " £ ol -
g . g P FIG. 5. (a) Binding energy errors for a G2 set
g 10p g 1 -".:-'{;..'-/; of 148 neutral polyatomic molecules with
s 5 0 g DSPP_s vs errors with all-electron calculation for
§ol §o '4: functional B88P91.(b) Same for Troullier-
s g SR Martins PP (23.061 kcal/meil eV).
Y L8
-10} -10 X
a) , b)
-10 0 10 20 30 -1‘0 ;) 1.0 2.0 I;O

energy error all-el [kcal/mol]

energy error all-el [kcal/mol]
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perform almost equally. The DSPP’s produce a 0.5% average TABLE Il. Experimental lattice constants and errde%) for
stretching of the calculated lattice constant as compared tealculated lattice constants for monoatomic solidis,bcc, (f) fec,

the all electron calculation with scalar relativistic @hd (h) hcp stacking sequences changed to cubic(fcc lattice
corrections! The average error of the all electron calcula- €ONst showh DSPP_s, DSPP_s_PBE, and all electron calculations,
tion is +0.4%. The rms error is near 1.5% for DSPP and a”all with a PBE functional. Last column: all electron calculation

. . ith, PWC f i l: h .
electron calculations. The LDA leads to a 2.4% COhtI’aCtIOI’lWIt ' € functional; see the text

as compared to the experimental reference data, and the LDA A(A) DSPP_s DSPP_s PBE AE PBE AE PWC
rms error is at 2.9%. The difference between the PP and all — - -
electron results is significantly smaller than the difference3 Li b 3.4910 —-0.14 —0.14 -011 -290
between LDA and GGA functionals. Certain lattice constants# Be h 3.1885 2.21 227 -039 -—-152
from the PBE functional appear to be off by an alarmingll Na b 4.2250 0.14 0.13 -0.08 —3.82
amount. The one of gray tin is notable€2.9%. For compari- 12 Mg h 4.5301  0.11 0.13 —-0.07 -161
son the value from FLAPW(full potential linearized aug- 13 Al f 4.0500 0.00 0.00 -0.78 —1.92
mented plane wave density functional methedth PBE 19 K b 5.2250 0.74 0.90 0.75 —3.39
functionaf® is +3.4%. In the case of gold there is a large o0 ca f 55800  1.77 1.78 0.06 —2.05
difference between the DSRP2.6% and the scalar relativ- 21 sc h 4.6384 —1.01 ~1.00 036 —364
istic all-electron result £ 1.3%). In this case the FLAPW 2> T h 4.1342 —0.60 —071 030 -3.14
value® of +3.2% and the DSPP value are again close. 53 v p 30300 —145  —1.40 109 —3925
A further test set consists of elemental semiconductors, «, . 28800 —0.48 —0.48 167 -278
and zinc-blende se_miconductor compound;. The same d% Fe b 2.8700 —041 077 117 —392
fault paramete;r settings as for eIementa}I solids were usgdf Co h 35413 1.00 0.95 047 —3.18
thgse calllcullatlons. The_ ?]veragle errolr vyrgh fche PBE fqnctlon Ni f 35200 0.80 077 049 —255
using all electrons with scalar relativistic corrections is
+1.g% with a rms value of 2.0%. The values with both 29 Cu 136100 0.86 0.91 0.78 —2.61
DSPP’s are very similar+1.8% average and 2.0% rms; the Zn h 3.9293 117 1.16 050 —3.39
rms difference with the all electron calculation is 0.7%. This Rb b 55850  2.02 2.02 0.86 —4.04
can again be put into perspective with PWC-LDA all elec-38 Sr f 6.0800 1.22 120 -1.04 -496
tron calculations which estimate lattice constants too shorg® Y N 5.0901 —0.65 —0.64 —040 -3.62
by —0.8% on average with an rms error of 1.3%; the rms?0 2Zr h 4.5317  1.06 1.00 0.56 —2.08
difference with respect to PBE calculations is 2.9%. Percenfl Nb b 3.3000  0.38 0.36 0.71 —1.42
errors of calculated lattice constants as compared to the e4#2 Mo b 3.1500  1.00 0.99 1.08 —0.57
perimental lattice constant are shown in Table Ill. The rms43 Tc h 3.8533  1.15 114 0.84 -0.73
difference between all electron and DSPP calculations arise® Ru h 3.7901  1.36 1.40 0.94 —0.77
mainly from outlier HgSe. The difference between DSPP andt5 Rh f 3.8000 1.63 1.59 1.13 -0.85
AE calculations for the Hg compound may again be dueto @6 Pd f 3.8900  2.13 2.07 1.76 —0.98
shortcoming of the scalar relativistic corrections similar to47 Ag f 4.0900 2.46 2.43 1.78 —1.99
the gold solid seen in Table Il. The semiconductor crystalst8 Cd h 4.4216  3.81 3.72 230 —-2.34
have been an application area for PP’s for a long time. For 85 Cs b 6.0450 3.31 3.36 1.59 —4.37
comparison with existing pseudo-potentials, TMPP with nonsg Ba b 5.0200 —1.58 ~1.65 ~-180 -6.05
linear core corrections were generated for the PBE functionad4s cd h 5.0006 0.13 006 —059 —5.00
using therHiogPP prograrﬁ1'32 with default settings other- 71 [y h 4.9015 0.03 —0.01 —0.72 —467
wise. Table Il also shows errors for lattice constants withzo s 1 4.4649 —0.25 —031 —081 -3.70
this TMPP. The TMPP calculation differs from the AE cal- .3 14 b 3.3000 001 -001 _084 —3.06
culation by 1.5% rms, while the DSPP calculation differs by74 W b 3.1600 0.51 056 —066 —211
0.8% rms. . L 75 Re h 3.8896  0.79 0.77 0.39 —1.01
' Among the ;emlconductor V|brat!onal propert'lles, V|bra-76 Os h 38298 001 091 -003 —141
tions at theX point appear to be particularly sensitive to PP r f 38400 1.03 106 028 —1.26
approximations. GaAs appears to be a bad case, with a te% bt f 3'9200 1'75 1' 28 -0 4‘1 —2'28
dency to show spurious soft phononsXain PP calculations. ' ' ' ’ '
This can be traced back to the relatively strongly attractive/? Ay f 40800  2.64 265 —126 ~—3.72
potential showing up in the partial wave channel. By de- Tl h 48553  3.12 3.14 559 —0.39
fault, thed channel would also define the local potential for 82 Pb f 49500 212 2.23 3.59 —0.30
f 5.0800 1.07 1.04 -132 —-3.83

the present PP constructs. These spurious vibrational prope?o Th
ties were eliminated by introducing drchannel potential
which is less attractive than the one for thehannel. The

potential is taken as the local potential acting on all highetere, and were found to be in good agreement with AE cal-
partial waves. This type of modification was introduced forculations and the available experimental data. Phonon disper-
elements As, Se, and Br. Phonons were calculated at specisibn relations for GaAs calculated with PBE and

points in the Brillouin zone for all semiconductors studied DSPP_s_PBE are shown in Fig. 6. Phonons were calculated
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TABLE Ill. Experimental lattice constants and errdi%) for
calculated lattice constants for zinc blende semi-conductor crystal§THz). Also shown is the bulk moduluB (GP3.

Calculations with DSPP_s, DSPP_s_PBE, and TMPP, including
nonlinear core corrections, and all electron with PBE functional andVlode Wave vector

last column all electron with PWC functional; see the text.

PP: A(A) DSPP DSPP TMPP AE AE
functional: S s PBE c¢c PBE PBE PWC
Group IV
C 3.5670 0.22 0.25 0.21 0.20-0.98
Si 54300 0.74 0.77 0.14 0.78-0.45
Ge 5.6580 0.99 1.02 1.43 2.06—0.40
Sn 6.4900 2.95 2.93 1.42 293 0.11
-V
AlIP 54200 1.63 1.65 141 1.70 0.28
AlAs 56200 1.71 1.73 147 1.99 0.15
AlSb 6.1260 1.67 1.67 131 1.64-0.36
GaP 5.4499 0.81 0.81 2.72 1.29-0.80
GaAs 5.6531 1.13 1.14 3.23 1.86-0.67
GaSb 6.0950 2.34 2.33 355 2.29-0.44
InP 5.8610 1.64 1.76 3.03 2.07-0.25
InAs 6.0583 1.78 1.88 3.17 245-0.14
InSb 6.4782 2.75 2.85 3.43 2.83-0.01
11-VI
ZnS 5.4145 0.92 0.92 255 0.99-1.78
ZnSe 5.6700 1.37 1.41 2.87 1.61-1.29
ZnTe 6.0980 2.29 2.26 3.13 1.90-1.07
Cds 5.8100 2.52 2.53 3.94  2.49-0.50
CdSe 6.0770 2.44 2.47 3.75 2.60-0.47
CdTe 6.4800 3.42 3.39 396 2.83-0.33
HgSe 6.0840 3.64 3.68 4,15 0.64-2.46
-Vl
CuCl 5.4203 0.70 0.66 3.23 0.78-3.35
CuBr 5.6840 1.60 1.52 344 1.41-255
Cul 6.0590 1.82 1.79 3.69 1.53-214
Agl 6.4950 4.12 411 493 3.39-1.00
!
oc.... | ....o c.....
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FIG. 6. Phonon dispersion relations for GaAs, with PBE func-AgCl
tional and DSPP_s_PBE. Transverse polarization: hollow symbolsAgBr

longitudinal polarization or mixed alon@l10 X-K-I': full sym-

bols.
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TABLE IV. Frequencies of some selected modes for GaAs

exp DSPP_s_PBE PBEAE PWCAE

TO I (0,00 8.02 8.18 8.22 8.11
LO I 000 855 8.73 8.88 8.78
TA X (1,00 2.36 2.59 2.25 2.48
LA X (1,00 6.80 6.58 6.70 6.68
LO X (1,00 7.22 7.28 7.21 7.15
TO X (1,00 7.56 7.61 7.76 7.56
TA L (5.5.5 1.86 1.98 1.81 1.92
LA L (5.5.9 6.26 6.30 6.22 6.25
LO L (5.5.9 7.5 7.14 7.24 7.10
TO L (5.5.5 7.84 7.91 8.00 7.88
B 76 63 60 80

with the frozen phonon approach at the experimental lattice
constant using suitably shaped supercells for the three sub-
panels in the figure. The longitudinal optidhlO) frequency

atI" was taken as the numericgt-0 limit. A comparison
between experiment and calculations of PP and AE types can
be seen in Table IV. Agreement of calculated frequencies in
the Table IV with experiment is consistently better than 5%
and typically near the 2% level of agreement. The transverse
acoustical(TA) mode at theX point in reciprocal space is
particularly sensitive. Also shown is the bulk modulus.

TABLE V. Lattice constants for rock salt structure ionic com-
pounds. Errors in percent as compared to exp lattice constant for
DSPP_s, DSPP_s_PBE, AE PBE, and AE PWC calculations.

A(R) DSPP_s SPP_s PBE AEPBE AE PWC
LiH  4.0834 —1.99 -1.86 -1.99 -511
LiF 4.01 1.31 1.53 1.27 —1.46
LiCl 5.11 0.90 0.91 079 —3.26
LiBr  5.46 1.91 1.42 1.46 —2.68
Lil 5.95 1.81 1.82 153 —1.89
NaH  4.89 —165 —1.59 -1.96 —243
NaF 4.61 2.14 2.22 216 —1.91
NaCl  5.60 2.33 2.34 232 —1.80
NaBr  5.93 2.50 2.33 218 —1.50
Nal 6.41 2.30 2.32 2.05 -2.01
KF 5.31 2.07 2.18 226 —2.42
KCl 6.25 2.11 2.11 239 —244
KBr 6.54 2.57 2.69 272 —2.32
Kl 6.99 3.43 3.41 345 —-1.93
RbF 5.59 2.82 2.83 217 -2.33
RbCl  6.53 3.00 3.00 281 —2.02
RbBr  6.82 3.70 3.56 3.05 —1.94
Rbl 7.26 3.80 3.79 315 -1.74

5.5490 1.91 1.91 1.84 —2.95

5.7403 2.86 2.89 250 —2.09
PbS  5.9340 1.41 1.47 2.55 —0.82
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lonic compounds present an interesting test for the transaess conservation was built in by optimizing the PP for an
ferability of the atomic scattering properties to the ionic atomic configuration and at least one ionic configuration. For
state, see Table V.This may also be termed hardness conseertability between functionals two representative function-
vation. The PBE functional overestimates the lattice con-als were used in the construction process for a single PP. This
stants with the notable exception of the hydrides LiH, NaH.requirement does not lead to a significant degradation of the
The overestimation is 1.84% on average for the AE calculaPP accuracy. In comparing results for various test sets with
tion and 1.96% for the DSPP; the rms deviation from experi-experiment and all electron calculations, it was found that
ment is 2.4% and 2.5%, respectively. The rms deviation fothe most important approximation on the whole remains the
both DSPP’s from AE is 0.4% in this set of compounds.density functional approximation. The PP approximation is
There is nearly a constant difference of 4.1% between PBElearly less severe than the density functional approximation.
and PWC results, again showing the importance of the funcThe PP remains a significantly more severe approximation
tional approximation. There is a systematic trend in com-+than the other numerical approximations and truncations in-
puted results tending to yield larger lattice constants as comherent in the DMol(Ref. 3 all electron approach. The pa-
pared to experiment when heavier elements are involved. rametrization of the DSPP and its core corrections results in
a small data set to be handled. Yet there is enough flexibility
IV. CONCLUSIONS to assure that no significant improvements in accuracy could

) . . be obtained by a more extensive parametrization.
A hard pseudopotentialPP suitable for local orbital

methods is presented. Such PP’s have been constructed and

tested here f(_)r all elements from H Fo Am. Tr_]e author rec- ACKNOWLEDGMENTS
ommends using all electron calculations for light elements.
For elements from TIB... up, theneglect of spin-orbit cor- The author thanks YuJun Zhao and Arthur J. Freeman for

rections is expected to be a more important approximatiomproviding results from FLAPW calculations for comparison.

than for the other elements. The main emphasis is on accN. Govind is thanked for generating TMPP with short cutoff

racy, SO semicore states are left as valence states to a largedii for the elements occurring in the G2 molecular test.
extent. In addition, a model core density correction is used t&timulating discussions with J. Andzelm, M. Fuchs, S.

maintain a realistic total density profile near the nucleusGoedecker, N. Govind, and M. Scheffler, as well as a careful
This helps to make gradient dependent functionals behaveeading of the manuscript by R. Windiks and G. Fitzgerald
well. For good portability among different ionic states, hard-are gratefully acknowledged by the author.
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