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Density-matrix functional theory of strongly correlated lattice fermions
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A density-functional theoryDFT) of lattice fermion models is presented, which uses the single-particle
density matrixy;; as basic variable. A simple, explicit approximation to the interaction-energy funciidngl
of the Hubbard model is derived from exact dimer results, scaling properti&¥| ¢ff and known limits.
Systematic tests on the one-dimensional chain show a remarkable agreement with the Bethe-ansatz exact
solution for all interaction regimes and band fillings. New results are obtained for the ground-state energy and
charge-excitation gap in two dimensions. A successful description of strong electron correlations within DFT is
achieved.
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I. INTRODUCTION mance of lattice density-functional theotiDFT) in one-
dimensional(1D) and two-dimensiona(2D) systems. Sec-

First-principles methods and many-body lattice modelgion Il presents concisely the basic formalism of LDFT. The
are the two main theoretical approaches to the electroniground-state properties are obtained from the solution of ex-
properties of matter. From the first-principles perspective, theict self-consistent equations that involve derivatives of the
major breakthrough in the last decades has been thiateraction-energy functionaW[y] with respect to the
Hohenberg-Kohn-Sham density-functional thed®FT) and  single-particle density matriy. In Sec. Il the dependence
the derived powerful methods of electronic-structureof W on the nearest-neighb@dNN) density-matrix element
calculation! Despite their unparalleled success in an ex-y;, is analyzed and a simple explicit approximation to
tremely wide variety of problems, current implementationsW(y,,) is derived for the Hubbard model. Section IV dis-
of DFT have still serious difficulties in accounting for phe- cusses representative applications of this ansatz. First, the
nomena that involve strong electron correlations as observedgccuracy of the method is demonstrated by comparison with
for example, in heavy-fermion materials, Mott insulators, oravailable exact results on the 1D Hubbard model. New re-
high-T. superconductorsBeing in principle an exact theory, sults are then discussed, particularly concerning the ground-
the limitations of DFT have to be ascribed to the approxima-state energy and charge-excitation gap in 2D lattices. Finally,

tions used for the interaction-energy functiokiglp(r)] and ~ Sec. V summarizes our conclusions.

not to the underlying formalism. The development of new

functionals improving the description of strong correlation

effects is therefore a major current theoretical challenge.
On the other side, the physics of strongly correlated Fermi In order to be explicit we focus on the Hubbard model

systems is intensively studied in the framework of paramwhich is expected to capture the main physics of lattice fer-

etrized lattice model¢e.g., Hubbard, Anderson, etdy us-  mions in a narrow energy band. The Hamiltonian

ing specific leading-edge many-body technigtieEaking

into account the universality of DFT, and its demonstrated

II. LATTICE DENSITY-FUNCTIONAL THEORY

efficiency in complexab initio calculations, it is quite re- H= D, tijaiTgeja+ u>, ﬁiiﬁm (1)
markable that only a few investigations have been concerned (i.j)o [

so far with applying the concepts of DFT to the lattice mod-

els describing strongly correlated fermioh$.In fact, al-  includes NN hoppingg;;, and on-site interactiont (Niy

ready from a formal standpoint, one may expect that DFT_ ¢! ci,). The importance of electron correlations is con-
with an appropriate ansatz fol/ should be a particularly

valuable many-body approach to lattice models, thus becorﬁqoued by one parameter, namely, the ratiét. The hopping

ing a subject of theoretical interest on its own. Moreover,'mfgraIStij are deﬁned by the lattice structuﬂypigally,
DFT studies on simpler universal models also provide usefuﬁ” N .—t<0 for NN'ij) and thus play the_ role gwen in con-
new insights relevant to first-principles calculatidrgarticu- ~ ventional DFT to the external potentiafe(r). Conse-
larly since in some cases the exact solution of the many-bod§uently, in LDFT the single-particle density matri; re-
problem is availablé. places the densityp(r) as the basic variable, since the
The purpose of this paper is to extend the scope of DFT ttopping integralg;; are nonlocal in the sitésThe situation
the description of strong electron correlations in latticeis similar to the density-matrix functional theory proposed by
Hamiltonians and to demonstrate quantitatively the perforGilbert for the study of nonlocal pseudopotentiafs.
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The ground-state enerdyys and density matrix;zigjS are
determined by minimizing the energy functional

E[y]=Exl[y]+W v] 2
with respect toy;; 4 The first term

EK[')’]:% tij vij ()

is the kinetic energy associated with the electronic motion in
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=0 or the fully polarized ferromagnetic state. This can be
understood from perturbation-theory arguments—none of the
ke 1S @ good quantum number fat/t+0—and has been
explicitly demonstrated in exact solutions for finite clusters
or the 1D chairt! Therefore, the cas@) is the only relevant
one in general and ak,, in Eq. (7) must be degenerate.
Consequently,

JW

t+ —
Y 0vije

= Ojj 1 €)

the lattice. The second term is Levy's interaction-energy

functionaf given by

WLyl=min U3 (W[ylinng[WIyD|, @

where the minimization runs over alN-particle states
| W[ y]) satisfying

<\Ifm|§ clCiol PLy1) = (5

for all i andj.*~" W[ y] represents the minimum interaction

energy compatible with a givety; . It is a universal func-
tional in the sense that it is independenttgf. However,

for all i andj. Note that approximations diV in terms of
diagonaly;; alone can never yield such a behaVor.

At this point it is important to observe that the general
functional, valid for all lattice structures and for all types of
hybridizations, can be simplified at the expense of universal-
ity if the hopping integrals are short ranged. For example, if
only NN hoppings are considereB is independent ofy;;
for pairs of sitesj that are not NN'’s. In this case, the con-
straints (¥[ y]|2,¢l ;| W[ y])=1v; in Egs. (4) and (5
need to be imposed only forj and for NNij. This allows
to reduce drastically the number of variables and simplifies
considerably the search for practical approximationdMo
Moreover, in periodic lattices the ground steyl%ag is a trans-

note that it still depends on the type of model interaction, orlational invariant. In order to determirig,s and y?js, one

the number of electronBl, or band fillingn=N./N,, and
on the number of sitell,, .1°

E[ y] is minimized by expressing;; = yij; + vij, in terms
of its eigenvaluesy,,, (occupation numbefsand eigenvec-
tors u;,, (natural orbitaly as

Yijo= ; Uik ko Uk - (6)

Introducing Lagrange multipliersu and Ny, (&ys
= N\ko! M1o) 10 IMpose the usual constrairits, 7, = N and
Siluiks/?=1, one obtains the eigenvalue equations

> (t + aw) v
i 5 |Uko™ €keUike
]_ ij aYijo jk koYik
with 8k0'<1u (8k0'>/'l‘) if nko':]- (nkazo)v and

ko™ M

0< m,<1. (8)

may then sety;; =n=N./N, for all sitesi, and y;; = 1, for

all NN pairsij. Thus, the interaction energy can be regarded
as a simple functioW(vy,,) of the density-matrix element
between NN's. It should be however noted that this also
implies thatW loses its universal character, since the NN
map and the resulting dependencevébon v,, are, in prin-
ciple, different for different lattice structurés.

IIl. INTERACTION-ENERGY FUNCTIONAL FOR THE
HUBBARD MODEL

Given a self-consistent scheme that implements the varia-
tional principle, the challenge is to find good, explicit ap-
proximations to the interaction-energy functionaf. y] may
be determined exactly for small clusters by using numerical
methods that perform the constrained minimization
explicitly.’ For a Hubbard dimer witiN,=N,=2 a straight-
forward analytical calculation yields

W(y) U

o~ 2 (11—,
a

(10

In Eq. (7) self-consistency is implied by the dependence ofwhich represents the minimum average number of double
dW/3yij, on 7y, and uy,. The present formulation is Occupations for a given degree of electron delocalization,
analogous to well-known results of density-matrix functionali-€., for a giveny;, (U>0). Despite its simplicity, Eq(10)
theory in the continuum.However, notice the fundamental already includes the fundamental interplay between electron
differences with respect to the Kohn-Sham-like approactflielocalization and charge fluctuations, and provides useful
proposed in Ref. 4, which assumes noninteractingepre-  insights on several general properties W{y;,) that are
sentability, and where only integer occupations are allowedvalid for arbitrary lattices:

The importance of fractional orbital occupations to the de- (i) The domain of definition ofV(1y,,) is limited by the
scription of electron correlations within density-matrix func- pure-state representability ofq,. In fact, y;,<7y3,=1,

tional theory has already been stressed by Gilbémtpar-
ticular for the Hubbard model, one observes that %),
<1 for all k, except in very special situations such @&

where y‘fz corresponds to the extreme of the kinetic energy
(maximum degree of delocalizatipand thus to thdJ=0
ground state for a given lattice and a given
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(i) For y1,=92,, the underlying electronic stati[ 3] 1.0
is a single Slater determinant and therefwwgz):EHF
=n2U/4, whereE ¢ is the Hartree-Fock energy. Moreover,
W/ 9y1,=2= for y1,=3,, sincey$5<y?, already for arbi-
trary smallU/t, as expected from perturbation theory.

(i) Starting fromyq,= y‘fz, W(vy,,) decreases monotoni-
cally with decreasingy;, reaching its lowest possible value,
W=0, for y;,=y7, (y1,=0 for n=1). The fact thatV de-
creases with decreasing,, shows that the correlation-
induced reduction of the Coulomb energy is obtained at the
expense of electron delocalization.

(iv) y1, represents the largest NN bond order that can be
obtained under the constraint of vanishing Coulomb energy.
A lower bound foryj, is given by the bond ordey(}' in the 0.0
fully polarized ferromagnetic state which is formed by occu- Y] 0 oo
pying the N, lowest single-particle states of the_ same spin (712_712 ) (712 _'le )

(n<1). Note that the ground statg5 always satisfies/;,
<8< 722 even though, fon#1, it is possible to construct FIG. 1. Interaction ener_gyv(ylz) of the one-dimensiondllD) _
N-electron states havin|9/12|<|y‘f2|. Hubbard model as a function of the degree of electron delocaliza-

. X . . tion (y1o— ¥12)/(¥3,— ¥7»). The symbols refer to exact results for

In order 1o denv? a simple apprOXImfatlonMnZ) that different band fillingsn and the solid curve to Eq11).
preserves the previous general properties we take advantage
of its scaling properties. Exact numerical stuflidsmve
shown thatW(vy,,) depends weakly oil,, N,, and lattice
structure if it is measured in units &y and if y,, is scaled
within the relevant domain of representabilify;,, y5,].
Physically, this means that the relative changé\rassoci- IV. RESULTS AND DISCUSSION
ated to a given change in the degree of electron localization

0 0 o] .
01o= (12— v12/ (712~ 712 can be regarded as nearly inde- 9 < ' - _
pendent of the system under study. A good general approxmodel is given as a functlop of band f|II|ngfor different
mation toW(y,) can then be obtained by applying such gvalues of Coulomb repulsioJ/t. Comparlson between
scaling to the functional dependence extracted from a simplePFT and the Bethe-ansatz exact solution shows a very
reference system which already contains the fundamental r&°0d agreement. [tis interesting to observe that the accuracy
lationship between localization and correlation. We therefor®f the calculatedt g is not the result of a strong compensa-
derive an approximat&V(yy,) taking its functional depen- tion of errors since a similar accuracy is achieved for the
dence from the exact result for the Hubbard dimer given b)}qnefuc and Coulomb energleszseparatelyi. 'ndf’edZ’ as shown
Eq. (10). In this way one obtains in Fig. 3, both local moment§;= (3/4)((n;;—n;;)*) and

W/EHF

0.0 0.5 1.0

eral applications of LDFT are discussed by using @4) as
approximation to the interaction-energy functional.

In Fig. 2 the ground-state ener@s of the 1D Hubbard

R L L B N N
W<712>=EHF(1— 1—%>, an : U0
(712~ 712) - 1D 11/2 4

where Eye,v%,, and ¥, are system specififsee (i)—(iv) 1.0 +ox+ Exact
abovd. In practice,y;, may be approximated by the ferro- - LDFT
magnetic fully polarizedy[}' which is calculated, as?,, by = ¢ 4 -
integration of the single-particle spectrum. Lu% - -

Figure 1 compares Eq11) with the exactW,,(y1,) of T 8 7
the 1D Hubbard chain which is derived from the Bethe- 05 -
ansatz solutiof! One observes that the proposed approxima- 5 16
tion follows Wq,(v12) quite closely all along the crossover 5 K]
from weak correlationglarge W/U and y,,) to strong cor- 5 Ui=3
relations(small W/U and y45). This is remarkable, taking N Uit=
into account the simplicity of Eq11) and the strong band- 0. M T I B
filing dependence oE,,7,, and y;,. The quantitative 60 02 04 06 08 10
discrepancies between E@1) and We,(y15) remain small n
in the complete domain of representability pfand for all FIG. 2. Ground-state energy, of the 1D Hubbard model as a
band fillings:|W—W,,|/E=<0.063 for all y;, andn. Con-  function of band fillingn for different Coulomb repulsions/t. The
sequently, a good general performance of the method can B®lid curves refer to the present lattice density-functional theory
expected already at this stage. In the following section sevdLDFT) and the symbols to the Bethe-ansatz exact soldfion.
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0-0 L} L) L} L) I L) L} L) T
[ — LDFT n=1.0/"]
L + QMC J
-0.51 —
= i n=0.25 B
w0
O L 4
W 1o -
[ n=0.5 - ]
n=0.
: i 2D 1
1 1 1.1 1 T _1
| o n=0.25 3 -1.5E —
0.7 + n=0.5 ! N f N | N ! N 1 i
A 05:; n-0.7 4 0.0 0.5 1.0
Vel P U/(U+4t)
v 0_3_MH: FIG. 4. Ground-state enerd§, of the Hubbard model on the
| 2D square lattice as a function of Coulomb-repulsion streffth
o1 T | 'I' Loy 1 - L . and for different band fillingsn. The solid curves refer to the

00 02 04 06 08 present LDFT and the crosses to quantum Monte C&@MC)

U/(U+4t) calculations'®

X4 cluster with periodic boundary conditions, we fihﬁgs
- ng|/|Eg§| =1.7x10"% for U/t=1, and |Egq— Eg§|/|E3§

S

.
o

FIG. 3. (a) Kinetic energyEx and (b) local magnetic moments

S?=(3/4)((n;;—n;;)?) of the 1D Hubbard model as a function of _ gs), . )
Coulomb repulsiorU/t for different band fillingsn as indicated in *B'S(X 1077 for U/tf4' Eor both lattice Structuregi.gs
the inset of(b). The solid curves correspond to the present LDFT Egd decreases quite rapidly away from half-band filling as

and the symbols to the Bethe-ansatz exact solutigef. 1. in the 1D chain(see Fig. 2 LDFT, combined with Eq(11)
for W(y1,), provides a correct description of electron corre-
kinetic-energy renormalizations are also very well repro-ations in different dimensions and lattice structures.

duced as a function dfJ/t. Moreover, notice that no artifi- The charge excitation or band gap
cial symmetry breaking is required in order to describe cor-
rectly the correlation-induced localization, as is often the AE=Egg(Net 1)+ Egs(Ne—1) —2E(Ne) (12

case in other approachesg., antiferromagnetic spin-density j5 5 property of considerable interest in strongly correlated
wave forn=1). Forn<0.8, the LDFT results are almost gystems which measures the insulating or metallic character
indistinguishable from the exact ones. Even the largest quans the electronic spectrum as a functionlft andn. It can
titative discrepancies, found for=1 and intermediat®)/t, e girectly related to the discontinuity in the derivative of the

are acceptably smalle.g., [Eqs—Egd/t=0.044 for U/t \inetic and correlation energies per site with respect to elec-
=4). ForU>t andn=1 we obtainEys~— at?/U with «

=3.24 while the exact result =4 In 2=2.77. The error in -08
the coefficiente can be corrected by including in E@L1) a o xxx QMG
fourth-order term irg,, which provides in addition a system- P gy LDFT
atic improvement for all values of the interaction strength -0.9—.
(|Egs—Egdl/|E54<0.02 for allU/t).*?

Figure 4 showsE, of the 2D square lattice as a function =
of U/t for representative band fillings. The LDFT results
cover the complete range of model parameters involving es-
sentially analytic calculations. As shown in Fig. 5, good
agreement is obtained with far more demanding ground-state
quantum Monte Carl¢QMC) studies® for U/t=4. The re-
liability of LDFT in 2D systems is confirmed by comparison s , [ . | .
with exact Lanczos diagonalizations on small clusters of the 0.4 0.6 0.8 1.0
square and triangular lattices. In the inset of Fig. 5 we con- n

sider for example aN,=3X4 cluster of the square lattice
with periodic bounda?y conditions and,=N,. Like in the FIG. 5. Ground-state enerdsy of the Hubbard model on the

) a- ; 2D square lattice as a function of band fillimyfor U/t=4. The
1D case, _the_ over_all performance IS very 9090'1 with the Iarg's.olid curve refers to the present lattice density-functional theory
est quantitative discrepancies observed for intermediate Va{LDFT) and the crosses to quantum Monte CA@MC) calcula-
ues of U/t. For mstasnce, forU/t=1 one obtains| Egs  tions (Ref. 13. In the inset LDFT is compared to exact Lanczos
—Egq/|Eqd =4.4x10"°, and forU/t=4 |Eqs—Egd/|Eg] diagonalizations for aN,=3x4 cluster of the 2D square lattice
=9.8x10 2. Results with similar precision are found for the with periodic boundary conditions. Results are here given as a func-
triangular 2D lattice. In this case, using alsdNg=N,=3 tion of U/t at half-band filling 6=N¢/N,=1).

4 utso
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=3.3x10 2, 1.4x10 2, and 2.6<10 3 for &t/t=0, 1/2,
and 3/4, respectively. The nondimerized case, shown in de-

x QMC tail in Fig. 2, is in fact the most difficult one, since for a
-2~ — LDFT collection of dimers $t=t) the exactW is recovered Eq.
= 1 X (10)]. (ii) Three-dimensional lattices are a further interesting
o 2D direction for future developments. Indeed, encouraging re-
LIIJO — Lot sults have been obtained for the simple cubic lattice at half-
< .+ Exact band filling. LDFT with Eq.(11) for W yields E4s/t=1.21,

0.81, and 0.59 foJ/t=4, 8, and 12, respectively, in good
agreement with corresponding quantum Monte Carlo
results)® namely, EQY'/t=1.27, 0.78, and 0.5iii ) An ac-
curate approximation t@/(y,,) has been also derived for the

o0 Unu+aty | Lo

0.0 0.5 — 1.0 attractive(negativeU) Hubbard model in an analogous way
as forU>0. For a 1D ring withN,=N.=12 we ﬁnd|EgS
U/(U+41) —Egd/|Egd=1.2x10"%, 7.5x107% and 1.5<10 * for

FIG. 6. Charge-excitation gappE, of the 2D Hubbard model |U|/t=1, 4, and 64, respectively. These results show that
(square latticen=1). In the inset results are given for the 1D LDFT describes electronic correlations correctly also when
chain. The solid curves refer to the present LDFT and the crosses ifitra-atomic pairing is favored. Systematic investigations
QMC calculations(2D, U/t=4) or to exact Bethe-ansatz results along these lines are currently in progress and will be pub-
(1D) (Refs. 11 and 18 lished elsewher&?

tron densityn.!* Therefore, the determination afE, consti-
tutes a much more serious challenge than the calculation of

Egs, particularly in the framework of a density-functional A new density-functional approach to lattice-fermion
formalism. At half-band filling,AE.=0 in the uncorrelated models has been developed that is by all means independent
limit (U/t=0) and it increases with increasind/t. For  of the homogeneous electron gas. A simple approximation to
U/t—e, AE;—~U+Ey whereE, is the energy of the bot-  the interaction-energy functional is derived for the Hubbard
tom of the single-particle bandeg= — 4t for a 1D chainand  model, which provides a unified description of correlations
E,= — 8t for the 2D square lattigeFigure 6 presents LDFT in all interaction regimes from weak to strong coupling. Re-
results for AE; in 1D and 2D Hubbard modelsn1).  sults for the ground-state energy and charge-excitation gap of
Comparison with the Bethe-ansatz restiitsnd with avail- 1D and 2D systems demonstrate the ability of lattice density-
able QMC calculations shows a good overall agreement. functional theory to describe quantitatively the subtle com-
However, a more detailed analysis reveals that in the 1D casgetition between kinetic charge fluctuations and correlation-
the gap is significantly overestimated fort<1. Here we induced localization. The scope of DFT is thereby extended
obtain AE.<(U/t)?, while the exact solution shows that for to the limit of strong electron correlations.
the infinite chainAE, increases much more slowly, namely,  Several interesting directions open up with potential im-
exponentially in—t/U. This discrepancy reflects the diffi- plications in various related areas. For example, one may
culty to describe long-range effects using an interaction enexplore more general approximationswWj y] and one may
ergy in which the functional dependence is derived from theapply the present approach to richer physical situations such
dimer. Thus it is possible that a similar overestimation of theas low-symmetry systems, disorder, magnetic impurities,
gap at smalU/t may also affect our results on 2D lattices. or multiband Hamiltonians. These developments should be
For largerU/t the accuracy improves rapidly as electron lo-relevant to the study of lattice-fermion models and also in
calization starts to set in, and the relative erroAiB; tends  view of a DFT description of strong correlations from first
to vanish. Therefore, the development of a Mott insulatorprinciples.
with increasingU/t is described correctly.

Finally, we would like to comment briefly on a few other
applications{(i) Dimerized chains with hoppingst 6t have
been investigated by allowing for alternationswf, in Eq. One of the author¢R.L.S) acknowledges financial sup-
(11). One observes that the precision of the results improveport from CONACyT(Mexico) through Project No. W-8001
systematically with increasing dimerization. For example,(Millennium initiative). Computer resources were provided
for N;=Ng=12 and U/t=4, we find |Eg—ESY/[ESY by IDRIS (CNRS, France

V. CONCLUSION
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