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Density-matrix functional theory of strongly correlated lattice fermions
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A density-functional theory~DFT! of lattice fermion models is presented, which uses the single-particle
density matrixg i j as basic variable. A simple, explicit approximation to the interaction-energy functionalW@g#
of the Hubbard model is derived from exact dimer results, scaling properties ofW@g# and known limits.
Systematic tests on the one-dimensional chain show a remarkable agreement with the Bethe-ansatz exact
solution for all interaction regimes and band fillings. New results are obtained for the ground-state energy and
charge-excitation gap in two dimensions. A successful description of strong electron correlations within DFT is
achieved.
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I. INTRODUCTION

First-principles methods and many-body lattice mod
are the two main theoretical approaches to the electro
properties of matter. From the first-principles perspective,
major breakthrough in the last decades has been
Hohenberg-Kohn-Sham density-functional theory~DFT! and
the derived powerful methods of electronic-structu
calculation.1 Despite their unparalleled success in an e
tremely wide variety of problems, current implementatio
of DFT have still serious difficulties in accounting for ph
nomena that involve strong electron correlations as obser
for example, in heavy-fermion materials, Mott insulators,
high-Tc superconductors.2 Being in principle an exact theory
the limitations of DFT have to be ascribed to the approxim
tions used for the interaction-energy functionalW@r(rW)# and
not to the underlying formalism. The development of ne
functionals improving the description of strong correlati
effects is therefore a major current theoretical challenge.

On the other side, the physics of strongly correlated Fe
systems is intensively studied in the framework of para
etrized lattice models~e.g., Hubbard, Anderson, etc.! by us-
ing specific leading-edge many-body techniques.2 Taking
into account the universality of DFT, and its demonstra
efficiency in complexab initio calculations, it is quite re-
markable that only a few investigations have been concer
so far with applying the concepts of DFT to the lattice mo
els describing strongly correlated fermions.3–6 In fact, al-
ready from a formal standpoint, one may expect that D
with an appropriate ansatz forW should be a particularly
valuable many-body approach to lattice models, thus bec
ing a subject of theoretical interest on its own. Moreov
DFT studies on simpler universal models also provide us
new insights relevant to first-principles calculations,1 particu-
larly since in some cases the exact solution of the many-b
problem is available.2

The purpose of this paper is to extend the scope of DF
the description of strong electron correlations in latt
Hamiltonians and to demonstrate quantitatively the per
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mance of lattice density-functional theory~LDFT! in one-
dimensional~1D! and two-dimensional~2D! systems. Sec-
tion II presents concisely the basic formalism of LDFT. T
ground-state properties are obtained from the solution of
act self-consistent equations that involve derivatives of
interaction-energy functionalW@g# with respect to the
single-particle density matrixg. In Sec. III the dependenc
of W on the nearest-neighbor~NN! density-matrix element
g12 is analyzed and a simple explicit approximation
W(g12) is derived for the Hubbard model. Section IV di
cusses representative applications of this ansatz. First,
accuracy of the method is demonstrated by comparison w
available exact results on the 1D Hubbard model. New
sults are then discussed, particularly concerning the grou
state energy and charge-excitation gap in 2D lattices. Fina
Sec. V summarizes our conclusions.

II. LATTICE DENSITY-FUNCTIONAL THEORY

In order to be explicit we focus on the Hubbard mod
which is expected to capture the main physics of lattice f
mions in a narrow energy band. The Hamiltonian

H5 (
^ i , j &s

t i j ĉis
† ĉ j s1U(

i
n̂i↓n̂i↑ ~1!

includes NN hoppingst i j , and on-site interactionsU (n̂is

5 ĉis
† ĉis). The importance of electron correlations is co

trolled by one parameter, namely, the ratioU/t. The hopping
integrals t i j are defined by the lattice structure~typically,
t i j 52t,0 for NN i j ) and thus play the role given in con
ventional DFT to the external potentialVext(rW). Conse-
quently, in LDFT the single-particle density matrixg i j re-
places the densityr(rW) as the basic variable, since th
hopping integralst i j are nonlocal in the sites.4 The situation
is similar to the density-matrix functional theory proposed
Gilbert for the study of nonlocal pseudopotentials.7,8
©2002 The American Physical Society18-1
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The ground-state energyEgs and density matrixg i j
gs are

determined by minimizing the energy functional

E@g#5EK@g#1W@g# ~2!

with respect tog i j .4 The first term

EK@g#5(
i j

t i j g i j ~3!

is the kinetic energy associated with the electronic motion
the lattice. The second term is Levy’s interaction-ene
functional9 given by

W@g#5minFU(
i

^C@g#un̂i↑n̂i↓uC@g#&G , ~4!

where the minimization runs over allN-particle states
uC@g#& satisfying

^C@g#u(
s

ĉis
† ĉ j suC@g# &5g i j ~5!

for all i and j.4–7 W@g# represents the minimum interactio
energy compatible with a giveng i j . It is a universal func-
tional in the sense that it is independent oft i j . However,
note that it still depends on the type of model interaction,
the number of electronsNe or band filling n5Ne /Na , and
on the number of sitesNa .10

E@g# is minimized by expressingg i j 5g i j ↑1g i j ↓ in terms
of its eigenvalueshks ~occupation numbers! and eigenvec-
tors uiks ~natural orbitals! as

g i j s5(
k

uikshksujks* . ~6!

Introducing Lagrange multipliers m and lks («ks

5lks /hks) to impose the usual constraints(kshks5Ne and
( i uuiksu251, one obtains the eigenvalue equations

(
j

S t i j 1
]W

]g i j s
Dujks5«ksuiks ~7!

with «ks,m («ks.m) if hks51 (hks50), and

«ks5m

if

0,hks,1. ~8!

In Eq. ~7! self-consistency is implied by the dependence
]W/]g i j s on hks and uiks . The present formulation is
analogous to well-known results of density-matrix function
theory in the continuum.7 However, notice the fundamenta
differences with respect to the Kohn-Sham-like approa
proposed in Ref. 4, which assumes noninteractingv repre-
sentability, and where only integer occupations are allow
The importance of fractional orbital occupations to the d
scription of electron correlations within density-matrix fun
tional theory has already been stressed by Gilbert.7 In par-
ticular for the Hubbard model, one observes that 0,hks

,1 for all k, except in very special situations such asU/t
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n
y

n

f

l

h

d.
-

50 or the fully polarized ferromagnetic state. This can
understood from perturbation-theory arguments—none of
hks is a good quantum number forU/tÞ0—and has been
explicitly demonstrated in exact solutions for finite cluste
or the 1D chain.11 Therefore, the case~8! is the only relevant
one in general and all«ks in Eq. ~7! must be degenerate
Consequently,

t i j 1
]W

]g i j s
5d i j m ~9!

for all i and j. Note that approximations ofW in terms of
diagonalg i i alone can never yield such a behavior.8

At this point it is important to observe that the gene
functional, valid for all lattice structures and for all types
hybridizations, can be simplified at the expense of univers
ity if the hopping integrals are short ranged. For example
only NN hoppings are considered,EK is independent ofg i j
for pairs of sitesi j that are not NN’s. In this case, the con
straints ^C@g#u(sĉis

† ĉ j suC@g#&5g i j in Eqs. ~4! and ~5!
need to be imposed only fori 5 j and for NNi j . This allows
to reduce drastically the number of variables and simplifi
considerably the search for practical approximations toW.
Moreover, in periodic lattices the ground stateg i j

gs is a trans-
lational invariant. In order to determineEgs and g i j

gs , one
may then setg i i 5n5Ne /Na for all sitesi, andg i j 5g12 for
all NN pairsi j . Thus, the interaction energy can be regard
as a simple functionW(g12) of the density-matrix elemen
between NN’s. It should be however noted that this a
implies thatW loses its universal character, since the N
map and the resulting dependence ofW on g12 are, in prin-
ciple, different for different lattice structures.6

III. INTERACTION-ENERGY FUNCTIONAL FOR THE
HUBBARD MODEL

Given a self-consistent scheme that implements the va
tional principle, the challenge is to find good, explicit a
proximations to the interaction-energy functional.W@g# may
be determined exactly for small clusters by using numer
methods that perform the constrained minimizati
explicitly.6 For a Hubbard dimer withNe5Na52 a straight-
forward analytical calculation yields

W~g12!

Na
5

U

4
~12A12g12

2 !, ~10!

which represents the minimum average number of dou
occupations for a given degree of electron delocalizati
i.e., for a giveng12 (U.0). Despite its simplicity, Eq.~10!
already includes the fundamental interplay between elec
delocalization and charge fluctuations, and provides us
insights on several general properties ofW(g12) that are
valid for arbitrary lattices:

~i! The domain of definition ofW(g12) is limited by the
pure-state representability ofg12. In fact, g12<g12

0 51,
whereg12

0 corresponds to the extreme of the kinetic ener
~maximum degree of delocalization! and thus to theU50
ground state for a given lattice and a givenn.
8-2
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~ii ! For g125g12
0 , the underlying electronic stateC@g12

0 #
is a single Slater determinant and thereforeW(g12

0 )5EHF

5n2U/4, whereEHF is the Hartree-Fock energy. Moreove
]W/]g125` for g125g12

0 , sinceg12
gs,g12

0 already for arbi-
trary smallU/t, as expected from perturbation theory.

~iii ! Starting fromg125g12
0 , W(g12) decreases monoton

cally with decreasingg12 reaching its lowest possible value
W50, for g125g12

` (g12
` 50 for n51). The fact thatW de-

creases with decreasingug12u shows that the correlation
induced reduction of the Coulomb energy is obtained at
expense of electron delocalization.

~iv! g12
` represents the largest NN bond order that can

obtained under the constraint of vanishing Coulomb ene
A lower bound forg12

` is given by the bond orderg12
FM in the

fully polarized ferromagnetic state which is formed by occ
pying theNe lowest single-particle states of the same s
(n<1). Note that the ground stateg12

gs always satisfiesg12
`

<g12
gs<g12

0 even though, fornÞ1, it is possible to construc
Ne-electron states havingug12u,ug12

` u.
In order to derive a simple approximation toW(g12) that

preserves the previous general properties we take advan
of its scaling properties. Exact numerical studies6 have
shown thatW(g12) depends weakly onNe , Na , and lattice
structure if it is measured in units ofEHF and if g12 is scaled
within the relevant domain of representability@g12

` ,g12
0 #.

Physically, this means that the relative change inW associ-
ated to a given change in the degree of electron localiza
g125(g122g12

` )/(g12
0 2g12

` ) can be regarded as nearly ind
pendent of the system under study. A good general appr
mation toW(g12) can then be obtained by applying such
scaling to the functional dependence extracted from a sim
reference system which already contains the fundamenta
lationship between localization and correlation. We theref
derive an approximateW(g12) taking its functional depen
dence from the exact result for the Hubbard dimer given
Eq. ~10!. In this way one obtains

W~g12!5EHFS 12A12
~g122g12

` !2

~g12
0 2g12

` !2D , ~11!

where EHF,g12
0 , and g12

` are system specific@see ~i!–~iv!
above#. In practice,g12

` may be approximated by the ferro
magnetic fully polarizedg12

FM which is calculated, asg12
0 , by

integration of the single-particle spectrum.
Figure 1 compares Eq.~11! with the exactWex(g12) of

the 1D Hubbard chain which is derived from the Beth
ansatz solution.11 One observes that the proposed approxim
tion follows Wex(g12) quite closely all along the crossove
from weak correlations~large W/U and g12) to strong cor-
relations~small W/U and g12). This is remarkable, taking
into account the simplicity of Eq.~11! and the strong band
filling dependence ofEHF,g12

0 , and g12
` . The quantitative

discrepancies between Eq.~11! and Wex(g12) remain small
in the complete domain of representability ofg and for all
band fillings:uW2Wexu/EHF<0.063 for allg12 andn. Con-
sequently, a good general performance of the method ca
expected already at this stage. In the following section s
15511
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eral applications of LDFT are discussed by using Eq.~11! as
approximation to the interaction-energy functional.

IV. RESULTS AND DISCUSSION

In Fig. 2 the ground-state energyEgs of the 1D Hubbard
model is given as a function of band fillingn for different
values of Coulomb repulsionU/t. Comparison between
LDFT and the Bethe-ansatz exact solution shows a v
good agreement. It is interesting to observe that the accu
of the calculatedEgs is not the result of a strong compens
tion of errors since a similar accuracy is achieved for
kinetic and Coulomb energies separately. Indeed, as sh
in Fig. 3, both local momentsSi

25(3/4)^(n̂i↑2n̂i↓)2& and

FIG. 1. Interaction energyW(g12) of the one-dimensional~1D!
Hubbard model as a function of the degree of electron delocal
tion (g122g12

` )/(g12
0 2g12

` ). The symbols refer to exact results fo
different band fillingsn and the solid curve to Eq.~11!.

FIG. 2. Ground-state energyEgs of the 1D Hubbard model as a
function of band fillingn for different Coulomb repulsionsU/t. The
solid curves refer to the present lattice density-functional the
~LDFT! and the symbols to the Bethe-ansatz exact solution.11
8-3
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kinetic-energy renormalizations are also very well rep
duced as a function ofU/t. Moreover, notice that no artifi
cial symmetry breaking is required in order to describe c
rectly the correlation-induced localization, as is often t
case in other approaches~e.g., antiferromagnetic spin-densi
wave for n51). For n<0.8, the LDFT results are almos
indistinguishable from the exact ones. Even the largest qu
titative discrepancies, found forn51 and intermediateU/t,
are acceptably small~e.g., uEgs2Egs

exu/t50.044 for U/t
54). For U@t and n51 we obtainEgs.2at2/U with a
.3.24 while the exact result isa54 ln 2.2.77. The error in
the coefficienta can be corrected by including in Eq.~11! a
fourth-order term ing12 which provides in addition a system
atic improvement for all values of the interaction streng
(uEgs

ex2Egsu/uEgs
exu,0.02 for allU/t).12

Figure 4 showsEgs of the 2D square lattice as a functio
of U/t for representative band fillingsn. The LDFT results
cover the complete range of model parameters involving
sentially analytic calculations. As shown in Fig. 5, go
agreement is obtained with far more demanding ground-s
quantum Monte Carlo~QMC! studies13 for U/t54. The re-
liability of LDFT in 2D systems is confirmed by compariso
with exact Lanczos diagonalizations on small clusters of
square and triangular lattices. In the inset of Fig. 5 we c
sider for example aNa5334 cluster of the square lattic
with periodic boundary conditions andNe5Na . Like in the
1D case, the overall performance is very good, with the la
est quantitative discrepancies observed for intermediate
ues of U/t. For instance, forU/t51 one obtainsuEgs

2Egs
exu/uEgs

exu54.431023, and for U/t54 uEgs2Egs
exu/uEgs

exu
59.831022. Results with similar precision are found for th
triangular 2D lattice. In this case, using also aNa5Ne53

FIG. 3. ~a! Kinetic energyEK and ~b! local magnetic moments

Si
25(3/4)^(n̂i↑2n̂i↓)

2& of the 1D Hubbard model as a function o
Coulomb repulsionU/t for different band fillingsn as indicated in
the inset of~b!. The solid curves correspond to the present LD
and the symbols to the Bethe-ansatz exact solution.~Ref. 11!.
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34 cluster with periodic boundary conditions, we finduEgs

2Egs
exu/uEgs

exu51.731024 for U/t51, and uEgs2Egs
exu/uEgs

exu
56.631022 for U/t54. For both lattice structuresuEgs

2Egs
exu decreases quite rapidly away from half-band filling

in the 1D chain~see Fig. 2!. LDFT, combined with Eq.~11!
for W(g12), provides a correct description of electron corr
lations in different dimensions and lattice structures.

The charge excitation or band gap

DEc5Egs~Ne11!1Egs~Ne21!22Egs~Ne! ~12!

is a property of considerable interest in strongly correla
systems which measures the insulating or metallic chara
of the electronic spectrum as a function ofU/t andn. It can
be directly related to the discontinuity in the derivative of t
kinetic and correlation energies per site with respect to e

FIG. 4. Ground-state energyEgs of the Hubbard model on the
2D square lattice as a function of Coulomb-repulsion strengthU/t
and for different band fillingsn. The solid curves refer to the
present LDFT and the crosses to quantum Monte Carlo~QMC!
calculations.13

FIG. 5. Ground-state energyEgs of the Hubbard model on the
2D square lattice as a function of band fillingn for U/t54. The
solid curve refers to the present lattice density-functional the
~LDFT! and the crosses to quantum Monte Carlo~QMC! calcula-
tions ~Ref. 13!. In the inset LDFT is compared to exact Lancz
diagonalizations for aNa5334 cluster of the 2D square lattic
with periodic boundary conditions. Results are here given as a fu
tion of U/t at half-band filling (n5Ne /Na51).
8-4
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DENSITY-MATRIX FUNCTIONAL THEORY OF . . . PHYSICAL REVIEW B 66, 155118 ~2002!
tron densityn.14 Therefore, the determination ofDEc consti-
tutes a much more serious challenge than the calculatio
Egs , particularly in the framework of a density-function
formalism. At half-band filling,DEc50 in the uncorrelated
limit ( U/t50) and it increases with increasingU/t. For
U/t→`, DEc→U1Eb whereEb is the energy of the bot
tom of the single-particle band (Eb524t for a 1D chain and
Eb528t for the 2D square lattice!. Figure 6 presents LDFT
results for DEc in 1D and 2D Hubbard models (n51).
Comparison with the Bethe-ansatz results11 and with avail-
able QMC calculations13 shows a good overall agreemen
However, a more detailed analysis reveals that in the 1D c
the gap is significantly overestimated forU/t!1. Here we
obtainDEc}(U/t)2, while the exact solution shows that fo
the infinite chainDEc increases much more slowly, name
exponentially in2t/U. This discrepancy reflects the diffi
culty to describe long-range effects using an interaction
ergy in which the functional dependence is derived from
dimer. Thus it is possible that a similar overestimation of
gap at smallU/t may also affect our results on 2D lattice
For largerU/t the accuracy improves rapidly as electron
calization starts to set in, and the relative error inDEc tends
to vanish. Therefore, the development of a Mott insula
with increasingU/t is described correctly.

Finally, we would like to comment briefly on a few othe
applications:~i! Dimerized chains with hoppingst6dt have
been investigated by allowing for alternations ofg12 in Eq.
~11!. One observes that the precision of the results impro
systematically with increasing dimerization. For examp
for Na5Ne512 and U/t54, we find uEgs2Egs

exu/uEgs
exu

FIG. 6. Charge-excitation gapDEc of the 2D Hubbard mode
~square lattice,n51). In the inset results are given for the 1
chain. The solid curves refer to the present LDFT and the cross
QMC calculations~2D, U/t54) or to exact Bethe-ansatz resul
~1D! ~Refs. 11 and 13!.
d
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53.331022, 1.431022, and 2.631023 for dt/t50, 1/2,
and 3/4, respectively. The nondimerized case, shown in
tail in Fig. 2, is in fact the most difficult one, since for
collection of dimers (dt5t) the exactW is recovered@Eq.
~10!#. ~ii ! Three-dimensional lattices are a further interest
direction for future developments. Indeed, encouraging
sults have been obtained for the simple cubic lattice at h
band filling. LDFT with Eq.~11! for W yields Egs /t51.21,
0.81, and 0.59 forU/t54, 8, and 12, respectively, in goo
agreement with corresponding quantum Monte Ca
results,15 namely,Egs

QMC/t51.27, 0.78, and 0.57.~iii ! An ac-
curate approximation toW(g12) has been also derived for th
attractive~negativeU) Hubbard model in an analogous wa
as forU.0. For a 1D ring withNa5Ne512 we finduEgs

2Egs
exu/uEgs

exu51.231023, 7.531023, and 1.531024 for
uUu/t51, 4, and 64, respectively. These results show t
LDFT describes electronic correlations correctly also wh
intra-atomic pairing is favored. Systematic investigatio
along these lines are currently in progress and will be p
lished elsewhere.12

V. CONCLUSION

A new density-functional approach to lattice-fermio
models has been developed that is by all means indepen
of the homogeneous electron gas. A simple approximatio
the interaction-energy functional is derived for the Hubba
model, which provides a unified description of correlatio
in all interaction regimes from weak to strong coupling. R
sults for the ground-state energy and charge-excitation ga
1D and 2D systems demonstrate the ability of lattice dens
functional theory to describe quantitatively the subtle co
petition between kinetic charge fluctuations and correlati
induced localization. The scope of DFT is thereby extend
to the limit of strong electron correlations.

Several interesting directions open up with potential i
plications in various related areas. For example, one m
explore more general approximations toW@g# and one may
apply the present approach to richer physical situations s
as low-symmetry systems, disorder, magnetic impuriti
or multiband Hamiltonians. These developments should
relevant to the study of lattice-fermion models and also
view of a DFT description of strong correlations from fir
principles.
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