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Expansion algorithm for the density matrix
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A purification algorithm for expanding the single-particle density matrix in terms of the Hamiltonian opera-

tor is proposed. The scheme works with a predefined occupation and requires less than half the number of
matrix-matrix multiplications compared to existing methods at [6vd0%) and high(>90%) occupancies.
The expansion can be used with a fixed chemical potential, in which case it is an asymmetric generalization of
and a substantial improvement over grand canonical McWeeny purification. It is shown that the computational
complexity, measured as the number of matrix multiplications, essentially is independent of system size even
for metallic materials with a vanishing band gap.
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l. INTRODUCTION or, for finite temperatures, the Fermi-Dirac distributfoli=2°
Each computational step consists of matrix-matrix additions,

Theoretical predictions of material properties of complexsubtractions, and multiplications. The problem is to find a
systems consisting of millions of atoms are often limited notrapidly convergent expansion that minimizes the number of
by theory but by calculational technigues. Recently there hamatrix-matrix multiplications, since these operations are the
been a large effort to develop numerical methods that commost time consuming®?’
putationally scale linearly with system siz&he techniques The efficiency of the different density-matrix schemes
may play an important role in a broad spectrum of sciencevaries depending on the particular characteristics of the prob-
such as molecular biology, materials science, chemistry, anlém such as the existence of a band gap, a predefined chemi-
nanotechnology. Several of the linear scaling schemes a@l potential, filling factor, self-consistency cycles, threshold-
based on the single-particle density matrix that can be useig, basis set, and system size. In this paper we propose a
in order to calculate the energies and densities that occur ipurification algorithm for the construction of the density ma-
self-consistent field theories. The construction of the densityrix that is simple, general, and rapidly convergent also for
matrix is used as an alternative to solving an eigenvalugery large metallic systems. The method works with a pre-
problem. For large complex systems within a sparse matrixlefined occupation and does not need the input or adjustment
representation this approach can be performed more effof the chemical potential. Only one previous purification
ciently and instead of a cubic scaling the computational cosstrategy, recently developed by Palser and Manolopoulos
scales linearly with the system siz&he matrix sparsity is (PM),* exists for this important problem. By using a starting
essential for the success of density matrix schemes. For mguessX, with the trace equal to the occupation number and
terials with a band gap the real-space representation of thibereafter performing trace-conserving spectral projections,
density matrix is sparée”* due to a finite correlation length, X, converges to the correct density matrix without prior
which is usually referred to as nearsightedmestowever,  knowledge of the chemical potential. The PM scheme has an
within other representations, such as a multiresolution waveexcellent performance compared to other metHéd8How-
let basis or a group-renormalization representation, the derever, due to the constraint of trace conservation, the method
sity matrix is sparse also for metallic systefns. is inefficient at low and high partial occupancies. This is of

Most techniques for constructing the density matrix cangreat concern, for example, when using a multiresolution
be seen as a polynomial expansion of the density matyix wavelet representation for metallic problems, since the frac-
in terms of the Hamiltonian operatdt. In an iterative ap- tional filling in this case is low. The same problem occurs

proach this expansion can be formulated as with a minimal basis set at both high and low occupancies. A
simple general algorithm that avoids this particular problem
Xo=Po(H), and still converges as or more rapidly, especially for very

large problems, would therefore be of great interest.
Xp=Pn(H,X,-1), n=1.2,...,

po=limX,,. (1) Il. TRACE-CORRECTING PURIFICATION
n—oo

The method we propose is based on the continuously in-
The projection polynomial®,(H,X,) are chosen to achieve creasing purification polynomials with stationary end points
a rapid convergence under the conditions of commutationin [0,1]:
[H,po]=0, idempotencyp§=p0, and particle conservation,
Tr[po]=Ne. They may either be chosen from a constrained P@(x)=1—(1—x)" 1+mx],
conjugate gradient minimization of the energy functional
Tr pH] (Refs. 5 and 10-200r as a fast expansion of the )
step functiond(ul —H) centered at the chemical potentjal Pr (X)) =x"[1+m(1-x)]. 2
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function po(H,Ng,error limit)
estimateey(H), en(H)
Xo=(1—2Bm)(enl —H)/(en—&0) + Bl
while error>error limit
if Tr[X,]—Ng<O0

Xn+1= PR (Xn)

else

Xn:1=PR(Xp)

end

0

B,=0
B,=0.2324081208

estimate error

0 0.5 1 end
X

=X,.
FIG. 1. Different projection polynomials for the adaptive expan- Po=7n ®)

sion of the step function in Eq2). For m=1 the trace condition has to be reversed te.*
The scheme can be described as follows: First the Hamil-

Two examples oP@(x) and PP (x), for m=1 and 3, are tonian is normalized to an initial matriX, with all its eigen-

displayed in Fig. 1. It can be shown that any combination of/@/u€se(Xo) €[ Bm, 1~ Bp]. The constants, andey are the
these polynomials in an iterative expansion converges to west a”‘?' highest eigenvaluestdf respectlyely. These can
step function for[0,1], i.e. e approximated by, for example, Gersgorin estimates or the

Lanczos method, with only a small extra computational
cost?®2* A necessary criterion for convergence is that the
unknown chemical potential of the normalized initial matrix
n(Xo) €[ Bm1—Bm]. For intermediate occupancy, provided
m(Xo) €[ Bml—Bml, Bm can be set to zero in the starting
guess. This usually reduces the number of iterations by one
or two steps. The improvement has not been used in the
pres(%l)’]t study. After initializing(, the projectionsP(®(X,)
: or P’ (X,) are performed, adjusting the occupancy and ex-
towards a SteP fun_ct|on can be undgrstoo_d frgm the fa(_:t th%ancrﬁng a step function at the same time. The iteration stops
for each new iteration the new function will still be continu- \\hen some appropriate error estimate is less than a pre-
ous]y increasing, but with.an increasing numbe.r of vanishingyefined error limit. Note that a high-order expansion may
derivatives at the end points. The asymmetry in the numbegq 19 too fast a convergence, making an adjustment of the
of vamshw_ng derivatives determines the position of the Stepoccupation impossible. We may also use combinations with
The chmgle m=2  corresponds to the McWeeny gifierent values of as well as other asymmetric purification
polynomial™ In this symmetric casg,=1/2, and a step can polynomials. Any set of asymmetric continuously increasing
only be formed a¢=0.5. The occupation of an operatdr  olynomials in[0,1] with stationary points at 0 and 1 can be
can be modified such that used equivalently. The presented algorithm cannot handle
problems with degenerate eigenstatesuatThe algorithm
would still converge, but to the wrong density matrix, since
TP (X) =T X], e(X)e[Bmll, the degenerate states would split due to numerical noise. This
differs the presented trace correcting purification scheme
from the PM scheme, which correctly can treat the case of

TIPO(X)]<THX], &(X)e[0,1-By], (4  degeneracy.

O(x—¢&)=---(PYP(PEP)(x)). - -, 3)

with the stept e[ B, 1— Bml- Herep,, is the inflection point
of P@(x), i.e., whereP®(B,)=Bm, 0<Bm<1, and (1
—Bm) is the inflection point ofP{?(x). The convergence

. IIl. GRAND CANONICAL PURIFICATION
wheree(X) are the eigenvalues of. For m=1 the reverse

situation holds, with switched inequalities. With#2 we Since any combination of the expansion polynomials in
can apply the polynomials of EqR) in the expansion of the Eg.(2) converges to a step function, we can use a predefined
density matrix, Eq(1), such that each step adjusts for thefixed expansion combination af(xl —H). In this caseu
occupation ofX,,. In this way an expansion is created that must be known, but the efficiency might be slightly im-
converges to the density matrix with the correct occupationproved compared to schemes working with a predefined oc-
i.e., po=6(ul —H) with Tr[pg]=Ng, but withouta priori cupancy. For example, we may use repetitions of the combi-
knowledge ofu. The algorithm(for m>2) is given by this nation PSS(x)=PP (PP (PP(x))) or (for m>1) only
pseudocode: P@(x), or only P{?)(x), in the combination
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P@(x), m=1/2,

45
PO(x), w=1/2, ©

PR, )=
where u is the normalized chemical potential=(u
—go)(en—e0) L. We can now, as in Eq), perform the
expansion using the fixed repeated combinatiorPﬁf(x)
and P{)(x) with the starting guess

40 -

Xo=a(ul—H)+pl, 35

a=min{Blen—pn] (1= B p—eol 1} ()

The constanp is here determined by the inflection point of
the repeated fixed polynomial combination, e 8., or (1
- By for Pﬁc(x,ﬁ). The approach can be seen as an asym-
metric generalization of the grand canonical McWeeny puri-
fication schemé>?2°With PS(x, ) they are equivalent.
The method is directly related to matrix sign function
expansion$® The matrix sign function expansion is equiva-
lent to the purification scheme via a trivial linear transform
where the step function expansion is performed betwegn
and +1 in the !nterval[—:L.,l].' . . FIG. 2. The number of matrix-matrix multiplicatiod neces-

If the chemical potential is gnknpwn, the density m-atrlx sary to achieve a convergen, — po||,<10"9, as a function of
may have tc.) be_ recalculated with dlﬁgrent Valuesuqﬁntll _the filling factor\ or, equivalently, the chemical potential for H
the OCCUpat'O,n Is correct. Howeygr, since the density mat”)\Svith N=100. PM corresponds to the result using the canonical
can be des_cr'bed as a SUperpOS_'t'on of outer perUCtS of t_m’-'ace-conserving purification scheme by Palser and Manolopoulos
occupied eigenstates, we can adjust the occupation by addingest 24, The open symbol®,, show the result of the expansion
or subtracting Hamiltonian eigenstates close to the chemicg|igorithm, Eq(5). The small squares indicate the result of the grand

potential. A few of these states can be calculated efficientlyganonical Weweeny purificatiotMcw) and PSS(x, ) in Eq. (6).
for example, using inverse power iteraticfisn this way the

occupation can be adjusted without a complete recalculation . . ]
of the density matrix with a new shifted chemical potential. 2'€ essentlally_th_ree reasons for the improved convergence.
Moreover, in the case of a material with a band gap we d 1) a more optimized ratio betW(_een the pumber of matnx
not need to have a very precise prior knowledgg:afs long multiplications and the polynomial orde(ii) a faster in-

as the estimate is somewhere in the gap. The grand canonicgfase of the number of vanishing derivatives at the station-

approach, with a predefined fixed may thus be an efficient ary end DO'U‘S' an_(ﬂ'") as will be shown below, a steeper
alternative in some special cases. slope at the inflection points, partly due to the asymmetry of

the purification polynomials. The generalized grand canoni-
cal expansion withm=3 (P$) converges several steps
faster compared to the grand canonical McWeéMg\W)

To illustrate the efficiency of the expansion techniquesmethod for the same reasons.
we have constructed alNXN Hamiltonian test matrix

H(i,j) with randomized off-diagonal elements decaying as
li—j|~2 and with a uniform distribution of eigenvalues in
[0,1]. Only the eigenvalue distribution gf the Hamiltonian is By varyingN, i.e., the size of the Hamiltonian test matrix,
of importance for the convergence. Withwe have that the we may see how the number of matrix multiplications nec-
occupation factoihn=N./N=u=pu and it is easy to com- essary for convergence scales with system size or, equiva-
pare grand canonical schemes with the trace-correcting dently, with the inverse gap at the chemical potentia ,
trace-conserving methods. =1/N. The behavior is crucial for very large systems, espe-
Figure 2 shows the number of matrix multiplications nec-cially if we wish to construct an expansion scheme that com-
essary to achieve an erfdX,— po||,<10"° as a function of  putationally scales linearly with the system size for metallic
the filling factor\ or chemical potentiaf.. The PM trace- materials with a vanishing band gap. Figure 3 displays the
conserving purification scheme is slow at low and high oc-number of necessary matrix multiplications as a function of
cupancy(since the slope at the inflection point tends to 1 adn(N). In the upper graph the results of McWeeny purification
the inflection point approaches 0 oy, Wwhereas the new (McW) and the trace-conserving canonical purificatiBi)
trace-correcting expansion algorithm, with=1 (P.), m  are on top of each other. For this particular symmetrical case
=3 (P3), andm=5 (Ps), has an overall fast convergence. the two schemes are identialThe graph indicates a step-
For example, at 10% occupancy the new scheme with wise linear relationship between the number of matrix mul-
=3 is about twice as fast compared to the PM scheme. Therplications M necessary for convergence and the logarithm

30 -

Number of matrix multiplications (M)

25 ¢

0 ‘ 0.25 0.5 0.75 1
Occupation factor A or chemical potential i

IV. EXAMPLES

V. SCALING
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linear fits —as [My(N+AN)—MY(N)]/(AN)~p[N(k—1)]‘1. 9
o—orP . L~
32 GO PM, McW Let M, be a continuous version &fl, such that
x=3.8
' dM, /dN=p[N(k—1)]"%. (10
o 28 Integration gives
s
S o M_(N)=at ——In(N) (11)
g L il Y k—1 !
Q
E* : A=u=0.5 for some constan&. This approximate formula explains the
IR ‘ ; ‘ ‘ linear relation in Eq(8) and is a useful measure in optimi-
E ‘ ‘ zations of grand canonical expansions. Purification polyno-
% mials should be optimized on the criterion of matrix multi-
g plications versus vanishing derivatives at the stationary fixed
S points and slopece=p(k—1) ! as estimated in Eq11).
E 44 For example, the purificatioRP;®%(X) requires two matrix
g ' multiplications in each iteration, it has three vanishing fixed
Z point derivatives, ané .= 3.1. This should be compared to
% | McWeeny purification, which also requires two matrix mul-
tiplications in each iteration, but with only two vanishing
28 fixed point derivatives and with &.s~ 4.0.
For materials with a band gap, the valué&l1ghould be
50 ‘ ‘ ‘ replaced by the gap at the chemical potential. In this case the
3 4 5 6 scaling with the logarithm of the system size vanishes and
In(N) the number of necessary matrix multiplication for a pre-
) . S defined convergence accuracy is constant.
FIG. 3. The number of matrix-matrix multiplicatiod neces- Notice that one may use different criteria for convergence

sary to achieve a convergendg,— Eo|/N<10"°, as a function of

such as the error per state, per atom, or total error. However,
In(N). HereE,=Tr[HX,].

this has only a minor effect on the number of necessary
matrix multiplications because of the very rapid rate of con-
of the System size. The relation can be approximated by theergence close to idempotency, WhiCh, for examp|e, is qua-
linear formula dratic in the WcWeeny case.

M(,N)=a(u)+ x(m)In(N). (8) VI. FIRST-PRINCIPLES PERFORMANCE

To further illustrate the performance of the expan-
sion scheme we show the result of an implementation in the
MONDOSCF suite of linear scaling self-consistent field

rograms.’?°3Figure 4 displays the number of necessary
atrix multiplications for clusters and strings of Li atoms
and for different molecules. In the case of Li clusters and

. | X | b bel he chemical gtrings of Li atoms the systems are metallic in the sense that
eigenvaluey(Xo), closest above or below the chemical po- e gap vanishes in the limit of infinite number of atoms.

tgntial of the normali;ed initial matrig(X,). This particular This is thus a good test to check the linear relationship be-
¢|genvalue shou]d either converge to 1 or O..Smce the PUsveen the number of matrix multiplications and the loga-
fication polynomials are continuously increasing, preservingip o of the system size. ThB, scheme is efficient com-

the order of the eigenvalues, all oth_er eigen_\{alu_es converg&ared to the PM scheme, especially in the case of ®ltere
fa;ter. In the case of grand ganomcal purification, with 8the occupancies is high. This particular example illustrates
uniform distribution - of N eigenvalues, y(N.Xo)~8 g inefficiency of the PM scheme at high and low occupan-
il/(ZN); By means qf a linearization of the purification gieq \yhich is avoided with the trace-correcting algorithm.
polynomial around 8 it can be shown thaty(N,Xo)  The weak logarithmic dependence between computational
~v(kN,X,), wherek is the derivative of thgcpunﬂcatlon cost and system size for metallic systems, illustrated by the
polynomial at the inflection point, .9k=Pn~"(Bm.4)-  dashed lines in the figure, is also confirmed. Notice that an
Thus, increasing the number of statesA=N(k—1) and  actual linear scaling is reached only if the number of non-
adding one extra iteration leads to the same error.ifi M, zero elements of the density matrix grows linearly with sys-
is the number of multiplications necessary to achieve a fixedem size. This can generally not be achieved within a real-
error of y andp is the number of matrix multiplication in one space representation for metallic systems. Instead, as men-
iteration, we have that tioned above, a multiresolution wavelet basis or a group-

The least-squares fits &fl (w,N) are shown together with
the values ofk. The expansion®,, Ps, and PSC perform
equally well or slightly worse compared #; and are not
shown. The slopes determine the efficiency for very larg
systems and we find the best scaling Roy.

The convergence is determined by the slowest convergin
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o | VII. DISCUSSION
SiF, (A=0.86)

80 - |e--+P, (Licluster) 1 The expansion scheme and the convergence analysis illus-
‘_‘—‘“EM( L@i;%;lst)ef) trated and argued for here provide a basis for understanding
- 1 Strr e . . . . .
Y-—¥PM (Li miig) purification al_gonthms and fthelr efficiency, ar_1d it shows that
the computational complexity, as measured in the number of

OP, (molecules)

Number of matrix multiplications (M)

60 1 EIFM (amelccules) matrix multiplications, essentially is independent of system
T size even for metallic systems. However, if the additional
v . i problem of thresholding is included, which can be performed
40 HO g, O z either via a finite cutoff radius truncation or via a numerical
/,‘—9— e o‘ o threshold, the computational complexity as a function of sys-
e HO Ureé; Caffeine tem size, v_vlt_hln some required numepcal accuracy, becomes
o} far more difficult to analyze and practical experience may be
20 ‘ . : ) ' ;3 4 the only way to understand the efficiency.
In(Number of atoms) In the alternative construction of the density matrix using

a constrained functional minimization, as devised by Li
FIG. 4. The number of matrix multiplication®! (after three et al,'* McWeeny purification is used to impose idempo-
self-consistency cycles with STO-3G or STO-6G basis)setses-  tency. The asymmetric polynomial expansions proposed here

sary to achieve a convergen{le,—E,_,|<10 " a.u., as a func- may serve as a possible alternative.
tion of the logarithm of the number of atoms. Occupation

Ne[0.3,0.7 except for Nif. For the Li strings and clusters, as
indicated by the dashed lines, the gap is vanishing, i.e., metallic, in VIll. SUMMARY

the limit “number of atoms”—ce. )
In summary we have proposed an algorithm for expand-

renormalization approach has to be applied. However, th. g the single-particle density matrix in terms of the Hamil-

number of matrix multiplications necessary for convergenc onian that is s_|mpl_e, general, and with a cor_nputatlonal com-
should not be affected by a change of representation sinj?e'ex'ty esse_nt|ally mdependent Of. system size even for very
the vanishing gap around the chemical potential will remai arge metallic systems with a vanishing band gap. If the ex-

the same regardless of the representation, given, in the caB@nsion Is used together with a fixed ch.em[cal potential, it
of wavelets, via a biorthogonal transformation of the V&S shown to be an g;ymmetnc generqhzat!on of grand ca-
Hamiltonian®:® _nonlcal McWeeny purl_flcatlon. The algorithm is a substantial
The P, scheme implemented in theONDOSCF programs |rr_1provement of previous schemes and provides together
has two major advantages compared to other schefinds: with the pre_sented convergence analy_S|_s a_framework for the
requires less memory compared to higher-order Schemégwderstandmg and optimization of purification.
since only second-order polynomials are used and interme-
diate matrix products do not have to be stor@d. It is less
complex and only matrix squares have to be calculated. A
specially designed algorithm for matrix squares can possibly Discussions and support from Matt Challacombe and C. J.
be made more efficient than a general matrix product algoTymczak are gratefully acknowledged. | am also very thank-
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