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Expansion algorithm for the density matrix

Anders M. N. Niklasson
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A purification algorithm for expanding the single-particle density matrix in terms of the Hamiltonian opera-
tor is proposed. The scheme works with a predefined occupation and requires less than half the number of
matrix-matrix multiplications compared to existing methods at low~,10%! and high~.90%! occupancies.
The expansion can be used with a fixed chemical potential, in which case it is an asymmetric generalization of
and a substantial improvement over grand canonical McWeeny purification. It is shown that the computational
complexity, measured as the number of matrix multiplications, essentially is independent of system size even
for metallic materials with a vanishing band gap.
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I. INTRODUCTION

Theoretical predictions of material properties of comp
systems consisting of millions of atoms are often limited n
by theory but by calculational techniques. Recently there
been a large effort to develop numerical methods that c
putationally scale linearly with system size.1 The techniques
may play an important role in a broad spectrum of scie
such as molecular biology, materials science, chemistry,
nanotechnology. Several of the linear scaling schemes
based on the single-particle density matrix that can be u
in order to calculate the energies and densities that occu
self-consistent field theories. The construction of the den
matrix is used as an alternative to solving an eigenva
problem. For large complex systems within a sparse ma
representation this approach can be performed more
ciently and instead of a cubic scaling the computational c
scales linearly with the system size.1 The matrix sparsity is
essential for the success of density matrix schemes. For
terials with a band gap the real-space representation of
density matrix is sparse2–4 due to a finite correlation length
which is usually referred to as nearsightedness.5 However,
within other representations, such as a multiresolution wa
let basis or a group-renormalization representation, the d
sity matrix is sparse also for metallic systems.6–9

Most techniques for constructing the density matrix c
be seen as a polynomial expansion of the density matrixr0
in terms of the Hamiltonian operatorH. In an iterative ap-
proach this expansion can be formulated as

X05P0~H !,

Xn5Pn~H,Xn21!, n51,2, . . . ,

r05 lim
n→`

Xn . ~1!

The projection polynomialsPn(H,Xn) are chosen to achiev
a rapid convergence under the conditions of commutat
@H,r0#50, idempotency,r0

25r0, and particle conservation
Tr@r0#5Ne . They may either be chosen from a constrain
conjugate gradient minimization of the energy function
Tr@rH# ~Refs. 5 and 10–20! or as a fast expansion of th
step functionu(mI 2H) centered at the chemical potentialm
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or, for finite temperatures, the Fermi-Dirac distribution.9,19–25

Each computational step consists of matrix-matrix additio
subtractions, and multiplications. The problem is to find
rapidly convergent expansion that minimizes the number
matrix-matrix multiplications, since these operations are
most time consuming.26,27

The efficiency of the different density-matrix schem
varies depending on the particular characteristics of the p
lem such as the existence of a band gap, a predefined ch
cal potential, filling factor, self-consistency cycles, thresho
ing, basis set, and system size. In this paper we propo
purification algorithm for the construction of the density m
trix that is simple, general, and rapidly convergent also
very large metallic systems. The method works with a p
defined occupation and does not need the input or adjustm
of the chemical potential. Only one previous purificatio
strategy, recently developed by Palser and Manolopou
~PM!,24 exists for this important problem. By using a startin
guessX0 with the trace equal to the occupation number a
thereafter performing trace-conserving spectral projectio
Xn converges to the correct density matrix without pri
knowledge of the chemical potential. The PM scheme has
excellent performance compared to other methods.24,20How-
ever, due to the constraint of trace conservation, the met
is inefficient at low and high partial occupancies. This is
great concern, for example, when using a multiresolut
wavelet representation for metallic problems, since the fr
tional filling in this case is low. The same problem occu
with a minimal basis set at both high and low occupancies
simple general algorithm that avoids this particular probl
and still converges as or more rapidly, especially for ve
large problems, would therefore be of great interest.

II. TRACE-CORRECTING PURIFICATION

The method we propose is based on the continuously
creasing purification polynomials with stationary end poin
in @0,1#:

Pm
(a)~x!512~12x!m@11mx#,

Pm
(b)~x!5xm@11m~12x!#. ~2!
©2002 The American Physical Society15-1
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Two examples ofPm
(a)(x) and Pm

(b)(x), for m51 and 3, are
displayed in Fig. 1. It can be shown that any combination
these polynomials in an iterative expansion converges
step function forxP@0,1#, i.e.,

u~x2j!5•••~Pm
(a/b)

„Pm
(a/b)~x!…•••, ~3!

with the stepjP@bm,12bm#. Herebm is the inflection point
of Pm

(a)(x), i.e., wherePm
(a)(bm)5bm , 0,bm,1, and (1

2bm) is the inflection point ofPm
(b)(x). The convergence

towards a step function can be understood from the fact
for each new iteration the new function will still be contin
ously increasing, but with an increasing number of vanish
derivatives at the end points. The asymmetry in the num
of vanishing derivatives determines the position of the st
The choice m52 corresponds to the McWeen
polynomial.21 In this symmetric caseb251/2, and a step can
only be formed atj50.5. The occupation of an operatorX
can be modified such that

Tr@Pm
(a)~X!#>Tr@X#, «~X!P@bm,1#,

Tr@Pm
(b)~X!#<Tr@X#, «~X!P@0,12bm#, ~4!

where«(X) are the eigenvalues ofX. For m51 the reverse
situation holds, with switched inequalities. WithmÞ2 we
can apply the polynomials of Eq.~2! in the expansion of the
density matrix, Eq.~1!, such that each step adjusts for t
occupation ofXn . In this way an expansion is created th
converges to the density matrix with the correct occupati
i.e., r05u(mI 2H) with Tr@r0#5Ne , but without a priori
knowledge ofm. The algorithm~for m.2) is given by this
pseudocode:

FIG. 1. Different projection polynomials for the adaptive expa
sion of the step function in Eq.~2!.
15511
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function r0~H,Ne ,error limit!

estimate«0~H !, «N~H !

X05~122bm!~«NI 2H !/~«N2«0!1bmI

while error.error limit

if Tr @Xn#2Ne,0

Xn115Pm
(a)~Xn!

else

Xn115Pm
(b)~Xn!

end

estimate error

end

r05Xn . ~5!

For m51 the trace condition has to be reversed to ‘‘..’’
The scheme can be described as follows: First the Ha

tonian is normalized to an initial matrixX0 with all its eigen-
values«(X0)P@bm,12bm#. The constants«0 and«N are the
lowest and highest eigenvalues ofH, respectively. These ca
be approximated by, for example, Gersgorin estimates or
Lanczos method, with only a small extra computation
cost.20,24 A necessary criterion for convergence is that t
unknown chemical potential of the normalized initial matr
m(X0)P@bm,12bm#. For intermediate occupancy, provide
m(X0)P@bm,12bm#, bm can be set to zero in the startin
guess. This usually reduces the number of iterations by
or two steps. The improvement has not been used in
present study. After initializingX0 the projectionsPm

(a)(Xn)
or Pm

(b)(Xn) are performed, adjusting the occupancy and
panding a step function at the same time. The iteration st
when some appropriate error estimate is less than a
defined error limit. Note that a high-order expansion m
lead to too fast a convergence, making an adjustment of
occupation impossible. We may also use combinations w
different values ofm as well as other asymmetric purificatio
polynomials. Any set of asymmetric continuously increasi
polynomials in@0,1# with stationary points at 0 and 1 can b
used equivalently. The presented algorithm cannot han
problems with degenerate eigenstates atm. The algorithm
would still converge, but to the wrong density matrix, sin
the degenerate states would split due to numerical noise.
differs the presented trace correcting purification sche
from the PM scheme, which correctly can treat the case
degeneracy.

III. GRAND CANONICAL PURIFICATION

Since any combination of the expansion polynomials
Eq. ~2! converges to a step function, we can use a predefi
fixed expansion combination ofu(mI 2H). In this casem
must be known, but the efficiency might be slightly im
proved compared to schemes working with a predefined
cupancy. For example, we may use repetitions of the com
nation Pex

GC(x)5P2
(b)(P1

(b)
„P3

(a)(x)…) or ~for m.1) only
Pm

(a)(x), or only Pm
(b)(x), in the combination

-
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EXPANSION ALGORITHM FOR THE DENSITY MATRIX PHYSICAL REVIEW B66, 155115 ~2002!
Pm
GC~x,m̄ !5H Pm

(a)~x!, m̄>1/2,

Pm
(b)~x!, m̄<1/2,

~6!

where m̄ is the normalized chemical potential,m̄5(m
2«0)(«N2«0)21. We can now, as in Eq.~1!, perform the
expansion using the fixed repeated combination ofPm

(a)(x)
andPm

(b)(x) with the starting guess

X05a~mI 2H !1bI ,

a5min$b@«N2m#21,~12b!@m2«0#21%. ~7!

The constantb is here determined by the inflection point
the repeated fixed polynomial combination, e.g.,bm or (1
2bm) for Pm

GC(x,m̄). The approach can be seen as an asy
metric generalization of the grand canonical McWeeny pu
fication scheme.21,24,25 With P2

GC(x,m̄) they are equivalent
The method is directly related to matrix sign functio
expansions.23 The matrix sign function expansion is equiv
lent to the purification scheme via a trivial linear transfo
where the step function expansion is performed between21
and11 in the interval@21,1#.

If the chemical potential is unknown, the density mat
may have to be recalculated with different values ofm until
the occupation is correct. However, since the density ma
can be described as a superposition of outer products o
occupied eigenstates, we can adjust the occupation by ad
or subtracting Hamiltonian eigenstates close to the chem
potential. A few of these states can be calculated efficien
for example, using inverse power iterations.28 In this way the
occupation can be adjusted without a complete recalcula
of the density matrix with a new shifted chemical potenti
Moreover, in the case of a material with a band gap we
not need to have a very precise prior knowledge ofm as long
as the estimate is somewhere in the gap. The grand cano
approach, with a predefined fixedm, may thus be an efficien
alternative in some special cases.

IV. EXAMPLES

To illustrate the efficiency of the expansion techniqu
we have constructed anN3N Hamiltonian test matrix
H̄( i , j ) with randomized off-diagonal elements decaying
u i 2 j u22 and with a uniform distribution of eigenvalues
@0,1#. Only the eigenvalue distribution of the Hamiltonian
of importance for the convergence. WithH̄ we have that the
occupation factorl5Ne /N5m̄5m and it is easy to com-
pare grand canonical schemes with the trace-correctin
trace-conserving methods.

Figure 2 shows the number of matrix multiplications ne
essary to achieve an erroruuXn2r0uu2<1029 as a function of
the filling factor l or chemical potentialm. The PM trace-
conserving purification scheme is slow at low and high
cupancy~since the slope at the inflection point tends to 1
the inflection point approaches 0 or 1!, whereas the new
trace-correcting expansion algorithm, withm51 (P1), m
53 (P3), andm55 (P5), has an overall fast convergenc
For example, at 10% occupancy the new scheme withm
53 is about twice as fast compared to the PM scheme. Th
15511
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are essentially three reasons for the improved converge
~i! a more optimized ratio between the number of mat
multiplications and the polynomial order,~ii ! a faster in-
crease of the number of vanishing derivatives at the stat
ary end points, and~iii ! as will be shown below, a steepe
slope at the inflection points, partly due to the asymmetry
the purification polynomials. The generalized grand cano
cal expansion withm53 (P3

GC) converges several step
faster compared to the grand canonical McWeeny~McW!
method for the same reasons.

V. SCALING

By varyingN, i.e., the size of the Hamiltonian test matri
we may see how the number of matrix multiplications ne
essary for convergence scales with system size or, equ
lently, with the inverse gap at the chemical potentialD«m
51/N. The behavior is crucial for very large systems, es
cially if we wish to construct an expansion scheme that co
putationally scales linearly with the system size for meta
materials with a vanishing band gap. Figure 3 displays
number of necessary matrix multiplications as a function
ln(N). In the upper graph the results of McWeeny purificati
~McW! and the trace-conserving canonical purification~PM!
are on top of each other. For this particular symmetrical c
the two schemes are identical.24 The graph indicates a step
wise linear relationship between the number of matrix m
tiplications M necessary for convergence and the logarit

FIG. 2. The number of matrix-matrix multiplicationsM neces-
sary to achieve a convergenceuuXn2r0uu2<1029, as a function of

the filling factorl or, equivalently, the chemical potentialm, for H̄
with N5100. PM corresponds to the result using the canon
trace-conserving purification scheme by Palser and Manolopo
~Ref. 24!. The open symbolsPm show the result of the expansio
algorithm, Eq.~5!. The small squares indicate the result of the gra
canonical WcWeeny purification~McW! andP3

GC(x,m̄) in Eq. ~6!.
5-3
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ANDERS M. N. NIKLASSON PHYSICAL REVIEW B66, 155115 ~2002!
of the system size. The relation can be approximated by
linear formula

M ~m,N!5a~m!1k~m!ln~N!. ~8!

The least-squares fits ofM (m,N) are shown together with
the values ofk. The expansionsP1 , P5, and P3

GC perform
equally well or slightly worse compared toP3 and are not
shown. The slopes determine the efficiency for very la
systems and we find the best scaling forP3.

The convergence is determined by the slowest converg
eigenvalueg(X0), closest above or below the chemical p
tential of the normalized initial matrixm(X0). This particular
eigenvalue should either converge to 1 or 0. Since the p
fication polynomials are continuously increasing, preserv
the order of the eigenvalues, all other eigenvalues conv
faster. In the case of grand canonical purification, with
uniform distribution of N eigenvalues, g(N,X0)'b
61/(2N). By means of a linearization of the purificatio
polynomial around b it can be shown thatg(N,X0)
'g(kN,X1), where k is the derivative of the purification
polynomial at the inflection point, e.g.,k5Pm

GC8(bm ,m̄).
Thus, increasing the number of states byDN5N(k21) and
adding one extra iteration leads to the same error ing. If M̃g
is the number of multiplications necessary to achieve a fi
error ofg andp is the number of matrix multiplication in on
iteration, we have that

FIG. 3. The number of matrix-matrix multiplicationsM neces-
sary to achieve a convergenceuEn2E0u/N<1029, as a function of
ln(N). HereEn5Tr@HXn#.
15511
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@M̃g~N1DN!2M̃g~N!#/~DN!'p@N~k21!#21. ~9!

Let Mg be a continuous version ofM̃g such that

dMg /dN5p@N~k21!#21. ~10!

Integration gives

Mg~N!5a1
p

k21
ln~N!, ~11!

for some constanta. This approximate formula explains th
linear relation in Eq.~8! and is a useful measure in optim
zations of grand canonical expansions. Purification poly
mials should be optimized on the criterion of matrix mul
plications versus vanishing derivatives at the stationary fi
points and slopekest5p(k21)21 as estimated in Eq.~11!.
For example, the purificationP3

GC(X) requires two matrix
multiplications in each iteration, it has three vanishing fix
point derivatives, andkest53.1. This should be compared t
McWeeny purification, which also requires two matrix mu
tiplications in each iteration, but with only two vanishin
fixed point derivatives and with akest54.0.

For materials with a band gap, the value 1/N should be
replaced by the gap at the chemical potential. In this case
scaling with the logarithm of the system size vanishes a
the number of necessary matrix multiplication for a pr
defined convergence accuracy is constant.

Notice that one may use different criteria for convergen
such as the error per state, per atom, or total error. Howe
this has only a minor effect on the number of necess
matrix multiplications because of the very rapid rate of co
vergence close to idempotency, which, for example, is q
dratic in the WcWeeny case.

VI. FIRST-PRINCIPLES PERFORMANCE

To further illustrate the performance of the expa
sion scheme we show the result of an implementation in
MONDOSCF suite of linear scaling self-consistent fie
programs.17,29–31Figure 4 displays the number of necessa
matrix multiplications for clusters and strings of Li atom
and for different molecules. In the case of Li clusters a
strings of Li atoms the systems are metallic in the sense
the gap vanishes in the limit of infinite number of atom
This is thus a good test to check the linear relationship
tween the number of matrix multiplications and the log
rithm of the system size. TheP1 scheme is efficient com
pared to the PM scheme, especially in the case of SiF4 where
the occupanciesl is high. This particular example illustrate
the inefficiency of the PM scheme at high and low occup
cies which is avoided with the trace-correcting algorith
The weak logarithmic dependence between computatio
cost and system size for metallic systems, illustrated by
dashed lines in the figure, is also confirmed. Notice that
actual linear scaling is reached only if the number of no
zero elements of the density matrix grows linearly with sy
tem size. This can generally not be achieved within a re
space representation for metallic systems. Instead, as m
tioned above, a multiresolution wavelet basis or a gro
5-4
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EXPANSION ALGORITHM FOR THE DENSITY MATRIX PHYSICAL REVIEW B66, 155115 ~2002!
renormalization approach has to be applied. However,
number of matrix multiplications necessary for convergen
should not be affected by a change of representation s
the vanishing gap around the chemical potential will rem
the same regardless of the representation, given, in the
of wavelets, via a biorthogonal transformation of t
Hamiltonian.8,9

The P1 scheme implemented in theMONDOSCFprograms
has two major advantages compared to other schemes:~i! It
requires less memory compared to higher-order sche
since only second-order polynomials are used and inter
diate matrix products do not have to be stored.~ii ! It is less
complex and only matrix squares have to be calculated
specially designed algorithm for matrix squares can poss
be made more efficient than a general matrix product a
rithm.

FIG. 4. The number of matrix multiplicationsM ~after three
self-consistency cycles with STO-3G or STO-6G basis sets! neces-
sary to achieve a convergenceuEn2En21u<1027 a.u., as a func-
tion of the logarithm of the number of atoms. Occupati
lP@0.3,0.7# except for NiF4. For the Li strings and clusters, a
indicated by the dashed lines, the gap is vanishing, i.e., metallic
the limit ‘‘number of atoms’’→`.
l.
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VII. DISCUSSION

The expansion scheme and the convergence analysis
trated and argued for here provide a basis for understan
purification algorithms and their efficiency, and it shows th
the computational complexity, as measured in the numbe
matrix multiplications, essentially is independent of syste
size even for metallic systems. However, if the addition
problem of thresholding is included, which can be perform
either via a finite cutoff radius truncation or via a numeric
threshold, the computational complexity as a function of s
tem size, within some required numerical accuracy, beco
far more difficult to analyze and practical experience may
the only way to understand the efficiency.

In the alternative construction of the density matrix usi
a constrained functional minimization, as devised by
et al.,11 McWeeny purification is used to impose idemp
tency. The asymmetric polynomial expansions proposed h
may serve as a possible alternative.

VIII. SUMMARY

In summary we have proposed an algorithm for expa
ing the single-particle density matrix in terms of the Ham
tonian that is simple, general, and with a computational co
plexity essentially independent of system size even for v
large metallic systems with a vanishing band gap. If the
pansion is used together with a fixed chemical potentia
was shown to be an asymmetric generalization of grand
nonical McWeeny purification. The algorithm is a substant
improvement of previous schemes and provides toge
with the presented convergence analysis a framework for
understanding and optimization of purification.
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