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Changes in optical conductivity due to readjustments in the electronic density of states
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Within the model of elastic impurity scattering, we study how changes in the energy dependence of the
electronic density of statdEDOS N(e€) around the Fermi energsg are reflected in the frequency-dependent
optical conductivityo(w). While conserving the total number of statesNife) we compute the induced
changes inr(w) as a function ofw and in the corresponding optical scattering rate, ). These quantities
mirror some aspects of the EDOS changes but the relationship is not direct. Conservation of optical oscillator
strength is found not to hold, and there is no sum rule on the optical scattering rate although one does hold for
the quasiparticle scattering. Temperature as well as increases in impurity scattering leads to additional changes
in optical properties not seen in the constant EDOS case. These effects have their origin in an averaging of the
EDOS around the Fermi energy on an energy scale set by the impurity scattering.
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[. INTRODUCTION known to be present at optimum dopifh@he precise origin
of the pseudogap is not yet known and this remains a con-

Measurements of the infrared conductivityw) as a troversial area. Nevertheless, the experimental situation is
function of energyw continue to give valuable information reasonably well characterized and has been reviewed by Ti-
on charge dynamics in a wide range of metallic systems inmusk and Statt.
cluding the highT, superconducting cupraté$.These ma- The pseudogap has been identified as a distinctive and
terials have received a lot of recent attention because thesometimes even abrupt change in the temperature variation
represent strongly correlated systems which exhibit nevof the nuclear spin lattice relaxatiSrof the Knight shift® of
physics, beyond the usual Fermi liquiL) description of the dc resistivity®!! and of the specific heaf **in the
electric structure. It was recognized and emphasized as crirequency dependence of the infrared conductivityand the
cial very early on that the normal-state properties of the cucurrent voltage characteristics of a tunneling junctidmas
prates are anomalous. A marginal Fermi liqati(MFL)  well as in angular-resolved photoemission spectroscopy
phenomenology was developed which could describe retARPES.Y"~1° This last experimental technique is particu-
markably well many of the observed deviation from FL be-larly powerful and has revealed that the pseudogap is not
havior of the normal state. An essential feature of the MFL isconstant around the Fermi surface. Rather it hakveave
that quasiparticle weight in the single-particle charge carrienature which is the same symmetry as is exhibited by the
spectral density denoted & * goes to zero logarithmically superconducting gap beloW, in the cuprates.
as the Fermi energy is approached. In this limit, there are no That the pseudogap has its origin in correlation effects is
well-defined quasiparticle poles, and the entire spectral demot in doubt. Rather, the issue is how it is to be simply, yet
sity consists of an incoherent background which is due to theccurately, described~2®Many theoretical suggestions have
interactions. It is thed-function-like quasiparticle contribu- been made. One widely held view is based on the so-called
tion (broadened by the interactipwhich leads to a Drude- preformed pair model in which it is envisioned that the Coo-
like contribution in the optical conductivify’ The incoher-  per pairs exist abov&, up to a higher pseudogap tempera-
ent background is responsible for the Holstein tails due, foture T*, but without phase coherence. The phase coherence
example, to phonon-assisted absorption in the well-studiedetween the pairs, which is essential for superconductivity,
case of the electron-phonon interaction. The incoherent corsets in only at lower temperaturé<T,.?>?* In another
tribution to the optical conductivity gives additional informa- model, different but related, finite-momentum pairs are be-
tion on correlation effects complementary to the Drude redieved to be responsible for the pseudogap feattiAsvery
sponse. Both contributions are described microscopically bylifferent recent proposal is the suggestion of Chakravarty
the electron self-energdi (o) vs o, which is the fundamen- et al?® of D-density-wave formation with attended orbital
tal quantity about which we would like information from currents which double the crystallographic unit cell. There
measurements on the optical conductivitfw). For ex- are also proposals encoded in the ideas of spin-charge
ample, the real partY;) of 3 deals with mass renormaliza- separatiofi*?>and the pioneering suggestion of Anderédn.

tion of the quasiparticles and the imaginary patt) is re- The true nature of the changes that are brought about in
lated to their lifetimes. As we have just describBdgan also  the energy-dependent electronic density of stdfeR0OS
lead to an incoherent background. N(e) by the formation of the pseudogap remains unknown

One of the most striking manifestation of correlation ef- other than that the EDOS is depressed in some way. Conse-
fects in the hight. superconducting cuprates are thequently we will not address this specific case directly here
pseudogap features observed in their normal state. They aadthough it is a motivating force for what we have done.
particularly prominent in underdoped systems, but are alsinstead we will be concerned with a related but less specific
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issue—namely, the general question of how changéy( &)
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which is measured in ARPES experiments. Thus, optical and

around the Fermi energy will manifest themselves in correARPES data give complementary information @{w).
sponding changes in the frequency dependence of the optic#lhat is measured in ARPES is the single-particle spectral

conductivity o(w) vs w. After all, from an experimental

density for a particular momentuknas a function ofw. It is

point of view, it is important to understand what qualitative denoted byA(k,») and is related to the self-ener@( w),
signature is to be looked for which corresponds to micro-with k dependence suppressed, by

scopic changes iN(e€).

To remain as simple as possible, we will examine in this

paper in some detail mainly a simple model fofe) which
consists of a constant backgroumd,, modified by two

25(w)
—S(0)P+35(w)

()

Lorentzian forms, both chosen to be symmetric about therhe interpretation of optical results is now no longer
Fermi energy. This assumption allows us to take advantagetraightforward. As an example of the complications that
of the mathematical simplifications associated with the exisarise we note that for the cages we will assume in most of
tence of particle-hole symmetry. In addition, one of theour calculations hejevhenN(e) conserves states, the inte-

Lorentzian form is taken to add statesNg, while the other

subtracts states so that there is conservation of total numb

of states whenN(e) is integrated over energy, i.e.,
2 .AN(e)de=0, whereAN(e) is the change in the EDOS.

The Lorentzian form has the important simplifying property
that an energy integral in the definition of the conductivity

can be done analytically.

For simplicity we also limit ourselves to the case of elas;igtrength defined in Eq2) constant. This arises because the

tic impurity scattering. This case has been extensively stu
ied in the approximation thali(e) is constant in the energy

range about the Fermi energy which is significant for trans

port. For a constanfN, the quasiparticle scattering rate
Urq(w)=—2,(w) is constant, independent of energy
The conductivity takes on the well-known Drude form with

constant transport scattering rate which gives the half-widt

f the Dr nd is in f I Wi h iparticl . . .
of the Drude and is act equal to twice the quasipa tCE(gependence ilN(e) is effectively smeared out and we re-

scattering rate. When inelastic scattering is considered, t

quasiparticle scattering rate can still be defined in terms o
the self-energy.,(w), but now it acquires a temperature and

frequency dependenéé€.In this case, the quasiparticle scat-
tering timey( ) is no longer equal to the optical scattering
time 7,5(w), which is formally defined in terms of(w)
=01(w) tioy(w) through the formula

1 QFZ) 1 9,2) o1(w)

Top ®) - ERCU((») T4 ozl(w) + ozz(w) '

a

)

where(), is the plasma frequency which is related to the rea

part of the conductivityr;(w) through the optical oscillator
strength sum rule

. 02
f dwol(w)Z?p. (2)
0

In contrast to the constant EDOS case, whi@) varies
with e around the Fermi energy, 44, and 1/, are no longer

gral over energy of the ARPES rate will also remain un-
Ehanged. This is becauserf{ o) is proportional toN(w)

and [*,AN(e)de=0 is guaranteed wherf” AN(e)de

=0. This sum rule, however, does not hold for(w), as

has been previously discus$ééf for the case of inelastic
scattering processes and for the onset of superconductivity,
with constant EDOS. Nor is the total optical oscillator

integral overoi(w) defining (), depends on an average of
the EDOSN(e) around the Fermi energy over an energy

scale defined by the impurity scattering and is not just de-
pendent onN(0) as it would be in the familiar constant
EDOS case. There is also an attendant temperature depen-

Igence of(),,. As the temperature becomes comparable to the

energy scale on whicN(e) varies significantly, the energy

gover a simple Drude form.

The energy-dependent EDOS enters the formula for the
conductivity in two places. First, the total current is the sum
of the partial currents contributed by each sti¢g in the
electron system. When this sum is changed into an integral
over energy a first factor dfi(e) enters. But there is a sec-
ond factor ofN(€) that also comes in from the quasiparticle
scattering rate. This rate is proportional to the matrix element
of the impurity potential which is to be averaged over all
final states in which the electron can scatter. We can call this
2 final-state effect. This second factor enters the ARPES rate

which becomes proportional to the self-consist&l{iw).
Clearly, ARPES and optical rates can no longer simply be
proportional to each other. Both the initial- and final-state
factors modify the optical scattering rate.

In our calculations, we find that the factorMfe) coming
from the sum over partial currents from each electron has
less of an effect on the energy dependencerffw) than
does the modification of the underlying ARPES rate due to
final-state effects. For a model bf(e) which has a depres-

constant just as in the inelastic case and are not equal. Eaghpn in the EDOS akt= e, which is, of course, compen-
acquires a separate dependence on energy. The imaginaf¥ted for at higher energies so as to conserve the total num-

part of the electron self-energy,(w) becomes proportional
to the self-consistent quasiparticle density of stiés) of

ber of states, the first factor di(e) decreases the dc
conductivity more than at finite frequency so that the overall

the impure system. Impurities broaden the pure crystaéffect is to lead to an apparent broadening of the Drude-like

EDOS N(e), leading toN(w). The optical scattering time
defined in Eq.(1) also acquiress» dependence and can be
quite different from the quasiparticle scattering tifrfe,

form for o4(w). On the other hand, the ARPES rate is ef-

fectively reduced at smadb by the final-state factor dfi(e).
This sharpens the Drude-like line at small Thus the two
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effects have opposite tendencies, compete against each othgem the electron spectral density fac#dtk,w), which con-
and partially cancel. In the specific cases considered, thgins a factor of the final states the particles are scattered
modifications ino;(w) brought about by the changes in the into.
ARPES rate are more important. The real and imaginary parts of the conductivity, and

In a final set of calculations we also consider the case of &, respectively, obey the KK relation, which together with
step-function EDOS model. In a metdle) is expected to  Eq. (2) leads to the useful relationship, lim..o»(o)

be finite at the Fermi energy although it could be small as= ()2/47w. At zero T, Eq. (4) simplifies greatly and be-
compared to its value away from the Fermi energy. With Ourcom%s

step model we show that a small but finite vatuef N(e)

for [e|< some energyE, aboute=0 always leads to the 9,230 = N(e) (0 dx
existence of a Drude-like peak in the optical response, in Ul(w)zﬂﬂ'f de— SAEX) Alex+ o).
sharp contrast to the ca$e=0 when a gap forms and the o b e

Drude peak is completely eliminated. ™
The paper is organized as follows. In Sec. Il, we present &he dc conductivity immediately reads

general theory of the optical conductivity in the case of im- 5

purity scattering. Section Ill is devoted to a discussion of the Q1 (= N g*%0)

effect of the energy-dependent EDOS on optical conductiv- o(0)=—7— ;f,m N, [€2+9%0)]% ®

ity, within a toy model for the EDOS involving two Lorent-
zian forms. This is followed by a paraIIeI discussion, in Sec. \We assume that the impurity potenﬂals small and thus
IV, for another EDOS model, the step model, which allowsthe impurity scattering can be treated perturbatively. Within

us to contrast metalliclike and semiconductinglike behaviorthe self-consistenBorn approximation, the self-energy reads
Finally, Sec. V contains our conclusion. Some mathematics

is shown in Appendixes A and B. SIN(0)=3 () —igsd ®)
o N(e
Il. GENERAL THEORY FOR OPTICAL CONDUCTIVITY = Jixde I\(Ib)G(G’w+ i), (9)

In linear response theory, the real and imaginary parts of
the optical conductivity can be expressed, under the assump¢here y,=n;V2N, with n; the impurity density. The full

tion that vertex corrections are negligible?4s self-consistenG appears on the right-hand side of £9), so
5 this equation must be solved by successive iteration until
()= %ﬂ_f“ 6N(6) * d—xf(x) convergence is achieved. ReplaciBgoy (o —e+id) * on
1 A7 ") . Np ) the right-hand side of Eq(9) gives instead thenon-self-
consistenself-energy> ) () =3 1 ned ®) —ignsd ®).
XA(eX)[A(ex+w)—Alex—w)], (4 In the case of a constant EDOSl(e)=N,, =;=0,
) g(w)=myy,=I'/2. Equations(4) and (5) thus result in the
o) = %Iw dEN(G) ” d—Xf(x)A(e %) well-known Drude formulas{""*| w) is a Lorentzian func-
2 A7 | o Ny J ww ' tion of w with the half-widthI". We immediately find from

Eq. (1) that 7o, (w)(P"¥®=2g(w)=T". In this simple case,

the optical scattering rate is just equal to twice the quasipar-
(5) ticle scattering rate. Thus optical experiments access directly
the microscopic information on the imaginary part of the
self-energy. Further, the dc conductivity and the plasma fre-
quency becomeP9(0)= 02 /(47T), QPM¥=0 . In

X[Gl(E,X+ (I))+G1(E,X_w)_2 Gl(E,X)],

whereN(e€)/Ny is the normalized EDOS witiN,, the con-
stant background EDOS(x) the Fermi distribution func-

tion, G,(e,x) the real part of the quasiparticle Green func- Figs. 3 and 4 belovva(lD'“de)(w) and Tgpl(w)(Dr“de) as func-

tion G(e,x*i0), and(),, the bare plasma frequency which, . s .
for an energy-dependent EDOS, will be shown below to be’uons of w are shown as dot-dashed lines and serve as a

different from the real plasma frequen€y, defined in Eq reference when we discuss the effects on the optical conduc-
A D .
(2). A(€,w) is the spectral density defined in E®). In the tivity of an energy dependence in the EDOS.

case of elastic scattering with no momentum dependarze It is important at this point to emphasize that although, as
. g . pendeme we have stated, we have neglected corrections to the electro-
anisotropy, G(e,x) can be written as

magnetic vertex, the bare vertex itself can introduce further
Glexi8)=[x—e—3,(x)=ig(x)]" %, (6) complications in Eqs(4) and(5). Besides the EDOS factor
N(e), there is also a factor of the square of the Fermi veloc-
where g(x) =|2(x)|= r;pl(x) the quasiparticle scattering ity which is the electromagnetic vertex in our work, and this
rate.>(x) andg(x) satisfy the Kramers-Kroni¢gkK) rela-  factor can have energy dependence. As we will not evaluate
tion. N(e) or for that matter the electron velocity(e) from first
Equations(4) and (5) show how the two effects of the principles® but rather simply use a Lorentzian model, we
energy-dependent EDOS mentioned in the Introduction enean think that our model for the EDOS already contains the
ter: one is the factoN(e) coming from the sum over partial Fermi velocity and any dependence it may have on energy
currents from each electron in the Fermi sea; the other aris€ghere is one caution we should make, however. As shown in
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1.6 T T

®o o
" E:LS(,((I)):’)/OS 2 2 - 2 2 1 (11)
14t N — N(@)N, & g, (0)/ny, ,=10,8,=5 | wot 0z w05
. \\ ==== N(o)/N, & g, (0)yry, a,=5, a,=10
) ——= g (0)yny, a,=10, a,=5 a1 Ja2
19 bes \ ———- g_(0)ny, a,=5, 8,=10 | Isd @) =Tyo+ yoS| — 2 = = = (12
: Ny N=N, 0ot 0a 0ot a2
1 S where wo=w—215{®), Ja1=gsdw)+a;, and g
0 Tesosmaimaew =gsd w) +a,. Equations(11) and(12) can be easily solved
numerically. Setting® ;{w)=g.{®)=0 on the right-hand
0.8 . side of Egs.(11) and (12) we get the non-self-consistent
self-energy. The solid line and the dashed line shown in Fig.
1 also represe s/ myg VS w.
0.6 7] There exists an extensive literature on the effect of energy
dependence of the EDOS on the electron self energy and on
0.4 . . other propertie! 3" Some aspects of the superconducting
0 10 20 30 state as well as normal state have been explored although

o much of the literature deals with a peak such as in a van
Hove singularity model, while here we have emphasized a
FIG. 1. Normalized EDOS and ARPES scattering rate as funcpseudogap. The imaginary pags. obtained from Eqs(11)
tions of frequency in the Lorentzian-EDOS model shown in Ed.and (12) for a;>a, and fora,>a, are shown in Fig. 1 as
(10). We useds= 5. All energies are in units of. the long-dashed line and dot-dashed line, respectively. Com-
paring g,sc and g in Fig. 1, we see that self-consistency
Eq. (9), in our discussion of the quasiparticle scattering rateSmoothes out the ARPES rate because it is broadened out by
a second factor of the EDOS enters and this one is not mulmpurity scattering. In fact, this rate is simply proportional to
tiplied by the electron velocity squared. This second factotthe fully renormalized EDO$I(¢€) defined by Eq(12) with
will further get renormalized by the impurity scattering and factor 7y, left out. Equation(12) has the same form as Eq.
so is replaced everywhere by the dressed EDKK&) (10) with the broadening in the Lorentzian forms. In Fig. 1
=—[de[N(€)/Ny]A(€,w). [Note thatgs{w) in Eq. (9) is  We see that for the case of the hdleeak at the Fermi

directly proportional to the renormalized EDO&w).] This ~ SurfaceN(e)/N, at =0 is 0.5 (1.5) and the application of
should allow us to distinguish between the effects of thesg€lf-consistency changes these numbers to about 0.7 (1.2).
two factors of EDOS as we discuss below, and we will no,[?I'he smearing due to the impurity scattering is considerable
emphasize this complication further but it should be kept in'" the EDOS.

mind.
A. Constant ARPES rateg(w)=1/2

but energy-dependentN (€)

lll. OPTICAL CONDUCTIVITY FOR EDOS As we mentioned in the Introduction, there are two effects
WITH TWO LORENTZIAN FORMS of EDOS on the optical conductivity: one is from summing
Now we are in the position to study the influence of theOVver partial currents, which shows up as the explicit factor of

energy dependence of EDOS on the optical conductivity. I1V(€) in EAs. (4) and (5); the other is the final-state effect

this section, we consider the following model for EDOS, ~ €ntering in the ARPES rate which shows up in EIp). To
see clearly the different roles these two effects play, we first

switch off the effect of energy-dependent ARPES rate and
replace it by a constang(w)=1I"/2. Correspondingly?.;
, (10 =0.
We focus on theT=0 case, because it is simplest and
allows us to produce partially analytic results. EG8. and
wheres>0. The two Lorentzian forms of Eq10) guarantee  (5) immediately yield
conservation of the total stateg” AN(e)de=["_[N(e)

ai a

N(e) S
B a§+ €2 a§+ €2

Np T

. . . Q2,1 (=  N(e) w €
—Np]de=0. Fora;>a,, there is a hole—i.e., depletion of oi(w)= PO e j(re)(_,_), (13)
states—around the Fermi surface. This is shown as the solid ! 47 w)-w Ny “TR\TI2'T/2
line in Fig. 1. Whereasa;<a, corresponds to a peak,

namely, additional states at and around the Fermi surface, as B 9,230 1= N(e) (imy[ @
shown by the dashed line in the same figure. The excess oow)=7——| de N, T2\t rm) (9
(missing states are compensated for by a decrémesease
in N(e) at higher energies beyond= \/a;a,=7 in units of ~ Where
vo for a;=5, a,=10 (a;=10, a,=5). (re),~ -
Equations(9) and (10) yield Ty (0,8)=2t,(S;+ S,/ v), (19
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1.0 T T cally. Inserting results of Eqg13), (14), and(18) into Eq.
” (1) allows us to obtain the optical scattering rate. Results will
be discussed in Sec. Il C.
08 f — Y, {X)/Yy(0)
=== Y, {x)/Y,(0)

B. ConstantN(e) but energy-dependent ARPES rateg(w)

If instead we switch off the energy-dependent EDOS by
replacing it with N(e)=N,, but turn on the energy-
dependent ARPES raig(w) alone, we are able to see the
final-state effect onr, coming from the ARPES rate alone.
Since in the present work the self-energy is momentum in-
dependent, it is convenient to first integrate owén Eqs.(7)
and(5) at T=0. After some algebra we obtain

0.6

|
\
\
\
\
|‘
04 \
\
\
\
\

02t

0.0

-10 10
1 : dx 1
(ConS)( )_ T J’ (X)]:(re)(D g+ 1X01X+)
FIG. 2. Scaling functionsYy(x) =2 #(x>+1)2] and Y;(x) D*
=2[m(x*+1)]. ng odx 1 g,+1
o ~ T dn ) s 12+ (Xg— %, )2
T (0,e)=t,[S,—4S, o+ 1Ue+1)], (1) T )o@ 900 (G DT (Xom X
-~ ~ (19
with t,=1[y*w(w?+4)], S,=arctanfp+e), and S,
=In{[(w+e)*+1J/(e+1)}. The expressions for the dc con- ol —[odx 1
ductivity and plasma frequency become particularly S|mple”2 (o )_ A fﬁm » g(x)
and very revealing. From Eg&8) and (2) we get D
02,2 (= N(x['/2) 2 M(D,g; ,%g,%)) — FI™(D,xo)
— _po_ < [REAIOR] 0
., Q% (0 dx 1 X+ —Xg 20
02 0% (= N(xT/2) 72— = P a——
Zp_ 270 A7 ) -o® 9(X) (9++1)"+(Xo—X4)
8 3 f dx Ny Y1(X), (18)

where D=D/g(x), Xo=[x—31(x)1/g(X), g.=9g(x
*w)lg(X), X.=[Xx*w—3;(Xx*w)]/g(x), and FIe),
Fm and F{™ defined in Eqs(A1)—(A3) in Appendix A.

where Yo(x)=2[7(x?*+1)?] and Y(x)=2[m(x*+1)].
We have plotted the two functiong,(x) andY(x) in Fig. 2.
Both peak ak=0, and decay rapidly on a scale©oéqual to
a few timesI'/2. For smalll’, both ¢(0) and(}, depend
strongly on the EDOS at and around the Fermi surface. If C. Energy-dependentN(e) and ARPES rate
N(e=0)<N,, which is the case fora;>a,, o(0) If we want to include both the direct factor ®f(€) in
< g(Prude) o) and{(,<Q,, immediately follow. In the op- Egs.(4) and(5) and the energy-dependent ARPES rate so as
posite case fora;<<a, in which N(e=0)>N,, we get to study the competition between the initial-state effect and
o(0)> 0P 0) and(),> . Besides, the peak My(x)  the final-state effect, we need to inshite) into Eq.(10) and
is broader than that iiYy(x), implying that the dc conduc- g{w) into Eq (12) or gpsd w) into Egs.(7) and(1) to find
tivity and the plasma frequenay(0) and{}, do not scale o;(w) and 7o, (). The Lorentzian forms used fd¥(e)
with each other for energy-dependent EDOS The region imllow us to do the integral oves analytically. The expres-
energy around the Fermi energy that is most important irsions foro;(w) ando,(w) are given in Appendix B.
determiningo(0) and QZ is given byTI'. If, as we have Our first numerical results are presented in Fig. 3, which
assumed so far, the scale foris much less than the energy has two complementary framéa) and (b). In all curvesa,;
scale that controls important variations in the EDOS which=10, a,=5 with s=54r, in units of y,. This corresponds to
in our case is &;,a,) in the Lorentzian form, then it is a depression in the EDOSee Eq(10)] over its background
mainly the value ofN(e€) at e=0 which comes in. But when value, as drawn in Fig. 1, solid curve, with(0) reduced by
I is of the same order ag{,a,), this is no longer the case a factor of 2 compared to the background value. Although
and the details of the variations iN(e) are importantly electronic states are preserved, this does not mean that the
sampled. Finally whed" is much greater thanag,a,), it  corresponding optical oscillator strength is, as we will see. In
will be only the size of the background, that matters. This Fig. 3@ we show five curves. All give the real part of the
is the limit in which we regain the simple Drude model. optical conductivityo;(w) in units on§0/4w as a function

It is easy to find from Egs.(14) and (18) that of energyw in units of y,. The first ongdot-dashed lingis
Iima,_,wo'z(w)ZQ;MTrw, indicating the KK relation is au- for reference and is the usual Drude form. In this case, the
tomatically obeyed as we expect. For a general value,of width of the Drude is simply Zy,=I" and the oscillator
oy ando, in Egs.(13) and(14) need to be obtained numeri- sum rule givesﬂgol& This no longer holds when the energy
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T dependence imN(e) is that the optical sum rule defined in

0.3 (a) . Eq. (2) has the plasma frequency reduced frélg, to Q.
=0.875() . Note that this occurs although no states are lost
N(E), Zygo(w), €2,/€2,,=0.848 in N(€). On the other hand, when the initial-state EDOS

N(e)=N,, Z . (w), Qp/Qp0=1

factor is taken to be independent of energpnstantN,)
=== Ng), glw)=r, ©,/Q,=0.875

202 } —-—- Drude ©. /0. <1 there is no change in plasma frequency even if the quasipar-
NO} _____ N, z’sc(u"g), "g;p/gpfo_geo ticle scattering rate is energy dependent as shown in the solid
B thin curve which was computed for constéte) =N, , but
~ with ¥, obtained in a non-self-consistent theory for the
© 01 quasiparticle scattering rate. This modulates the scattering

rate with precisely the same EDOS facltfe) that we used
for the initial-state sum in the long-dashed curve. We see that
| in a real sense this factor has the opposite effect on the shape
0.0 . . : of the conductivityo;(w) Vs w in that it increases its value
at w=0, beyond what it is in the pure Drude case, and also
effectively sharpens up the curve. This can be seen more
guantitatively in Fig. 8) where the solid thin curve for the
optical scattering rate falls everywhere below the dash-dotted
curve of the Drude theory and also even further below the
long-dashed curve. Combining these two effects brings us
back closer to our original Drude than including each sepa-
rately, at low frequencies where the effects are biggest. This
expectation is born out in the solid curve which includes
initial stateN(e) factor and non-self-consistent quasiparticle
scattering rateg,s{ w). Note that the plasma frequency
(2p/Qp=0.848) is not changed much from its value of
0.875 in the long-dashed curve, which shows that the plasma
(b) frequency is mainly sensitive to the initidl(e) and is less
sensitive to the details of the quasiparticle scattering rate.
The corresponding optical scattering rate is shown as the
0.0 , , solid curve in Fig. &). This curve contrasts greatly with the
) 10 20 30 previous two curves: long-dashed and solid thin. In both
) these curves there is no compensation in the scattering rate as
compared to the Drude case in the sense that the long-dashed
curve is always above and the solid thin curve always below.
y contrast, the solid curve is below at smalland above at
larger . While there is some cancellation, no sum rule ap-
plies to the area under44y(w) when it is integrated oves.

dependence is included in the EDOS. This leads to severdiNiS represents a real difference between quasiparticle scat-
modifications and we will take these in steps of added com!€"ng rate and optical scattering rate since for the ARPES
plications. The simplest modification is that an overall EDOSrate a sum rule does apply which is directly connected to the
factor enters the sum over partial currents involving eactfum rule onN(e). Thus, while optics can give microscopic
participating electron. Including only this factor with a con- information on scattering rates, it is not easy to relate the
stant approximation for the scattering rafw) = 7 in units  information so obtained with the characteristics of the self-
of y, gives the long-dashed curve. The factor of 2 reductiorenergy which is, in the end, the fundamental quantity and is
in N(e) at e=0 translates into a substantial reduction inthe quantity we would like to measure directly.

o1(w) atw=0 although by a factor substantially less than 2.  One final element of importance has been neglected so
While the line shape is no longer perfectly Drude, its widthfar. To get the effective scattering rate in a system with
at half maximum has increased over the Drude cHse energy-dependent EDOS with impurities, it is necessary to
=27y, and could lead one to conclude that the optical scatsolve the self-energy equatid®) self-consistently through
tering rate has increased. It is already clear from this remarkepeated iteration of Eqél1) and(12). Impurities will smear
that the optical and quasiparticle scattering rates are nguta valley inN(e) and change it to its self-consistent value
longer the same. In fact, this is shown explicitly in Figp8  N(e), which is what finally enters in the impurity scattering.
The dot-dashed curve is constant but the long-dashed cur&hen this is done we obtain a final curve fo§{(w) Vs ,

now exhibits a slight energy dependence and is everywherne dashed curve of Fig.(® and for the optical scattering
larger than twice the quasiparticle rate. Another importantate in Fig. 3b). As we would have expected, the self-
modification brought about by the introduction of an energyconsistency smoothes out the curves but this does not intro-

1/[7,5(21y)]

FIG. 3. (8 Real part of optical conductivity an¢b) optical
scattering rate as functions of frequency in the Lorentzian-EDO
model shown in Eq(10) with a;=10, a,=5, ands=5#. We used
vo=1. Labels of curves irb) mean the same as {@a).
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020 - - 1.2 . . . :
— T-0,0,0,,-0.848 — QjQ,vsY, a,=10, a,=5
05 N e 710, 08 ~0.976 1 === QJQ, vs Y, a,=5, a,=10
“e\\ —-=—- Drude, 5p/§310=1 1.1 . === QJ/Q vsT, a,=10, a,=5 i
L8 ~
< 010
;3 2
© 1.0
0.05 ~
G
0.00 . : 0.9
0 10 20 30
®

FIG. 4. Real part of the optical conductivity at different tem- 0.8 , , , .
peratures in the Lorentzian-EDOS model shown in Bd). We T 4 7 10 13
used the sama,, a,, s, andy, as in Fig. 3. T

Yoo

duce any new physics. The value of the plasma frequency is FiG. 5. Plasma frequency as a function of the impurity potential
also not changed much over its non-self-consistent value. ,, and temperaturd. We useds= 5.

We bring up once more the complication that arises from
the electromagnetic vertex which introduces a product of two _ -
electron velocityo ()2 in the formula for the conductivity scale is of the same order as the temperature. Similar smear-

which effectively introduces a further energy dependence "9 effects are expected when impurity scattering is in-

the factor ofN(€) appearing directly in Eqg4) and(5). This creased sufficiently that the impurity scattering rate becomes

factor is not present in either the non-self-consistent self€omparable to the energy scale of the structurdi(e). In

energy or the self-consistent one shown in E®). This this case we do not show a curve analogous to Fig. 4, but

means that the dashed curve of Figa)3could be further instead we show the change in the optical oscillator strength

modified through the introduction of a(€)? factor in our ~ under the curve—i.e., the plasma frequency. Before present-

model N(e). If we look at band structure calculations, we ing these results we point out that in Fig. 4 B0 the

note that the product dfl(e)v(e)? is often less dependent plasma frequency),/Q,,=0.848, while atT=10 it has

on energy than id(e).3%2 This means that in this case, the moved up to 0.976 close to the simple Drude case, so that

final results for the conductivity might move some way to- effects of energy dependenceNife) are pretty well washed

wards the results of a self-consistent theory for the selfoutin(}, as they are in the full;(») vs w curve. In Fig. 5

energy with constaritl(€) as the explicit factor of EDOS in we present equivalent results for the impurity scattering and

Egs.(4) and(5)—i.e., those shown in Fig.(8) as the dotted compare with temperature. The dashed and dot-dashed lines

line. The self-consistent case would be smoothed out a littlere for a peak itN(e) and the solid and long-dashed lines for

more as compared with this curve. a valley at the Fermi energy. We see that temperature and
We have also made calculations for a peak in the EDOS d@mpurity have very similar effects on the plasma frequency

the Fermi energy and found no new physics. The effects arand that when the scale on the horizontal axis is of the order

in a real sense the opposite to those found for a depressionf the scale defining the structure M(e), we recover in
Another consequence of the energy dependende(i) both cases the Drude plasma frequency as we expected.

is that the conductivity will change with temperatures, an

effect which does not arise in the ordinary Drude case. This

is illustrated in Fig. 4 where we show the real part of the IV. OPTICAL CONDUCTIVITY IN “STEP MODEL”

conductivity o,(w) vs w for three cases. The solid curve i i

repeats our previous results for the case of a gap at the Fermi Another EDOS model which allows us to get simple ana-

energy and non-self-consistent ARPES rate, shown as tHytical results and also. helps in developing insight into the

solid line in Fig. 3a). The dot-dashed curve is the ordinary €ffect 0fN(e) on () is the so-called step model,

Drude for comparison. The dashed curve shows how the

solid curve evolves with increasing temperature. It represents

results ofo;(w) vs w with non-self-consistent self-energy

for temperaturél =10 in units ofy, which is related to the N(e) [h, |el<Eq,

quasiparticle scattering rate. It is clear that the evolution is N, |1, le[>E,.

towards restoring the curve to its simple Drude value as can

be expected when temperature or impurity effects are suffi-

ciently strong that they wash out the energy dependence in

N(e). Note that for the case considered here, the energ¥he self-consistent self-energy from E@) is determined

scale for the structure itN(e) is 10 in our units and this from the following equations:

(21)
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4 L] L) L) L]
Yo, | (@0~ Eg)*+gidw)
S 1) =(1-h) Zin| =T =E el (22) (@)
(0ot Eg)“+05d{w)
3 F 4
(o) | (1-h) arct rﬁ“’“Eg)
Osdw)=vo) m—(1— arcta — ¢, Vs ®, h=0.1
s Osd @) -3 S & R — Gree VS ®, h=0.1 1
E —== g, Vs w, h=0
wo— -——ame =
—arctarﬁ 0 g) ] (23) O VS @, =0
gsd @) 1F 4
where wy=w—31,{ ). While the non-self-consistent self- J
energy is obtained by making,s{ w)=gs{w)=0 on the
right-hand side of Eq922) and (23). 0 . L L
Inserting Eq.(21) into Eq. (7), we find that 0 10 20 30 40 50
®
( )_9301 odx|[ 1 m(g+1)
0-1 w)= 477 T 7(4)(1) g(x) (“g‘+1)2+(X0_’)2)2 0.0040 T T T T
(b)
- -~ 0.0032 H — 5_,h=0.03 ;
—(1-h)F(Eq ,g,Xo,X)] : 9 I e %, h=0.03
——= %, h=0
, _ - g 0.0024 } ——- 3, h=0 -
where F(® is found in Appendix A,g=g(x+ »)/g(x), Xo o
=[x—=31(0)1/g(x), X=[x+w—31(x+w)]/g(x), and E, B
—E,/g(%). < 0.0016 |
In Fig. 6 we show the numerical results that we have ©
obtained in the step model. Figuréabgives the quasiparti- 0.0008 }
cle scattering ratg(w) vs w for four different cases. The
dot-dashed line is the non-self-consistent resultgiap) in

the semiconductinglike model—i.dn=0. We see thag(w) 0.0000 0
is exactly zero untikw=10 and jumps tar for ©>10. This

curve is for comparison withs{ ) in Eq.(23). The numeri-

cal results are the long-dashed curve. We see a sharp scatter-giG, 6. (a) ARPES rate andb) real part of the optical conduc-
ing edge at),=6.1 below which the scattering rate is zero, tiity, as functions of frequency in the step model shown in Eq.
so that now the sharp onset has moved to lower energy, ag1). we usedEy=10 andy,=1.

compared to the non-self-consistent case. Note dla) is

proportional toN(w) and this shows smearing of the step

function edge that existed in the non-self-consistent case.

The nnpunty scattering also accour.lts for the red~uct|on mcurve). This also holds for the self-consistent cadeng-
scattering abover=10. In fact, there is a sum rule o\ )

hat th d h if . q dashed curve but now the edge has moved to=2(),
so that the area under each curve, self-consistent and NO0-y5 5 1, the other two curves the finite valuelot 0.03 at

self-consistent, remains unchanged. So the increase in full L . .
renormalized EDOS belows=10 is fully compensated for dmallw guarantees that the response in this region is metallic

at largerw. This also holds for the second set of two curves.IIke and we see a sharp Drude-like peak centered aresind

In this caseh=0.1 instead of being zero. The dashed curvezo' At hight_ar energy the semiconductinglike beh_avi(_)r O.f
gives the non-self-consistent results while the solid curve idN€ WO previous curves remains although the main rise in
for the self-consistent case. In this case, there is always &€ conductivity has been shifted to lower as compared
finite EDOS at all frequencies, but it still rises sharplyeat With @=20 and 12.2, respectively, for non-self-consistent
=10 in the non-self-consistent case andegt6.1 in the and self-consistent case with=0. Between the Drude re-
self-consistent calculations. However, as compared with thPonse at smak and semiconductinglike response at high
h=0 case, the rise is less drastic. There is some rounding @ the curve gets filled in and shows sharp structures corre-
the edge. sponding to the sharp step assumed to exist in the initial
The corresponding results fer,(w) vs w are shown in EDOSN(e).
Fig. 6b). We see, as we expected, that for the pure semicon- We next contrast more sharply the two qualitatively dif-
ductorlike model, there is no optical absorption until  ferent limits discussed above using an analytical method to
=2E4=20 in the non-self-consistent casg@ot-dashed get simple although limited results.
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A. h=0: Semiconductinglike behavior

In this caseg(w) =0 for <. (Note that for the non-
self-consistent ARPES rateQ),=E,, and for the self-
consistent ARPES raté),<Eg.)

Now we look atoq(w) in Eq. (7). Noting that — w<x
<0, we obtain the following.

(i) For 0<w<Qg, bothA(e,x) andA(e,x+ w) are zero,
leading too1(w)=0.

(i) For Qo<w<2Qgy, A(X+w)=0 for —o<x<—Q,,
while A(x)=0 for —Q,<x<0. Thereforeg(w)=0.

To concludeo(w)=0 for 0<2Q,.

B. h=0%: Metalliclike behavior

In this case, we expect to see the Drude peak at sinall

PHYSICAL REVIEW B66, 155114 (2002

V. CONCLUSION

We have studied the effect the energy dependence in the
EDOS around the Fermi energy has on the frequency-
dependent conductivity and the derived optical scattering
rate. The conductivity is modified in two important ways.
One comes from the energy-dependent EDOS factor which
enters when a sum is to be carried out over all electrons that
contribute to the current. We referred to this as the initial
state factor. The second factor comes from modification of
the quasiparticle scattering rate which is no longer constant
and in fact becomes proportional to the self-consistent EDOS
N(e). This quantity differs fromN(e) in that it accounts for
the smearing of the EDOS brought about by the impurities. It
is to be computed from the self-consistent self-energy equa-

This can be nicely shown in the dc conductivity. By substi-tions. Both factors have a profound effect on the conductiv-

tuting Eq.(21) into Eq. (8) we obtain

Q1 1 E49(0) Eq
U(O)Zﬂgw[(h—l) Eé+gz(0) f arctarﬁg(o)”
ar
+§}' (25

ity, but their individual contribution cannot easily be sepa-
rated. For a depression h(e) at the Fermi energy, the first
factor reduces the real part of the conductivity at and around
=0 (dc conductivity, effectively making the resulting op-
tical scattering rate appear larger than its value in the pure
Drude model; i.e., the width of the curve at half maximum is
increased. On the other hand, the second factor acts in the
opposite manner. Since the quasiparticle scattering rate be-

It is clear that forh=1, Eq.(25) recovers the Drude result comes proportional tdN(w), this quantity now acquires a

o(PUeX0) = (Q50/4m)/29(0). In the limit of h—0*, we
get from Eq.(25) that

2

Q h
(h=0")gy=—P0___
o (0) a7 29(0)° (26)
For the non-self-consistent cagge{0)= 77yh, thus
(h=0") QSO 1 (Drude)
Opec ~ '(0)= yp= 277)/0:(7 (0). (27)

For the self-consistent case, however, E28) produces, in
linear order ofh, gs(0)=myoh/(1-2y,/Eg) (for 2y,
<Eg), leading to

(h=0+)(o)zﬂ_§o 1 (1_@), (29

which is different from the corresponding Drude value.

frequency dependence which, in the model under consider-
ation, reduces the scattering rate at and arowrd0, be-

causeN(w) is less than the constant background value there.
This has the effect of increasing the height of the Drude at
small @ and making it narrower as compared to the constant
case. The net result of both effects in the self-consistent case
is to produce a curve far;(w) vs w which is reduced below

the pure Drude at smaib. The corresponding optical scat-
tering rate is depressed at smallbelow its constant Drude
value and then becomes larger at higherThis mimics the
variation in the quasiparticle scattering rate which is propor-

tional to N(w), but there are important differences. In par-
ticular, while a sum rule applies to the ARPES scattering rate
which reflects quite directly the sum rule on the EDOS, the
optical scattering rate displays no such property. It is clear
then that when there is important energy dependence in the
EDOS at the Fermi energy, optical and quasiparticle scatter-
ing rates are not as simply related as in the Drude model.
This complicates the process of extracting microscopic infor-
mation from optical scattering rate data. What one ultimately
wants is detail information on the self-energy.

We can also compare the above results obtained in the There are several other complications that arise that need

EDOS-step model for a finite value with those obtained in to be commented upon. The plasma frequency which gives
the EDOS model with one Lorentzian fori(e)/N,=1  the optical oscillator strength—i.e., the area under the real
—(slm)a,/(a5+€?). We find that in the Lorentzian-form part of the conductivity—becomes dependent on temperature
model, o1(w) shows a sharp Drude-like peak at low fre- and on impurity concentration. It shows that the plasma fre-
guencies and semiconductinglike rise at arouad-a,, quency depends on a range of states around the Fermi energy
which are similar to what is shown in the solid curve in Fig. with the width given by the impurity scattering rate. It is not
6. However, since both the EDOS and ARPES rates argist its value at the Fermi surface which matters. As the
smooth in this model, the conductivity curve is alwaysimpurity rate is changed, the range of important values of
smoothly evolving as a function of frequency, and the semiN(e) is also changed and sof, . In the models considered
conductinglike rise can never be as sharp as in the steghis can be a significant effect. Temperature can also smear
model. out the region in energy around the Fermi surface and so also
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impact on the value of),. As temperature is increased, we ACKNOWLEDGMENTS
find that the EDOS effects become gradually less important

and the entire curve fob;(w) vs w moves towards the partially supported by the Natural Science and Engineering

Drude form with constant background onlyN{e). Another  pasearch Council of Canada and by the Canadian Institute
result of interest is that the region in energy most importanty, advanced Research.

in determining the plasma frequency is different from that
determining the dc conductivity, so that these two quantities
will not respond in the same way with a change in impurity
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APPENDIX A: EXPRESSIONS FOR F (@) F(m

content. (im)
Finally we have considered a step-function model for AND Fo™ IN EQS. (19) AND (20)
N(e) around the Fermi surface witN(e)=hN, for 0<e As mentioned in Sec. llIB, in the case of a constant

<E4, andN(e) =N, for e>E,, whereE, is a gap energy. N(e)=N, and energy-dependent ARPES rate, we can first
For h=0, this is a semiconductinglike model which leadsintegrate overe. The resulting optical conductivity &t=0
directly to zero conductivity in the rangesOw=<2Q, (), is shown in Eqs(19) and(20), where
=E, for the non-self-consistent ARPES rate dng<<E, for
the self-consistent ARPES ratéWe find that for finiteh,
however small it may be, the situation is radically different (re) & _ 2. 2
and an intrinsically metallic behavior is always obtained. At FUAD,g %0, X) =do[g(y"+ 9"~ 1)f;
small w, there is a very narrow Drude-like peak followed by +(y?—g?+1)f,—gyfs], (A1)
a depression, and at higher energies (), a semiconduct-
inglike behavior is again observed. The value of the dc con-
ductivity is unchanged from its value witi(e) =N, every-
where providech<1. Here we have described only the case
when the self-energy is treated in a first iteration. We find,
however, that the situation shows no qualitative change when
a self-consistent theory is considered except for the impor-
tant difference that the ga@d, is reduced by the interactions
and the dc conductivity has a correction lineariVEg.

The theoretical calculations presented in this paper apply (im) = = ~ 5 1
in principle to materials in which the EDOS has strong en- Fo " (D,xg) =4x%oD[(xo—D)"+1]
ergy dependence around the Fermi surface. The experiments ~
nege}:j topbe done at relatively low temperatures wﬁere the X[(x+D)*+1]7%, (A3)
electrons are dominantly scattered by impurities and the sys-
tems must remain in the normal state. Many conventionalith  do=[(g+1)?>+y%] Y (g—1)>+Yy?]", y=x,—X,
heavy fermion materials have energy-dependent EDOS and = arctanD+x)+arctanD—xo), f,=arctafi(D+x)/g]

remain metallic down to very low temperatures and so may, O _ D—x)2+ D+ x)2+
serve as potential candidates to show some features of opti-""r(:tarﬁ(D X)/g], and f3=In{[(D—xq)"+1J[(D+xo)"+1]}

(B 2 2 N 2 2
cal conductivity within our predictions. In this case, our TM(D+X)™+gV(D—X"+g7].
simple theoretical results caution against any interpretation
based on a Drude model. The underdoped fAiglcuprates

C d
FIM(B,g,%0,0)= FT~2y(y?*+g*+ 1),

+4gyf+(1-g?+y?)fs], (A2)

exhibit a pseudogap of size 300 K or so. This pseudogap has APPENDIX B: OPTICAL CONDUCTIVITY
its origin in many-body effects as we mentioned in the Intro- FOR THE ENERGY-DEPENDENT ARPES RATE
duction. Nevertheless, inasmuch as the effective EDOS IN THE LORENTZIAN DOS MODEL

around the Fermi surface is depressed, our results should h del with ian f h .
give some qualitative guidance about the physical conse- [Of the EDOS model with Lorentzian forms shown in Eq.

guences of such a EDOS depression. It is clear from oufflo) and energy-dependent ARPES rate, we can first inte-
simple work that this pseudogap cannot be treated in thg'at€ € to simplify the numerical work. The resulting con-
usual formalism which assumes a constant effective EDOSIUCtIVity reads

Of course, in the cuprates a superconducting transition oc-

curs, butT. can be low, of order 20 K. In this intermediate

temperature regime, however, the inelastic scattering due to __(cons _

eIeth)ronic interglctions may already be significant,gwhich 71(0)= 05" ) + 50y (w,81) — 601(0,8,), (B)
complicates the comparison. Disordering in the Gplanes,

such as replacing copper sites by nickel, in the underdoped

high-T. cuprates, will efficiently enhance the elastic scatter- _(cons _

ing, s0 tharac it becomes dominyant. Alternatively, a magnetic 03(@) =0 W)+ 605(w,ay) ~ Sop(w,3;), (B2)
field can be used to quench the superconductivity, enabling

measurements at much lower temperatures. wheres{®" and{*°" are shown in Eqg19) and(20), and

155114-10



CHANGES IN OPTICAL CONDUCTIVITY DUE TO.. ..

Xo Xl+ Ja+91a-

PHYSICAL REVIEW B66, 155114 (2002

Xo X2~ 0a+02a+

(X3+92,)(x4+9%,.)

2(X1—X0)X191 + (Go+91)(@%+xi—g?)

(X3+02,)(x3+93.+)

41 ) _w o [(X3—Xo) 2+ (got+91)2I[(8%+X—g2)2+4x3g7]’

5 _Qf,o S jo dx

@)= o) Je
Oy 52 (0 dx

0% s [0dX  Xp0a——XoGza+

X19a+ ~ X0 G1a-

(B3)

Xo91a+ 1t X10a+

dop(w)=Z oo o

(X§+095)(X5+03.+)

X092a+ + X29a+ _ 4Xga+
(X§+03,)(X5+05..)  (X*+03,)3

(X, —Xo)(a?+ X% — ) — 2X,91(do+ 91)

(X3+92,)(XE+9g%,.)

4o

(x2+92,)(x3+9%,,)

0 sa o d_x{ (X0~ X2) (8% + X5~ G3) ~ 2XoGo(Jo+ 02)
[(

—e @ [ [(Xo—X2) 2+ (Go+92) 2I[ (824 x5 — g5) 2+ 4x595]

[(X;—X0) 2+ (go+91)2I[(8%+ X2 — g2) 2+ 4x3gT]

] , (B4)

with Xg=X—21(X), X;=X+0—%1(X+ o), X;=X—0—21(X—), §o=9(X), 9:=9(X+ ®), g,=0(X— ), ga==0o*a,

Jia+=01Fa, andgya+=0gr*a.
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