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Changes in optical conductivity due to readjustments in the electronic density of states
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Within the model of elastic impurity scattering, we study how changes in the energy dependence of the
electronic density of states~EDOS! N(e) around the Fermi energyeF are reflected in the frequency-dependent
optical conductivitys(v). While conserving the total number of states inN(e) we compute the induced
changes ins(v) as a function ofv and in the corresponding optical scattering rate 1/top(v). These quantities
mirror some aspects of the EDOS changes but the relationship is not direct. Conservation of optical oscillator
strength is found not to hold, and there is no sum rule on the optical scattering rate although one does hold for
the quasiparticle scattering. Temperature as well as increases in impurity scattering leads to additional changes
in optical properties not seen in the constant EDOS case. These effects have their origin in an averaging of the
EDOS around the Fermi energyeF on an energy scale set by the impurity scattering.
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I. INTRODUCTION

Measurements of the infrared conductivitys(v) as a
function of energyv continue to give valuable informatio
on charge dynamics in a wide range of metallic systems
cluding the high-Tc superconducting cuprates.1,2 These ma-
terials have received a lot of recent attention because
represent strongly correlated systems which exhibit n
physics, beyond the usual Fermi liquid~FL! description of
electric structure. It was recognized and emphasized as
cial very early on that the normal-state properties of the
prates are anomalous. A marginal Fermi liquid3–5 ~MFL!
phenomenology was developed which could describe
markably well many of the observed deviation from FL b
havior of the normal state. An essential feature of the MFL
that quasiparticle weight in the single-particle charge car
spectral density denoted byZ21 goes to zero logarithmically
as the Fermi energy is approached. In this limit, there are
well-defined quasiparticle poles, and the entire spectral d
sity consists of an incoherent background which is due to
interactions. It is thed-function-like quasiparticle contribu
tion ~broadened by the interaction! which leads to a Drude
like contribution in the optical conductivity.6,7 The incoher-
ent background is responsible for the Holstein tails due,
example, to phonon-assisted absorption in the well-stud
case of the electron-phonon interaction. The incoherent c
tribution to the optical conductivity gives additional inform
tion on correlation effects complementary to the Drude
sponse. Both contributions are described microscopically
the electron self-energyS(v) vs v, which is the fundamen-
tal quantity about which we would like information from
measurements on the optical conductivitys(v). For ex-
ample, the real part (S1) of S deals with mass renormaliza
tion of the quasiparticles and the imaginary part (S2) is re-
lated to their lifetimes. As we have just described,S can also
lead to an incoherent background.

One of the most striking manifestation of correlation e
fects in the high-Tc superconducting cuprates are t
pseudogap features observed in their normal state. They
particularly prominent in underdoped systems, but are a
0163-1829/2002/66~15!/155114~11!/$20.00 66 1551
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known to be present at optimum doping.2 The precise origin
of the pseudogap is not yet known and this remains a c
troversial area. Nevertheless, the experimental situatio
reasonably well characterized and has been reviewed by
musk and Statt.2

The pseudogap has been identified as a distinctive
sometimes even abrupt change in the temperature varia
of the nuclear spin lattice relaxation,8 of the Knight shift,9 of
the dc resistivity,10,11 and of the specific heat,12–14 in the
frequency dependence of the infrared conductivity3,15and the
current voltage characteristics of a tunneling junction,16 as
well as in angular-resolved photoemission spectrosc
~ARPES!.17–19 This last experimental technique is partic
larly powerful and has revealed that the pseudogap is
constant around the Fermi surface. Rather it has ad-wave
nature which is the same symmetry as is exhibited by
superconducting gap belowTc in the cuprates.

That the pseudogap has its origin in correlation effects
not in doubt. Rather, the issue is how it is to be simply, y
accurately, described.20–26Many theoretical suggestions hav
been made. One widely held view is based on the so-ca
preformed pair model in which it is envisioned that the Co
per pairs exist aboveTc up to a higher pseudogap temper
ture T* , but without phase coherence. The phase cohere
between the pairs, which is essential for superconductiv
sets in only at lower temperatureT,Tc .23,24 In another
model, different but related, finite-momentum pairs are
lieved to be responsible for the pseudogap features.25 A very
different recent proposal is the suggestion of Chakrava
et al.26 of D-density-wave formation with attended orbit
currents which double the crystallographic unit cell. The
are also proposals encoded in the ideas of spin-cha
separation21,22 and the pioneering suggestion of Anderson20

The true nature of the changes that are brought abou
the energy-dependent electronic density of states~EDOS!
N(e) by the formation of the pseudogap remains unkno
other than that the EDOS is depressed in some way. Co
quently we will not address this specific case directly h
although it is a motivating force for what we have don
Instead we will be concerned with a related but less spec
©2002 The American Physical Society14-1
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issue–namely, the general question of how changes inN(e)
around the Fermi energy will manifest themselves in cor
sponding changes in the frequency dependence of the op
conductivity s(v) vs v. After all, from an experimenta
point of view, it is important to understand what qualitati
signature is to be looked for which corresponds to mic
scopic changes inN(e).

To remain as simple as possible, we will examine in t
paper in some detail mainly a simple model forN(e) which
consists of a constant backgroundNb modified by two
Lorentzian forms, both chosen to be symmetric about
Fermi energy. This assumption allows us to take advant
of the mathematical simplifications associated with the e
tence of particle-hole symmetry. In addition, one of t
Lorentzian form is taken to add states toNb , while the other
subtracts states so that there is conservation of total num
of states whenN(e) is integrated over energy, i.e
*2`

` DN(e)de50, whereDN(e) is the change in the EDOS
The Lorentzian form has the important simplifying prope
that an energy integral in the definition of the conductiv
can be done analytically.

For simplicity we also limit ourselves to the case of ela
tic impurity scattering. This case has been extensively s
ied in the approximation thatN(e) is constant in the energ
range about the Fermi energy which is significant for tra
port. For a constantNb the quasiparticle scattering ra
1/tqp(v)[2S2(v) is constant, independent of energyv.
The conductivity takes on the well-known Drude form wi
constant transport scattering rate which gives the half-w
of the Drude and is in fact equal to twice the quasiparti
scattering rate. When inelastic scattering is considered,
quasiparticle scattering rate can still be defined in terms
the self-energyS2(v), but now it acquires a temperature an
frequency dependence.6,7 In this case, the quasiparticle sca
tering timetqp(v) is no longer equal to the optical scatterin
time top(v), which is formally defined in terms ofs(v)
5s1(v)1 is2(v) through the formula

1

top~v!
5

Vp
2

4p
Re

1

s~v!
5

Vp
2

4p

s1~v!

s1
2~v!1s2

2~v!
, ~1!

whereVp is the plasma frequency which is related to the r
part of the conductivitys1(v) through the optical oscillato
strength sum rule

E
0

`

dv s1~v!5
Vp

2

8
. ~2!

In contrast to the constant EDOS case, whenN(e) varies
with e around the Fermi energy, 1/tqp and 1/top are no longer
constant just as in the inelastic case and are not equal. E
acquires a separate dependence on energy. The imag
part of the electron self-energyS2(v) becomes proportiona
to the self-consistent quasiparticle density of statesÑ(v) of
the impure system. Impurities broaden the pure cry
EDOS N(e), leading toÑ(v). The optical scattering time
defined in Eq.~1! also acquiresv dependence and can b
quite different from the quasiparticle scattering time6,7
15511
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which is measured in ARPES experiments. Thus, optical
ARPES data give complementary information onS(v).
What is measured in ARPES is the single-particle spec
density for a particular momentumk as a function ofv. It is
denoted byA(k,v) and is related to the self-energyS(v),
with k dependence suppressed, by

A~k,v!52
1

p

S2~v!

@v2ek2S1~v!#21S2
2~v!

. ~3!

The interpretation of optical results is now no long
straightforward. As an example of the complications th
arise we note that for the case~as we will assume in most o
our calculations here! whenN(e) conserves states, the inte
gral over energy of the ARPES rate will also remain u
changed. This is because 1/tqp(v) is proportional toÑ(v)
and *2`

` DÑ(e)de50 is guaranteed when*2`
` DN(e)de

50. This sum rule, however, does not hold for 1/top(v), as
has been previously discussed27,28 for the case of inelastic
scattering processes and for the onset of superconduct
with constant EDOS. Nor is the total optical oscillat
strength defined in Eq.~2! constant. This arises because t
integral overs1(v) defining Vp depends on an average o
the EDOSN(e) around the Fermi energy over an ener
scale defined by the impurity scattering and is not just
pendent onN(0) as it would be in the familiar constan
EDOS case. There is also an attendant temperature de
dence ofVp . As the temperature becomes comparable to
energy scale on whichN(e) varies significantly, the energy
dependence inN(e) is effectively smeared out and we re
cover a simple Drude form.

The energy-dependent EDOS enters the formula for
conductivity in two places. First, the total current is the su
of the partial currents contributed by each stateuk& in the
electron system. When this sum is changed into an inte
over energy a first factor ofN(e) enters. But there is a sec
ond factor ofN(e) that also comes in from the quasipartic
scattering rate. This rate is proportional to the matrix elem
of the impurity potential which is to be averaged over
final states in which the electron can scatter. We can call
a final-state effect. This second factor enters the ARPES
which becomes proportional to the self-consistentÑ(v).
Clearly, ARPES and optical rates can no longer simply
proportional to each other. Both the initial- and final-sta
factors modify the optical scattering rate.

In our calculations, we find that the factor ofN(e) coming
from the sum over partial currents from each electron
less of an effect on the energy dependence ofs1(v) than
does the modification of the underlying ARPES rate due
final-state effects. For a model ofN(e) which has a depres
sion in the EDOS ate5eF , which is, of course, compen
sated for at higher energies so as to conserve the total n
ber of states, the first factor ofN(e) decreases the d
conductivity more than at finite frequency so that the ove
effect is to lead to an apparent broadening of the Drude-
form for s1(v). On the other hand, the ARPES rate is e
fectively reduced at smallv by the final-state factor ofÑ(e).
This sharpens the Drude-like line at smallv. Thus the two
4-2
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CHANGES IN OPTICAL CONDUCTIVITY DUE TO . . . PHYSICAL REVIEW B66, 155114 ~2002!
effects have opposite tendencies, compete against each
and partially cancel. In the specific cases considered,
modifications ins1(v) brought about by the changes in th
ARPES rate are more important.

In a final set of calculations we also consider the case
step-function EDOS model. In a metalN(e) is expected to
be finite at the Fermi energy although it could be small
compared to its value away from the Fermi energy. With o
step model we show that a small but finite valueh of N(e)
for ueu, some energyEg about e50 always leads to the
existence of a Drude-like peak in the optical response
sharp contrast to the caseh50 when a gap forms and th
Drude peak is completely eliminated.

The paper is organized as follows. In Sec. II, we prese
general theory of the optical conductivity in the case of i
purity scattering. Section III is devoted to a discussion of
effect of the energy-dependent EDOS on optical conduc
ity, within a toy model for the EDOS involving two Lorent
zian forms. This is followed by a parallel discussion, in S
IV, for another EDOS model, the step model, which allo
us to contrast metalliclike and semiconductinglike behav
Finally, Sec. V contains our conclusion. Some mathema
is shown in Appendixes A and B.

II. GENERAL THEORY FOR OPTICAL CONDUCTIVITY

In linear response theory, the real and imaginary parts
the optical conductivity can be expressed, under the assu
tion that vertex corrections are negligible, as29

s1~v!5
Vp0

2

4p
pE

2`

`

de
N~e!

Nb
E

2`

` dx

v
f ~x!

3A~e,x!@A~e,x1v!2A~e,x2v!#, ~4!

s2~v!5
Vp0

2

4p E
2`

`

de
N~e!

Nb
E

2`

` dx

v
f ~x!A~e,x!

3@G1~e,x1v!1G1~e,x2v!22 G1~e,x!#,

~5!

whereN(e)/Nb is the normalized EDOS withNb the con-
stant background EDOS,f (x) the Fermi distribution func-
tion, G1(e,x) the real part of the quasiparticle Green fun
tion G(e,x6 id), andVp0 the bare plasma frequency whic
for an energy-dependent EDOS, will be shown below to
different from the real plasma frequencyVp defined in Eq.
~2!. A(e,v) is the spectral density defined in Eq.~3!. In the
case of elastic scattering with no momentum dependence~no
anisotropy!, G(e,x) can be written as

G~e,x6 id!5@x2e2S1~x!6 ig~x!#21, ~6!

where g(x)5uS2(x)u5tqp
21(x) the quasiparticle scatterin

rate.S1(x) andg(x) satisfy the Kramers-Kronig~KK ! rela-
tion.

Equations~4! and ~5! show how the two effects of the
energy-dependent EDOS mentioned in the Introduction
ter: one is the factorN(e) coming from the sum over partia
currents from each electron in the Fermi sea; the other ar
15511
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from the electron spectral density factorA(k,v), which con-
tains a factor of the final states the particles are scatte
into.

The real and imaginary parts of the conductivity,s1 and
s2, respectively, obey the KK relation, which together wi
Eq. ~2! leads to the useful relationship, limv→`s2(v)
5Vp

2/4pv. At zero T, Eq. ~4! simplifies greatly and be-
comes

s1~v!5
Vp0

2

4p
pE

2`

`

de
N~e!

Nb
E

2v

0 dx

v
A~e,x! A~e,x1v!.

~7!

The dc conductivity immediately reads

s~0!5
Vp0

2

4p

1

pE2`

`

de
N~e!

Nb

g2~0!

@e21g2~0!#2 . ~8!

We assume that the impurity potentialV is small and thus
the impurity scattering can be treated perturbatively. With
theself-consistentBorn approximation, the self-energy read

Ssc
(ret)~v!5S1sc~v!2 igsc~v!

5g0E
2`

`

de
N~e!

Nb
G~e,v1 id!, ~9!

where g05niV
2Nb with ni the impurity density. The full

self-consistentG appears on the right-hand side of Eq.~9!, so
this equation must be solved by successive iteration u
convergence is achieved. ReplacingG by (v2e1 id)21 on
the right-hand side of Eq.~9! gives instead thenon-self-
consistentself-energySnsc

(ret)(v)5S1nsc(v)2 ignsc(v).
In the case of a constant EDOS,N(e)[Nb , S1[0,

g(v)[pg05G/2. Equations~4! and ~5! thus result in the
well-known Drude formula.s1

(Drude)(v) is a Lorentzian func-
tion of v with the half-widthG. We immediately find from
Eq. ~1! that top

21(v)(Drude)[2g(v)5G. In this simple case,
the optical scattering rate is just equal to twice the quasip
ticle scattering rate. Thus optical experiments access dire
the microscopic information on the imaginary part of t
self-energy. Further, the dc conductivity and the plasma
quency becomes (Drude)(0)5Vp0

2 /(4pG), Vp
(Drude)5Vp0. In

Figs. 3 and 4 below,s1
(Drude)(v) andtop

21(v)(Drude) as func-
tions of v are shown as dot-dashed lines and serve a
reference when we discuss the effects on the optical con
tivity of an energy dependence in the EDOS.

It is important at this point to emphasize that although,
we have stated, we have neglected corrections to the ele
magnetic vertex, the bare vertex itself can introduce furt
complications in Eqs.~4! and ~5!. Besides the EDOS facto
N(e), there is also a factor of the square of the Fermi vel
ity which is the electromagnetic vertex in our work, and th
factor can have energy dependence. As we will not evalu
N(e) or for that matter the electron velocityv(e) from first
principles30 but rather simply use a Lorentzian model, w
can think that our model for the EDOS already contains
Fermi velocity and any dependence it may have on energe.
There is one caution we should make, however. As show
4-3
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MEI-RONG LI AND J. P. CARBOTTE PHYSICAL REVIEW B66, 155114 ~2002!
Eq. ~9!, in our discussion of the quasiparticle scattering ra
a second factor of the EDOS enters and this one is not m
tiplied by the electron velocity squared. This second fac
will further get renormalized by the impurity scattering a
so is replaced everywhere by the dressed EDOSÑ(v)
52*de@N(e)/Nb#A(e,v). @Note thatgsc(v) in Eq. ~9! is
directly proportional to the renormalized EDOSÑ(v).# This
should allow us to distinguish between the effects of th
two factors of EDOS as we discuss below, and we will n
emphasize this complication further but it should be kep
mind.

III. OPTICAL CONDUCTIVITY FOR EDOS
WITH TWO LORENTZIAN FORMS

Now we are in the position to study the influence of t
energy dependence of EDOS on the optical conductivity
this section, we consider the following model for EDOS,

N~e!

Nb
511

s

p S a1

a1
21e2 2

a2

a2
21e2D , ~10!

wheres.0. The two Lorentzian forms of Eq.~10! guarantee
conservation of the total states:*2`

` DN(e)de5*2`
` @N(e)

2Nb#de50. For a1.a2, there is a hole—i.e., depletion o
states—around the Fermi surface. This is shown as the s
line in Fig. 1. Whereasa1,a2 corresponds to a peak
namely, additional states at and around the Fermi surface
shown by the dashed line in the same figure. The exc
~missing! states are compensated for by a decrease~increase!
in N(e) at higher energies beyonde5Aa1a2.7 in units of
g0 for a155, a2510 (a1510, a255).

Equations~9! and ~10! yield

FIG. 1. Normalized EDOS and ARPES scattering rate as fu
tions of frequency in the Lorentzian-EDOS model shown in E
~10!. We useds55p. All energies are in units ofg0.
15511
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S1sc~v!5g0sS v0

v0
21ga1

2
2

v0

v0
21ga2

2 D , ~11!

gsc~v!5pg01g0sS ga1

v0
21ga1

2
2

ga2

v0
21ga2

2 D , ~12!

where v05v2S1sc(v), ga15gsc(v)1a1, and ga2
5gsc(v)1a2. Equations~11! and ~12! can be easily solved
numerically. SettingS1sc(v)5gsc(v)50 on the right-hand
side of Eqs.~11! and ~12! we get the non-self-consisten
self-energy. The solid line and the dashed line shown in F
1 also representgnsc/pg0 vs v.

There exists an extensive literature on the effect of ene
dependence of the EDOS on the electron self energy an
other properties.31–37 Some aspects of the superconducti
state as well as normal state have been explored altho
much of the literature deals with a peak such as in a
Hove singularity model, while here we have emphasize
pseudogap. The imaginary partsgsc obtained from Eqs.~11!
and ~12! for a1.a2 and for a2.a1 are shown in Fig. 1 as
the long-dashed line and dot-dashed line, respectively. C
paring gnsc and gsc in Fig. 1, we see that self-consistenc
smoothes out the ARPES rate because it is broadened o
impurity scattering. In fact, this rate is simply proportional
the fully renormalized EDOSÑ(e) defined by Eq.~12! with
factor pg0 left out. Equation~12! has the same form as Eq
~10! with the broadening in the Lorentzian forms. In Fig.
we see that for the case of the hole~peak! at the Fermi
surfaceN(e)/Nb at e50 is 0.5 (1.5) and the application o
self-consistency changes these numbers to about 0.7 (1
The smearing due to the impurity scattering is considera
in the EDOS.

A. Constant ARPES rateg„v…ÄGÕ2
but energy-dependentN„e…

As we mentioned in the Introduction, there are two effe
of EDOS on the optical conductivity: one is from summin
over partial currents, which shows up as the explicit factor
N(e) in Eqs. ~4! and ~5!; the other is the final-state effec
entering in the ARPES rate which shows up in Eq.~12!. To
see clearly the different roles these two effects play, we fi
switch off the effect of energy-dependent ARPES rate a
replace it by a constantg(v)5G/2. Correspondingly,S1
50.

We focus on theT50 case, because it is simplest an
allows us to produce partially analytic results. Eqs.~7! and
~5! immediately yield

s1~v!5
Vp0

2

4p

1

pE2`

`

de
N~e!

Nb
J G/2

(re)S v

G/2
,

e

G/2D , ~13!

s2~v!5
Vp0

2

4p

1

pE2`

`

de
N~e!

Nb
J G/2

(im)S v

G/2
,

e

G/2D , ~14!

where

J g
(re)~ṽ,e!52tg~S11S2 /ṽ !, ~15!

-
.

4-4



-
pl

.

-

t i

y
ic

e

i-

ill

by

e
.
in-

as
nd

ich

gh
t the
. In
e

the

y
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J g
(im)~ṽ,e!5tg@S224S1 /ṽ11/~e211!#, ~16!

with tg51/@g2ṽ(ṽ214)#, S15arctan(ṽ1e), and S2

5 ln$@(ṽ1e)211#/(e211)%. The expressions for the dc con
ductivity and plasma frequency become particularly sim
and very revealing. From Eqs.~8! and ~2! we get

s~0!5
Vp0

2

4p

2

GE0

`

dx
N~xG/2!

Nb
Y0~x!, ~17!

Vp
2

8
5

Vp0
2

8 E
0

`

dx
N~xG/2!

Nb
Y1~x!, ~18!

where Y0(x)52/@p(x211)2# and Y1(x)52/@p(x211)#.
We have plotted the two functionsY0(x) andY1(x) in Fig. 2.
Both peak atx50, and decay rapidly on a scale ofe equal to
a few timesG/2. For smallG, both s(0) and Vp depend
strongly on the EDOS at and around the Fermi surface
N(e.0),Nb , which is the case fora1.a2 , s(0)
,s (Drude)(0) andVp,Vp0 immediately follow. In the op-
posite case fora1,a2 in which N(e.0).Nb , we get
s(0).s (Drude)(0) andVp.Vp0. Besides, the peak inY1(x)
is broader than that inY0(x), implying that the dc conduc
tivity and the plasma frequencys(0) andVp do not scale
with each other for energy-dependent EDOS. The region
energy around the Fermi energy that is most importan
determinings(0) and Vp

2 is given by G. If, as we have
assumed so far, the scale forG is much less than the energ
scale that controls important variations in the EDOS wh
in our case is (a1 ,a2) in the Lorentzian form, then it is
mainly the value ofN(e) at e50 which comes in. But when
G is of the same order as (a1 ,a2), this is no longer the cas
and the details of the variations inN(e) are importantly
sampled. Finally whenG is much greater than (a1 ,a2), it
will be only the size of the backgroundNb that matters. This
is the limit in which we regain the simple Drude model.

It is easy to find from Eqs.~14! and ~18! that
limv→`s2(v)5Vp

2/4pv, indicating the KK relation is au-
tomatically obeyed as we expect. For a general value ofv,
s1 ands2 in Eqs.~13! and~14! need to be obtained numer

FIG. 2. Scaling functionsY0(x)52/@p(x211)2# and Y1(x)
52/@p(x211)#.
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cally. Inserting results of Eqs.~13!, ~14!, and ~18! into Eq.
~1! allows us to obtain the optical scattering rate. Results w
be discussed in Sec. III C.

B. Constant N„e… but energy-dependent ARPES rateg„v…

If instead we switch off the energy-dependent EDOS
replacing it with N(e)5Nb , but turn on the energy-
dependent ARPES rateg(v) alone, we are able to see th
final-state effect ons, coming from the ARPES rate alone
Since in the present work the self-energy is momentum
dependent, it is convenient to first integrate overe in Eqs.~7!
and ~5! at T50. After some algebra we obtain

s1
(cons)~v!5

Vp0
2

4p

1

p
lim

D→`
E

2v

0 dx

v

1

g~x!
F (re)~D̃,g1 ,x0 ,x1!

5
Vp0

2

4p E
2v

0 dx

v

1

g~x!

g111

~g111!21~x02x1!2 ,

~19!

s2
(cons)~v!5

Vp0
2

4p

1

p
lim

D→`
E

2`

0 dx

v

1

g~x!

3F (
i 56

F (im)~D̃,gi ,x0 ,xi !2F 0
(im)~D̃,x0!G

5
Vp0

2

4p E
2v

0 dx

v

1

g~x!

x12x0

~g111!21~x02x1!2 , ~20!

where D̃5D/g(x), x05@x2S1(x)#/g(x), g65g(x
6v)/g(x), x65@x6v2S1(x6v)#/g(x), and F (re),
F (im), andF 0

(im) defined in Eqs.~A1!–~A3! in Appendix A.

C. Energy-dependentN„e… and ARPES rate

If we want to include both the direct factor ofN(e) in
Eqs.~4! and~5! and the energy-dependent ARPES rate so
to study the competition between the initial-state effect a
the final-state effect, we need to insertN(e) into Eq.~10! and
gsc(v) into Eq. ~12! or gnsc(v) into Eqs.~7! and ~1! to find
s1(v) and top

21(v). The Lorentzian forms used forN(e)
allow us to do the integral overe analytically. The expres-
sions fors1(v) ands2(v) are given in Appendix B.

Our first numerical results are presented in Fig. 3, wh
has two complementary frames~a! and ~b!. In all curvesa1
510, a255 with s55p, in units ofg0. This corresponds to
a depression in the EDOS@see Eq.~10!# over its background
value, as drawn in Fig. 1, solid curve, withN(0) reduced by
a factor of 2 compared to the background value. Althou
electronic states are preserved, this does not mean tha
corresponding optical oscillator strength is, as we will see
Fig. 3~a! we show five curves. All give the real part of th
optical conductivitys1(v) in units of Vp0

2 /4p as a function
of energyv in units ofg0. The first one~dot-dashed line! is
for reference and is the usual Drude form. In this case,
width of the Drude is simply 2pg0[G and the oscillator
sum rule givesVp0

2 /8. This no longer holds when the energ
4-5
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MEI-RONG LI AND J. P. CARBOTTE PHYSICAL REVIEW B66, 155114 ~2002!
dependence is included in the EDOS. This leads to sev
modifications and we will take these in steps of added co
plications. The simplest modification is that an overall EDO
factor enters the sum over partial currents involving ea
participating electron. Including only this factor with a co
stant approximation for the scattering rateg(v)5p in units
of g0 gives the long-dashed curve. The factor of 2 reduct
in N(e) at e50 translates into a substantial reduction
s1(v) at v50 although by a factor substantially less than
While the line shape is no longer perfectly Drude, its wid
at half maximum has increased over the Drude caseG
52pg0 and could lead one to conclude that the optical sc
tering rate has increased. It is already clear from this rem
that the optical and quasiparticle scattering rates are
longer the same. In fact, this is shown explicitly in Fig. 3~b!.
The dot-dashed curve is constant but the long-dashed c
now exhibits a slight energy dependence and is everywh
larger than twice the quasiparticle rate. Another import
modification brought about by the introduction of an ener

FIG. 3. ~a! Real part of optical conductivity and~b! optical
scattering rate as functions of frequency in the Lorentzian-ED
model shown in Eq.~10! with a1510, a255, ands55p. We used
g051. Labels of curves in~b! mean the same as in~a!.
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dependence inN(e) is that the optical sum rule defined i
Eq. ~2! has the plasma frequency reduced fromVp0 to Vp

50.875Vp0. Note that this occurs although no states are l
in N(e). On the other hand, when the initial-state EDO
factor is taken to be independent of energy~constantNb)
there is no change in plasma frequency even if the quasi
ticle scattering rate is energy dependent as shown in the s
thin curve which was computed for constantN(e)5Nb , but
with Snsc obtained in a non-self-consistent theory for t
quasiparticle scattering rate. This modulates the scatte
rate with precisely the same EDOS factorN(e) that we used
for the initial-state sum in the long-dashed curve. We see
in a real sense this factor has the opposite effect on the s
of the conductivitys1(v) vs v in that it increases its value
at v50, beyond what it is in the pure Drude case, and a
effectively sharpens up the curve. This can be seen m
quantitatively in Fig. 3~b! where the solid thin curve for the
optical scattering rate falls everywhere below the dash-do
curve of the Drude theory and also even further below
long-dashed curve. Combining these two effects brings
back closer to our original Drude than including each se
rately, at low frequencies where the effects are biggest. T
expectation is born out in the solid curve which includ
initial stateN(e) factor and non-self-consistent quasipartic
scattering rategnsc(v). Note that the plasma frequenc
(Vp /Vp050.848) is not changed much from its value
0.875 in the long-dashed curve, which shows that the pla
frequency is mainly sensitive to the initialN(e) and is less
sensitive to the details of the quasiparticle scattering r
The corresponding optical scattering rate is shown as
solid curve in Fig. 3~b!. This curve contrasts greatly with th
previous two curves: long-dashed and solid thin. In bo
these curves there is no compensation in the scattering ra
compared to the Drude case in the sense that the long-da
curve is always above and the solid thin curve always bel
By contrast, the solid curve is below at smallv and above at
largerv. While there is some cancellation, no sum rule a
plies to the area under 1/top(v) when it is integrated overv.
This represents a real difference between quasiparticle s
tering rate and optical scattering rate since for the ARP
rate a sum rule does apply which is directly connected to
sum rule onN(e). Thus, while optics can give microscop
information on scattering rates, it is not easy to relate
information so obtained with the characteristics of the se
energy which is, in the end, the fundamental quantity and
the quantity we would like to measure directly.

One final element of importance has been neglected
far. To get the effective scattering rate in a system w
energy-dependent EDOS with impurities, it is necessary
solve the self-energy equation~9! self-consistently through
repeated iteration of Eqs.~11! and~12!. Impurities will smear
out a valley inN(e) and change it to its self-consistent valu
Ñ(e), which is what finally enters in the impurity scatterin
When this is done we obtain a final curve fors1(v) vs v,
the dashed curve of Fig. 3~a! and for the optical scattering
rate in Fig. 3~b!. As we would have expected, the se
consistency smoothes out the curves but this does not in

S

4-6
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CHANGES IN OPTICAL CONDUCTIVITY DUE TO . . . PHYSICAL REVIEW B66, 155114 ~2002!
duce any new physics. The value of the plasma frequenc
also not changed much over its non-self-consistent value

We bring up once more the complication that arises fr
the electromagnetic vertex which introduces a product of
electron velocityv(e)2 in the formula for the conductivity
which effectively introduces a further energy dependence
the factor ofN(e) appearing directly in Eqs.~4! and~5!. This
factor is not present in either the non-self-consistent s
energy or the self-consistent one shown in Eq.~9!. This
means that the dashed curve of Fig. 3~a! could be further
modified through the introduction of av(e)2 factor in our
model N(e). If we look at band structure calculations, w
note that the product ofN(e)v(e)2 is often less dependen
on energy than isN(e).30,38This means that in this case, th
final results for the conductivity might move some way t
wards the results of a self-consistent theory for the s
energy with constantN(e) as the explicit factor of EDOS in
Eqs.~4! and~5!—i.e., those shown in Fig. 3~a! as the dotted
line. The self-consistent case would be smoothed out a l
more as compared with this curve.

We have also made calculations for a peak in the EDO
the Fermi energy and found no new physics. The effects
in a real sense the opposite to those found for a depress

Another consequence of the energy dependence inN(e)
is that the conductivity will change with temperatures,
effect which does not arise in the ordinary Drude case. T
is illustrated in Fig. 4 where we show the real part of t
conductivity s1(v) vs v for three cases. The solid curv
repeats our previous results for the case of a gap at the F
energy and non-self-consistent ARPES rate, shown as
solid line in Fig. 3~a!. The dot-dashed curve is the ordina
Drude for comparison. The dashed curve shows how
solid curve evolves with increasing temperature. It represe
results ofs1(v) vs v with non-self-consistent self-energ
for temperatureT510 in units ofg0 which is related to the
quasiparticle scattering rate. It is clear that the evolution
towards restoring the curve to its simple Drude value as
be expected when temperature or impurity effects are s
ciently strong that they wash out the energy dependenc
N(e). Note that for the case considered here, the ene
scale for the structure inN(e) is 10 in our units and this

FIG. 4. Real part of the optical conductivity at different tem
peratures in the Lorentzian-EDOS model shown in Eq.~10!. We
used the samea1 , a2 , s, andg0 as in Fig. 3.
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scale is of the same order as the temperature. Similar sm
ing effects are expected when impurity scattering is
creased sufficiently that the impurity scattering rate becom
comparable to the energy scale of the structure inN(e). In
this case we do not show a curve analogous to Fig. 4,
instead we show the change in the optical oscillator stren
under the curve—i.e., the plasma frequency. Before pres
ing these results we point out that in Fig. 4 atT50 the
plasma frequencyVp /Vp050.848, while atT510 it has
moved up to 0.976 close to the simple Drude case, so
effects of energy dependence inN(e) are pretty well washed
out in Vp as they are in the fulls1(v) vs v curve. In Fig. 5
we present equivalent results for the impurity scattering a
compare with temperature. The dashed and dot-dashed
are for a peak inN(e) and the solid and long-dashed lines f
a valley at the Fermi energy. We see that temperature
impurity have very similar effects on the plasma frequen
and that when the scale on the horizontal axis is of the or
of the scale defining the structure inN(e), we recover in
both cases the Drude plasma frequency as we expected

IV. OPTICAL CONDUCTIVITY IN ‘‘STEP MODEL’’

Another EDOS model which allows us to get simple an
lytical results and also helps in developing insight into t
effect of N(e) on s(v) is the so-called step model,

N~e!

Nb
5H h, ueu,Eg ,

1, ueu.Eg .
~21!

The self-consistent self-energy from Eq.~9! is determined
from the following equations:

FIG. 5. Plasma frequency as a function of the impurity poten
g0 and temperatureT. We useds55p.
4-7
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MEI-RONG LI AND J. P. CARBOTTE PHYSICAL REVIEW B66, 155114 ~2002!
S1sc~v!5~12h!
g0

2
lnF ~v02Eg!21gsc

2 ~v!

~v01Eg!21gsc
2 ~v!

G , ~22!

gsc~v!5g0H p2~12h!FarctanS v01Eg

gsc~v! D
2arctanS v02Eg

gsc~v! D G J , ~23!

wherev05v2S1sc(v). While the non-self-consistent sel
energy is obtained by makingS1sc(v)5gsc(v)50 on the
right-hand side of Eqs.~22! and ~23!.

Inserting Eq.~21! into Eq. ~7!, we find that

s1~v!5
Vp0

2

4p

1

pE2v

0 dx

v H 1

g~x!

p~ g̃11!

~ g̃11!21~x02 x̃!2

2~12h!F (re)~Ẽg ,g̃,x0 ,x̃!J , ~24!

whereF (re) is found in Appendix A,g̃5g(x1v)/g(x), x0

5@x2S1(x)#/g(x), x̃5@x1v2S1(x1v)#/g(x), and Ẽg
5Eg /g(x).

In Fig. 6 we show the numerical results that we ha
obtained in the step model. Figure 6~a! gives the quasiparti-
cle scattering rateg(v) vs v for four different cases. The
dot-dashed line is the non-self-consistent result forg(v) in
the semiconductinglike model—i.e.,h50. We see thatg(v)
is exactly zero untilv510 and jumps top for v.10. This
curve is for comparison withgsc(v) in Eq. ~23!. The numeri-
cal results are the long-dashed curve. We see a sharp sc
ing edge atV0.6.1 below which the scattering rate is zer
so that now the sharp onset has moved to lower energy
compared to the non-self-consistent case. Note thatg(v) is
proportional toÑ(v) and this shows smearing of the ste
function edge that existed in the non-self-consistent ca
The impurity scattering also accounts for the reduction
scattering abovev510. In fact, there is a sum rule onÑ(v)
so that the area under each curve, self-consistent and
self-consistent, remains unchanged. So the increase in
renormalized EDOS belowv510 is fully compensated fo
at largerv. This also holds for the second set of two curv
In this caseh50.1 instead of being zero. The dashed cu
gives the non-self-consistent results while the solid curv
for the self-consistent case. In this case, there is alway
finite EDOS at all frequencies, but it still rises sharply atv
510 in the non-self-consistent case and atv.6.1 in the
self-consistent calculations. However, as compared with
h50 case, the rise is less drastic. There is some roundin
the edge.

The corresponding results fors1(v) vs v are shown in
Fig. 6~b!. We see, as we expected, that for the pure semic
ductorlike model, there is no optical absorption untilv
52Eg520 in the non-self-consistent case~dot-dashed
15511
e

ter-

as

e.
n

n-
lly

.
e
is
a

e
of

n-

curve!. This also holds for the self-consistent case~long-
dashed curve!, but now the edge has moved tov52V0

.12.2. In the other two curves the finite value ofh50.03 at
smallv guarantees that the response in this region is meta
like and we see a sharp Drude-like peak centered arounv
50. At higher energy the semiconductinglike behavior
the two previous curves remains although the main rise
the conductivity has been shifted to lowerv as compared
with v520 and 12.2, respectively, for non-self-consiste
and self-consistent case withh50. Between the Drude re
sponse at smallv and semiconductinglike response at hi
v the curve gets filled in and shows sharp structures co
sponding to the sharp step assumed to exist in the in
EDOSN(e).

We next contrast more sharply the two qualitatively d
ferent limits discussed above using an analytical method
get simple although limited results.

FIG. 6. ~a! ARPES rate and~b! real part of the optical conduc
tivity, as functions of frequency in the step model shown in E
~21!. We usedEg510 andg051.
4-8
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CHANGES IN OPTICAL CONDUCTIVITY DUE TO . . . PHYSICAL REVIEW B66, 155114 ~2002!
A. hÄ0: Semiconductinglike behavior

In this case,g(v)50 for v,V0. ~Note that for the non-
self-consistent ARPES rate,V05Eg , and for the self-
consistent ARPES rate,V0,Eg .)

Now we look ats1(v) in Eq. ~7!. Noting that2v,x
,0, we obtain the following.

~i! For 0,v,V0, bothA(e,x) andA(e,x1v) are zero,
leading tos1(v)50.

~ii ! For V0,v,2V0 , A(x1v)50 for 2v,x,2V0,
while A(x)50 for 2V0,x,0. Therefore,s1(v)50.

To conclude,s1(v)50 for v,2V0.

B. hÄ0¿: Metalliclike behavior

In this case, we expect to see the Drude peak at smalv.
This can be nicely shown in the dc conductivity. By subs
tuting Eq.~21! into Eq. ~8! we obtain

s~0!5
Vp0

2

4p

1

p

1

g~0!H ~h21!F Eg g~0!

Eg
21g2~0!

1arctanS Eg

g~0! D G
1

p

2 J . ~25!

It is clear that forh51, Eq. ~25! recovers the Drude resu
s (Drude)(0)5(Vp0

2 /4p)/2g(0). In the limit of h→01, we
get from Eq.~25! that

s (h501)~0!.
Vp0

2

4p

h

2g~0!
. ~26!

For the non-self-consistent case,gnsc(0)5pg0h, thus

snsc
(h501)~0!.

Vp0
2

4p

1

2pg0
5s (Drude)~0!. ~27!

For the self-consistent case, however, Eq.~23! produces, in
linear order of h, gsc(0).pg0h/(122g0 /Eg) ~for 2g0
,Eg), leading to

ssc
(h501)~0!.

Vp0
2

4p

1

2pg0
S 12

2g0

Eg
D , ~28!

which is different from the corresponding Drude value.
We can also compare the above results obtained in

EDOS-step model for a finiteh value with those obtained in
the EDOS model with one Lorentzian form,N(e)/Nb51
2(s/p)a2 /(a2

21e2). We find that in the Lorentzian-form
model, s1(v) shows a sharp Drude-like peak at low fr
quencies and semiconductinglike rise at aroundv;a2,
which are similar to what is shown in the solid curve in F
6. However, since both the EDOS and ARPES rates
smooth in this model, the conductivity curve is alwa
smoothly evolving as a function of frequency, and the se
conductinglike rise can never be as sharp as in the
model.
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V. CONCLUSION

We have studied the effect the energy dependence in
EDOS around the Fermi energy has on the frequen
dependent conductivity and the derived optical scatter
rate. The conductivity is modified in two important way
One comes from the energy-dependent EDOS factor wh
enters when a sum is to be carried out over all electrons
contribute to the current. We referred to this as the init
state factor. The second factor comes from modification
the quasiparticle scattering rate which is no longer cons
and in fact becomes proportional to the self-consistent ED

Ñ(e). This quantity differs fromN(e) in that it accounts for
the smearing of the EDOS brought about by the impurities
is to be computed from the self-consistent self-energy eq
tions. Both factors have a profound effect on the conduc
ity, but their individual contribution cannot easily be sep
rated. For a depression inN(e) at the Fermi energy, the firs
factor reduces the real part of the conductivity at and aro
v50 ~dc conductivity!, effectively making the resulting op
tical scattering rate appear larger than its value in the p
Drude model; i.e., the width of the curve at half maximum
increased. On the other hand, the second factor acts in
opposite manner. Since the quasiparticle scattering rate
comes proportional toÑ(v), this quantity now acquires a
frequency dependence which, in the model under consi
ation, reduces the scattering rate at and aroundv50, be-
causeÑ(v) is less than the constant background value the
This has the effect of increasing the height of the Drude
smallv and making it narrower as compared to the const
case. The net result of both effects in the self-consistent c
is to produce a curve fors1(v) vs v which is reduced below
the pure Drude at smallv. The corresponding optical sca
tering rate is depressed at smallv below its constant Drude
value and then becomes larger at higherv. This mimics the
variation in the quasiparticle scattering rate which is prop
tional to Ñ(v), but there are important differences. In pa
ticular, while a sum rule applies to the ARPES scattering r
which reflects quite directly the sum rule on the EDOS, t
optical scattering rate displays no such property. It is cl
then that when there is important energy dependence in
EDOS at the Fermi energy, optical and quasiparticle sca
ing rates are not as simply related as in the Drude mo
This complicates the process of extracting microscopic inf
mation from optical scattering rate data. What one ultimat
wants is detail information on the self-energy.

There are several other complications that arise that n
to be commented upon. The plasma frequency which gi
the optical oscillator strength—i.e., the area under the r
part of the conductivity—becomes dependent on tempera
and on impurity concentration. It shows that the plasma f
quency depends on a range of states around the Fermi en
with the width given by the impurity scattering rate. It is n
just its value at the Fermi surface which matters. As
impurity rate is changed, the range of important values
N(e) is also changed and so isVp . In the models considered
this can be a significant effect. Temperature can also sm
out the region in energy around the Fermi surface and so
4-9
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MEI-RONG LI AND J. P. CARBOTTE PHYSICAL REVIEW B66, 155114 ~2002!
impact on the value ofVp . As temperature is increased, w
find that the EDOS effects become gradually less impor
and the entire curve fors1(v) vs v moves towards the
Drude form with constant background only inN(e). Another
result of interest is that the region in energy most import
in determining the plasma frequency is different from th
determining the dc conductivity, so that these two quanti
will not respond in the same way with a change in impur
content.

Finally we have considered a step-function model
N(e) around the Fermi surface withN(e)5hNb for 0,e
,Eg , andN(e)5Nb for e.Eg , whereEg is a gap energy.
For h50, this is a semiconductinglike model which lea
directly to zero conductivity in the range 0<v<2V0 (V0

5Eg for the non-self-consistent ARPES rate andV0,Eg for
the self-consistent ARPES rate!. We find that for finiteh,
however small it may be, the situation is radically differe
and an intrinsically metallic behavior is always obtained.
smallv, there is a very narrow Drude-like peak followed b
a depression, and at higher energiesv>V0 a semiconduct-
inglike behavior is again observed. The value of the dc c
ductivity is unchanged from its value withN(e)5Nb every-
where providedh!1. Here we have described only the ca
when the self-energy is treated in a first iteration. We fi
however, that the situation shows no qualitative change w
a self-consistent theory is considered except for the imp
tant difference that the gapV0 is reduced by the interaction
and the dc conductivity has a correction linear ing0 /Eg .

The theoretical calculations presented in this paper ap
in principle to materials in which the EDOS has strong e
ergy dependence around the Fermi surface. The experim
need to be done at relatively low temperatures where
electrons are dominantly scattered by impurities and the
tems must remain in the normal state. Many conventio
heavy fermion materials have energy-dependent EDOS
remain metallic down to very low temperatures and so m
serve as potential candidates to show some features of
cal conductivity within our predictions. In this case, o
simple theoretical results caution against any interpreta
based on a Drude model. The underdoped high-Tc cuprates
exhibit a pseudogap of size 300 K or so. This pseudogap
its origin in many-body effects as we mentioned in the Int
duction. Nevertheless, inasmuch as the effective ED
around the Fermi surface is depressed, our results sh
give some qualitative guidance about the physical con
quences of such a EDOS depression. It is clear from
simple work that this pseudogap cannot be treated in
usual formalism which assumes a constant effective ED
Of course, in the cuprates a superconducting transition
curs, butTc can be low, of order 20 K. In this intermedia
temperature regime, however, the inelastic scattering du
electronic interactions may already be significant, wh
complicates the comparison. Disordering in the CuO2 planes,
such as replacing copper sites by nickel, in the underdo
high-Tc cuprates, will efficiently enhance the elastic scatt
ing, so that it becomes dominant. Alternatively, a magne
field can be used to quench the superconductivity, enab
measurements at much lower temperatures.
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APPENDIX A: EXPRESSIONS FOR F „re…, F „ im…,
AND F 0

„ im… IN EQS. „19… AND „20…

As mentioned in Sec. III B, in the case of a consta
N(e)5Nb and energy-dependent ARPES rate, we can fi
integrate overe. The resulting optical conductivity atT50
is shown in Eqs.~19! and ~20!, where

F (re)~D̃,g,x0 ,x!5d0@g~y21g221! f 1

1~y22g211! f 22gy f3#, ~A1!

F (im)~D̃,g,x0 ,x!5
d0

2
@22y~y21g211! f 1

14gy f21~12g21y2! f 3#, ~A2!

F 0
(im)~D̃,x0!54x0D̃@~x02D̃ !211#21

3@~x01D̃ !211#21, ~A3!

with d05@(g11)21y2#21@(g21)21y2#21, y5x02x,
f 15arctan(D̃1x0)1arctan(D̃2x0), f 25arctan@(D̃1x)/g#

1arctan@(D̃2x)/g#, and f 35 ln$@(D̃2x0)
211#/@(D̃1x0)

211#%
1ln$@(D̃1x)21g2#/@(D̃2x)21g2#%.

APPENDIX B: OPTICAL CONDUCTIVITY
FOR THE ENERGY-DEPENDENT ARPES RATE

IN THE LORENTZIAN DOS MODEL

For the EDOS model with Lorentzian forms shown in E
~10! and energy-dependent ARPES rate, we can first in
gratee to simplify the numerical work. The resulting con
ductivity reads

s1~v!5s1
(cons)~v!1ds1~v,a1!2ds1~v,a2!, ~B1!

s2~v!5s2
(cons)~v!1ds2~v,a1!2ds2~v,a2!, ~B2!

wheres1
(cons)ands2

(cons)are shown in Eqs.~19! and~20!, and
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ds1~v,a!5
Vp0

2

4p

s

2pE2v

0 dx

v F x0 x11ga1g1a2

~x0
21ga1

2 !~x1
21g1a2

2 !
1

x0 x22ga1g2a1

~x0
21ga1

2 !~x2
21g2a1

2 !
G

1
Vp0

2

4p

sa

p E
2v

0 dx

v

2~x12x0!x1g11~g01g1!~a21x1
22g1

2!

@~x12x0!21~g01g1!2#@~a21x1
22g1

2!214x1
2g1

2#
, ~B3!

ds2~v,a!5
Vp0

2

4p

s

2pE2`

0 dx

v F x2ga22x0 g2a1

~x0
21ga2

2 !~x2
21g2a1

2 !
1

x1ga12x0 g1a2

~x0
21ga1

2 !~x1
21g1a2

2 !
1

x0g1a11x1ga1

~x0
21ga1

2 !~x1
21g1a1

2 !

1
x0g2a11x2ga1

~x0
21ga1

2 !~x2
21g2a1

2 !
2

4xga1

~x21ga1
2 !2G2

Vp0
2

4p

sa

p E
2`

0 dx

v H ~x02x2!~a21x0
22g0

2!22x0g0~g01g2!

@~x02x2!21~g01g2!2#@~a21x0
22g0

2!214x0
2g0

2#

2
~x12x0!~a21x1

22g1
2!22x1g1~g01g1!

@~x12x0!21~g01g1!2#@~a21x1
22g1

2!214x1
2g1

2#J , ~B4!

with x05x2S1(x), x15x1v2S1(x1v), x25x2v2S1(x2v), g05g(x), g15g(x1v), g25g(x2v), ga65g06a,
g1a65g16a, andg2a65g26a.
ns

nd

sp

R

w

er
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