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Multiple bound states in scissor-shaped waveguides
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We study bound states of the two-dimensional Helmholtz equations with Dirichlet boundary conditions in an
open geometry given by two straight leads of the same width which cross at anéarlieh a four-terminal
junction with a tunable can realized experimentally if a right-angle structure is filled by a ferrite. It is known
that for §=90° there is one proper bound state and one eigenvalue embedded in the continuum. We show that
the number of eigenvalues becomes larger with increasing asymmetry and the bound-state energies are increas-
ing as functions ofd in the interval (0,90°). Moreover, states which are sufficiently strongly bound exist in
pairs with a small energy difference and opposite parities. Finally, we discuss how the bound states transform
with increasingd into quasibound states with a complex wave vector.
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[. INTRODUCTION exist in pairs corresponding to different parity. We will show
that as the anglé diminishes and the states become strongly
The question of the possible existence of modes trappeldound, the energy gap between the even and odd members of
in open two-dimensional systems has been a classic in thae pair vanishes exponentially fast. We also study the be-
theory of waveguides; trapped modes due to particulahavior around the critical valueg, where the bound states
boundary conditions were studied already half a centuriemerge from the continuum. Our numerical analysis shows

ago: However, only much later was it realized that the in-that the binding energy of the weakly coupled states behaves
troduction of bends and crossing into waveguides gives risgs ~ 72— (g.— 6)2 for 6 slightly below 6,; above this

generally to confined states, or bound states, which exist b&1ue we have instead a quasibound state.
low the cutoff frequency for the waveguide!® The exis-
tence of such states has both theoretical significance and im-
plications for possible applications. They have been
subsequently discussed in many papers; in addition to those
mentioned above we refer the reader to Ref. 17 and the bib- First we review some properties of the bound states in

liography therein. scissor systems which follow from general principles such as
In this paper we consider a system of two straightiheir symmetries and dependence on the geometry. The
waveguides of the same widthwhich cross at a nonzero methods one can employ to this aim are rather standard and
angle . The right-angle case was one of the first exampleg,, pjained in detail in classical textbooks®so we describe
where the binding was studied. Schult, Ravenhall, and Wyldthem only very briefly. If a system has a mirror symmetry,

showed the existence of two bound states. One of them is fhere is a natural decomposition of the Hamiltonian into even

:Lléeott’ﬁgpgnséa;? ;g;(r}zg%ys?frﬁgé d:jlga}:#cr)atlhimctz’nxvnh"em and odd parts which makes it possible to consider one-half of
: ; ' INUUM e structure with the Neuman or Dirichlet condition, respec-

and does not decay due to the symmetry. The latter correﬁ
t

sponds to the single bound state in an L-shaped tube of wid vely, at the sym_metry axis. Next therg IS the D'”Chl.et.'
d/2.5 Our aim is to show how the spectrum of such a junc- eumann bracketing which in combination with the mini-

tion, which we will call for the sake of brevity “scissors” in Max principle says that thgth eigenvalue below the bottom
the following, changes as the anglevaries over the interval ©f the continuum can be estimated from abdbelow) by
(0,90°). th'e.jth eigenvalue of thg same ppgrator Wlt'h an additional
We will show that as we go further from the cross Sym_Dlrlchlet (Neumann condition. This is useful if we are able
metry of the right-angle structure, new bound states emergl® Place an additional condition in such a way that the ob-
from the continuum. In strongly skewed junctions corre-tained system is solvable. Recall the observation of Avishai
sponding to a smalb there are many of them. The mecha- €t all? that a sharply broken tube can accommodate in the
nism responsible for their existence is the same as for theend a rectangular box wider than the tube itself and long
bound states in sharply broken tubes studied theoreticallgnough; from here it follows that the number of bound states
and experimentally in Refs. 10 and 12, namely, a long part oin such a channel is large for bending angles close to 180°.
the junction where there transverse contribution to the energy In our present case the problem has two mirror symme-
is substantially lower thans£/d)?. In the present case, how- tries with respect to the axis of the anglavhich we call the
ever, the system has a mirror symmetry with respect to thecissor axis and with respect to the axis of the larger angle
axis of the complement angle 18@°and the bound states 180°-6¢ which we call the second axis. These symmetries

1. BOUND STATES AND RESONANCES
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allow us to study thus one-haifo which the trick of Ref. 10  which takes the Hamiltonian to a unitarily equivalent opera-
can be appliedor even one-quarter of the scissor. In thetor acting as

latter case the angle dependence of eigenvalues can be stud-

ied by perturbation theory using a scaling transformation of . ( 32 52 9? )

the longitudinal variablé? The described considerations HWY = @)

yield the following conclusions.
(i) Every bound state is even with respect to the scissoNow we apply the scaling transformation to the longitudinal

axis. variable in the structure arms which leaves the central area
(i) With respect to the second axis the bound states cannchangedx=g(X) andy=g(Y), which yields the scaled

have either parity which is alternating if the bound states ar¢4amiltonian

arranged according to their energies.

(iii) As 8 becomes smaller new bound states emerge from R c11(X,Y) ¢ X,Y)
the continuum. The numbeéX of bound states satisfies the H=- (c (XY) CofX,Y) VI+UXY), @
inequality N=2cw 1(90°/) with c=(1—2 2332 2B 22
~0.225. While it is not good around=90°, where we with
know thatN=1 from Ref. 7, it is asymptotically exact as
Y ci(X,Y) ! ci(X,Y) cos0
(iv) All the bound-state energies are monotonously in 11(A, ’Z(X)’ 12X, g’(X)g’(Y)'

creasing functions o#.

The angle dependence of the bound-state energies has dif-
ferent regimes. In the weak-coupling regime when the scis- (X.Y)= — cosd (X.Y)=
sors are closing and just passed the critical aniglat which 20 g'(X)g'(Y) T 9'2(Y)"
a new bound state appeared, our numerical analysis shows
that the binding energy of the weakly coupled states behavedd
as ~ m?— y(6.— 0)? with some constany which depends
on the particular state. On the other hand, strongly bound I 29’ (X)g"(X)—5g9"*(X)
states corresponding to a smdllare in the leading order (X,Y)= 49’ (X)4

. . , : . 9'(X)
determined by the one-dimensional potential well given by
thg .Iowest transyerse eigenvaﬁ?_eThg second axis Qeter- 29’ (Y)g"”(Y)—5g"%(Y)
mining the parity of the solution is then deep in the +

’ 4

classically forbidden region, so we can conclude that the 49'(Y)
following. " "

(v) As 6 becomes smaller the bound states group into M

pairs with opposite parities and the energy gap between them 49'4(X)g’2(Y)

is exponentially small ag—0.
After these general results let us pass to the numeric
solution. We use three different methods. The most common :
: . ; X if
among them is the boundary integral metibt¢h combina- g(x)= _
tion with the above general results, it provides rather com- af(x) i |x]>Xo,
plete information about the discrete spectrum. . o . 5
On the other hand, the boundary integral method tells u\S/vr[h Xg larger than the channel half-width and the interpolat

nothing about the scattering problem in the scissor structur hg function (x) such thatf(x) =x for |x|>2xq, the func-

We are interested in particular in the scattering resonances ! g(x) is 3 times differentiable, and the inverse ngip'

associated with quasibound states, which are characteriz?&“sm' As long as the parameteris real, the above trans-

by complex values of energy at which the analytically con- ormation is a simple coordinate change which does not

tinued resolvent has a pole singularity. A suitable method tand'fy the spectrum. However, ti_as;umes _complex val-
treat this problem is the exterior complex scaling. TheUes. we observe a different behavior in the discrete and con-

nta':puous part typical in such situatioffseach branch of the

has developed into an efficient computational tool—see RefcONtinuous spectrum of the operai® is rotated into the
omplex plane, giving

23 and references therein. The use of exterior complex scaf’
ing for waveguide structures was first proposed in Ref. 24; o 2 o
hgre we emp?loy it in the form presente% il’rl) Ref. 25. Before Up—{(nm)*+a”“(0)}

the proper scaling we pass to right-angle scissors by meangr d=1. If Im «>0, the rotated branches point to the lower

of the coordinate change half-plane and reveal parts of other sheets of the Riemann
surface of energy and we are able to see the resonance poles
as complex eigenvalues of the transformed operator; the cor-
responding eigenfunctions are after the transformation de-
caying at large distances, instead of the original growing
y' =y, (1) oscillations typical for Gamow functions.

a'll'he functiong(x) can be chosen, e.g., as

|X|$X01

X' =xsinf—y cosé,
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FIG. 2. The first two even-even and odd-even bound states for
scissors structure fof=30°.
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. . . . . . . rectangle can approach twice the single channel width for
%W g% e e & % gmall§ as in the case of broken waveguide studied in Refs.
12 and 13. The upper insets show a blowup of the asymptotic
FIG. 1. Bound-state energies for scissors structure as a functiopehavior of the energies in the vicinity of the continuum
of the interior angley. The complex scaling method data are shownthreshold,E,= 72. For all energies of the bound states the

by points. The boundary integral method data are shown by Cirdesasymptotics are m2— (0.~ 9)2 where y is a state-
The asymptotic formulaé) with corresponding quantum numbers dependent constant.

m=1,2,3 are given by thin solid lines. Insets above show a blowup It was discussed above that as the arggtiiminishes and

of asymptotic behavior of the bound-state energies in the vicinity Ofthe states become strongly bound, the energy gap between
B 2 L

bottom of propagation band. the even and odd members of the pair vanishes exponentially

fast. Indeed, one can see in Fig. 1 that the second bound-state

Finally, the third method is based on application of smaIIener aoproaches the first one. the fourth bound-state en-
time-periodic perturbations. The bound states with energies gy app '

. T ergy approaches the third one, and so on. In Figa). &nd
pe.low the pro_pagatlon subpar)Eb(< Eo=77) QO_ not par 2(b) the first (even-evehand the secondodd-even bound
ticipate in stationary transmission. However, it is possible to . . oy

. : X . states are shown. The eigenfunctions resemble similar quan-
mix the bound stateb) with propagating staték) via a

time-periodic perturbation tum mechanical systems with a double-_well poteftiah
which an energy distance between the first and second en-
V()= Vycod wt) (4)  ergy levels becomes exponentially small with the growth of
the potential barrier between the wells. Figurés 2nd Zd)
provided that the matrix elements of the perturbationdjemonstrate the next pair of the bound states in the scissor
(b|V|k)#0. Such a possibility was demonstrated for the forstrycture.
electron transmission in a four-terminal Hall junction influ-  wijth the change of parameters a bound state often trans-
enced by a radiation fielt:*® Later the mixing of bound forms into a quasibound state which is manifested as an reso-
states with propagating modes was also realized in a micrthant dip or peak in transmission through the structure—for
wave transmissioft’ In analogy with Ref. 27 we use here the an example similar to the present one see Ref. 28. As one can
time-periodic perturbatiofd) as a probing instrument to find see from Fig. 3 the numerically computed transmission
the bound-state energy by resonant features in the transmigrough the scissor’s structure does not show any resonant
sion probability. features for6>6.~71.5°. We have also used the time-
periodic perturbation method to search for the quasibound
ll. NUMERICAL RESULTS states abové, . The results of the computation in the vicin-

Let us show results of the numerical analysis based on th'éy of critical angle f; are shown in Fig. 4.

methods described above. First we plot the bound-state en, One can see there fch_at for= 0 there is _aclear resonance
. . ; effect revealed by mixing the propagating mode with the
ergies as functions of the scissor angle The results of

complex scale method are presented in Fig. 1 by points. bound state by the time-periodic perturbation. On the other

The results of the boundary integral method are shown irpand, for6> 6. these resonant features are vanishing and the

Fig. 1 by circles. For the limi)—0 the energies of bound transmission probability decays with increasing arjl&he

states are derived in Ref. 13 and have the following form: small wiggle around the value 9.8704 is an artifact of the
' " computation which diminishes with the decrease/gf

w2 Moreover, asf approached®, the transmission probabil-

Eam™ o [n?+(2n2+m?/4) 6?5+ - - -], (5) ity T(E) slope with respect to the ener@yis increasing in

the vicinity of E-72. In the limit #— 6, the derivative

where the quantum numbersm=1,2,3..., of which, of  dT/dE diverges. If one plots the valuds-7? at which the

course, onlyn=1 gives rise to bound states. The factor 1/4transmission reaches one-h&hown by circles in Fig. B
in Eq. (5 takes into account that the width of an inscribedversus the angle of scissor waveguide, we obtain the remark-
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FIG. 3. The probability of transmission through the scissors FIG. 5. Distances from the bottom of the propagation band at
structure as function of the eigenvallie=\k? of the Helmholz ~ which the transmission probability takes the value of one-(saé

equation(16). The probability approaches zero f&— E,= 2. Fig. 3 vs the angle of the scissors.
The circles show for whiclE the transmission probability equals
one-half. wave device. It is no problem, of course, to build crossed

waveguides in the ways explained in Ref. 17. However, in

able curve shown in Fig. 5. We see that thisr? vanishes such a setting it is not easy to vary the geometry continu-

exactly at the critical angles where new bound states emergeusly. Our point here that this goal can be achieved with a
from the continuum. structure of a fixed angle if the latter is filled by a ferrite with

an axial magnetic anisotropy and an external magnetic field
is applied. We will show that this leads to an effective angle
controlled by the field strength, following an idea which was
first applied to the equivalence between a ferrite-filled

After analyzing the scissor spectrum, let us discuss hovequared resonator with an external magnetic field and a field-

such a structure can be realized experimentally as a micrdree rhombic polygori®

To explain the mechanism of this equivalence we begin

IV. FERRITE FILLED MICROWAVE WAVEGUIDES
AS A WAY TO VARY THE ANGLE OF THE SCISSORS

1 — i with the Maxwell equations which in the presence of a ma-
6=71.9 i terial have the form
9=71.8° :
0.96F §=71.7° | . V-E=V.-B=0,
~N~—
6=71.6° ! . .
5 N VXE=—ikB, VXH=IkE,
6=71.5 |
Py Wi
- B=uH, (6)
6=71.3° |
088F 71 20 | i whereE is the electric fieldH is the magnetic fieldB is the
| magnetic inductionk=w/c, and w is an eigenfrequency
| with the wave vectok. We suppose that the material has a
084k ': magne'Eic anisotrgpy corresponding to an anisotropic perme-
| ability w=1+4my with®
:
08 s . . s . o . . Xxx Xxy O
9.863 9.864 9.865 9.866 9.867 9.868 9869 9.87 9.871 9872 9.873 N
E-0 x=| Xxy Xyy O/, ()
FIG. 4. Evolution of resonant features for the transmission 0 0 0
through the scissor structure found by mixing the propagation Stats\/here
with the bound state via the time-periodic perturbat{dh as the
angle of the scissof increases. The angle dependence is an exact
continuation of the bound-state asymptotics shown in the inset of Y= 91 Mo You= 9©;Mo
Fig. 1 for 6— 6.— 0. For the angles abow, resonant features are T 00,-02 Y 0,0,- 0?
missing. The dashed vertical line shows the edge of the propagation
band,Ey= 2. and[Eg. (3)]
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kB, == KB, = — Oc 11
TIkB e TR an
and finally, the fourth Maxwell equation can be rewritten as
N
‘y\ /X' e _Hy  Hy -
A N v
Using the explicit form of the permeability given by ET)
we get
Mxx  HMxy 0 Hy
B=| Myx Hyy O Hy
0 0 1/ \H,
Combining this with Eq(11) we obtain
FIG. 6. Schematical view of the cross-bar resondsmissors '_ IE,
with 6=90°) filled with ferrite whereM is the magnetization of H, 1 [ sy Hxy k ay
ferrite andN is the anisotropy field. ) =— . , (13
Hy D Myx  Mxx __l a_Ez
Xxy™ _ny_ﬂlﬂz— 0 ®  \where we have denoted
Hereg is the magnetomechanical factiM,; is the magneti- D = Uyxtbyy™ MxyMyx-
zation of the matenal, Substituting Eq(13) into Eq. (12) we obtain
Mng) 9Ka 2 2 2
Q,=gMg — 7t cogV |, J°E, J°E, J°E, 2
— tpuyy——+ + — 4 =0.
M3j Mo Mxx Ix2 Myy ﬂyz (Mxy MyX)o'?X&X Dk°E,=0
: 14
MoHE’  gK, . _ o
Q,=gM, —t v cos2V |, 9 The key observation is that the mixed derivatives in the last
Mo 0 equation can be eliminated by the coordinate transformation
andK, characterizes the anisotropy type: it is an easy-plane J — - 2z
anisotropy fork,>0 and an easy-axis anisotropy f&r, _ Nty = (b F yx) 0
<0. In what follows we suppose that the material has an X' MUy X
easy-plane magnetic anisotrop§,>0, in which case the = Poxyt Byx , (19
intrinsic magnetic field is equal to - T
XX

H:HO_47TMOZ.

: . , which allows us to cast Eq14) into the following simple
In the relations(9), ¥ is the angle between the anisotropy ¢,

axis N and the magnetizatioM,. We choose the latter to
coincide with thez axis along the magnetization, while tke V2E,+\k%E,=0, (16)
axis lies in the plane spanned by the vectdrand M.
In the simplest case of an easy plane magnetic materig¥here
we haveMyL N and Mg||H{? with ¥ =7/2, so we obtain
from Eqs.(9) = '“_Yy; (17)
Mxx

(1=9(Ho=4mMo), we have taken into account thag, + u,x= 0 holds in accor-

(10) dance with Eq(8).
The transformation(15) defines a relation between a

This is shown in Fig. 6 where theaxis is perpendicular to right-angle cross structure and a skewed one with an angle
the plane of the waveguide. defined by\. It is too daring, however, to speak about a full

We seek a two-dimensional solution of the Maxwell equa-equivalence, because it is clear from the formulas expressing
tions (6) shown at this figure in the formE(x,y) the elements of Eq.7) that the angle depends on the eigen-
=E(X,y)e,. The fieldsB,H lay in the planex,y and depend frequencies involved. Let us ask under which conditions this
onXx,y too. Then the first equation is satisfied, while the thirddependence of the geometrical factb¥) can be suppressed.
one gives Substituting into Eq(17) the expression&l0) we get

Q5=9g(Ho—4mMg)+gK;Mg.
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0,0, w2+ 47g0,M, " V. CONCLUSIONS
Q]_Qz_ (l)2+47TngM0 .

2_
A= We have analyzed spectral properties of a scissor structure
] o ] ) consisting of two straight waveguides of equal width which
Following Ref. 30 we can simplify this expression by assum-;5s5 4t an angle. The existence of bound states with en-
ing that ergies which are increasing functions of the angjleas been
gKa/Mo>maxgHo,47gMo, }. (19 dgmonstrated. both theor_eticglly and pumerically. Th(_—} m(_acha—
nism responsible for their existence is the same as in similar
systems:1%12 The scissor structure has a mirror symmetry
with respect to the axis of the complement angle 18Gind
the bound states exist in pairs differing by parity. We have
. ) . shown that as the anglediminishes the energy gap between
However, there are ferrites with, ~ 10" erg/cnt which lead the even and odd states of such a pair vanishes exponentially

to the inequalityw<10'%. Hence in this case we are able to i : :
. . . . Using th ndary integral method we have al -
use standard waveguides, the width of which is of order 1ast Using the boundary integral method we have also stud

cm. Then we can simplify the geometrical factor of the|ed the behavior around the critical valu®s where the

For typical ferritesk ,~10° erg/cn? and 47M~100 Oe3!
Taking the magnetomechanical factgr 10’ sec 1 Oe™?
we obtain, from Eq(19), H,<10* Oe andw<10, which
would require very wide waveguides of width~10 cm.

: bound states emerge from the continuum. Our numerical
wavegide to the form analysis shows that the binding energy of the weakly coupled
Ho states behaves asm2— y(6.— 6)? for 6 slightly below 6, .
AZ:m- (200 We have also analyzed resonant features in scattering. Fur-
0 0

thermore, we have found that in the vicinity of the critical
This formula gives a remarkable possibility to change theangles the energy derivative of the transmission probability,
angle of the scissors, dT(E)/dE, diverges. Finally, we have shown how the angle
dependence of the spectrum in such a system can be mea-
=2 arctan\, (21 sured in an electromagnetic setting with right-angle scissors
by means of an external magnetic field applied along thdilled by a ferrite material. The effective angular variation
magnetization direction. can be easily achieved by an external magnetic field applied
Moreover, if to apply a strong magnetic fieffH,>w or ~ nNormally to the plane of the scissor structure.
Ho>10* Oe, then it follows from formuld18) that
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