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Many-body perturbation theory for spin-forbidden two-photon spectroscopy
of f-element compounds and its application to Eu2¿ in CaF2

C. K. Duan* and M. F. Reid
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Predictions of the two-photon transition intensities for Eu21 in CaF2 generally give poor agreement with
experiment because the low-lying excited states make a straightforward application of perturbation theory
unreliable. In this work we explicitly include the effective Coulomb interaction and the crystal-field interaction
for the excited configuration in the zeroth-order Hamiltonian, and treat the spin-orbit interaction as a pertur-
bation. We obtain a good agreement with measured multiplet to multiplet two-photon absorption intensities.
The linewidths of the two-photon absorption peaks, which vary dramatically, are explained by selection rules
for nonradiative relaxation.
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I. INTRODUCTION

Two-photon laser spectroscopy has been an impor
complementary technique to linear spectroscopy of solids
it has a different parity selection rule, allows access to hig
energy states, and has a greater variety of possible pola
tions than linear spectroscopy.1 Extensive measurements o
two-photon absorption~TPA! intensities in rare-earth com
pounds by Dagenaiset al.2 and Downer and co-workers3–6

could not be explained by the early lowest-order theory
veloped by Axe7 in 1964: the angular-momentum selectio
rule DJ<2 predicted by Axe’s theory was completely vio
lated as there are intense transitions withDL andDJ as large
as six, and line strengths and polarization anisotropies w
not correctly calculated. There are many theoretical deve
ments that address this puzzle, which will be described
more detail below. These methods account for most of
discrepancies between the predictions of Axe’s theory
measurements for Gd31 in LaF3,4 but poorly predict the rela-
tive intensities for Eu21 in CaF2.6 These discrepancies ar
sometimes referred to as ‘‘the weakness of the third-or
spin-orbit contributions.’’1 In addition to the intensity
anomalies, the drastic variations of linewidths of TPA pea
are also puzzling.

The starting point of TPA theory is usually the secon
order term of time-dependent perturbation theory. This te
involves a summation over all possible intermediate state
the product of two one-photon transition matrix eleme
weighted by an energy denominator. The states involved
exact eigenstates of the full static Hamiltonian for the syst
when time-dependent perturbations are turned off. Usu
approximations of the full static Hamiltonian and truncati
to the summation are necessary. Time-independent pertu
tion theory is often adopted.8 Axe’s theory is zeroth order in
time-independent perturbation theory in the sense that
splitting within f N or the intermediate configurations is n
considered. For the TPA to6P7/2, 6P5/2 and 6P3/2 of Gd31

in LaF3 using a single linearly polarized beam,2 Axe’s theory
predicted 69:29:1, in contrast to the measured ra
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320:5.4:1. Judd and Pooler introduced a first-order spin-o
perturbation to the intermediate states and predicted an
tensity ratio 470:3.4:1,9 which is close to the measured rati
In addition, their calculations also accounted for the pol
ization dependence of the TPA measured by Downer
Bivas.4 Downer and Bivas’s measurements also showed
complete violation of orbit and total angular-momentum s
lection rules, which are explained by extending Judd-Poo
approach to include perturbations due to the effect of
crystal-field interaction on 5d orbitals in the intermediate
states. Note that the ‘‘third-order’’ and ‘‘fourth-order’’ in
many theoretical work on two-photon transitions1,4,5,10,11are
‘‘first order’’ and ‘‘second order’’ here, respectively in th
sense of time-independent perturbation. The general exp
sions of the Judd-Pooler-Downer theory~often referred to as
JPD theory in the literature! for orbit- and spin-forbidden
transition were given by Ceulemans and Vandenbergh10

Calculations have been carried out for Tb31 in a cubic
lattice,11 Sm21 in SrF2,12,13 Eu21 in CaF2 and SrF2 ~Ref. 6!
and KMgF3,14 and Cm3115 and Eu3116 in LuPO4, in addi-
tion to Gd31 in LaF3. However, application of JPD theory t
Eu21 in CaF2 is less successful.6 The predicted intensity ra
tios for the linearly polarized transitions8S7/2→6P7/2 and
6D7/2 relative to 6D9/2 are larger than the measured ratios
factors of more than 100 and 10 times, respectively. This
been referred to as ‘‘the weakness of the third-order sp
orbit contributions.’’1 For transitions to the6I multiplets the
calculated intensities are 5–10 times smaller than the m
sured intensities. Downeret al. reasoned that a significan
part of the discrepancy results from a breakdown of clos
approximation, i.e., the approximation that the 4f 65d con-
figuration is degenerate. For the Eu21 ion in CaF2 and SrF2,
the lowest energy levels of the 4f 65d configuration are only
about 25 000 cm21 above the8S7/2 ground state of the 4f 7

configuration, and in fact are below the6P levels of 4f 7.
However, Downeret al. were unable to improve their calcu
lation significantly by relaxing the closure approximatio
With a reasonable choice of spin-orbital interaction streng
©2002 The American Physical Society08-1
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the 8S7/2→6P7/2 absorption rates for the circularly polarize
beam and the8S7/2→6P5/2 absorption rates are greatly re
duced, but the linearly polarized absorption of6P7/2 de-
creases by only a factor of 4–5. Therefore, this does
solve the ‘‘the weakness of the third-order spin-orbit con
butions,’’ and even makes the relative strength between
early and circularly polarized transitions to7P7/2 worse.
Such a situation also occurs in Eu21-doped KMgF3, where
the crystal-field interactions are much weaker, showing t
the puzzle is not closely related to the strength of the cry
field.

There are some other attempts to simulate the TPA in
sities in rare-earth ions. Burdick and Reid applied ma
body perturbation theory~MBPT! techniques to develop
consistent approach to include various perturbations.17 These
calculations are roughly equivalent to the Judd-Pooler ca
lations if both the spin-orbit interaction and Coulomb inte
action are included to infinite order.18 The Burdick-Reid ap-
proach fails to converge for Eu21 in CaF2 because the
Coulomb interaction is larger than the energy denomina
for the low-lying 4f 65d excited configuration. Instead of us
ing perturbation theory, Burdicket al.19 did a calculation of
the TPA of Eu21:CaF2 by explicitly summing over all the
intermediate free ion states of 4f 65d. This gave good agree
ment with measurements for6P and 6D levels, but the in-
tensities for the TPA to6I states are forbidden by orbita
angular-momentum selection rules under such an approx
tion.

It is now possible to explicitly calculate the energy leve
of the 4f 65d excited states, including the Coulomb intera
tion, spin-orbit interaction and crystal-field interaction.20 We
are carrying out a detailed TPA calculation for Eu21 in CaF2
by summing over all of these states.21 However, with such a
complex and time-consuming calculation, the results are
ficult to interpret and the effect of changes to the parame
are difficult to determine. Furthermore, including more int
mediate states such as 4f 6ng would greatly increase the
computational time, and so this is impractical.

Besides the puzzle of the TPA intensities, the variation
the TPA linewidth and the mechanism of relaxation are a
puzzling for Eu21 in CaF2: Some absorption lines of the6I
energy levels are much narrower than other lines, and
absorption line of6D1/2 is almost an order of magnitud
narrower than other neighboring6D lines.

In this paper we show that it is possible to explain t
TPA intensities with a relatively simple perturbation calcu
tion, similar to the JPD theory. We do this by a careful cho
of the zero-order Hamiltonian. The strongest interactions,
5d crystal-field interaction and the part of the Coulomb
teraction that splits states with different spins, are include
the zero-order Hamiltonian. The spin-orbit interaction
treated as a perturbation. The special properties of the h
filled 4f 7 shell are also exploited to simplify the calculatio
We present the method using many-body perturbation the
and group theory, with details for the case of an ion site w
Oh symmetry. The application to Eu21 in CaF2 predicts rela-
tive multiplet to multiplet transition intensities comparable
observations, and demonstrates the dependence of the i
sities onj5d /j4 f . The TPA linewidths of Eu21:CaF2 are also
15510
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analyzed qualitatively by exploring the selection rules for t
nonradiative relaxation of the 4f 7 states to 4f 65d states.

II. EFFECTIVE TWO-PHOTON TRANSITION
OPERATORS SUITABLE FOR ORBIT- OR SPIN-

FORBIDDEN TRANSITIONS

For ions with a half-filled, or nearly half-filled,f shell,
there is a large gap between the ground multiplets (8S7/2 for
f 7 and 7F0-6 for f 6 and f 8) of maximum spin and the excite
states of reduced spin. The measured TPA is between en
levels of the ground multiplet and energy levels of the e
cited multiplets with spin of one electron flipped. The tw
photon transitions are parity allowed because there are
odd-parity electric-dipole operators involved, connecting
initial and final states to intermediate states of opposite p
ity. These opposite-parity states may included andg-electron
excited states,d-electron core excitations, and continuumd
andg states, as well as ligand states withd- andg-electron
character. However, as then fN21(n11)d states have the
lowest energies, they may be expected to dominate. The t
sitions are spin forbidden, so that the mixing of states by
spin-orbit interaction plays an essential role. Some of
transitions are also orbit forbidden (DL.2) and therefore
the crystal-field interactions, especially the strongd-electron
crystal-field interaction, are also important. The Coulomb
teraction does not provide any relaxation of the spin-
orbit-forbidden selection rules, and therefore was not
cluded in the JPD theory.22 However, the splitting caused b
the Coulomb interaction will significantly affect the calcul
tion due to a modification of the energy denominator~i.e., it
causes a breakdown of the closure approximation! and thus
must also be considered. For the trivalent ions, the Coulo
interaction may be treated as a perturbation, but for the
valent ions we wish to consider here, the usual perturba
expansion will diverge. The perturbation expansion of t
d-electron crystal-field interactions converges slowly b
cause the magnitudes of those interactions are comparab
the n f-(n11)d splitting.

In contrast to previous work, for the calculations cons
ered below we include the most important parts of the C
lomb interaction, i.e., the spin-flip energy forf and d elec-
trons, and thed-electron crystal-field interaction into th
zeroth-order Hamiltonian:

H05(
i

e iai
†ai . ~1!

Here a† and a are creation and annihilation operator
respectively, ande i is the one-particle energy for energ
level i.

A schematic diagram of the ‘‘one-particle’’ energy leve
in a cubic site is shown in Fig. 1. Notice that the spin dire
tions indicated are only in the sense of parallel and antip
allel to the total spin of the maximum-spin states, and ha
nothing to do with the particular frame chosen. In the p
ticular case here, the lowest 4f 65d level is lower than the
sextet states of 4f 7 due to crystal-field splitting, which is
reflected bye↑ being lower than 4f ↓ . The other interactions
8-2
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not included inH0, the spin-orbit interactionsVso( f f ) and
Vso(dd), the crystal-field interactionsVc( f f ), and the re-
maining Coulomb interactionsVCoul8 , are considered as pe
turbations, i.e.,

V5Vso~ f f !1Vso~dd!1Vc~ f f !1V8Coul. ~2!

For Eu21 the 4f 7 ground states can be written as 4f ↑
7 and the

ground-state model space is chosen to contain only this s
states. The excited states of interest for the TPA are wri
as 4f ↑

5(4 f ↑4 f ↓) and the excited-state model space is cho
to contain only these states. For ions withf 6 and f 8 ground
configurations, the ground and excited states may be wri
as f ↑

6 , f ↑
6( f ↑ f ↓) and f ↑

4( f ↑ f ↓), f ↑
4( f ↑ f ↓)2, respectively.

According to MBPT, an effective operatorTTPA that acts
between the ground-state model space and the excited-
model space eigenvectors to give the exact transition ma
elements can be constructed, provided that the model s

FIG. 1. Schematic diagram for one-particle energy levels i
cubic site.e f d is the difference between the average energy of
n f orbitals and the (n11)d orbitals.U f andUd are the exchange
splittings forf andd orbitals, respectively, which are assumed to
isotropic. 10Dq is the splitting of (n11)d orbitals in a cubic site.
The spin-orbit splitting and the crystal-field splitting forn f are
neglected.
15510
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eigenvectors are appropriately normalized projections of
exact eigenvectors. The effective operator is usually
panded order by order in the perturbationV, and is repre-
sented by diagrams. The matrix element ofTTPA between a
basis functionuI &0 in the ground-state model space and
basis functionuF&0 in the excited-state model space can
calculated from those diagrams. Since the two model-sp
bases have well-defined spins and the electric dipole mom
operator does not change the spin, the zeroth-order term
TTPA is zero. In first order, only

Vso5Vso~ f f !1Vso~dd! ~3!

contributes. Three first-order terms have nonzero contri
tions:

(
S,QI

0^FuD•euS&0 0^SuD•euQI&0 0^QI uVsouI &0

@~EI
01EF

0 !/22ES
0#~EI

02EQI

0 !
~4!

1 (
S2 ,S1

0^FuD•euS2&0 0^S2uVsouS1&0 0^S1uD•euI &0

@~EI
01EF

0 !/22ES2

0 #@~EI
01EF

0 !/22ES1

0 #
~5!

1 (
QF ,S

0^FuVsouQF&0 0^QFuD•euS&0 0^SuD•euI &0

~EF
02EQF

0 !@~EI
01EF

0 !/22ES
0#

. ~6!

In the expression,uS&0 , uS1&0, anduS2&0 are eigenvectors o
H0, which are limited to thef N21d and f N21g configura-
tions due to the parity and angular-momentum selection ru
of the electric dipole operatorD•e. uQ& I (uQ&F) must be in
the spaces orthogonal to the ground-state model space
the excited-state model space, respectively. In the partic
cases considered here,uQ& I is in the excited-state mode
space anduQ&F is in the ground-state model space.E0 are the
eigenvalues ofH0 for the corresponding bases denoted
the subscripts.

There are two nonzero diagrams for each of the th
terms, which are shown in Fig. 2. MBPT tells us that t
Pauli exclusion principle can be relaxed if it is done cons
tently, and the three disconnected diagrams cancel under

a
e

d
ach
FIG. 2. First-order diagrams for two-photon transitions.f 1 , f 2 , f 3 , f 18 , f 28 , andf 38 aref shell orbitals, andm, m1 andm2 are orbitals with
even parity.f 1 and f 2 are always parallel and antiparallel, respectively, to the total spinSmax of the maximum spin states of the half-fille
shell. f 18 and f 28 are both parallel or both antiparallel toSmax. The spin directions of the other orbitals are uniquely determined in e
diagram by the fact that the spin of the outgoing particles cannot be changed byD vertices and is changed by aVso vertex. The one-particle
energy depends on the spin direction of the orbital.
8-3
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choice. The cancelation can easily be verified for the th
disconnected diagrams: the matrix elements are the same
the three factors from the denominators add up to zero.

Group theory and tensor techniques are widely used
spectroscopy to clarify selection rules and to simplify calc
lations. Eigenstates and~transition! operators can be ex
panded in terms of basis states and basis operators that
well-defined transformation properties under symmetry
erations. Basis states and operators are labeled by irredu
representations~irreps! of a group chain that characterize th
system. We choose the group chain for the ion site asO3

s

3O3
l .O3

j .G.C1, whereG is the site symmetry. We de
note the partner for this group chain ass• l 6alb, wheres is
an irrep ofO3

s ~with positive parity!, l 6 is an irrep ofO3
l

whose parity is denoted as a supscript, andalb are labels for
theO3

j .G.C1 group chain, withl being an irrep ofG and
a and b being multiplicity labels. In the following we will
often abbreviatealb to a single labelc and describe the
labels of states or operators ass• l 6c. Parity supscripts will
also be neglected in most cases unless this causes am
ities. For example, bases forf ~d! orbitals will be labeled as
u1/2•3cf& (u1/2•2cd&) and a component of dipole mome
operator will be labeled asD0•1c. The labels of irreps and
multiplicities for point groups in this paper will follow But
ler’s convention.23

D•e can be expanded in terms of the electric dipole o
erator componentsD0.1c as

D•e5(
c

D0•1ce0•1c . ~7!

In order to evaluate the three connected diagrams, we us
general relation

(
i

u i &^ i u
e2e i

5
1

e2h
, ~8!

where u i & and e i are normalized eigenvectors and eigenv
ues of an arbitrary Hamiltonian operatorh respectively, and
e is an arbitrary constant.

The three connected diagrams can be evaluated
MBPT diagram rules. We notice that the denominators
Eqs. ~4!–~6! are slightly different from those of the third
order terms in an effective Hamiltonian. We will give th
expression only for diagrams~2a!. For ~2a!, m1 andm2 can
be eitherd or g orbitals, with spins parallel and antiparall
to the initial maximum spin states, respectively. Here we w
limit them to (n11)d orbitals, which are the most importan
contributions toTTPA . The energies form1 and m2 are e f d

2Ud/21em1
8 and e f d1Ud/21em2

8 , respectively. Hereem8

(m5m1 or m2) is the crystal-field energy determined by th
crystal-field Hamiltonianhcf

d , which are26Dq and 4Dq for
e andt2 one-particle energy levels, respectively, for Eu21 in
CaF2. By using the denominator rules required by Eq.~5!
and then using Eq.~8! to replace the summation over ener
denominators,(mum&^mu/@2(e f d6Ud/2)2em8 #, ~2a! can be
written as
15510
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~2a!5 (
cf 1

,cd1
,cd2

,cd3
,cd4

,cf 2

a1/2•3cf 1

† a1/2•3cf 2

3^1/2•3cf 1
uD•eu1/2•2cd1

&

3K 1/2•2cd1U 1

2~e f d1Ud/2!2hcf
d U1/2•2cd2L

3^1/2•2cd2
uVsou1/2•2cd3

&

3K 1/2•2cd3U 1

2~e f d2Ud/2!2hcf
d U1/2•2cd4L

3^1/2•2cd4
uD•eu1/2•3cf 2

&. ~9!

In the above expressions, the intermediate one-particle o
als can only be in (n11)d orbital space, and therefore th
projection operator for this space,(cdi

u1/2•2cdi
&^1/2•2cdi

u,

has been inserted wherever appropriate. The expression
the other two connected diagrams~1a! and ~3a! can be de-
rived in a similar manner.

As both Vso and the denominators are invariant und
transformations of the site symmetry groupG, the effective
operatorTTPA must transform the same way as the two
pole moments do under groupG. We shall make use of this
property, the double tensorW1•KcK and the polarization fac-
tor (ee)DcD

defined below to simplify the calculation in th

following. W1•KcK can be written in terms of 2jm’s (•••)
and vector coupling coefficientŝ•••,•••u•••& ~Ref. 23! as

W1•KcK52~a1/2•3
† ã1/2•3!1•KcK ~10!

52 (
c1 ,c2

a1/2•3c1

† a1/2•3c2
~1/2•3 c2* !

3^1/2•3c1 ,1/2•3c2* u1•KcK&. ~11!

The polarization factor (ee)DcD
is defined as

~ee!DcD
5 (

c1 ,c2

^DcDu1c1 ,1c2&e1c1
e1c2

. ~12!

TTPA can be written in terms ofW1•KcK and (ee)DcD
as

TTPA5 (
KaK ,DaD ,l

wKaK ,DaD ,l(
b

W1•KKaKlb~ee!DaDlb ,

~13!

where the coefficient
8-4



re
in

nts

t
ffi-

MANY-BODY PERTURBATION THEORY FOR SPIN- . . . PHYSICAL REVIEW B 66, 155108 ~2002!
wKaK ,DaD ;l5(
i 51

3

wKaK ,DaD ,l
i ~14!

is the sum of the corresponding coefficients from the th
connected diagrams. We shall also make use of the follow
expansion for denominators:

1

e2hcf
5d

5(
Ka

aKa~e!U0•KKa00~5d,5d!, ~15!

whereaKa can be written by using 2jm(•••), 3jms (•••,
•••,•••) and the dimension of an irrepulu as23
15510
e
g

aKa~e!5 (
l,a1 ,a2

K 1/2•2a1lU 1

e2hcf
5dU1/2•2a2lL

3
uKu

ulu1/2
~1/2•2 a1 l!

3~1/2•2 a1* l* , 0•K1 a 0, 1/2•2 a2 l!.

~16!

In the following we shall use the reduced matrix eleme
~RME’s! ^h fsf• l fafl f uuTS•Laluuh isi• l iail i&m , which can
be calculated from̂h fsf• l f uuTS•Luuh isi• l i& with the Wigner-
Ekart theorem. Herem is the multiplicity of l f in the cou-
pling of l and l i . With Eq. ~15! and some complex bu
straightforward recoupling manipulations, the three coe
cientswKa ,Da ,l

i can be written as

K D
wKaKlK ,DaD

1 52 (
D,af 1

,•••,af 2
,l f 1

,•••,l f 2
,s1 ,•••,s4

aDaD
~2e f d2Ud/2!/~2U f !

3^1•KaKlKu1/2•3af 1
l f 1

,1/2•3af 2
* l f 2

* &s3
^DaDlKuD1aD1

lD1
,D2aD2

lD2
&s4
*

3^lD1
~lD2

l f 2
!s2ld ;s1l f 1

u~lD1
lD2

!s4lK ,l f 2
;s3l f 1

&ulKu21/2$lK%$l f 1
l f 2

* lK%s3

3~1/2•3 af 2
* l f 2

* !^1/2•3 af 1
l f 1

uuD0•1 aD1
lD1uu1/2•2 ad1

ld&s1

3u1/2•2u21/2^1/2•2 ad1
lduuU0•D aD 0uu1/2•2 ad2

ld&

3u1/2•2u21/2^1/2•2 ad2
lduuD0•1 aD2

lD2uu1/2•3 af 3
l f 2

&s2

3u1/2•3u21/2^1/2•3 af 3
l f 2

uuV
so

1•1 aVso
0
uu1/2•3 af 2

l f 2
&, ~17!

wKaKlK ,DaD

2 52 (
D1 ,D2 ,af 1

,•••,af 2
,l f 1

,•••,l f 2
s1 ,•••,s4

aD1aD1
~2e f d2Ud/2!aD2aD2

~2e f d1Ud/2!

3^1•KaKlKu1/2•3af 1
l f 1

,1/2•3af 2
* l f 2

* &s3
^DaDlKuD1aD1

lD1
,D2aD2

lD2
&s4
*

3^lD1
~lD2

l f 2
!s2ld ;s1l f 1

u~lD1
lD2

!s4lK ,l f 2
;s3l f 1

&ulKu21/2

3$lK%$l f 1
l f 2

* lK%s3
~1/2•3 af 2

* l f 2
* !^1/2•3 af 1

l f 1
uuD0•1 aD1

lD1uu1/2•2 ad1
ld&s1

3u1/2•2u21/2^1/2•2 ad1
lduuU0•D1 aD1

0uu1/2•2 ad2
ld&u1/2•2u21/2

3^1/2•2 ad2
lduuV

so

1•1 aVso
0
uu1/2•2 ad3

ld&u1/2•2u21/2

3^1/2•2 ad3
lduuU0•D2 aD2

0uu1/2•2 ad4
ld&u1/2•2u21/2

3^1/2•2 ad4
lduuD0•1 aD2

lD2uu1/2•3 af 2
l f 2

&s2 , ~18!
8-5
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wKaKlK ,DaD

3 52 (
D,af 1

,•••,af 2
,l f 1

,•••,l f 2
s1 ,•••,s4

aDaD
~2e f d1Ud/2!/~U f !

3^1•KaKlKu1/2•3af 1
l f 1

,1/2•3af 2
* l f 2

* &s3
^DaDlKuD1aD1

lD1
,D2aD2

lD2
&s4
*

3^lD1
~lD2

l f 2
!s2ld ;s1l f 1

u~lD1
lD2

!s4lK ,l f 2
;s3l f 1

&ulKu21/2

3$lK%$l f 1
l f 2

* lK%s3
~1/2•3 af 2

* l f 2
* !^1/2•3 af 1

l f 1
uuV

so

1•1 aVso
0
uu1/2•3 af 3

l f 1
&u1/2•3u21/2

3^1/2•3 af 3
l f 1

uuD0•1 aD1
lD1uu1/2•2 ad1

ld&s1
u1/2•2u21/2

3^1/2•2 ad1
lduuU0•D aD 0uu1/2•2 ad2

ld&u1/2•2u21/2

3^1/2•2 ad2
lduuD0•1 aD2

lD2uu1/2•3 af 2
l f 2

&s2
. ~19!
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In the above equations, thea’s are branching multiplicities
for O3

s3O3
l .G, thel ’s are irreps for groupG, s’s are cou-

pling multiplicities for group G, ^lD1
(lD2

l f 2
)

•••u(lD1
lD2

)•••& is a recoupling coefficient for irreps ofG,

$lK% and $l f 1
l f 2

* lK% are 2j and 3j phases, andulu is the

dimension of irrepl. All the factors determined solely b
group theory are tabulated by Butler,23 and can also be cal
culated withRACAH.24

The effectiveTTPA operator can be used to calculate tw
photon transition line strengths once the model-space ei
vectors are known. It is important to realize that our expr
sions forTTPA are only valid when the bra and ket are in t
excited- and ground-state model spaces, respectively, ne
sarily making theTTPA operator not Hermitian. We denot
the model space eigenvectors asuhlb&, wherel is the irrep
for group G, b distinguishes the partners ofl, and h is a
label to distinguish those states with the given symme
labels (l andb here!. The line strength for the TPAuh fl f&
←uh il i& is

I ~h fl f ,h il i !5 (
bf ,bi

u^h fl fbf uTTPAuuh il ibi&u2

5 (
D1d1D2d2l

PD1d1 ,D2d2 ;l

3
^h fl f uuTD1d1

l uuh il i&^h fl f uuTD2d2

l uuh il i&*

ulu
,

~20!

where

PD1d1 ,D2d2 ;l5(
b

~ee!D1d1lb~ee!D2d2lb* , ~21!

TDd
l 5 (

SLJa
wS•L Ja l, DdWS•L Ja l. ~22!
15510
n-
-

es-
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In this paper, we calculate only the total line strengt
between two multiplets (h iJi) to (h fJf), whereh are extra
labels to distinguish multiplets with the sameJ label. This
can be written as

I ~h fJf ,h iJi !5 (
D1d1D2d2Jal

PD1d1 ,D2d2 ;l

3
^h fJf uuTD1d1

Ja8l uuh iJi&^h fJf uuTD2d2

Ja8l uuh iJi&*

2J11
,

~23!

where

TDd
Ja8l5(

SL
wSLJal,DdWS•LJ, ~24!

anda8 is the multiplicity for the branchingO3
j .G.

III. RELATIVE PROBABILITIES FOR MULTIPLET
TO MULTIPLET TWO-PHOTON ABSORPTION

OF Eu2¿ IN CaF2

In CaF2 Eu21 occupies Ca21 site withOh symmetry, with
eight nearest F2’s on the corners of a cube. The singl
particle 4f and 5d energy levels are shown in Fig. 1. Th
TPA amplitude is calculated from Eq.~13!, which requires
various physical parameters as inputs. The average chan
energies due to the exchange interaction when the spi
one of the 4f 7 electrons is flipped isU f , and when the spin
of the 5d electron of 4f 65d is flipped isUd . These may be
calculated as

U f5
63

8
E12

200

3
E2538 000 cm21, ~25!

Ud5
3

5
G1~4 f ,5d!1

4

15
G3~4 f ,5d!1

10

33
G5~4 f ,5d!

~26!

where E1 and E2 are Racah parameters, which are line
combination of 4f -4 f Coulomb radial integralsFK(4 f ,4f )
8-6
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(K52,4,6),25 and GK(4 f ,5d) (K51,3,5) are 4f -5d Cou-
lomb exchange radial integrals. TheFK(4 f ,4f ) values used
here are the same as those used by Downeret al.6 The
GK(4 f ,5d) values can be determined from modified free-i
calculations.26 The comparison of theoretical and experime
tal exchange splitting of 4f N215d configuration for trivalent
heavy lanthanides20 indicates that the calculated values ne
to be scaled down roughly by a factor of 2/3, and this red
tion is partly due to nephaluxic effects.20 This would give
Ud'7500 cm21. The drastic broadening of TPA peaks c
be better explained by a value ofUd'6500 cm21 ~see Sec.
IV !. So we shall useUd'6500 cm21 in our calculations.
The crystal-field interaction splits the 5d orbitals into two
energy levels, namely,e and t2, by 10Dq . From the one-
photon spectra of Eu21:CaF2 we obtain experimental value
e f d521 000 cm21 and 10Dq516 000 cm21. The a coeffi-
cients of Eq.~16! are functions of these energy paramete
Only two of thea ’s are nonzero, i.e.,a0 which multiplies
U0•000 anda4 which multipliesU0•440. We obtain

a0~e!5A2

5S 2

e2eeg

1
3

e2e t2g
D , ~27!

a4~e!5
18

A15S 1

e2eeg

2
1

e2e t2g
D , ~28!

whereeeg
526Dq ande t2g

54Dq are the one-particle energ

levels ~relative to the barycenter! of the 5d orbitals. The
polarization dependence is greatly simplified for a site ofOh
symmetry. There are only three polarization factors, wh
can be fully distinguished by the irrepsl5A1g , Eg , and
T2g . Three independent polarization measurements f
characterize the polarization dependence of single-beam
photon transitions of sites withOh symmetry.6 The multiplet
to multiplet transition line strength for this symmetry simp
fies to

I ~h fJf ,h iJi !5(
Jal

Pl

u^h fJf uuTal
J uuh iJi&u2

2J11
, ~29!

where

Tal
J 5(

SL
wSLJalWS•LJ. ~30!

The polarization factorsPl defined by Eq.~21! for the crys-
tal orientations used by Downeret al.6 are given in Table I.

TABLE I. The polarization vectors and polarization factors f
the three laser beams used in the measurements of Downeret al.
~Ref. 6!.

Label Polarization vector PA1g
PEg

PT2g

1 0 0 z 1/3 2/3 0
1 1 1 (x1y1z)/A3 1/3 0 2/3
circular i (x1y)/26z/A2 0 3/8 5/8
15510
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The eigenvectors for states in 4f 7 configuration can be
calculated by fitting the experimental energy levels with
well-established phenomenological Hamiltonian.27 The
model-space eigenvectors required by our calculation
then be obtained by projecting the phenomenological eig
vectors into the corresponding model space. The mo
space for the initial states contains only8S7/2 multiplet and
the model space eigenvectors can be determined solel
symmetry considerations. The model space for the fi
states contains all sextet terms and the model space e
vectors will be a mixture of all sextet bases. We shall cal
late the line strength between multiplets by neglect theJ
mixing caused by crystal field. We denote the free-ion mo
space multiplet eigenvector dominated by2S11LJ as
@2S11L#J . Neglecting components with less than 1% cont
butions, the multiplets concerned are obtained by using
free-ion parameters for Eu21:CaF2 given by Downeret al.6

as follows:

@SL#J5SLJ for 8S7/2 and all6I J , ~31!

@6P#7/250.9326P7/220.3636D7/2, ~32!

@6P#5/250.9346P5/220.3576D5/2, ~33!

@6P#3/250.9646P3/220.2686D3/2, ~34!

@6D#9/250.9836D9/220.1806F9/2, ~35!

@6D#7/250.9196D7/210.3466P7/220.1876F7/2, ~36!

@6D#5/250.9196D5/210.3596P5/220.1616F5/2, ~37!

@6D#3/250.9566D3/210.2676P3/220.1186F3/2, ~38!

@6D#1/250.9986D1/220.0636F1/2. ~39!

Note that the eigenfunctions have been renormalized bec
we have omitted all multiplets other than sextets. It can
seen from the multiplet model space wave functions and
angular-momentum selection rules that onlyW1•1, W1•2,
W1•3, andW1•6 in Eq. ~13! contribute to the TPA intensities
for these transitions. The expressions for the correspond
coefficients in terms of energy level parameters and the
ues for the case of Eu21 in CaF2 are given in Table II.

The RME’s ofW1•K between sextets and octets are giv
by

^6LuuW1•Kuu8S&5~21!K11dLK2@2~2K11!#1/2, ~40!

from which we can calculate the RME’s between two m
tiplets. The RME’s used in our calculations are given
Table III.

It can be seen from the wave functions for each multip
and the comparable magnitude ofw1.•••KJa8l that the inten-
sities for final states6I J (J57/2, . . . ,17/2) and 6DJ (J
53/2, . . . ,9/2) arise mainly from the contributions from
W1.6Ja8l and W1.2Ja8l respectively and depend onh
5j5d /j4 f(normally,1) weakly. In contrast, the intensitie
for 6PJ depend strongly on the ratioh. The calculated in-
tensities for the three polarizations and the correspond
8-7



C. K. DUAN, M. F. REID, AND G. W. BURDICK PHYSICAL REVIEW B66, 155108 ~2002!
TABLE II. The nonzero coefficients of thoseW1KJa8l, i. e.,w1•KJa8l , that contribute to the measured TPA intensities of Eu21 in CaF2 .
aK

1 5aK(2e f d2Ud/2), aK
2 5aK(2e f d1Ud/2), and a521/U f . Their values for Eu21 in CaF2 are a0

15214.44/(105 cm21), a4
15

215.76/(105 cm21), a0
25224.56/(105 cm21), a4

25241.10/(105 cm21), a522.632/105 cm21, andh5j5d /j4 f . The unit is^ f ur ud&2 for
the second column andj4 f^ f ur ud&2/(105 cm21)2 for the third column.

1•K J a8 l expressions for site symmetryOh Eu21: CaF2

1•1 0 A1g 3
A35

35
j4 f~a0

12a0
2!a1

A14

35
j5d~a0

1a0
22

2
27a4

1a4
2! 211.4132.1h

1•1 2 Eg 29
A35

350
j4 fF ~a0

12a0
2!1

A6

126
~a4

12a4
2!Ga 3.5926.99h

2
A14

175
j5dFa0

1a0
21

A6

56
~a0

1a4
21a4

1a0
2!2

37
378a4

1a4
2G

1•1 2 T2g 29
A35

350
j4 fF ~a0

12a0
2!2

A6

189
~a4

12a4
2!Ga 3.3126.04h

2
A14

175
j5dFa0

1a0
22

A6

84
~a0

1a4
21a4

1a0
2!2

11
189a4

1a4
2G

1•2 2 Eg 23
A105

350
j4 fF ~a0

11a0
2!1

A6

126
~a4

11a4
2!Ga1

A7

2940
j5d~a0

1a4
22a4

1a0
2! 29.0710.156h

1•2 2 T2g 23
A105

350
j4 fF ~a0

11a0
2!2

A6

189
~a4

11a4
2!Ga2

A7

4410
j5d~a0

1a4
22a4

1a0
2! 28.6720.104h

1•2 3 T2g 2
A14

8820
j5d~a0

1a4
22a4

1a0
2! 20.073h

1•3 2 Eg 13
A105

175
j4 fF ~a0

12a0
2!1

A6

126
~a4

12a4
2!Ga 24.14116.8h

13
A42

350
j5dFa0

1a0
21

A6

756
~a0

1a4
21a4

1a0
2!243/567a4

1a4
2G

1•3 2 T2g 3
A105

175
j4 fF ~a0

12a0
2!2

A6

189
~a4

12a4
2!Ga 23.83119.1h

13
A42

350
j5dF ~a0

1a0
2!2

A6

1134
~a0

1a4
21a4

1a0
2!2

124
1701a4

1a4
2G

1•3 3 T2g 11
A5

2520
j5d@~a0

1a4
21a4

1a0
2!22A69a4

1a4
2# 0.538h

1•3 4 A1g 211A5630j4 f~a4
12a4

2!a2
A2

140
j5dF ~a0

1a4
21a4

1a0
2!22

A6

9
a4

1a4
2G 2.1826.13h

1•3 4 Eg 1
A14

441
j4 f~a4

12a4
2!a1

A35

2940
j5dF ~a0

1a4
21a4

1a0
2!22

A6

9
a4

1a4
2G 20.47411.22h

1•3 4 T2g 1
A14

882
j4 f~a4

12a4
2!a1

A35

5880
j5dF ~a0

1a4
21a4

1a0
2!22

A6

9
a4

1a4
2G 20.23710.610h

1•6 5 Eg 1
A715

4620
j5d~a0

1a4
22a4

1a0
2! 1.00h

1•6 5 T2g 1
A715

3465
j5d~a0

1a4
22a4

1a0
2! 1.33h

1•6 6 Eg 1
A385

154
j4 fF ~a4

11a4
2!a2

A10

15
~a0

1a4
22a4

1a0
2!j5dG 18.224.65h

1•6 6 0 T2g 2
A2

21 F j4 f~a4
11a4

2!a2
A10

15
j5d~a0

1a4
22a4

1a0
2!G 29.6312.46h

1•6 2 1 T2g 23
A110

308
@j4 f~a4

11a4
2!a2A10/15j5d~a0

1a4
22a4

1a0
2!# 214.613.72h
155108-8
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TABLE III. Reduced matrix elements for the coupled double tensorsW1•KQ between pureSL multiplets
6LJ and 8S7/2.

J 1/2 3/2 5/2 7/2 9/2 11/2

^6PJuuW1.10uu8S7
2
&

2A2
3

^6PJuuW1.12uu8S7
2
&

4A1
3

6A1
7

2A5
7

^6DJuuW1.22uu8S7
2
& 4

A21
3A2

7
10

A21
A110

21

^6DJuuW1.23uu8S7
2
&

22A2
3

24A2
7 2

6

A7
22A22

21
22A11

21

^6FJuuW1.32uu8S7
2
& 2

7A3

2A3
7

4
7
A10

3
10
7
A5

3
2A15

7

^6FJuuW1.33uu8S7
2
&

2A 2
21

2A5
7

2A15
7

22A22
21

25A 5
21

2A39
7

^6FJuuW1.34uu8S7
2
&

3A2
7

15
7

5A11
7

2A66
7

A195
7

A13
7

J 7/2 9/2 11/2 13/2 15/2 17/2

^6I JuuW1.65uu8S7
2
&

2
2

A39
22A 5

39 2
12

A91
25A 2

13
210A 22

273
23A22

13

^6I JuuW1.66uu8S7
2
& 2

A3

10
7
A5

3
12A2

7
A170

21
2A110

7
3A38

7
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experimental data for multiplet to multiplet TPA intensitie
with h50.60 are plotted in Fig. 3. The calculated intensit
have been scaled to match the measured intensities
6D9/2. The overall agreement between the calculated and
measured relative TPA line strengths is very good, exc
that for@6D#1/2, where the calculated intensities is negligib
because we do not consider the ‘‘J mixing’’ of wave func-
tions in our model. The most significantJ mixing in @6D#1/2
will be 6I 7/2 and 6D7/2 due to crystal-field interactions. A few
15510
s
for
he
pt

percent of6I 7/2 and/or 6D7/2 mixed in @6D#1/2 could explain
the measured intensities. The calculated intensities
@6P#3/2 are very small, and the TPA transitions have not be
observed. The calculated intensities for@6P#7/2 and @6P#5/2
are greatly improved and are in good agreement with
measurements. The predictions of JPD theory for a linea
polarized transition to@6P#7/2 are larger than measuremen
by two orders of magnitude, and for other observable tran
tions to the@6P# multiplets and the@6D# multiplet are larger
r

nd
si-

si-
e

FIG. 3. Relative TPA cross sections fo
Eu21:CaF2 for the three different polarizations
used by Downeret al. ~Ref. 6!. For each column,
the first three bars~with solid borders! are calcu-
lated and the other three bars~with dashed bor-
ders! are taken from Downeret al. ~Ref. 6! ~the
measured intensities are in arbitrary units a
have been scaled to match the calculated inten
ties for @6D#9/2). The intensities for@6P#3/2 are
too small to measure, and the calculated inten
ties for @6D#1/2 are negligibly small, and so thes
results do not appear in the figure.
8-9
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than measurements by one order of magnitude. For the@6I #
multiplets, the agreement between our calculations and
measurements is also much better than predictions of
theory. Another important aspect is the polarization dep
dence of the TPA. For the@6P#7/2 multiplet, the calculated
intensity for circular polarization is only one-sixth of that fo
the linear polarization, in good agreement with the measu
ments. For the@6I # multiplets and the@6D# multiplets, the
absorption of the~111! beam is calculated to be only sligh
weaker than or equal to that of~100!, and is about two-thirds
of that of the circular polarization. However, the experime
tal intensities for~111! are significantly smaller. The relativ
TPA intensities change very little with a largerUd ~i.e., using
the calculated value 7500 cm21) if a slightly larger h
5j5d /j4 f ~i.e., 0.65! is used.

The transition intensities for individual lines can also
calculated by using Eq.~20!, provided that the wave func
tions for stark levels are known. However, it is well-know
that for ions with a half-filled shell, the correlation cryst
field is important in fitting the crystal-field energy levels, a
the wave function depends strongly on the correlation cry
field21 and the fitting of energy levels is not a easy task. O
method could also be extended to includeg orbitals in inter-
mediate states and the ligand polarization proposed by R
and Richardson.28

IV. ANALYSIS OF THE TPA LINEWIDTH OF Eu 2¿:CaF2

For the TPA in Eu21:CaF2,3,5 typical linewidths for tran-
sitions to the 6P multiplets ~energy E
527550–28000 cm21), the 6I multiplets (E
530700–31800 cm21), and the 6D multiplets (E
533850–34950 cm21) are approximately 2, 30, an
60 cm21, respectively. Surprisingly, there are some sh
peaks in the6I region and the6D1/2 peak, in the middle of
the 6D region, has a linewidth of approximately 8 cm21.
Downeret al.6 explained the general trend of the linewidt
in terms of the nonradiative relaxation of 4f 7 states to those
4 f 65d states: the lowest 4f 65d states are octets and rela
ation from the6P multiplets to these octets is spin forbidde
and consequently the lines are sharp; there are some s
4 f 65d energy levels low enough that the6I multiplets can
relax to them, and therefore the lines are much broader;
6D multiplets have even more sextets available to relax
and so the lines are even broader. However the except
were not explained. In the following we use various select
rules to explain the linewidths.

We can write an approximate effective Hamiltonian f
the 4f 65d states (7F,2e) as follows:

Heff~
7F,2e!5Eav2

2Ud

7
Sf"sd1

j4 f

6
Sf"Lf. ~41!

Here Eav is the barycenter energy of the (7F,2e) states,
which does not contribute to the splitting. The second te
represents the exchange interaction between 4f 6 and 5d,
which splits (7F,2e) into an octet and a sextet. The thir
term represents the spin-orbit interaction of the 4f electrons,
which is smaller in magnitude than the second term~the
15510
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spin-orbit interaction of 5d cannot split the2e states, and is
not included!. The part of the direct Coulomb interaction th
shifts (7F,2e) as a whole can be absorbed intoE av. The
remaining Coulomb interaction between 4f 6 and 5d and the
4 f crystal-field interactions are neglected.

In order to solve Hamiltonian~41!, we shall define two
angular-momentum operators, i.e.,

S5Sf1Sd , ~42!

J5S1L f . ~43!

S is the angular momentum for the total spin.S commutes
with the second term of effective Hamiltonian~41!, which
gives the majority of the splitting.J is an angular-momentum
operator that commutes withHeff . Note thatJ is different
from the total angular-momentum operator of 4f 65d system
in that it does not include the orbital angular momentum
the 5d electrons, which can be considered to be quenched
the crystal-field splitting.S2, Lf

2, andJ commute and there
fore have common eigenfunctions u2S11FJ& (J
51/2, . . . ,11/2 for S55/2 and J51/2, . . . ,13/2 for S
57/2), which can be chosen as bases for (7F,2e).

The matrix elements of the effective Hamiltonian~41! can
be written as

^2S11FJuHeff ~
7F,2e!u2S811FJ8&

5dJJ8
H dSS8

FUd

28
@5124S~S11!#

1j4 f
S S 22

2S11

7 D ~2J11!2

48
22D G

2dS,S861

j4 f

24
~2J11!A12S 2J11

14 D 2J .

~44!

Since there is only one state withJ513/2, one of the the
eigenvectors for the effective Hamiltonian is8F13/2, with an
eigenvalueEav23Ud/713j4 f /2. The other eigenvectors an
eigenvalues are obtained by diagonalizing 232 matrices.
Since the exchange interaction is much larger than the s
orbit interaction, the matrices are approximately diago
and so the eigenvectors are approximately2S11FJ and the
corresponding eigenvalues are approximately the diago
matrix elements^2S11FJuHeff (

7F,2e)u2S11FJ&, with only
small corrections from off-diagonal matrix elements.

The vibronic crystal-field Hamiltonian responsible fo
nonradiative relaxation that links 4f 7 states with 4f 65d
states annihilates~creates! a 5d electron and creates~annihi-
lates! an 4f electron. Hence it can be written in second qua
tized form as

H int5(
k,q

bq
k~af

1 (1/2•3)ad
(1/2•2)!q

(0•k)k1c.c., ~45!
8-10
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wherebq
k (k51,3,5,q52k,2k11•••k) are odd-parity dy-

namic crystal-field parameters, and the complex conjug
~c.c.! is required to makeH int hermitian. The dynamic
crystal-field interaction is spin independent and of odd par
Therefore, the spins of the creation and annihilation ope
tors must couple to give a spin scalar (S50) and the orbital
angular momentum of a 4f electron (3) and of a 5d electron
(2) must couple to give an odd total orbital angular mom
tum k. Since the orbital angular momentum of the 5d elec-
tron is considered to be quenched, the angular-momen
operator defined by Eq.~43! has a total spin 0 coupled wit
the f electron orbit angular momentum 3, and so the result
quantum number for the operatorJ in Eq. ~43! can only be 3.
This is clearer if we rewriteH int in the following form:

H int5(
k,q

bq
k~af

1ad!q
(((

1
2 •

1
2 )0•3)3•2)k

1c.c. ~46!

Now we consider the 4f 7 states. Neglecting the ‘‘J mixing’’
caused by the crystal-field interaction and the ‘‘S mixing’’
caused by the spin-orbit interaction, the 4f 7 states can be
written as2Sf11L f Jf

. Since 4f 7 contains no 5d electrons the

quantum number forS in Eq. ~42! is justSf and the quantum
number forJ in Eq. ~43! is just Jf .

The nonradiative relaxation of u4 f 72Sf11L f Jf
& to

u4 f 65d2S11FJ& due toH int will therefore obey the following
selection rules:

Sf5S, ~47!

u32Jf u<J<u31Jf u. ~48!

A schematic diagram of the energy levels of 4f 7 and 4f 65d
is given in Fig. 4. Note that theJ label for 4f 65d is the
quantum number forJ defined by Eq.~43!, rather than the
usual total angular momentum. The states of (7F,2e), char-
acterized by quantum numbersS andJ, are shifted and split
by previously neglected interactions by a few hundred w
numbers. This is indicated by the shaded areas in the fig
In the figure we have usedUd'6500 cm21 and j4 f
51200 cm21. This Ud value is necessary to have the sex
states low enough to explain the nonradiative relaxati
Now we can explain the various linewidths for the TPA spe
tra. The narrow linewidth of the6PJ states can be explaine
by spin selection rules because there are only octet state
4 f 65d for them to relax to. The broadening of some of the6I
states is due to spin-allowed nonradiative relaxation of th
to the sextet 4f 65d states below. The selection rule forJ
indicates that the6I Jf

states of 4f 7 can only relax rapidly to
6FJ states of 4f 65d with J>Jf23. Since only states ofJ
<7/2 are close in energy to the6I Jf

states~see Fig. 4!, the
6I Jf

states withJf>15/2 cannot relax efficiently, so thes

lines are sharp. For6DJf
the only nearby 4f 65d states have

J511/2 and 9/2 and so the6D1/2 state cannot relax effi
ciently, giving a sharp line. Note that even the ‘‘sharp’’6I
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and 6D lines are broader than the6P lines, due to the
‘‘ J-mixing’’ breaking down the selection rules.

V. CONCLUSION

A simple method to calculate the spin-forbidden tw
photon transition rates forf N (N56, 7, and 8) ions in crys-
tals based on many-body perturbation theory and gr
theory has been developed. This theory includes the exci
state crystal-field interactions and the dominant part of C
lomb splitting in the zeroth-order Hamiltonian. A particula
case of this method, the TPA of af N ion in an Oh site, is
treated in detail, and a comparison with experimental dat
made for Eu21 (4 f 7) in CaF2. The theory reproduces th
measurements very well. The dependence of two-pho
transition intensities on the spin-orbit interaction paramet
is made clear with this method. This solves the so-cal
‘‘unusual weakness of third-order spin-orbit contributions.6

This method could be extended to include other intermed
states and ligand polarizations. It is expected that the met
herein can also solve the puzzling problems of the spin
orbit-forbidden two-photon transitions in other cases such
Sm21 in SrF2 and Eu21 in KMgF 3.14

Nonradiative relaxation mechanisms have also been c
sidered. The unusually small linewidths for some TPA pea
have been explained by angular-momentum selection r
for nonradiative relaxation based on a simple effect
Hamiltonian.

FIG. 4. Schematic diagram of the energy levels of 4f 7 and
4 f 65d. Note that theJ label for 4f 65d is the quantum number fo
the J defined by Eq.~43!, rather than the usual total angular m
mentum. The states of (7F,2e), characterized by quantum numberS
andJ are further shifted and split by a few hundred wave numb
by interactions not included in the Hamiltonian@Eq. ~41!#. This is
indicated by the shaded areas in the figure. In the figure we h
usedUd'6500 cm21 andj4 f51200 cm21.
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