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Optimization of inhomogeneous electron correlation factors in periodic solids
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A method is presented for the optimization of one-body and inhomogeneous two-body terms in correlated
electronic wave functions of Jastrow-Slater type. The most general form of inhomogeneous correlation term
which is compatible with crystal symmetry is used, and the energy is minimized with respect to all parameters
using a rapidly convergent iterative approach, based on a Monte Carlo sampling of the energy and a fitting of
energy fluctuations. The energy minimization is performed exactly within statistical sampling error for the
energy derivatives, and the resulting one- and two-body terms of the wave function are found to be well
determined. The largest calculations performed require the optimization of over 3000 parameters. The inho-
mogeneous two-electron correlation terms are calculated for diamond and rhombohedral graphite. The optimal
terms in diamond are found to be approximately homogeneous and isotropic over all ranges of electron
separation, but exhibit some inhomogeneity at short and intermediate ranges, whereas those in graphite are
found to be homogeneous at short range, but inhomogeneous and anisotropic at intermediate- and long-range
electron separations.
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I. INTRODUCTION

An accurate description of electron correlation is one
the central issues in modern electronic structure theory
principle, this involves solving the many-electron Schr¨-
dinger equation, which for a system ofN interacting elec-
trons is an inseparable 3N-dimensional problem. Hartree
Fock ~HF! methods use a mean-field approximation of t
electron interaction to reduce this toN independent prob-
lems, whose solution provides a reasonable approximatio
many physical properties of the system. Density functio
theory1 ~DFT! formally considers a noninteracting syste
with the same electronic density as the original, and is
principle an exact approach, although in practice requ
approximations for its unknown exchange-correlation pot
tial. While these approximations usually improve greatly
HF results, they may neglect some aspects of electron co
lation which are chemically important or are associated w
long-range electron correlation, such as van der Wa
interactions.2

Quantum Monte Carlo~QMC! methods provide an impor
tant approach for solving the full 3N-dimensional problem.3

One such method, the variational Monte Carlo~VMC!
method, allows us to estimate expectation values for a gi
trial wave function. Ideally, this wave function is an eige
state of the many-body Hamiltonian. In practice, a para
etrized form is used, which approximates the exact eig
state. The accuracy of these calculations is entir
dependent on the trial wave function, however, and so
development of accurate wave functions is vital both in
accurate estimation of physical properties and in understa
ing how certain physical phenomena may be simply rep
sented in the wave function.

A widely used trial correlated wave function is th
Jastrow-Slater4 or Feenberg5 form
0163-1829/2002/66~15!/155104~24!/$20.00 66 1551
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C~r1 , . . . ,rN!5expF2(
i , j

u~r i ,r j !1(
i

x~r i !GD. ~1!

HereD is a Slater determinant of single-particle orbitals a
interparticle correlation is introduced with the two-bod
term u in the Jastrow factor. The one-body termx could
in principle be absorbed into the single-particle orbita
of the determinant, but it may be convenient to retain
explicitly in the Jastrow factor. In practice, the orbitals
the Slater determinant are often determined from a HF
DFT calculation.4

In this paper, we will focus on the optimization o
Jastrow-Slater wave functions in the context of the electro
structure of periodic solids. We will apply wave functio
optimization to examine some consequences which em
from a complete treatment of inhomogeneity in the two-bo
correlation term for diamond and rhombohedral graphite.

The general form of wave function in Eq.~1! has been
used as the starting point of several methods, includ
Fermi hypernetted chain6 ~FHNC! and VMC ~Ref. 4! calcu-
lations. The traditional approach is to use a variational pr
ciple on the energy~or, in the ‘‘variance minimization’’
method,7 on the fluctuations of the energy! to define a best
approximation to the true eigenstate within the variatio
freedom allowed by the wave function ansatz. Expectat
values of the energy and other quantities are calculated f
the trial wave function, approximately in the FHNC a
proach, exactly in the VMC method~within statistical error
of the sampling!. While the VMC method has been used
calculations of periodic solids, in practice most calculatio
have included only homogeneous two-body terms in the
strow factor,4 and the optimization of wave functions wit
very large numbers of parameters has remained problem
©2002 The American Physical Society04-1
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cal. To our knowledge, the FHNC approach has not b
applied in fully three-dimensional electronic structure calc
lations.

Wave functions determined by the VMC approach are
ten used as guiding, trial functions for the diffusion Mon
Carlo ~DMC! method.8 In the DMC context, the accuracy o
the wave function affects the numerical efficiency of ene
calculations and the accuracy of other physical quantit
When the DMC method is used in conjunction with nonloc
pseudopotentials,9 as is commonly the case in chemical a
plications, an accurate trial wave function is essential for
accurate calculation of the ground state energy.

We present here a numerically robust, rapidly converg
iterative method which minimizes the variational ener
with respect to a very general inhomogeneous form of
Jastrow factor, including all one- and two-body terms co
patible with crystal symmetry. The method remains nume
cally well conditioned, even for large systems~of the order
of several hundred electrons!, where there are more tha
3000 independent variational parameters in the Jastrow
tor. Within acceptable computational demands on the Mo
Carlo sampling, the optimal values of parameters in the w
function are found to be well determined, even when th
contribution to the total energy is extremely small.

The method places no restrictions on the functional fo
of the antisymmetric~determinantal! part of the many-body
wave function, and can be used in conjunction with rela
methods recently developed for energy minimization w
respect to all orbitals in the determinant10 or with respect to
configuration weights in a multideterminant function.11,12

Taken in conjunction with these methods, the approach
sented here completes the solution to the problem of en
minimization with respect to the most general variation
terms in wave functions of the Jastrow-Slater type, as we
in wave functions where the Jastrow factor multiplies a m
tideterminant function. Although many specific details of t
work here refer to periodic systems, the basic method
Jastrow factor optimization could, in principle, be used
similar calculations of molecular, atomic, or nuclear stru
ture.

Other general methods exist to achieve energy minim
tion with respect to parameters in many-body wave fu
tions. When only one or two parameters are optimized, i
possible to perform a systematic search of parameter sp
as McMillan did in his pioneering VMC study of the prop
erties of liquid He.13 The stochastic gradient approximatio
used by Harjuet al.,14 applies control theory to determin
iterative corrections to the wave function parameters.
et al.15 explicitly computed analytical derivatives of the e
ergy with respect to variational parameters, and used the
optimize their wave function with a Newton-style metho
Snajdr et al.16 used histogram filtering to optimize wav
functions such that either the energy or its variance is m
mized. However, none of these methods have as yet b
applied in systems where a very large number of parame
are to be optimized.

In recent years, the variance minimization method of U
rigar et al.,7 which optimizes the wave function by reducin
the magnitude of the variance of the local energy, has b
15510
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used much more widely than energy minimization in det
mining optimal parameters for variational wave function
Although not strictly equivalent to energy minimization for
nonexact wave function, in practice this method has b
very successful in improving total energies, providing e
tremely accurate wave functions in certain atomic system7

However, recent studies for small systems~atoms and
dimers! have shown that many non-energy-related proper
of these systems are more accurately estimated by ene
optimized wave functions than by variance-optimized wa
functions.17

Variance minimization may be thought of as fitting ener
fluctuations to a constant, and attempting to reduce the
function involved in this fit by a direct variation of the wav
function parameters. The standard approach is to use a l
squares fit of these energy fluctuations.44 In practice, the
wave function parameters are often subject to confinemen
local minima, and this approach requires much human in
action and experience for successful implementation w
large numbers of parameters are to be optimized.

Our method of energy minimization involves the fitting
energy fluctuations to a given~nonconstant! functional form,
which is a linear combination of operators associated w
variations of the wave function parameters~see Sec. III!.
This fitting allows us to determine a ‘‘predictor,’’ which link
changes in the wave function to changes in the fitted ene
fluctuations. This predictor iteratively guides our method t
self-consistent solution, where the fitted energy fluctuatio
are zero. The derivatives of the true many-body energy w
respect to all the parameters in the wave function are t
also zero~within statistical sampling error! for this final so-
lution.

Our predictor is closely related to the random phase
proximation ~RPA!, introduced by Bohm and Pines18 and
recently discussed in the context of inhomogeneo
systems.19,20However, as long as the predictor is sufficient
accurate to ensure a stable convergence of the iteration
the self-consistent solution, its exact form does not affect
final solution. Our method allows us to surpass the appro
mations of the RPA and to produce explicit trial wave fun
tions of unprecedented accuracy for electrons in perio
solids.

We will use the optimized wave functions to study th
effects of charge inhomogeneity on the correlation factors
diamond, as a prototype of strongly bonded insulating s
tems, and rhombohedral graphite, as a prototype of hig
anisotropic, inhomogeneous solids. Earlier studies4,21 of
these and related systems indicated that homogeneous
body correlation factors gain a large fraction of the corre
tion energy in solids. This seems to imply that there is lit
room for improvement by introducing inhomogeneous cor
lation factors. However, substantial differences in correlat
factors often give rise to relatively little change in energy—
property that makes their optimization quite challengin
This is particularly true when one is interested in long-ran
correlation, which is energetically very delicate. Therefore
is possible that substantial inhomogeneous structure may
4-2
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ist in these correlation factors, even though it contribu
little to lowering the total energy of the system. We find th
to be the case for graphite.

The rest of this paper is organized as follows: In Sec.
we present the detailed numerical form of variational wa
functions to be used in these calculations. The approac
fitting energy fluctuations and its use in guiding the iterat
solution of the energy minimization problem is discussed
Sec. III. In Sec. IV, we present some results on the appl
tion of the method to the periodic solids, diamond and rho
bohedral graphite, and examine the effects of charge den
inhomogeneity on the correlation factors of these systems
Sec. V we discuss the results and some computational de
of the method, illustrating the justification for certain aspe
of our approach with some tests. Finally, in Sec. VI, w
present the overall conclusions of this study.

II. FORM OF THE WAVE FUNCTION

The Jastrow two-body correlation factoru(r ,r 8) in Eq. ~1!
can in principle always be expressed as

u~r ,r 8!5(
ab

f a~r !* uab f b~r 8!, ~2!

where f a form a complete set of functions anduab are ex-
pansion coefficients.~We use* to indicate complex conju-
gation throughout this paper!. Similarly, the one-body func-
tion x(r ) may also be expanded in a basis set of comp
functionsgg , as

x~r !5(
g

xggg~r !. ~3!

Apart from an additional term to handle the electro
electron cusp,22 we will express the Jastrow factor in th
general form given by Eqs.~2! and~3!. Values of the param-
eters$uab ,xg% will then be determined so that the energy
the system is stationary with respect to all variatio
$duab ,dxg%.

Note that for the two-body functionu, we shall retain its
full inhomogeneity and anisotropy. By this, we mean thatu is
both a function of the position and relative orientation of tw
bodies positioned atr and r 8, i.e., u5u(r ,r 8). This is in
contrast to approximatingu as: ~i! a homogeneous functio
u(r 82r ), dependent on relative position, or~ii ! an isotropic
function u(ur 82r u), dependent only on the magnitude
separation, and so independent of orientation.

A. Electron-electron cusp

Due to the divergence of the Coulomb interaction b
tween two electrons, the correct two-body correlation te
u(r ,r 8) has a cusp wherer→r 8, leading to slow conver-
gence of any expansion in smooth functions of the form
Eq. ~2!.23 For this reason, it is numerically convenient
rewrite the two-body functionu in the form

u~r ,r 8!1usr~ ur2r 8u!, ~4!
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whereusr(r ) is a short-ranged, isotropic function which ha
the correct electron-electron cusp asr→0, andu(r ,r 8) is
now a smooth, cuspless function. We use a form of the sh
ranged functionusr which is generated from a numerical s
lution of the electron-electron scattering problem. A discu
sion of the generation ofusr was provided in Appendixes A
and C of Ref. 24. We defineusr[2 lnJsr, whereJsr is defined
within Appendix C of Ref. 24. The expansion of the rema
ing functionu(r ,r 8) in the form given in Eq.~2! then con-
verges much more rapidly than that of the original functio
for any set of smooth functionsf a .

In this paper, we generate the short-range functionusr in a
spin-dependent form, to maintain the cusp conditions.22 The
cuspless functionu(r ,r 8) used in our work is independent o
the electron spin, although we expect that a spin-depen
form is as easily optimized.

B. Separation of one- and two-body terms

Summingu(r ,r 8) over all electron pairs in the basisf a
leads to

(
i , j

u~r i ,r j !5
1

2 (
ab

uab(
iÞ j

f a~r i !* f b~r j !. ~5!

This may be thought of as a two-body expansion of the c
relation term. However, it is important to realize that a
separation of ‘‘one-body’’ and ‘‘two-body’’ terms in the Ja
strow factor is somewhat arbitrary. Removal of terms wh
i 5 j , as in Eq.~5!, is not sufficient to decouple one- an
two-body terms completely. To see this, consider the tra
formation of each of the basis functions obtained by subtra
ing a constant,f a8 (r )5 f a(r )2ca . The set remains complet
and the function

u~r ,r 8!5(
ab

@ f a~r !* 2ca* #uab@ f b~r 8!2cb# ~6!

may be interpreted as a ‘‘two-body’’ function in the basis s
f a8 . However, expanding this correlation factor over all ele
tron pairs, we find that, in terms of the original basisf a , an
additional one-body contribution appears:

(
i , j

u~r i ,r j !5
1

2 (
ab

uab(
iÞ j

f a~r i !* f b~r j !

2
N21

2 (
ab

(
i

@uab f a~r i !* cb

1uabca* f b~r i !#1const. ~7!

We may regard this as a transformation of the one-bo
function in Eq. ~1!, x(r )→x(r )1x0(r ), where the addi-
tional term comes from the second line of Eq.~7!:

x0~r !5
N21

2 (
a

H F(
b

uabcbG f a~r !*

1F(
b

ubacb* G f a~r !J . ~8!
4-3
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To make a definite numerical separation of our one- a
two-body expansions, we need to consider an appropr
choice of the arbitrary constantsca , noting thatu(r ,r 8) is
intended primarily to affect correlation properties~i.e., two-
body properties! of the system, leaving single-particle pro
erties unchanged. For example, the mean-field methods
produceD @HF, DFT under the local density approximation25

~LDA !, etc.# normally give very accurate single-particle de
sities, which can be altered substantially by inclusion of
arbitrary functionu(r ,r 8), in C @Eq. ~1!#. Any substantial
change in the density from the HF solution is likely to
energetically very costly, so that ideally we would like
decouple changes inu(r ,r 8) from changes in the density
Necessary changes in the density may be allowed for
optimization of the explicit one-body termx in the Jastrow
factor @Eq. ~3!# or by the methods of Ref. 10.

Therefore, we would like to choose the constantsca such
that the average of any one-body operator~such as the den
sity! for C remains stationary with respect to variations
the coefficientsuab , at least in the absence of interpartic
correlation. If we define the one-body operator

rg~R![(
i

f g~r i !*

for the many-body configurationR5(r1 . . . rN) then its ex-
pectation value is

^rg&5^CurguC&5E f g~r !* r~r !dr ,

where r(r ) is the single particle density. Since thef g are
fixed functions, variations in the expectation values^rg& cor-
respond to variations inr(r ). The derivative of̂ rg& with
respect to variations of theuab in Eq. ~6! is ~see Ap-
pendix A!

1

2

]^rg&
]uab

5K @rg~R!2^rg&#

3(
iÞ j

@ f a~r i !* 2ca* #@ f b~r j !2cb#L
5(

k
(
iÞ j

^@ f g~r k!* 2^ f g&* #

3@ f a~r i !* 2ca* #@ f b~r j !2cb#&.

In the absence of interparticle correlation,

^ f g~r k!* f a~r i !* f b~r j !&5H ^ f g* f a* &^ f b& if k5 i

^ f g* f b&^ f a&* if k5 j

^ f g&* ^ f a&* ^ f b& otherwise.

The second summation excludesi 5 j , so averages of triple
products never arise. Thus, in the absence of correlation
derivative becomes
15510
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]^rg&
]uab

'(
iÞ j

^@ f g~r i !* 2^ f g&* #@ f a~r i !* 2ca* #&

3^ f b~r j !2cb&1^@ f g~r j !* 2^ f g&* #

3@ f b~r j !2cb#&^ f a~r i !* 2ca* &. ~9!

We can guarantee that the right hand side of Eq.~9! is zero if
ca5^ f a&, for all a. In other words, one-body expectatio
values remain approximately unaffected by the presenc
the correlation factoru(r ,r 8), provided we expandu(r ,r 8) in
a basis of ‘‘fluctuation functions,’’ f a8 (r )5 f a(r )2^ f a&.
Equivalently, we may retain the original basisf a and form a
one-body termx0 from Eq. ~8! with ca5^ f a&. This may
then be inserted into the wave function of Eq.~1! and varied
as the parametersuab are varied.

Correlation effects are of course present in the act
wave function used. However, we find that Eq.~9! remains
approximately true, as previously observed.21,26 For the en-
ergy minimization problem, we find that mixed derivative
of the energy]2E/]uab]xg are approximately zero whe
ca5^ f a&. This gives the numerical advantage that minim
zation of the energy with respect touab approximately de-
couples from minimization with respect toxg . We note that
this approximate decoupling holds, even if the relationca
5^ f a& is not exactly true. Thus we may useca
5^Du f auD&, ~i.e., LDA or HF averages off a), in place of
^Cu f auC&, while still maintaining the numerical advantage
of approximately satisfying]2E/]uab]xg50.

C. Fourier expansion

In the context of periodic systems, it is natural to expa
the correlation functionu(r ,r 8) as a Fourier series, where th
basis functions aref q5exp@iq"r #, for each wave vectorq.
We note that

rq~R!5(
i

exp@2 iq•r i #5(
i

f q~r i !* ~10!

is the Fourier coefficient of the instantaneous charge den
given the electron configurationR. ~In atomic units the elec-
tronic chargee51). Also, summing over pairs leads to
quadratic product of Fourier coefficients, with some mod
cation to remove terms withi 5 j :

(
i , j

f q~r i !* f q8~r j ![
1

2
~rqrq8

* ! [ iÞ j ] . ~11!

In order to approximately remove the effect of the tw
body terms on the single-particle density, following Se
II B, we subtract appropriate constants from each basis fu
tion to produce a basis of collective ‘‘charge fluctuation
coordinates

(
i

f q8~r i !* [Drq5rq2^rq&5(
i

f q* ~r i !2^ f q&* .

~12!
4-4
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These provide a suitable expansion of the two-body corr
tion factor that approximately preserves single-particle d
sities.

A correlation factor using such coordinates was first s
gested by Bohm and Pines18 for the homogeneous electro
gas, and has recently been discussed by Malatestaet al.21

and Gaudoinet al.20 in the context of inhomogeneous sy
tems. In homogeneous systems the expectation value^rq& of
each charge density Fourier coefficient is zero, and so ch
density fluctuations are simplyrq . For inhomogeneous sys
tems, in general̂ rq&Þ0 when q5G, a reciprocal lattice
vector.

The alternative to using fluctuation coordinatesDrq is to
incorporate the equivalent one-body term in the Jastrow
tor, which in periodic systems is of the form

(
i

x0~r i !5(
G

xG
0 rG* ,

with the coefficients coming from the two-body term

xG
0 5

N21

N (
G8

uGG8^rG8&, ~13!

as discussed by Malatestaet al.21 and Gaudoinet al.20

The properties of the Fourier basisf q and the correlation
factoru lead to some convenient symmetry properties for
coefficients uqq8 . The complex conjugateuqq8

* 5uÀqÀq8 ,
just as f q5 fÀq* . The exchange symmetry ofu, i.e., u(r ,r 8)
5u(r 8,r ) implies thatuqq85uÀq8Àq . If u possesses inver
sion symmetry, i.e.,u(r ,r 8)5u(Àr ,Àr 8), then eachuqq8 is a
real number. In periodic systems,

u~r1L ,r 81L !5u~r ,r 8!

for any Bravais lattice vectorL . This implies that all Fourier
coefficientsuqq8 are zero unlessq2q85G, a reciprocal lat-
tice vector. Thus translation symmetry greatly reduces
number of variational parameters in the two-body terms.

We arrange the wave function in the form

C5JsrJihJ1bD,

isolating the short-range component of the Jastrow facto

Jsr5expF (
uGu,Gc

xsr
0 ~G!rG* 2(

i , j
usr~r i j !G .

The one-body term here is derived from the short-range
relation factorusr of Eq. ~4!, asxsr

0 (G)5ũsr(G)^rG&, where

ũsr(G) is the Fourier transform ofusr for the reciprocal lat-
tice vectorG. The prefactor of (N21)/N, which should be
present from Eq.~13!, approaches unity for large system
and so is neglected. For computational efficiency we le
this one-body term in its Fourier space representation,
Gc is a cutoff chosen for the Fourier sum such that it
converged within a required accuracy.

The remaining inhomogeneous part of the two-body
strow factor is expanded using charge density fluctuation
ordinates
15510
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Jih5expF2(
q

(
GG8

uq1Gq1G8Pq1Gq1G8G , ~14!

wherePq1Gq1G8[(Drq1GDrq1G8) [ iÞ j ] , using the notation
(•) [ iÞ j ] , as defined in Eq.~11! and the definition ofDrq1G
in Eq. ~12!. In practice, this double sum is truncated b
using vectorsq1G of magnitude less than a suitably chos
cutoff kc .

We also allow for one-body optimization through the u
of the explicit one-body Jastrow factor. This one-body J
strow factor is also expanded in fluctuation coordinates,

J1b5expF (
uGu,Gc

xGDrG* G , ~15!

since including the constant average values^rG& merely ad-
justs the normalization of the wave function.

The coefficientsuq1Gq1G8 andxG , defined in Eqs.~14!
and ~15!, are the final variational parameters of our wa
function. The remaining sections of this paper describe
method we use to optimize these parameters such tha
total energy of a particular electronic system is stationary
typical calculation presented below involves the simul
neous optimization of over 3000 parameters.

III. ENERGY MINIMIZATION

This section describes in detail an iterative approach
solving the energy minimization problem for a given para
etrized wave function. The various steps involved in t
method are presented in the form of a flow chart in Fig.
and are described now in brief~precise definitions will be
provided in subsequent sections for the fitting coefficie
and predictor function mentioned here!.

FIG. 1. A flow chart outlining the iterative method of wav
function optimization by a minimization of the total energy of th
system, as described in Sec. III.
4-5
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~1! For a given set of variational parametersan we may
construct the numerical trial wave functionC(an). ~2! Us-
ing this wave function to guide a VMC calculation, we pe
form a least-squares fit of the fluctuations in the energy
the system to a prescribed functional form, producing a se
fitting coefficientsVm(an), which are themselves function
of the wave function parametersan. ~3! If theseVm are zero,
then the wave function is optimized with respect to its p
rameters.~4! However, if they are not zero, then we mu
attempt to set them to zero. This is not straightforward, si
we do not know the exact functional dependence ofVm on
a, and so, we construct our best estimate of t
dependence—the predictorVm8 (a,an)—defined for the given
set of parametersan. ~5! We find the set of parametersan11

that sets this predictor to zero and use this as the next i
for construction of the wave function in step~1!. This pro-
cess continues until theVm are zero and the wave function
optimized.

A. Euler-Lagrange equations

We wish to optimize the wave function

C5C~a!,

wherea5$am% a vector of parameters, by solving the Eule
Lagrange equations

]^H&
]am

50, for all m. ~16!

We note that the Hamiltonian for the system is

H52
1

2 (
i

¹ i
21(

i
Vext~r i !1(

i , j
V~r i j !, ~17!

where each sum is over the electrons in the system.
Solving Eq.~16! is equivalent~see Appendix A! to solv-

ing the system of equations

^DHDOm&50 for all m, ~18!

where, given a many-body configurationR5$r i%, we define
DA(R)[A(R)2^A& for any operatorA; and the local values
of the operatorsOm as,

Om~R![
]

]am
ln C~R!5H 2Pqq8~R! for am5uqq8

DrG~R!* for am5xG .
~19!

We shall refer to the local value of the Hamiltonian opera
as the ‘‘local energy’’:

E~R![
HC~R!

C~R!
. ~20!

We approach the problem of solving the Euler-Lagran
equations@Eq. ~16!# indirectly, by considering systemati
fluctuations of the energy for a given trial wave functio
C(a).
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B. Systematic energy fluctuations

Consider fitting the local energyE(R) to the functional
form

E01(
m

VmOm~R!, ~21!

in the least-squares sense, where$Om% is the set of functions
with which we fit the energy, and$Vm% is the vector of fitting
coefficients. The least-squares problem reduces to minim
ing the integral

^Cu HH2E02(
m

VmO mJ 2

uC&,

which is equivalent~see Appendix B! to solving the linear
system

(
m

Vm^DOmDOn&5^DEDOn& for all n. ~22!

We recognize immediately that if the functionsOm are
those functions associated with variations of the wave fu
tion parametersam @Eq. ~19!#, then the right-hand side of Eq
~22! is the vector of Euler-Lagrange derivatives in Eq.~18!.
Therefore, the Euler-Lagrange equations@Eq. ~16!# are
solved if all the fitted coefficientsVm are zero.45

As an illustrative example, considerC0, an eigenstate of
H. Indeed, the local energy is a constant, independent oR,
and so we would find that each of the fitted coefficientsVm is
zero. Therefore, the Euler-Lagrange derivatives^DHDOm&
are all zero, and so the energy must be stationary with
spect to variations inC0, as we would expect for an eigen
state.

For the trial wave functionC(a), no choice ofa gives an
exacteigenstate of the Hamiltonian. However, for a partic
lar choice of parameters, the absence ofsystematicvariations
of the energy~i.e., variations correlated with the variations
the functionsOm) ensures that the fitting coefficientsVm are
all zero and that the average energy is stationary with res
to all variations of the parametersa. Within the parametric
freedom of the trial wave functionC, this is our best ap-
proximation to an eigenstate.

C. Iterative procedure

We now describe a procedure which aims, by appropr
choice of the parametersa, to set the fitted coefficientsVm
of the total energyE to zero. As defined in Eq.~22!, theseVm
depend on the wave functionC(a) and so are functions o
the parametersa. However, the functional dependence ofVm
on a is not available in its exact analytic form, and we a
unable to solve directly the systemVm(a)50, i.e., to find
the root a which will guarantee the solution to the corre
sponding Euler-Lagrange equations.

Instead, using the wave functionC(a0), for a particular
choice of the parametersa0, we construct a predictor func
4-6
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tion Vm8 (a;a0), which approximates the unknown functio
Vm(a) for general values ofa. More precisely, we construc
Vm8 (a;a0) so that

Vm8 ~a0;a0![Vm~a0! ~23!

~i.e., Vm8 is exact whena5a0) and

Vm8 ~a;a0!'Vm~a! ~24!

for all relevant values ofa.
To determine this predictor, we use the specific form

the Hamiltonian@Eq. ~17!# and trial wave functionC ~Sec.
II !, and we partition the local energyE(R) into a sum of
contributions,

E~R!5(
i

e ( i )~R!, ~25!

where thee ( i ) come from various terms in the kinetic an
potential energy~see below!. Each contributione ( i )(R) is
approximated with the functional form

e0
( i )1(

m
vm

( i )Om~R!. ~26!

For some terms, using the specific form of the local ene
for C(a), we can expande ( i ) analytically as in Eq.~26!,
enabling us to determine, exactly or approximately, the fu
tion vm

( i )(a). In this analytic form,vm
( i )(a) is independent of

the choice ofa0 and so remains equally valid for alla.
Where analytic expressions are too complex to derive,

may approximatevm
( i )(a) by fitting e ( i ) to Eq. ~26!. The fit-

ting coefficients fore ( i ) are found by solving the analog o
Eq. ~22!,

(
m

vm
( i )^DOmDOn&5^De ( i )DOn& for all n, ~27!

wherevm
( i )5vm

( i )(a0) is determined by usingC(a0) to evalu-
ate the required expectation values. This produces the v
of each coefficient ata0. We may also fit the derivatives o
e ( i ) with respect toa, to determine the linear dependence
eachvm

( i )(a). We may then approximate the function

vm
( i )~a!'vm

( i )~a;a0!5vm
( i )~a0!1(

l

]vm
( i )

]a l
U

a0

~a l2a l
0!,

~28!

where the values of the derivatives are found by fitti
]e ( i )/]a l to Eq. ~26! using C(a0). In evaluating the term
]vm

( i )/]a l , we consider only the explicit variation of the ter
vm

( i ) with a l . We do not include the implicit variation due t
the dependence of the probability distributionuC(a)u2 on a.
In practice, the only term for which we need to fit]e ( i )/]a l
is explicitly linear in the parametersa and so the linear ex
pansion in Eq.~28! is valid over a wide range of values ofa.

Just as the energy contributionse ( i )(R) partition the local
energy, we may regard the analytic and fitted coefficientsvm

( i )
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as an approximate partition of the local energy coefficie
Vm . We define this partition as

Wm~a;a0![Sm~a!1Tm~a;a0!,

where the sum of analytically derived coefficients is

Sm~a![ (
analytic

vm
( i )~a!,

and the sum of numerically determined coefficients, eva
ated usingC(a0) and Eq.~27!, is

Tm~a;a0![ (
fitted

vm
( i )~a;a0!.

We construct the predictorVm8 (a;a0) such that it satisfies
Eq. ~23!, i.e.,

Vm8 ~a;a0!5Vm~a0!1Wm~a;a0!2Wm~a0;a0! ~29!

whereVm(a0) are found by solving Eq.~22!. We define our
iterative approach to determining the parametersa, for
which the coefficientsVm(a) are zero, as follows~see also
Fig. 1!:

~1! Given the set of parametersan, construct the wave
function C(an).

~2! Evaluate the required expectation values in Eqs.~22!
and ~27!, using C(an), to find the fitting coefficients
Vm(an) and numerical functionsvm

( i )(a;an).
~3! If the total energy fitting coefficients are zero, i.e

Vm(an)50 for all m, thenwe are done,otherwisecontinue.
~4! Construct the predictor functionVm8 (a;an) in Eq. ~29!

using the fitted terms from step~2!, and find the solution
an11 to the system,

Vm8 ~an11;an!50 for all m, ~30!

using the Newton-Raphson method,27 ~see Appendix C!. Use
this set of parametersan11 in step~1!.

Iterations continue until the total energy coefficien
Vm(an) tend to zero, and the values of the parametersan

converge. Note that even though the predictorVm8 (a;an) is
only an approximation to the exact functionVm(a), Eq. ~23!
guarantees that at the converged solution

05Vm8 ~a;a!5Vm~a!.

In other words, the parameter seta solves the Euler-
Lagrange equations for̂H& exactly. Clearly, the larger the
neighborhood within which the approximate relation in E
~24! holds, the faster this iterative procedure will converg
In the trivial case, if the exact analytic form ofVm(a) were
knowna priori, then we could just solve the Euler-Lagrang
equations in one step using a suitable root-finding metho

Rather than starting the procedure from an initial gu
a50, we may begin at step~4! using only the analytic terms
in the predictor, since these are independent of the w
function and so do not require fitting. That is, we solve t
system
4-7
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Sm~a1!50 for all m.

The solution seta1 is then used in step~1!.

D. Partitioning the local energy

We note that the potential energy operatorsVext andV in
the HamiltonianH, defined in Eq.~17!, are multiplicative,
and therefore their contributions toE(R) are constant with
respect to variations of the wave function parametersa.
Variations ofa affect only the contributions of the differen
tial kinetic energy operator. Thus solving the Euler-Lagran
equations for̂ H& @Eq. ~16!# amounts to adjusting the sys
tematic fluctuations of the kinetic energy to cancel those
the potential energy exactly.

If we extract a variational partf(a) of C, such thatC
5fC8, wheref is dependent on the set of parametersa,
andC8 is independent of them. Then we may partitionE(R)
as

E~R!5e (1)~R!1e (2)~R!1e (3)~R!,

where we define

e (1)~R![2
1

2 (
i 51

N
¹ i

2f~R!

f~R!
,

e (2)~R![2(
i 51

N
“ if~R!

f~R!
•

“ iC8~R!

C8~R!
,

e (3)~R![2
1

2 (
i 51

N
¹ i

2C8~R!

C8~R!
1(

i 51

N

Vext~r i !1(
i , j

N

V~r i j !.

Clearly,e (3) is constant with respect to variations ofa. Fur-
ther analysis of each ofe (1) and e (2) is necessary to deter
mine how each depends ona. However, forf expressible in
the form of the Jastrow factors in Sec. II, i.e.,

f~a!5expF(
l

a lOl G ,
whereOl are defined in Eq.~19!, we see that~i! e (2) is at
most linear ina, but involves terms coming fromC8, so that
it may be impossible to determine analytic expressions
the coefficientsvm

(2)(a); and ~ii ! e (1) is at most quadratic in
a, and involves onlyf, for which we have an analytic ex
pression, and therefore may derive analytic approximati
to the coefficientsvm

(1)(a) ~see Sec. III E!.

E. Analytic terms in the predictor

The initial predictorSm(a) used in the iterative metho
involves only analytic terms. We determine these by dir
expansion of particular local energy contributions, given
analytic form of the wave function. We now consider t
contributions of the one- and two-body terms individually
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1. One-body Jastrow factor

Replacingf(a) in Sec. III D with J1b(x), we derive an
analytic expression for the energy contributione (1) ~see Ap-
pendix D!. From this we may extract those coefficientsvG

(1)

of the functionsOG5DrG* :

vG
(1)~x!5

1

2
G2xG1

1

2 (
G8

xG2G8~G2G8!•G8xG8 .

By assumption, the one-body contribution ofe (3) is zero.
That is, the mean-field methods used to calculate the de
minantD should remove~approximately! all systematic one-
body fluctuations in the local energy, and the use of ‘‘flu
tuation functions’’ Drq in the two-body Jastrow facto
approximately removes its effect on one-body operato
Therefore, we assume initially that the coefficientsvG

(3)50.
We are unable to derive an analytic expression for the co
ficients vG

(2) of the energy contributione (2) and so, for the
moment, we leave these aside. Constructing the full anal
approximation

SG~x!5vG
(1)~x!,

we see that the roots ofSG are trivially x50, as we would
expect.

2. Two-body Jastrow factor

According to Sec. II, the two-body Jastrow correlatio
factor is divided into a short-range termJsr and an inhomo-
geneous termJih . We optimize the variational parametersu
in Jih . As for the one-body Jastrow, we expand the cor
sponding energy contributione (1) which depends onJih
alone~see Appendix E!. This leads us to an approximation t
the coefficients of the functionsOqq852Pqq8 in e (1):

vqq8
(1)

~u!5
1

2
uqq8~q21q82!12(

kk8
uqk~k•k8!^rk82k&uk8q8 .

Again, we are unable to derive expressions for the co
ficients corresponding toe (2). We extract a two-body contri-
bution from the constant contributione (3) ~see Appendix E!,
as vqq8

(3) '2 1
2 V(q)d(q82q) for the electron interactionV.

We replace the true interaction in this expression with
pseudointeractionVps, which is generated for a given cuto
radiusr c and reference eigenvaluee, as explained in Ref. 24
Vps is used to generate the short-range two-body functionusr
@Eq. ~4!#, used inJsr. The purpose of this modification o
vqq8

(3) is to account for the presence ofJsr in C and is ex-
plained in Appendix F.

From these contributions we construct the analytic pred
tor

Sqq8~u!5vqq8
(1)

~u!2
1

2
Vps~q!d~q2q8!.

We notice that for periodic systems, this function is separa
in the pointsq of the first Brillouin zone~BZ!. For eachq in
the BZ, we may expandSq1G,q1G8 as a function of
$uq1G,q1G8%, with no coupling to parametersuq8¿H,q81H8
4-8
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for q8Þq. This block diagonal form of the analytic predicto
allows us to find the rootsu1 by solving for each block~i.e.,
eachq) individually. We do this using the Newton-Raphso
method.

A reliable initial guess for the Newton-Raphson metho
rather than usingu50, is the homogeneous solution o
Sqq850.If we regard the system as homogeneous,
^rG&50 for GÞ0, then the solution is

uqq85d~q82q!
1

4N FA11
8NVps~q!

q2
21G . ~31!

This uqq8 is used as the starting point for the Newto
Raphson iterations, and for all systems studied, this in
guess produced convergent roots ofSqq850.

F. Numerical terms in the predictor

To complete the construction of the predictorVm8 (a;a0)
defined in Eq.~29!, for a given set of variational paramete
a0, we must determine some terms numerically by fitti
fluctuations in the energy of the system. We calcul
Vm(a0) in Eq. ~29! by fitting the entire local energy, usin
Eq. ~22!. Also, we use the fitting method to numerically d
termine the functionsvm

(2)(a;a0) given in Eq.~28!, by fitting
the energy contributione (2) and each of its derivatives with
respect to the parameters to be optimized. Again, we n
that e (2) is explicitly linear in the parametersa and the ap-
proximation in Eq.~28! is exact in this case.

To do all this numerical work we use Monte Carlo sa
pling to determine the required expectation values

^DOmDOn&,

^DEDOm&,

^De (2)DOm&,

K DS ]e (2)

]am
DDOnL ,

for m andn ranging over the number of parametersNa in the
seta. However, for a simultaneous optimization of one- a
two-body terms, we make some simplifications to reduce
computational workload. If we assume that the parameteram
can be varied independently ofan , this corresponds to as
suming that̂ DOmDOn&50.

In the expansion of the analytic local energy terms co
ing from Jih , outlined in Appendix E, we saw that thes
consisted of one- and two-body terms. However, the o
body terms contained Fourier coefficients of the aver
charge densitŷrq&, which are zero forqÞG, a reciprocal
lattice vector. Also, the analytic form of the predictor~Sec.
III E ! is separable in thek points of the first Brillouin zone.
Therefore, we make the following approximations to the c
variance matrix̂ DOmDOn&,

^DOq1G,q1G8DOq81H8,q81H8&50 for qÞq8,

^DOq1G,q1G8DOH&50 for qÞ0,
15510
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for reciprocal lattice vectorsG,G8,H, andH8.
In other words, we regard one- and two-body optimiz

tions as independent for nonzerok points in the first Bril-
louin zone.46 If we also exclude the covariance terms b
tween one- and two-body operators forq50, we find that
this slows the convergence of the method for smaller s
tems. For larger systems, this exclusion prevents the con
gence of the Newton-Raphson method at the first iteration
our method, thus halting the optimization process. Howev
we are not, in any way, confined to using the Newto
Raphson method to find the roots of the predictor, and ot
more robust, root-finding methods might overcome t
problem.

Note thate (2) depends on the variational partf of the
wave function which is being optimized. The variation
components areJ1b andJih(q) for eachq in the BZ, where
we define

Jih~q!5expF2 (
GG8

uq1G,q1G8Pq1G,q1G8G ,

so thatJih5)qJih(q). This greatly reduces the complexity o
the predictor, without sacrificing convergence of the meth
for the systems studied here. Ultimately, the predic
Vm8 (a;a0) is itself only an approximation of the true functio
Vm(a), but by definition matches this function at the curre
values of the parameters being optimized. Therefore,
proximations in the predictor affect only the rate of conve
gence of the method.

The expressions fore (2) and its derivatives]e (2)/]xG for
the one-body Jastrow factorJ1b are given in Appendix D.
Upon fitting these terms to the operatorsOG5DrG* , we may
construct the functionvm

(2)(a;a0). This defines the fitted
termsTG in the predictor~Sec. III C!.

For a givenq in the BZ, we use the expressions fore (2)

and the derivatives]e (2)/]uq1G,q1G8 , given in Appendix E,
corresponding to the two-body Jastrow factorJih(q) defined
above. We construct the functionvq1G,q1G8

(2) (uq), whereuq

5$uq1G,q1G8 ; for G,G8%, and define the numerical predic
tor termsTq1G,q1G85vq1G,q1G8

(2) , which contribute to the
linear dependence of the predictor onuq .

IV. RESULTS

We now apply this optimization method to diamond a
rhombohedral graphite. We shall compare the correlat
factors determined in both these systems, given the inho
geneity and anisotropy of the electron charge density
graphite, relative to diamond.

The convergence criterion of our iterative optimizatio
Vm(an)50, requires the examination of possibly thousan
of parameters, and it is difficult to visualize the overall co
vergence of the method. For illustrative purposes, we use
coefficientsVm(an) to construct a single functionVn. In the
chosen Fourier basis, this amounts to reconstructing the r
space functionVn from its Fourier coefficients. For one-bod
optimizations
4-9
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Vn~r !5(
G

VG~xn!eiG•r, ~32!

and for two-body optimizations

Vn~r ,r 8!5(
q

(
GG8

e2 i (q1G)•rVq1G,q1G8~un!ei (q1G8)•r8.

~33!

In practice, we monitor the decrease of these functio
but they will never converge to zero due to inescapable
tistical fluctuations that result from the finite sampling us
in the VMC approach to the least-squares fitting~Sec. V C
and Appendix G!.

Two-body functions, such asVn(r ,r 8) and the Jastrow
correlation functionu(r ,r 8), are functions of six variables
and so, extracting useful information from them is difficu
For illustrative purposes, we indicate in Fig. 2 two pointsA
andB in both the diamond and rhombohedral graphite str
tures, corresponding to high and low electron charge den
regions, respectively.A lies midway between two bonde
carbon atoms andB lies midway between two layers of ca
bon atoms. We shall position the first electron at eitherA or
B. The second electron shall be moved away from this p
tion along one of the following line segments~indicated by
heavy black lines in Fig. 2!: AA8 lying within a layer of
carbon atoms;AA9 perpendicular to the layers;BB8 lying
between two layers; andBB9 perpendicular to the layers.

By this means we may plot inhomogeneous two-bo
functions in terms of the relative separation of the electr

FIG. 2. Crystal structure of~a! diamond and~b! rhombohedral
graphite, illustrating stacked layers of hexagonally arranged ca
atoms for graphite and buckled layers for diamond. In both str
tures, the pointA lies at the midpoint of a carbon-carbon bond, wi
the linesAA8 andAA9 extending within a layer and perpendicul
to the layers, respectively. The pointB lies midway between two
layers ~at a hexagonal interstitial point in diamond! and the lines
BB8 and BB9 extend between the layers and perpendicular to
layers, respectively.
15510
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in the system. In particular, we may draw some conclusi
about electron correlation in the system by an examination
u. We may determine the isotropy ofu by comparing plots of
u with the first electron kept at the same point but the sec
electron moved in perpendicular directions, e.g., by comp
ing plots designated byAA8 andAA9. The homogeneity ofu
may be seen by comparing plots ofu with the second elec-
tron moving in parallel directions from different positions
the first electron, e.g., by comparingAA8 and BB8. Any
differences between these plots ofu are attributable to the
inhomogeneity and anisotropy of the electron correlation f
tors in the systems studied.

We use periodic boundary conditions~PBC’s! to approxi-
mate the infinite crystal.4 The simulation cells consist of a
N13N23N3 unit cell arrangement. The unit cells in eac
system are defined by the Bravais lattice basis vectors.
diamond, we use the basis$(a/2,a/2,0);(0,a/2,a/2);
(a/2,0,a/2)%, wherea56.72 a.u., corresponding to a carbo
bond length of 2.91 a.u. For rhombohedral graphite we
the basis $(0,a,c);(2A3a/2,2a/2,c);(A3a/2,2a/2,c)%,
wherea52.68 a.u. is the bond length within the layers, a
c56.33 a.u. is the layer separation. These are experimen
determined structural parameters.28

We construct the Slater determinantD for both systems
using DFT calculations in the LDA.25 The LDA orbitals are
expanded using a linear combination of atomic orbit
~LCAO! centered on each of the two carbon atoms in the u
cell. These LDA/LCAO calculations follow the scheme
Chanet al.29 where, initially, the orbitals and ionic potentia
are expanded in a basis of localized functions~Gaussians
defined by a set of decay constants! and then self-consisten
corrections to the Hartree and exchange-correlation po
tials are determined in Fourier space. This scheme us
much smaller basis of planewaves than methods which
quire the expansion of the orbitals and ionic potential e
tirely in planewaves.

A. Removal of cusp

In Sec. II A, we discussed the advantages of removing
short-range cusp from the functionu in order to improve its
representability as a linear combination of smooth functio
Figure 3~a! compares the pseudointeractionVps, generated
using a cutoff radius ofr c51.9 a.u. and energy eigenvalu
e50.2 hartree~as discussed in Ref. 24!, with the Coulomb
interactionV5e2/r . ~In atomic unitse251). The pseudoint-
eraction is used to generate a short-range Jastrow fun
usr, which is shown in Fig. 3~b! for the relative angular
momental 51 and l 50 corresponding to parallel spin an
anti-parallel spin correlations, respectively. The short-ran
Jastrow factor used in all subsequent calculations is that g
erated with these particular values ofr c and e. Subsequent
figures in this paper, which involveusr, represent antiparalle
spin correlation only.

The cutoff required for a convergent Fourier expansion
a smooth cuspless function should be much less than
required for a function with a short-range cusp. Therefo
using a cuspless form greatly reduces the number of te
required to represent the inhomogeneous form of the Jas
factor accurately in Fourier space. We illustrate this po

n
-

e
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using a simple example. In Fig. 4 we plotq2 times the Fou-
rier transform, for wave vectorq, of the Yukawa-style homo-
geneous correlation factor

uh5
A

r
~12e2r /F!, ~34!

which has been used by many authors to approximate e
tron correlation in a variety of systems.4,10,19–21,30We setA
51 a.u. (F is determined fromA to satisfy the cusp
conditions22 and depends on the relative spin of the ele
trons!. Also shown in Fig. 4 isq2 times the Fourier transform
of the cuspless differenceuh2usr. We assume that, for larg
electron separations, the electron correlation is appr

FIG. 3. ~a! The pseudointeractionVps ~solid line! and the Cou-
lomb interactionV51/r ~dashed line! vs electron separationr. ~b!
The short-range Jastrow functionusr , generated fromVps, vs elec-
tron separationr, for angular momental 50 ~solid line! and l 51
~dashed line!. Vps is generated usingr c51.9 a.u.~indicated by ver-
tical dotted line! ande50.2 hartree~see the text!.

FIG. 4. Fourier transform timesq2 of ~a! the homogeneous Ja
strow factor uh ~dashed line! and ~b! the cuspless differenceuh

2usr ~solid line! vs wave vectorq. The homogeneous Jastrow fact
parameterA51 a.u.@Eq. ~34!#.
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mately spin independent. Therefore, for eachq, we plot the
mean of the parallel spin and antiparallel spin values of
functions.

In practice, we use the first zero of the Fourier transfo
of Vps as the Fourier space cutoffkc used in the definition of
Jih in Eq. ~14!. For r c51.9 a.u. we use the cutoffkc
52.185 (a.u.)21, beyond which the Fourier transform of th
cusplessu function is approximately zero~Fig. 4!. Combin-
ing both the short-range and inhomogeneous forms of
Jastrow factor using this scheme produces a form tha
approximately independent of the cutoff, since decreasingr c
increases the reciprocal space cutoffkc .

B. Homogeneous Yukawa-style Jastrow factor

For comparison with the inhomogeneousu functions de-
termined in the following sections we use the Yukawa-st
homogeneous functionuh of Eq. ~34! and construct a homo
geneous trial wave function of the formC5JsrJhJ1bD. As
with the inhomogeneous trial wave function, we repres
short-range correlations~i.e., the cusp! usingJsr, and repre-
sent the remaining correlations using a homogeneous Jas
factor

Jh5expF2 (
q,kc

ũ~q!PqqG ,
where we define

ũ~q![E
V

@uh~r !2usr~r !#e2 iq•rdr .

For the uniform electron gas, Bohm and Pines18 predicted
that the true functionu should decay as 1/vpr , at large sepa-
rationsr, wherevp is the plasma frequency. Rather than u
this limiting valueA51/vp in Eq. ~34!, it is common to treat
A as a free parameter such that the energy is minimiz
Using variational calculations we can determine the optim
value ofA.21 We optimize the one-body Jastrow factorJ1b in
Eq. ~15!, using our iterative method.

In Fig. 5 we plotuh and compare it with the reconstructe
function

u~r !5usr~r !1 (
q,kc

ũ~q!eiq•r ~35!

for 33333 unit cell simulations of diamond and rhombo
hedral graphite. Periodic boundary conditions and the ani
ropy of the unit cell make this reconstructed form appe
quite different from the original isotropic functionuh .

In particular, for rhombohedral graphite the unit cell us
is quite anisotropic, leading to marked differences in the
constructed function along the perpendicular line segme
AA8 andAA9. ~The homogeneity ofuh is preserved and so
we only plot the function for pointA, since all other points
are equivalent.! Note that the Jastrowu function is defined
up to an arbitrary constant, much like a potential, since t
constant affects only the wave function normalization a
contributes nothing to the description of correlation. The
fore, it is of no consequence that the functional form ofuh in
4-11
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Eq. ~34! appears shifted above the reconstructed forms c
patible with PBC’s. This is due to the removal of the const
Fourier coefficient of the correlation functionu(G50) from
the expansion of the reconstructed function in Eq.~35!. We
note that the cusp conditions22 are maintained by all forms.

We optimize the one-body JastrowJ1b using the method
described in Sec. III. For the diamond simulations we use
Fourier space cutoffGc55.0 (a.u.)21, giving 84 variational
one-body parameters. This is more than enough for an a
rate representation of one-body terms in the wave func
~see Sec. V A!. For graphite simulations we usedGc
53.1 (a.u.)21, giving 30 variational one-body parameters

The values of the electronic energy per atom for vario
optimizations of this homogeneous trial wave function a

FIG. 5. Jastrow correlation factors vs electron separationr for
~a! diamond and~b! rhombohedral graphite.~i! The functionuh

~dotted line! as defined in Eq.~34! with optimized parameterA
51.739 for diamond and 2.170 for graphite.~ii ! The reconstructed
function u of Eq. ~35!, from a 33333 simulation region in both
systems, for electron separations along the line segmentsAA8 ~solid
line! andAA9 ~dashed line! from Fig. 2.
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shown in Figs. 6 and 7. Each iteration involves averag
over 105 Monte Carlo samples. However, this amount
averaging is more than enough for an accurate impleme
tion of the method. The optimization of the one-body term
in the 33333 simulation of graphite~Fig. 7! involves only
2.53104 samples per iteration, and is well converged.

Specific values of the total energy and its associated v
ance during the optimization process, for the largest simu
tions of diamond and graphite are presented in Table II.
average, the gain in energy following one-body optimizati
is approximately 1.0 mhartree/atom for diamond and
mhartree/atom for graphite. We note that the necessity fo
one-body correction is a consequence of the inhomogen
of the electronic charge density in the system,20,21 and it is
not surprising that the gain in energy is larger for the mo
inhomogeneous system, graphite, than for diamond. We
tice that there is no significant decrease in the variance
this one-body optimization. For the smaller systems, the
crease is approximately 2% and is negligible for the lar
systems.

The Slater determinant used in the diamond calculati
of Fig. 6 is composed of single-particle orbitals genera
from the LDA/LCAO scheme already described.29 The local-
ized functions use a Gaussian basis with three decay
0.24, 0.797, and 2.65, and the orbitals possesss, p, and d
symmetries. The exchange-correlation functional used
of the Ceperley-Alder8 form. The cutoff for the Fourier spac
expansion of the charge density and the iterative correct
to the Hartree and exchange-correlation potential during
self-consistent LDA calculation was 64 Rydberg. Evaluati
of the orbitals of the Slater determinant within the VM
sampling was achieved using a mixed-basis approach4 with a
real-space cutoff of 3.5 a.u. and a reciprocal-space cutof
5.7 (a.u.)21.

The graphite calculations shown in Fig. 7 use a Sla
determinant generated using a localized basis set withs and
p symmetries only. Four Gaussian decays were used: 0
0.474, 1.183, and 2.95. The orbitals were generated f
,
nd

re
s

r

an-
FIG. 6. Energy of diamond, in Hartree/atom
for each iteration of the optimization process a
various simulation cell sizes:~a! 13131 unit
cell, with N58 electrons;~b! 13132, N516;
~c! 23232, N564; ~d! 33333, N5216. Op-
timizations using different correlation factors a
shown:J5JsrJhJ1b, Yukawa-style homogeneou
form ~dashed line! and J5JsrJihJ1b inhomoge-
neous form~solid line!. Total energy estimates fo
each iteration are calculated using 105 Monte
Carlo samples. Error bars are equal to the st
dard error of the mean value of the energy.
4-12
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FIG. 7. Energy of rhombohedral graphite, i
Hartree/atom, for each iteration of the optimiz
tion process and various simulation cell sizes:~a!
13131 unit cell, with N58 electrons;~b! 1
3132, N516; ~c! 23232, N564; ~d! 333
33, N5216. Optimizations using different cor
relation factors are shown:J5JsrJhJ1b, Yukawa-
style homogeneous form~dashed line!; J
5JsrJh* J1b, optimal homogeneous form~dotted
line!; and J5JsrJihJ1b inhomogeneous form
~solid line!. Total energy estimates for each iter
tion are calculated using 105 Monte Carlo
samples.~The optimization of the Yukawa-style
homogeneous form for the 33333 simulation
used only 2.53104 samples per iteration.!
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LDA calculations incorporating the Hedin-Lundqvist31

exchange-correlation functional, and a cutoff of 36 Rydb
for the Fourier space expansion of the charge density
correction to the potential. The same mixed-basis cut
used in the diamond calculations were used here, for ev
ation of the orbitals in the Slater determinant during VM
sampling.~See Sec. V A for a discussion of basis-set conv
gence of the total energy in graphite.!

Figure 8 illustrates the convergence during optimizat
of the one-body functionx(r ) in Eq. ~1! ~where x is the
accumulation of all one-body terms from each of the Jast
factors! for the 33333 diamond calculation. The optimize
function is statistically well-determined, and the change fr
the initial one-body function,x15x0 of Eq. ~8! ~as defined
in Refs. 20 and 21!, is well defined. This alteration of th
one-body function may be compared to similar calculatio
performed using variance minimization.20,21

FIG. 8. The diamond one-body functionx vs positionr along
the line segmentAA8 @Fig. 2~a!#. xn indicates the one-body func
tion used at iterationn of the optimization ofJ1b in the presence of
Jh in Fig. 6~d!.
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The number of parameters for optimization could
greatly reduced through exploitation of the crystal poi
group symmetry of the structures involved. However, it
worth noting that the optimization process preserves
natural symmetry of the system~within statistical error!
without such measures, illustrating that for nonsymme
systems with large numbers of parameters, this optimiza
process should be quite robust.

The one-body functionVn(r ), reconstructed from the co
efficients associated with the local energyVG at iterationn
according to Eq.~32!, is shown in Fig. 9. Clearly, this func
tion decreases in magnitude, indicating a decrease in
magnitudes of the Euler-Lagrange derivatives. Beyond
first iteration,Vn(r ) is of the same order of magnitude as
associated standard error, and so is statistically insignific
Therefore, the method has essentially converged after o
one iteration. The noisiest regions ofVn(r ) correspond to
regions of low density where the Monte Carlo sampling
less frequent.

FIG. 9. The reconstructed one-body functionVn, defined in Eq.
~32!, vs positionr as for Fig. 8.
4-13
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C. Optimal homogeneous Jastrow factor

To compare directly with current homogeneous Jastr
factors,32,33we also include the optimization of a generaliz
homogeneous two-body functionu. This u function is con-
structed according to Eq.~35!, but we allow complete varia
tional freedom in the termsũ(q). We optimize theseũ(q)
according to the method outlined in Sec. III, except that,
course,u is now homogenoeus~but still retains the varia-
tional freedom for anisotropy!. Since this expansion is com
plete up to the cutoffkc , it is equivalent to any other homo
geneous representation ofu and may be compared wit
current homogeneous correlation factors. However, wh
others have optimized the parameters in such correlation
tors using variance minimization, our optimal homogeneo
u minimizes the total energy of the system. We denote
optimal homogeneous part of the Jastrow factor asJh* . The
Jastrow factorJ5JsrJh* J1b, combined with the Slater dete
minantD, is our best approximation of the true many-bo
eigenstate using a homogeneous two-body Jastrow facto

Figure 7 illustrates the total energy of various graph
systems during the optimization ofJh* . The initial guess for
Jh* , used in iteration 1, is a solution to the RPA equations
a homogeneous system. We note that the optimal hom
neous Jastrow factor produces total energies that are co
tently lower than~or at least comparable to! those of the
simpler Yukawa-styleJh . This is an obvious consequence
the increased variational freedom ofJh* . The numbers of

variational parametersũ(q) used for each system are di
played in Table I. The specific values of the total energy a
its variance, during the optimization of the graphite 333
33 system, are given in Table II.

D. Inhomogeneous RPA Jastrow factor

The analytic guess for the two-body predictor functio
Sqq8(u), outlined in Sec. III E 2, leads to an inhomogeneo

TABLE I. The number of variational parameters in the corre
tion factors, used during the total energy calculations presente
Figs. 6 and 7, for diamond and rhombohedral graphite. Simula
cell sizes are described asN13N23N3 unit cell arrangements.J1b

is the one-body Jastrow factor;Jh* is the optimal homogeneou
correlation factor;Jih is the optimal inhomogeneous correlation fa
tor. ~The Yukawa-style correlation factorJh is not included as it
contains only one variational parameter.!

simulation cell J1b Jh* Jih

diamond
13131 84 2 56
13132 84 2 112
23232 84 2 448
33333 84 2 1151

graphite
13131 30 11 132
13132 30 21 242
23232 30 85 990
33333 30 282 3106
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generalization of the RPA equations. The solution to th
equations is the functionu15uRPA, shown in Fig. 10 for the
33333 graphite simulation. We notice some inhomogen
ity in uRPA at intermediate- and long-range electron sepa
tions. A more homogeneous and isotropicuRPA was found for
diamond, as we would expect since diamond possess
more uniform electron density than graphite.

In Figs. 6 and 7, the first point on all solid curves ind
cates the total energy per atom in each simulation calcula
usinguRPA. In comparison with the energy calculated usi
the homogeneous Jastrow functionuh , we see that the inho
mogeneous RPA trial wave function is at best comparable
accuracy with the optimized trial wave function with hom
geneous two-body Jastrow factor, and often less accu

-
in
n

TABLE II. The energies~E! and their variances (s2) deter-
mined at each step of the optimization process for the larges
3333) simulations of diamond and rhombohedral graphite us
various correlation factors. The standard error in the energy is c
puted from the variance asDE56As2/N. The error in the vari-
ances~included in parentheses! is estimated assuming they have
chi-squared distribution.~All numerical values in Hartree atomic
units per atom.!

J Iteration E DE s2

diamond

JsrJ1bJh 1 25.703 030 0.000 155 0.002 41~2!

2 25.704 282 0.000 151 0.002 27~2!

3 25.704 306 0.000 151 0.002 29~2!

4 25.704 247 0.000 151 0.002 28~2!

5 25.704 118 0.000 150 0.002 26~2!

JsrJ1bJih 1 25.703 462 0.000 154 0.002 38~2!

2 25.713 010 0.000 139 0.001 92~2!

3 25.713 620 0.000 138 0.001 91~2!

4 25.713 910 0.000 139 0.001 92~2!

5 25.713 539 0.000 140 0.001 95~2!

graphite

JsrJ1bJh 1 25.693 792 0.000 338 0.002 85~5!

2 25.694 640 0.000 336 0.002 83~5!

3 25.695 348 0.000 338 0.002 85~5!

4 25.695 337 0.000 337 0.002 85~5!

5 25.695 882 0.000 353 0.003 12~6!

JsrJ1bJh* 1 25.695 342 0.000 166 0.002 75~2!

2 25.702 535 0.000 161 0.002 58~2!

3 25.702 982 0.000 161 0.002 59~2!

4 25.702 934 0.000 162 0.002 63~2!

5 25.703 191 0.000 163 0.002 67~2!

JsrJ1bJih 1 25.694 342 0.000 167 0.002 80~3!

2 25.704 501 0.000 158 0.002 49~2!

3 25.705 159 0.000 155 0.002 39~2!

4 25.705 730 0.000 156 0.002 44~2!

5 25.705 471 0.000 159 0.002 54~2!
4-14
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These results are different from those of Gaudoinet al.20 for
model systems: they find that their inhomogeneous gene
zation of the RPA produces wave functions that yield low
energies than the homogeneous form.

E. Optimal inhomogeneous Jastrow factor

We simultaneously optimized the parameters in both
one-body Jastrow factorJ1b and the fully inhomogeneou
form of the two-body Jastrow factorJih , using our iterative
method. The convergence of the total energy per atom
various simulations of diamond and rhombohedral grap
are shown in Figs. 6 and 7.~The Slater determinants used
combination with the homogeneous Jastrow factorJh in Sec.
IV B are also used here.! Convergence of the total energy
achieved in approximately three iterations in all cases an

FIG. 10. The Jastrow factoruRPA vs electron separationr along
the line segments indicated in Fig. 2~b!, for a 33333 simulation
of rhombohedral graphite.

FIG. 11. Graphite Jastrow correlation functionsun with respect
to electron separationr on the line segmentAA8 ~Fig. 2! for each
iterationn during optimization ofJih for a 33333 simulation re-
gion @Fig. 7~d!#. Also shown is the reconstruction of the homog
neous functionuh ~heavy dotted line! defined in Eq.~35! with an
optimized parameterA52.170.
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stable. This is remarkable given that the system sizes ra
from eight electrons and 140 independent parameters to
electrons and 3136 independent parameters. Also,
used the same amount of Monte Carlo sampling,viz., 105

samples per iteration, to determine the required expecta
values for all simulations. In all cases the fully inhomog
neous form ofu allows us to determine more accurate tr
wave functions with substantially lower energies than
homogeneous trial functions. In general, the gain in ene
through using an inhomogeneous rather than a homogen
wave function is of the order of 5 mhartree/atom for bo
diamond and rhombohedral graphite. Specific values for
energy and its variance are given in Table II for the larg
simulations.

Figure 11 illustrates the rapid convergence of the tw
body wave function parametersu to their optimal values
during the largest graphite optimization (33333) and is
typical of all the optimizations performed in both diamon
and graphite. Beyond the third iteration, no clear distinct
exists between subsequent sets of parameters. The op
Jastrow functionu is significantly different from both the
RPA functionu1 and the homogeneous formuh of Eq. ~34!.
The proof that this optimization succeeds in minimizing t
energy expectation value may be seen in Fig. 12~which
comes from the same graphite calculation as Fig. 11!. Here
we plot the iterative decay of the two-body functionVn(r ,r 8)
reconstructed from the total energy coefficients determi
at each iteration, according to Eq.~33!. This clearly indicates
the reduction to zero~within statistical noise! of the deriva-
tives in the Euler-Lagrange equations, thus solving the
ergy minimization problem.

For the largest simulation cells studied (33333 unit cell
arrangement containing 216 electrons!, we compare the op-
timal Jastrow correlation functionsu of diamond and rhom-
bohedral graphite. Figures 13 and 14 show the functiou
plotted with respect to electron separation on various l
segments in the corresponding crystal structures, as alre
explained.

FIG. 12. The reconstructed two-body functionVn, as defined in
Eq. ~33!, vs electron separationr on the line segmentAA8, for each
iterationn during the optimization outlined in Figs. 7~d! and 11.
4-15
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V. DISCUSSION

A. Energies

For a direct comparison of the calculated energies of d
mond and rhombohedral graphite, we should~a! make some
corrections based on the trial wave functions used and~b!
include finite size and zero-point phonon energy correcti
for the expected energy of the real infinite solid. T
corrected energies for diamond and graphite are listed
Table III.

The Jastrow factors used in both solids are comparabl
their variational freedom, the only significant difference b
ing the size of the cutoff used forx1b. However, a VMC
calculation for diamond, using the same cutoff as in graph
(Gc53.1 (a.u.)21, corresponding to 25 variational param
eters!, resulted in an increase in energy of only 1.060.3
mhartree/atom for diamond. Therefore, the high Fourier
efficients of x1b contribute little to the total energy of th
system. The diamond VMC energy for the 33333 simula-

FIG. 13. The optimized diamond Jastrow correlation factoru as
a function of electron separationr along the line segments indi
cated, for a 33333 simulation region.

FIG. 14. The optimized rhombohedral graphite Jastrow corr
tion factor u as a function of electron separationr along the line
segments indicated, for a 33333 simulation region.
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tion quoted in Table III was determined usingGc

53.1 (a.u.)21 as the cutoff for one-body terms.
In graphite, the exclusion ofd symmetry from the basis

set used to construct the LDA orbitals in the Slater deter
nant is energetically more important. In addition to the c
culations described in Secs. IV B and IV E, we also p
formed calculations for graphite using a Gaussian basis
with s, p and d symmetry, and three Gaussian decays 0.
0.766, and 2.67. For the 33333 simulation, includingd
symmetry reduces the total VMC energy by 7.260.3
mHartree/atom and also reduces the variance in the tota
ergy by 16%. Use of the Ceperley-Alder exchange corre
tion functional to generate the single-particle orbitals
graphite, rather than the Hedin-Lundqvist form, made no d
ference~within statistical error! to the VMC energies, and
neither did an increase in the cutoff for the Fourier spa
expansion of the LDA charge density from 36 to 64 Rydbe
The graphite VMC energy for the 33333 simulation listed
in Table III was calculated using a trial wave function ve
similar to that used for the calculation of the correspond
diamond VMC energy. The cutoff for the one-body Jastro
factor wasGc53.1 (a.u.)21 and the Slater determinant com
prised LDA orbitals obtained using.~i! a basis set withd
symmetry ~as outlined above!, ~ii ! the Ceperley-Alder ex-
change correlation functional, and~iii ! a 64-Rydberg cutoff
for the LDA charge density expansion.

We generate finite size corrections for the 33333 unit
cell simulations of diamond and graphite, by calculating t
difference in energy between a LDA calculation which usek
points compatible with periodic boundary conditions of a
3333 simulation region and an LDA calculation using
fully convergedk-point set.4 Comparing the change in en
ergy between a 23232 calculation and a 33333 calcula-
tion in both diamond and graphite, using LDA and VM
methods, we see that the change in VMC energy is ab
80% of the LDA energy change in diamond, and 70%
rhombohedral graphite. Perhaps more accurate estimate
the energy of the infinite solid may be obtained by an imp
mentation of a model periodic Coulomb interaction dev

-

TABLE III. Energies and energy corrections of diamond a
rhombohedral graphite~in hartree/atom!. ~a! Total energy, deter-
mined by our VMC optimization method, for a 33333 unit cell
simulation region, using wave functions of similar variational fre
dom ~see text!. ~b! Finite size correction equal to the energy diffe
ence between an LDA calculation for the 33333 simulation re-
gion and an LDA calculation using a fully-convergedk-point set
~see the text!. ~c! Correction for the zero-point phonon energy.~Ref.
34! ~d! Total energy including the corrections. The numbers in p
rentheses indicate the statistical error in the last digits of the co
sponding energy.

Diamond Graphite

33333 25.712 95~14! 25.712 91~14!

finite size correction 20.008 99 20.006 56
zero-point energy 0.006 65 0.006 10
total 25.715 29~14! 25.713 41~14!
4-16
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oped recently. Tests of this approach have dramatically
duced finite size effects in the interaction energy.35–37

For diamond, we estimated the finite size correction to
28.99 mhartree/atom, using a converged LDA calculat
with 220k points in the irreducible Brillouin zone. For rhom
bohedral graphite, incorporatingd symmetry in the basis se
~as described above!, and using 189k points in the LDA
calculation, we found the finite size correction to be26.56
mhartree/atom. We also include the calculated zero-p
phonon energies of diamond and graphite, which are 6
and 6.10 mhartree/atom, respectively.34

Adding all these corrections to the calculated VMC en
gies~Table III!, we estimate the energies of the infinite soli
to be 25.7152960.00014 hartree/atom for diamond an
25.7134160.00014 hartree/atom for rhombohedral grap
ite. This appears to indicate that rhombohedral graphite
less stable than diamond. However, given the approxima
of using LDA finite size corrections, we might expect a sy
tematic error of the order of 2 mhartree/atom in each of th
results. This indicates that, at the VMC level, the solids d
mond and rhombohedral graphite have very similar total
ergies. We note that in the atomic pseudopotential used in
calculations presented herep and higher angular momentum
scattering are all included in the local potential. It is possi
that the use of a separated pseudopotential might slightly
affect the relative energies in both systems.

In order to determine the cohesive energy of a solid,
should subtract the energy per atom of the solid from
energy of the isolated atom,Ec5Ea2Es . However, when
using approximate eigenfunctions, a reasonable estimat
the cohesive energy is obtainable only by subtracting
energies estimated using similar trial wave functions. VM
energies are available for the carbon atom where the
wave function is of the Jastrow-Slater form.10 The orbitals of
the Slater determinant are optimized using energy minim
tion and a sophisticated Jastrow factor is optimized us
variance minimization, yielding a VMC energy for the ato
of 25.437260.0001 mhartree. Using this energy, we fin
the cohesive energies to be 0.278160.0002 hartree/atom fo
diamond and 0.276260.0002 hartree/atom for graphite. W
regard this atomic trial wave function to be close in form a
accuracy to our solid trial wave function. However, to rema
consistent with the inclusion ofd symmetry in the basis se
of our LDA calculations, we could also refer to a multico
figuration trial wave function for the carbon atom which i
cludesd excitations. The VMC energy of the atom, using th
wave function, is25.4506160.00002 hartree,10 leading to
estimates of the cohesive energies of diamond and rhom
hedral graphite of 0.264760.0002 hartree/atom and 0.262
60.0002 hartree/atom, respectively. The experimental va
are 0.271 hartree/atom for diamond, and 0.272 hartree/a
for graphite.38

Having considered the optimal homogeneous form of c
relation factor for graphite, it is clear from Fig. 7 that the
are only small energy gains to be made by including in
mogeneity in the correlation factor.@According to Table II
this energy gain is (2.360.2) mhartree/atom.# However,
given that the optimal correlation factor for graphite is n
strongly inhomogeneous~Fig. 14 and Sec. V B!, it is evident
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that the inclusion of anisotropy in the correlation factor
energetically more important. Both the inhomogeneous
optimal homogeneous forms produce significantly lower
ergies than the isotropic Yukawa-style correlation factor
the larger systems.

The extra correlation energy gained using the inhomo
neousJih is not large enough to render the VMC metho
competitive with the DMC method for the calculation o
accurate ground state energies. The decrease in the var
is ;5%, which would introduce small time savings for co
vergence of DMC calculations, but this saving is likely to
canceled out by the extra computational cost of evalua
Jih ~Sec. V C!. However, to determine quantities other th
total energies~e.g., the pair correlation function!, may re-
quire more accurate trial wave functions. Therefore, it is i
portant to emphasize that, whatever conclusions we wo
like to draw from these calculations, our principal aim h
been to optimize the trial wave function for a given Ham
tonian, such that the expectation value of the total energ
minimized. This aim has been achieved for all the syste
studied.

B. Correlation factors

Diamond, with a relatively homogeneous and isotrop
electron charge density, exhibits an approximately homo
neous, isotropic Jastrow correlation functionu ~Fig. 13!. At
large electron separations~beyond 6 a.u.! we see that the
electron correlation factoru in diamond is well approximated
by homogeneous and isotropic functions, as all the cur
plotted are quite similar. Only slight deviations from hom
geneity exist at short and intermediate electron separati
This inhomogeneity may be seen by comparingu plotted
with its fixed coordinate at different points:AA8 andAA9 are
quite similar at short range, but clearly distinct fromBB8 and
BB9 in the same region. This inhomogeneity may have s
nificant effects on the short-range pair-correlation functio
calculated for diamondlike systems using VM
methods.39–41

Graphite, with clear regions of high electron charge de
sity and well-defined regions of very low electron char
density between its layers, is a highly inhomogeneous
anisotropic structure. This is borne out in Fig. 14, where
functionu differs considerably in various regions and in va
ous directions. At short range,u is surprisingly homogeneou
in comparison with diamond. At intermediate separations
function displays both inhomogeneous and anisotropic
haviors. Given that the layer separation in these simulati
is 6.33 a.u., this indicates that inhomogeneous correla
between adjacent layers in the system is not insignifica
This may prove important for van der Waals interactio
between the layers in graphite.2

At long range, the anisotropy of the graphite correlati
factor is clearly shown in Fig. 13, where the correlation fa
tors for electron separation vectorsr 82r lying parallel to the
graphite planes (AA8 andBB8) are distinctly different from
those with the separation vector perpendicular to the pla
(AA9 andBB9). Inhomogeneity~i.e. an explicit dependenc
on the positionr of the first electron! is displayed at long
4-17
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range in the differences between the function alongAA8 and
BB8. We might expect this, given that the line AA’ lie
within the graphite planes, where the charge density is c
centrated, whereasBB8 lies in the very low charge densit
region between the planes@see Fig.2~b!#. On the other hand
when the separation vector is oriented perpendicular to
graphite planes (AA9 andBB9), inhomogeneous effects ar
substantially smaller at long range.

C. Computational details

In order to reduce the complexity of the physical results
Sec. IV, some computational details of the method were
discussed. We present and discuss some of these deta
this section.

~1! For a system ofN electrons, the computational cost
the implementation of this method of energy minimizati
must be evaluated. The usual computational costs of Q
calculations are not considered here, only the additional
of the method. The evaluation of the Slater determinant
remains as a predominant factor in assessing the total co
these calculations and improvements in that regard have
cently been developed.42

For the optimization of a homogeneous correlation fac
such asJh* , the number of variational parameters scales
O(N), as does the computational cost of evaluatingJh* . @We
ignore the computational cost of determining the relative
sitions of all the electrons, which scales asO(N2), since this
cost is common to all types of correlation factors.# The cost,
for Jh* , of sampling the required expectation values
implement our energy minimization method scales
O(N2), but with a very small prefactor, since for the large
graphite 33333 simulation, this amounts to only 1% of th
total computational cost of the calculation.

For the inhomogeneous correlation factorJih , the number
of variational parameters scales asO(N2). However, the
prefactor on this scaling is reduced somewhat by tran
tional symmetry. So much so, that the energy minimizat
method still scales quadratically withN and comprises
;20% of the total calculation for the 33333 graphite
simulation. However, the cost of the evaluation of the inh
mogeneous Jastrow factor scales also asO(N2) and com-
prises;25% of the largest calculation. For this large syste
of 216 electrons, the optimization of the inhomogeneous
strow factor takes 50% longer than the optimization of
homogeneous Jastrow factor, even though both require
same amount of VMC sampling and the same number
iterative steps for convergence.

This iterative method is trivially parallelizable. To dete
mine the expectation values required to construct the pre
tor, Monte Carlo sampling may be performed independen
on many workstations, and the results combined. To ob
total energies of the accuracy presented in this paper req
;105 Monte Carlo samples. However, for optimization
the wave function using our method, this amount of sa
pling is also sufficient for accurate estimations of the exp
tation values required to construct the predictor~Sec. III F!.

The extra time required to accumulate the various con
butions to the predictor is significantly smaller than first e
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pected, given that we must evaluate many first derivative
some energy contributions@Eq. ~28!#. There are two reason
for this: First, because we have expressed the variatio
components of the Jastrow factor as linear combinations
the operatorsOm ~Sec. III!. TheseOm need only be evaluated
once, for each electron configuration, in order to constr
both the Jastrow factor and the predictor. Second, and m
importantly, since we must calculate the total energy a
sum of various contributions defined by the Hamiltonian
the system, all the energy contributions needed to const
the predictor are already available, either directly or by so
simple manipulation.

The largest calculations presented in this paper were
formed on a Beowulf cluster of fifteen 500 MHz dua
processor workstations. For a five iteration optimization
ing 105 samples per iteration, these calculations took ab
50 h on this cluster. However, perhaps half this amount
sampling would have produced comparable results@see item
~3! below#. The required memory for storing all the expect
tion values necessary for this calculation scales quadratic
with N, but with a small prefactor. As well as all other ne
essary variables for the running of a VMC calculation, t
storage requirements are easily within the capabilities of c
rent workstations, at approximately 20 MB for our large
calculation.

~2! The Newton-Raphson method~see Appendix C!,
while quadratically convergent near a root of a multidime
sional system, does possess some convergence problem
from the root. In the calculations presented in this paper,
found that below a certain minimum amount of sampling, t
noise in the estimated expectation values used to cons
the predictor caused divergence of the solution to Eq.~30!
using the Newton-Raphson method. This problem might
solved through the use of a more robust root-finding meth
for the predictor function.

~3! From the analysis in Appendix G, we see that noise
the iterative method comes from the finite sampling used
estimate those expectation values~listed in Sec. III F! re-

FIG. 15. Total graphite energy in hartree/atom vs iteration nu
ber for a 23232 simulation region. The number of Monte Car
samples per iteration ranges from 104 to 53105.
4-18
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quired to construct the predictor. The effect of this noise
the wave function accuracy is not clear. To reduce the co
putational cost of these calculations we would prefer to
the least amount of sampling necessary to produce the
quired results.

Figure 15 illustrates the effect of various amounts of sa
pling on the convergence of the total energy in the optimi
tion of the 23232 simulation of rhombohedral graphite. A
104 samples per iteration, the estimation of the required
pectation values, during the first iteration of our method
too crude to produce a convergent root of the predictor us
the Newton-Raphson method. This leads to a wave funct
used in the second iteration, with many noisy parame
which are more difficult to optimize, as the convergence
the energy shows. However, for sampling involving 23104

samples per iteration, or more, we see that the converg
of the total energy is identical~within statistical accuracy!.
Comparison of the optimized wave function parameters a
reveals only small differences, indicating that the only me
of determining the true benefits of more sampling
by examination of the fitted coefficientsVm(an) at each
iterationn.

In Fig. 16 we see, from the reconstructionV5(r ,r 8) of the
fitted coefficients for two-body optimization at the fifth an
final iteration of the method, that the most sampling
3105 samples per iteration! reduces the magnitude of th
Euler-Lagrange derivatives the most, indicating that th
wave function parameters are the most accurate. Howe
for practical purposes, there is little distinction between
accuracy of the wave function once we increase the samp
beyond 23104 samples per iteration. Thus the optimizatio
presented in Sec. IV may have used more computational
than was strictly necessary. However, more testing is
quired to determine the minimum amount of sampling a
function of system size.

D. Future applications

The ability to accurately represent electron correlation
systems with inhomogeneous and anisotropic electron ch

FIG. 16. The reconstructed two-body functionV5, vs electron
separationr along the line segmentBB8 in graphite, from the fifth
iteration of each of the calculations in Fig. 15.
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densities is also pertinent for the study of finite systems s
as molecules and clusters. While no work has been don
date using our method of energy minimization for inhom
geneous correlation factors in finite, polyatomic systems,
general theory of constructing the correlation factor~Sec. II!
and the methodology of energy minimization~Sec. III! are
still applicable here. Ultimately, what one requires is
appropriate basis set for the expansion of the correla
factor u.

For periodic solids, optimal inhomogeneous correlati
factors can be used in the investigation of van der Wa
interactions, and their contribution to the interlayer bindi
of graphite.2 Such information may prove invaluable to th
development of new exchange-correlation functionals
DFT which can accurately reproduce van der Waals energ

VI. CONCLUSION

We have developed a generalized form of electron co
lation factor for trial many-body wave functions of electro
in periodic solids. This form allows us to represent ful
inhomogeneous electron correlation in real physical perio
systems. It is computationally efficient to evaluate, since
electron cusp, which we express as a homogeneous cor
tion factor, is separated from the fully inhomogeneous for

We have also developed a rapidly convergent iterat
method for the optimization of all variational parameters
these wave functions, minimizing the total energy of t
given system. It uses the accurate techniques of quan
Monte Carlo sampling to achieve this optimization and h
allowed insights into the form of many-electron correlati
in systems with highly inhomogeneous charge densities.

We have demonstrated that using an optimal form of
mogeneous correlation factor is appropriate for the gen
tion of accurate energies with relatively low computation
cost. In graphite, it is evident that allowing for a descripti
of anisotropy in the correlation factor is energetically mo
important than representing full inhomogeneity.

Given the variational freedom to include full inhomog
neity in the correlation factor, we have found that, in d
mond, the optimal correlation factor is approximately hom
geneous and isotropic, with some inhomogeneity at sh
and intermediate-range electron separations. This is con
tent with its comparatively homogeneous and isotropic el
tron charge density. Graphite has an optimal correlation f
tor which is quite homogeneous at short-range elect
separation, but is significantly inhomogeneous and an
tropic at intermediate- and long-range electron separatio
as one might expect from its highly inhomogeneous and
isotropic electron charge density. Nevertheless, it is rema
able that despite the very large inhomogeneity in the elec
pair-correlation function, found by previous authors,39–41the
ideal inhomogeneous Jastrow two-body term, calculated h
for diamond and graphite, displays a relatively small inh
mogeneity. Whether this conclusion can be extended to o
systems~e.g. involving strongly correlatedd electrons! re-
mains an open question.
4-19
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APPENDIX A: DERIVATIVE OF OBSERVABLES WITH
RESPECT TO WAVE FUNCTION PARAMETERS

The derivative of the expectation value of an observa
A, with respect to a parameteramPa of the parametrized
wave functionC(a), may be written as

]^A&
]am

5
]

]am

^CuAuC&

^CuC&
.

We assume thatA is independent of the parametersa. Also,
for a time independent system, we may in general expresC
as a real function. Differentiating, we find that

]

]am
^CuC&52^CuOmuC&,

]

]am
^CuAuC&52^CuAOmuC&,

where we define the operator associated with variations
am asOm[]/]am , with a local value

Om~R![
1

C~R!

]C~R!

]am
5

]

]am
ln C~R!,

for the many-body configurationR.
Therefore, we may express the derivative of^A& as

1

2

]^A&
]am

5
^CuAOmuC&

^CuC&
2

^CuAuC&

^CuC&

^CuOmuC&

^CuC&

5^AOm&2^A&^Om&5^DADOm&,

whereDA(R)5A(R)2^A& andDOm(R)5Om(R)2^Om&.

APPENDIX B: LEAST-SQUARES FITTING

Our task is to minimize the integral

x25^Cu HH2E02(
k

VkO kJ 2

uC&

by choosing the appropriate parametersE0 and $Vk%. We
note first that, at the minimum,

E05^E&2(
k

Vk^Ok&,

where ^E& is the expectation value of the total energy a
^Ok& is the expectation value of the operatorOk . To fulfill
the minimization, we must set all the remaining first deriv
tives of x2 to zero, i.e.,

]x2

]Vl
522^Cu HH2E02(

k
VkOkJ Ol uC&50
15510
.

-

e

of

-

for eachl. Upon substitution of the minimum value ofE0,
this leads to

^EOl&2^E&^Ol&5(
k

Vk@^OkOl&2^Ok&^Ol&#.

Since, for any operators,a andb, we may say that

^ab&2^a&^b&5^DaDb&

whereDa5a2^a&, then we are lead to the conclusion th
the least squares fitting is equivalent to solving the lin
system

(
k

Vk^DOkDOl&5^DEDOl&

for eachl.

APPENDIX C: NEWTON-RAPHSON METHOD

An integral part of the iterative procedure outlined in Se
III C is the determination of the parametersa that solve the
system in Eq.~30!. The determination of the roots of an
multidimensional function can be troublesome. In all the o
timizations presented in this paper, the predictor funct
Vm8 (a;a0) is a quadratic function ofa, whose coefficients
are determined analytically, or by numerical fitting at t
point a0. We ignore the implicit dependence ofVm8 on a0 for
the purpose of finding a root, and solve the systemVm8 (a)
50 for all m.

We use the Newton-Raphson method27 to determine the
roots. This is an iterative method of improving success
guesses for a root of a function. It involves the computat
of the functionVm8 and its Jacobian matrix of derivative
with respect toa, at each guess. The iterations continue un
convergence of the solution is achieved within a predefin
tolerance.

The success of the Newton-Raphson method for mult
mensional systems relies heavily on the proximity of t
initial guess to the root we seek. For this reason, the ini
guess chosen is normally the parameter set of the prev
iteration of the procedure outlined in Sec. III C. To find th
first set of parameters, by finding the roots of the analy
predictor Sm , we require a good initial guess of the roo
Since the one-body parametersxG are expected to be sma
by construction, an initial guess of zero for allG was found
to be sufficient to produce a convergent solution to the fi
application of the Newton-Raphson method.

For the two-body problem, we rescale the variablesuqq8
to improve the convergence of the root-finding method. A
cording to the RPA,18 the long-range behavior of theu func-
tion should take the formu(r )51/vpr , where the plasma
frequency for a homogeneous system with electron cha
densityn is vp5A4pn. The charge densityn is determined
in the simulation region to beN/V, for N the number of
electrons in the simulation volumeV. Therefore, for smallq
in Fourier space,u behaves like
4-20
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u~q!5
4p

Vvpq2
5vp

1

Nq2
.

This indicates large relative differences between values
u(q) for small q. Therefore, in inhomogeneous systems
would be appropriate to rescale the parametersuqq8 by mul-
tiplying by Nuquuq8u, thus rendering all the variables of th
same order of magnitude as the plasma frequency. This l
to a less pathological numerical problem for the Newto
Raphson method. Appropriate scaling must also be applie
the predictor functionVqq8

8 in Sec. III. For the initial analytic
guess of the roots ofSqq8 we use the homogeneous solutio
for uqq8 outlined in Eq.~31!.

APPENDIX D: ONE-BODY ENERGY CONTRIBUTIONS

The variational part ofC associated with one-body term
is the Jastrow factorJ1b @Eq. ~15!# with parametersx
5$xG%. We expand the energy contributionse (1) and e (2)

defined in Sec. III D. ForJ1b, we have that

e (1)[2
1

2 (
i

¹ i
2J1b

J1b

52
1

2 (
i

~¹ i
2ln J1b1u“ i ln J1bu2!

5
1

2 (
G

xGG2DrG*

1
1

2 (
GG8

xG2G8~G2G8!•G8xG8DrG* 1const.

The constant terms are not required, so we ignore them
The energy contributione (2) cannot be expanded analyt

cally as a linear combination of the functionsDrG* since
C8[C/J1b is not explicitly a function of these coordinate

e (2)[2(
i

“ iJ1b

J1b
•

“ iC8

C8
52(

G
xG(

i
“ iDrG* •

“ iC8

C8
.

However,e (2) is explicitly linear in the parametersx, with
derivatives

]e (2)

]xG
52(

i
“ iDrG* •

“ iC8

C8
,

which are independent ofx.

APPENDIX E: TWO-BODY ENERGY CONTRIBUTIONS

The variational part ofC associated with two-body en
ergy contributions is the inhomogeneous Jastrow factorJih of
Eq. ~14!, with parametersu5$uqq8%. ~For periodic systems
we use onlyuq1G,q1G8 .) The energy contributionse ( i ) of
Sec. III D are expanded here. The contributione (1) is depen-
dent only on the form ofJih and is expanded as
15510
of
t

ds
-
to

e (1)[2
1

2 (
i

¹ i
2Jih

Jih
52

1

2 (
i

~¹ i
2ln Jih1u“ i ln Jihu2!.

We find that

2
1

2 (
i

¹ i
2ln Jih52

1

2 (
qq8

uqq8~q21q82!Pqq8

2(
q FN21

N (
q8

uqq8q
2^rq8&GDrq*

1const.

We retain only the linear combination of the functionsPqq8 .
The constant terms we may ignore, and the one-body te
~linear combinations ofDrq* ) we assume are compensat
for by terms in the one-body JastrowJ1b.

If we ignore the removal of one-body terms from th
function Pqq85(DrqDrq8

* )[ iÞ j ] and consider using the func
tion DrqDrq8

* instead, then we find that

2
1

2 (
i

u“ i ln Jihu2

522(
qq8

(
kk8

uqk~k•k8!uk8q8rk82kDrqDrq8
* 1•••,

~E1!

where we have ignored constant and one-body terms in
expansion. The productrk82kDrqDrq8

* contains both two-
and three-body terms, since we may rewriterk82k as
Drk82k1^rk82k&. We intend here to remove two-body fluc
tuations and regard three-body fluctuations as much less
nificant, so we retain only the two-body term47

^rk82k&DrqDrq8
* from the charge fluctuation products in E

~E1!, i.e.,

22(
qq8

(
kk8

uqk~k•k8!uk8q8^rk82k&DrqDrq8
* 1•••.

Now we make the assumption that removing one-body te
from this expression , i.e., replacingDrqDrq8

* with Pqq8 is a
good approximation, and obtain the expression forvqq8

(1) (u)
given in Sec. III E 2.

The contributione (2) cannot be expanded analytically i
the basis of fluctuation functionsPqq8 , However, it is clear
that e (2) is linear inu, since, forC8[C/Jih ,

e (2)5(
qq8

uqq8(
i

“ i Pqq8•
“ iC8

C8
,

and has first derivatives

]e (2)

]uqq8

5(
i

“ i Pqq8•
“ iC8

C8
,

which are independent of the parametersu.
4-21
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The final energy contributione (3) we attempt to expres
analytically in terms of the two-body fluctuation function
Pqq8 . If C8'D, the LDA Slater determinant, then the su
of contributions from the external potential and the kine
energy term2(1/2)( i¹ i

2C8/C ’ is a one-body contribution
defined by the Kohn-Sham Hamiltonian,25 since

(
i

F2
1

2

¹ i
2D

D
1Vext~r i !G5(

i
@e i

KS2VH~r i !2Vxc~r i !#,

wheree i
KS are the Kohn-Sham eigenvalues,VH is the Hartree

potential andVxc is the exchange and correlation potenti
Therefore, the two-body contribution of these terms is
proximately zero. We are left with the contribution of th
electron-electron interactionV.

For a two-body potentialV(r ,r 8), we may expand the
sum over electron pairs as

(
i , j

V~r i ,r j !5
1

2 (
qq8

Vqq8(
iÞ j

e2 iq•r ieiq8"r j

5
1

2 (
q

Vqq8~rqrq8
* ! [ iÞ j ] ,

for Fourier coefficientsVqq8 . In terms of the fluctuation
functionsPqq8 , this may be rewritten as

(
i , j

V~r i ,r j !5
1

2 (
qq8

Vqq8Pqq8

2(
q FN21

N (
q8

Vqq8^rq8&GDrq* 1 const.

@We assume thatV(r ,r 8) possesses exchange symmetry,
that Vqq85V2q82q .] Therefore, both one- and two-bod
fluctuations arise from a two-body potential in the ‘‘char
fluctuation’’ coordinate system. Note that the one-body flu
tuations are expressible in terms of the Hartree poten
since

VH~q!5(
q8

Vqq8^rq8&.

If the two-body potential is homogeneous, i.e.,V(r ,r 8)
5V(r2r 8), then we may simplify the fluctuations sinc
Vqq85Vq* d(q2q8), where the Fourier transform of the ho
mogeneous functionV(r ) is

Vq[
1

VE
V

V~r !e2 iq•rdr ,

for a system volumeV. If V(r )5V(2r ) then Vq* 5Vq .
Therefore,
15510
.
-

o

-
l,

(
i , j

V~ ur i2r j u!5
1

2 (
q

VqPqq

2
N21

N (
q

Vq^rq&Drq* 1 const.

~E2!

Again we ignore the one-body and constant terms in t
context.

APPENDIX F: CONSEQUENCES OF USING
THE SHORT-RANGE JASTROW FACTOR

The short range Jastrow factorJsr is constructed from the
pseudointeractionVps in the following way. For the isolated
two-electron scattering problem, we may find an eigens
c0 of the true two-electron Hamiltonianh0 for a given en-
ergy eigenvaluee. Upon replacing the true Coulomb inte
action V with a generated pseudointeractionVps, we con-
struct the modified Hamiltonianhps with an eigenstatecps
corresponding toe. We constructJsr such that

c05Jsrcps.

Now, in a many-electron environment, we know that u
ing Jsr allows for a good approximation of short-rang
correlations.24 We might imagine that for a many-electro
system with HamiltonianH and many-electron trial wave
functionJsrCps, the true energy eigenvalue may be well a
proximated by

E'
HJsrCps

JsrCps
'

HpsCps

Cps
,

where Hps5H2( i , j@V(r i j )2Vps(r i j )#. Now, disguising
the true interactionV with Vps1(V2Vps), and given the
transferability ofVps over a wide range of energies, we s
that

(
i , j

Vps~r i j !'2
1

2 (
i

¹ i
2Jsr

Jsr
2(

i

“ iJsr

Jsr
•

“ iCps

Cps

1(
i , j

V~r i j !.

Dividing two-body correlation into short-range and inh
mogeneous terms, we use a Jastrow factor of the formJsrJih .
The local energy determined using the trial wave funct
C5JsrJihC8, whereC8[C/(JsrJih), may be expanded as

E52
1

2 (
i

¹ i
2Jsr

Jsr
2(

i

“ iJsr

Jsr
•

“ iC/Jsr

C/Jsr
1(

i , j
V~r i j !

2
1

2 (
i

¹ i
2Jih

Jih
2(

i

“ iJih

Jih
•

“ iC8

C8
2

1

2 (
i

¹ i
2C8

C8

1(
i

Vext~r i !
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'(
i , j

Vps~r i j !2
1

2 (
i

¹ i
2Jih

Jih
2(

i

“ iJih

Jih
•

“ iC8

C8

2
1

2 (
i

¹ i
2C8

C8
1(

i
Vext~r i !.

For this reason, we useVps in the expansion of the local
energy forJih to implicitly include the short-range Jastrow
factor Jsr.

APPENDIX G: CONVERGENCE OF THE METHOD

The convergence criterionVm(a)50, is numerically
never exactly achieved. Given that the predictorVm8 contains
some terms determined by statistical fitting, finite samplin
errors exist, and this noise is passed on to the fitted para
eters inVm8 from Eqs.~22! and ~27!.

We considerVn5$Vm(an)%, the fitted coefficients of the
local energy at thenth iteration of the method. The method
may be regarded as an iterative mapM , such that the coef-
ficients are determined viaVn115M (Vn). There are two
sources of noise inVn11: ~i! noise inherited fromVn , which
produced the parametersan11, which were used to construct
the wave functionC(an11), with which we evaluated the
expectation values used to calculateVn11; and ~ii ! finite
sampling noise in the evaluation of the expectation values
Eqs.~22! and~27! via Monte Carlo sampling. Therefore, we
associate a set of variancessn

25$sm
2 for eachm at stepn%,

arising from these two sources of noise, to the coefficien
Vn . The variance due to finite sampling alone, at each stepn,
is sn

2 and we use the initial conditions1
25s1

2. This implies
that the variance obeys the following iterative map:
c
5

e

.

15510
g
m-

in

ts

sn11
2 'sn11

2 1ulnu2sn
2 ,

where ln5“VM (Vn). For a convergent mapM , we are
guaranteed thatulnu2,1 at convergence.ulnu is a measure of
the convergence rate of the mapM , with ulnu'0 implying
fast convergence andulnu'1 implying slow convergence
Note that if ulnu>1 the map is divergent.

Therefore, if we regardsn's and ln'l for all n, for
constantss andl, then the converged value of the varian
in the fitted coefficients is

s
*
2 5

1

12ulu2
s2. ~G1!

We conclude that, given a convergent methodM , the
presence of statistical noise does not lead to success
more ill-determined parametersa, since their variance is
also convergent.

Note that Eq.~G1! indicates that the variance in the fitte
coefficientsVm(a) is always greater than or equal to th
variance estimated using finite sampling. However,
implementation of the method represented by the mapM
indicates thatulu!1, since we find that the majority of th
coefficientsVm(a) ultimately end up with magnitudes ap
proximately equal to their finite sampling errors, signifyin
that statistically they are zero.

Therefore, the final conclusion to be drawn from Eq.~G1!
is that the accuracy of our optimization method depends
timately on the finite sampling error. Therefore, increas
the computational workload, by increasing the amount
sampling, will result in more accurate optimizations
the wave function. This is demonstrated by the results
Sec. V.
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