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Optimization of inhomogeneous electron correlation factors in periodic solids
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A method is presented for the optimization of one-body and inhomogeneous two-body terms in correlated
electronic wave functions of Jastrow-Slater type. The most general form of inhomogeneous correlation term
which is compatible with crystal symmetry is used, and the energy is minimized with respect to all parameters
using a rapidly convergent iterative approach, based on a Monte Carlo sampling of the energy and a fitting of
energy fluctuations. The energy minimization is performed exactly within statistical sampling error for the
energy derivatives, and the resulting one- and two-body terms of the wave function are found to be well
determined. The largest calculations performed require the optimization of over 3000 parameters. The inho-
mogeneous two-electron correlation terms are calculated for diamond and rhombohedral graphite. The optimal
terms in diamond are found to be approximately homogeneous and isotropic over all ranges of electron
separation, but exhibit some inhomogeneity at short and intermediate ranges, whereas those in graphite are
found to be homogeneous at short range, but inhomogeneous and anisotropic at intermediate- and long-range
electron separations.
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. INTRODUCTION
W(ry, ... ,rN)=exp[—E_ u(ri,r)+> x(r)|D. (1)
An accurate description of electron correlation is one of - '
the central issues in modern electronic structure theory. In
principle, this involves solving the many-electron Sehro HereD is a Slater determinant of single-particle orbitals and
dinger equation, which for a system df interacting elec- interparticle correlation is introduced with the two-body
trons is an inseparableNsdimensional problem. Hartree- term u in the Jastrow factor. The one-body termcould
Fock (HF) methods use a mean-field approximation of thejn principle be absorbed into the single-particle orbitals
electron interaction to reduce this & independent prob- of the determinant, but it may be convenient to retain it
lems, whose solution provides a reasonable approximation tQyjicitly in the Jastrow factor. In practice, the orbitals in

many physical properties of the system. Density functionals gjater determinant are often determined from a HF or
theory* (DFT) formally considers a noninteracting system DET calculatiorf

with the same electronic density as the original, and is in In this paper, we will focus on the optimization of
prlnC|pI_e an exact _approach, although in practice requIr®S s strow-Slater wave functions in the context of the electronic
approximations for its unknown exchange-correlation poten-

tial. While these approximations usually improve greatly Onstrgct_uret_ of fe”Od'C _SOI'dS‘ We will apply wavi_ftrj]ncnon
HF results, they may neglect some aspects of electron corr ptimizalion to examineé some consequences which emerge

lation which are chemically important or are associated witH®M @ complete treatment of inhomogeneity in the two-body
long-range electron correlation, such as van der WaalSorrelation term for diamond and rhpmpohedral graphite.
interaction The general form of wave function in Eql) has been
Quantum Monte Carl6QMC) methods provide an impor- used as the starting point of several methods, including
tant approach for solving the fullg-dimensional problerd.  Fermi hyperetted chaifFHNC) and VMC (Ref. 4 calcu-
One such method, the variational Monte CafgMC) lations. The traditional approach is to use a variational prin-
method, allows us to estimate expectation values for a givegiple on the energy(or, in the “variance minimization”
trial wave function. Ideally, this wave function is an eigen- method! on the fluctuations of the energyo define a best
state of the many-body Hamiltonian. In practice, a param-approximation to the true eigenstate within the variational
etrized form is used, which approximates the exact eigenfreedom allowed by the wave function ansatz. Expectation
state. The accuracy of these calculations is entirelywalues of the energy and other quantities are calculated from
dependent on the trial wave function, however, and so théhe trial wave function, approximately in the FHNC ap-
development of accurate wave functions is vital both in arproach, exactly in the VMC metho@vithin statistical error
accurate estimation of physical properties and in understanaf the sampling While the VMC method has been used in
ing how certain physical phenomena may be simply repreealculations of periodic solids, in practice most calculations

sented in the wave function. have included only homogeneous two-body terms in the Ja-
A widely used trial correlated wave function is the strow factor! and the optimization of wave functions with
Jastrow-Slatéror Feenbergform very large numbers of parameters has remained problemati-
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cal. To our knowledge, the FHNC approach has not beemsed much more widely than energy minimization in deter-
applied in fully three-dimensional electronic structure calcu-mining optimal parameters for variational wave functions.
lations. Although not strictly equivalent to energy minimization for a
Wave functions determined by the VMC approach are of-nonexact wave function, in practice this method has been
ten used as guiding, trial functions for the diffusion Monte very successful in improving total energies, providing ex-
Carlo (DMC) method® In the DMC context, the accuracy of tremely accurate wave functions in certain atomic systems.
the wave function affects the numerical efficiency of energyHowever, recent studies for small systerfetoms and
calculations and the accuracy of other physical quantitiesdimersg have shown that many non-energy-related properties
When the DMC method is used in conjunction with nonlocalof these systems are more accurately estimated by energy-
pseudopotentia%as is commonly the case in chemical ap- optimized wave functions than by variance-optimized wave
plications, an accurate trial wave function is essential for arfunctions®’
accurate calculation of the ground state energy. Variance minimization may be thought of as fitting energy
We present here a numerically robust, rapidly convergenfluctuations to a constant, and attempting to reduce the cost
iterative method which minimizes the variational energyfunction involved in this fit by a direct variation of the wave
with respect to a very general inhomogeneous form of thgynction parameters. The standard approach is to use a least-
Jastrow factor, including all one- and two-body terms com-gqares fit of these energy fluctuatidisn practice, the
patible with crystal symmetry. The method remains numeriyyaye function parameters are often subject to confinement to
cally well conditioned, even for large systerfaf the order local minima, and this approach requires much human inter-

gggg‘{ﬁé@l gggggfia?:gggggls’vgre;ﬁqet?;rsei:;ﬁergzgréw?aaction and experience for successful implementation when
P P (farge numbers of parameters are to be optimized.

tor. Within acceptable computational demands on the Monte Our method of energy minimization involves the fitting of

Carlo sampling, the optimal values of parameters in the wave . . .
Ping P b nergy fluctuations to a givemonconstantfunctional form,

function are found to be well determined, even when thei €9y . R . .
contribution to the total energy is extremely small. which is a linear combination of operators associated with

The method places no restrictions on the functional formyariations of the wave function parametesee Sec. Il

of the antisymmetriddeterminantal part of the many-body This fitting allows us to detgrmine a “prediqtor,” Which links
wave function, and can be used in conjunction with relatecchanges in the wave function to changes in the fitted energy
methods recenﬂy deve'oped for energy minimization Withﬂuctuations. This predictor iteratively guides our method to a
respect to all orbitals in the determin&h@r with respect to self-consistent solution, where the fitted energy fluctuations
configuration weights in a multideterminant functibrt? ~ are zero. The derivatives of the true many-body energy with
Taken in conjunction with these methods, the approach preespect to all the parameters in the wave function are then
sented here completes the solution to the problem of energglso zero(within statistical sampling erroifor this final so-
minimization with respect to the most general variationallution.

terms in wave functions of the Jastrow-Slater type, as well as Our predictor is closely related to the random phase ap-
in wave functions where the Jastrow factor multiplies a mul-proximation (RPA), introduced by Bohm and Pin&sand
tideterminant function. Although many specific details of therecently discussed in the context of inhomogeneous
work here refer to periodic systems, the basic method fosystemd?®2°However, as long as the predictor is sufficiently
Jastrow factor optimization could, in principle, be used inaccurate to ensure a stable convergence of the iterations to
similar calculations of molecular, atomic, or nuclear struc-the self-consistent solution, its exact form does not affect the

ture. final solution. Our method allows us to surpass the approxi-

Other general methods exist to achieve energy minimizag, ations of the RPA and to produce explicit trial wave func-

tion with respect to parameters in many-body wave fu.”?'tions of unprecedented accuracy for electrons in periodic
tions. When only one or two parameters are optimized, it i

ossible to perform a systematic search of parameter s a(?SeO"dS'
: ’ d P Pace we will use the optimized wave functions to study the

as McMillan did in his pioneering VMC study of the prop- effects of charge inhomogeneity on the correlation factors in
erties of liquid He® The stochastic gradient approximation, . 9 9 y . :
diamond, as a prototype of strongly bonded insulating sys-

used by Harjuet al,* applies control theory to determine 4 rhombohedral hi f hiahl
iterative corrections to the wave function parameters. Linc™S: and rhombohedral graphite, as a prototype of highly

et al1® explicitly computed analytical derivatives of the en- aniSOIropic, inhomogeneous  solids. Earlier stutfiésof
ergy with respect to variational parameters, and used these {8€S€ and related systems indicated that homogeneous two-
optimize their wave function with a Newton-style method. Pody correlation factors gain a large fraction of the correla-
Snajdr et al'® used histogram filtering to optimize wave tion energy in solids. This seems to imply that there is little
functions such that either the energy or its variance is minifoom for improvement by introducing inhomogeneous corre-
mized. However, none of these methods have as yet bedation factors. However, substantial differences in correlation
applied in systems where a very large number of parametef@ctors often give rise to relatively little change in energy—a
are to be optimized. property that makes their optimization quite challenging.
In recent years, the variance minimization method of Um-This is particularly true when one is interested in long-range
rigar et al,” which optimizes the wave function by reducing correlation, which is energetically very delicate. Therefore, it
the magnitude of the variance of the local energy, has beeis possible that substantial inhomogeneous structure may ex-
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ist in these correlation factors, even though it contributesvhereug(r) is a short-ranged, isotropic function which has
little to lowering the total energy of the system. We find thisthe correct electron-electron cusp ras:0, andu(r,r’) is
to be the case for graphite. now a smooth, cuspless function. We use a form of the short-
The rest of this paper is organized as follows: In Sec. Il,ranged functiorug, which is generated from a numerical so-
we present the detailed numerical form of variational waveution of the electron-electron scattering problem. A discus-
functions to be used in these calculations. The approach &fion of the generation afg, was provided in Appendixes A
fitting energy fluctuations and its use in guiding the iterativeand C of Ref. 24. We defing,= —InJ,,, wherel, is defined
solution of the energy minimization problem is discussed inwithin Appendix C of Ref. 24. The expansion of the remain-
Sec. lll. In Sec. IV, we present some results on the applicaing functionu(r,r’) in the form given in Eq(2) then con-
tion of the method to the periodic solids, diamond and rhomverges much more rapidly than that of the original function,
bohedral graphite, and examine the effects of charge densityr any set of smooth functions, .
inhomogeneity on the correlation factors of these systems. In |n this paper, we generate the short-range funatigin a
Sec. V we discuss the results and some computational detaépin-dependent form, to maintain the cusp conditforiEhe
of the method, illustrating the justification for certain aspectscuspless function(r,r’) used in our work is independent of
of our approach with some tests. Finally, in Sec. VI, wethe electron spin, although we expect that a spin-dependent

present the overall conclusions of this study. form is as easily optimized.
Il. FORM OF THE WAVE FUNCTION B. Separation of one- and two-body terms
The Jastrow two-body correlation factafr,r’) in Eq. (1) Summingu(r,r') over all electron pairs in the basfs,
can in principle always be expressed as leads to
1
u(r,r’)=a2/3 fo(1)* Ugpf g(r'), ) ;J u(ri.rj)=s QZB uaﬁ;j falri)*fa(r). (5)

This may be thought of as a two-body expansion of the cor-
relation term. However, it is important to realize that any
separation of “one-body” and “two-body” terms in the Ja-
strow factor is somewhat arbitrary. Removal of terms where
?zj, as in Eq.(5), is not sufficient to decouple one- and
two-body terms completely. To see this, consider the trans-
formation of each of the basis functions obtained by subtract-
x(r)= E X49,(1). (3) ing a constantf/(r)=f,(r)—c,. The set remains complete

Y and the function

wheref, form a complete set of functions ang,; are ex-
pansion coefficientsgWe use* to indicate complex conju-
gation throughout this paperSimilarly, the one-body func-
tion x(r) may also be expanded in a basis set of complet
functionsg,,, as

Apart from an additional term to handle the electron- , . ,
electron cusp? we will express the Jastrow factor in the u(r,r ):azﬁ [Fa(r)* —cgJuaplfp(r’)—cgl ©)
general form given by Eq$2) and(3). Values of the param-
eters{u,z,x,} will then be determined so that the energy of may be interpreted as a “two-body” function in the basis set
the system is stationary with respect to all variationsf,. However, expanding this correlation factor over all elec-
{dugg.dx,}- tron pairs, we find that, in terms of the original bagjs an

Note that for the two-body function, we shall retain its additional one-body contribution appears:
full inhomogeneity and anisotropy. By this, we mean tin&t L
both a function of the position and relative orientation of two _ %
bodies positioned at andr’, i.e., u=u(r,r’). This is in |E<, u(ri,r)=z azﬁ “aﬁgj Far)™ (1))
contrast to approximating as: (i) a homogeneous function
u(r’ —r), dependent on relative position, @r) an isotropic _ N—-1 2 2 f .
function u(|r’ —r|), dependent only on the magnitude of 2 44 [uagfalri)®cg
separation, and so independent of orientation.

+U,pCH f5(ri)]+const. (7)

A. Electron-electron cusp We may regard this as a transformation of the one-body

Due to the divergence of the Coulomb interaction be-function in Eq. (1), x(r)—x(r)+x°(r), where the addi-
tween two electrons, the correct two-body correlation terntional term comes from the second line of Ed@):
u(r,r') has a cusp where—r’, leading to slow conver-

ion i - i N—1
gence of any expansion in smooth functions of the form in O(r)= calf (r)*
Eq. (2).22 For this reason, it is humerically convenient to XN 2 ; % UapCp| Falr)
rewrite the two-body functiom in the form
+ UgaCh [To(r)t. 8
() +uglr =), @ 5 Useh ()] ®
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To make a definite numerical separation of our one- and
two-body expansions, we need to consider an appropriate
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1 o)

choice of the arbitrary constants,, noting thatu(r,r’) is
intended primarily to affect correlation propertie., two-
body propertiesof the system, leaving single-particle prop-

erties unchanged. For example, the mean-field methods that

produceD [HF, DFT under the local density approximatfon

(LDA), etc] normally give very accurate single-particle den-

2 a0, =i (T () IEar)* — i)

X(fg(rj)—cgy+([F,(r)*—(f,)*]
X[fa(r))—cgl)(fa(r)*—cp). 9)

We can guarantee that the right hand side of(Epis zero if

sities, which can be altered substantially by inclusion of arf«=(fa). for all a. In other words, one-body expectation

arbitrary functionu(r,r’), in ¥ [Eq. (1)]. Any substantial

values remain approximately unaffected by the presence of

change in the density from the HF solution is likely to be the correlation factou(r,r’), provided we expand(r,r’) in
energetically very costly, so that ideally we would like to @ basis of *fluctuation functions,”f/(r)=f,(r)—(f,).

decouple changes in(r,r’') from changes in the density.

Equivalently, we may retain the original bagisand form a

Necessary changes in the density may be allowed for bpne-body termy® from Eg. (8) with c,=(f,). This may

optimization of the explicit one-body term in the Jastrow
factor[Eq. (3)] or by the methods of Ref. 10.

Therefore, we would like to choose the constansuch
that the average of any one-body operdtarch as the den-

then be inserted into the wave function of Ef) and varied
as the parameters, ; are varied.

Correlation effects are of course present in the actual
wave function used. However, we find that £) remains

sity) for ¥ remains stationary with respect to variations in @pproximately true, as previously obser\?éa‘? For the en-
the coefficientsu,z, at least in the absence of interparticle gy minimization problem, we find that mixed derivatives

correlation. If we define the one-body operator

MR)EZi f(ri)*

for the many-body configuratioR=(r; .. .ry) then its ex-
pectation value is

()= (¥lo, [0y [ 0% ot

where p(r) is the single particle density. Since tlig are
fixed functions, variations in the expectation valggs) cor-
respond to variations ip(r). The derivative of(p,) with
respect to variations of the,, in Eq. (6) is (see Ap-
pendix A

1 (p,)
2 dUgyp

:<[p7(R)_<py>]

x; [fa(r)* —CcEIfa(r)—cpl

2 ([Fy(ro* =(f,)"]

=2
k 1#]
X[fa(r)* —ch1[fa(rj) —cgl).
In the absence of interparticle correlation,
(Ffa)(fp) if k=i
(B fa(f)*  if k=]
(f,)*(f)*(fz) otherwise.

(Fr)* fa(r)*fa(r))=

The second summation excludiesj, so averages of triple

products never arise. Thus, in the absence of correlation, the

derivative becomes

of the energyaZE/auaﬂaXy are approximately zero when
c,={f,). This gives the numerical advantage that minimi-
zation of the energy with respect tg,; approximately de-
couples from minimization with respect jg,. We note that
this approximate decoupling holds, even if the relatmn
=(f,) is not exactly true. Thus we may use,
=(D|f,|D), (i.e., LDA or HF averages of,), in place of
(P|f,|¥), while still maintaining the numerical advantages
of approximately satisfyin@?ZE/&uaB&)(y:O.

C. Fourier expansion

In the context of periodic systems, it is natural to expand
the correlation functiom(r,r’) as a Fourier series, where the
basis functions aré,=exgiq-r], for each wave vectog.

We note that

pq<R>=2i exq—iq-ri]:Z fo(rp* (10

is the Fourier coefficient of the instantaneous charge density,
given the electron configuratidR. (In atomic units the elec-
tronic chargee=1). Also, summing over pairs leads to a
quadratic product of Fourier coefficients, with some modifi-
cation to remove terms with=j:

1
2 fo(r)* for(r)=5(pgpg )i+ - (11

i<j

In order to approximately remove the effect of the two-
body terms on the single-particle density, following Sec.
Il B, we subtract appropriate constants from each basis func-
tion to produce a basis of collective “charge fluctuation”
coordinates

Z fa(ri)*Equ=pq—<pq>:Zi fo(r)—(fg)*.
(12
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These provide a suitable expansion of the two-body correla;r——————[ Construct w(a®) ‘
tion factor that approximately preserves single-particle den-
sities.

A correlation factor using such coordinates was first sug-
gested by Bohm and Pinésfor the homogeneous electron
gas, and has recently been discussed by Malatstsih?®!
and Gaudoiret al?° in the context of inhomogeneous sys-
tems. In homogeneous systems the expectation Val)eof
each charge density Fourier coefficient is zero, and so charg
density fluctuations are simply,. For inhomogeneous sys-
tems, in generalp,)#0 whenq=G, a reciprocal lattice
vector.

The alternative to using fluctuation coordinatkes, is to
incorporate the equivalent one-body term in the Jastrow fac
tor, which in periodic systems is of the form

Fit Energy Fluctuations

using |W(a™)|?2 and VMC

Yes
| Vim(@™) =0 7 |——|[ W Optimized |

No

‘ Construct predictor V/,(a; ™) |

Z Xo(ri)=%: X2pE,

with the coefficients coming from the two-body term

| Solve V},(a;a®) =0 to find ant? |

N—1
XOG:T > Uss{psr) (13 FIG. 1. A flow chart outlining the iterative method of wave
G’ function optimization by a minimization of the total energy of the

as discussed by Malatestaal > and Gaudoiret al?° system, as described in Sec. lll.

The properties of the Fourier badig and the correlation
factoru lead to some convenient symmetry properties for the Jn= ex% _ 2
coefficients ugq, . The complex conjugatequ,:u_q_q, , q
just asfq=f’iq. The exchange symmetry of i.e., u(r,r’)
=u(r’,r) implies thatugy =u_g—q. If U possesses inver-
sion symmetry, i.eu(r,r')=u(—r,—r’), then eachuy, is a
real number. In periodic systems,

E uq+Gq+G’Pq+Gq+G’ ’ (14)
GG’

wherePy gq+6'=(ApgrcApgrc)i=j» Using the notation
()1i=j)» as defined in Eq(11) and the definition oA pq .
in Eg. (12. In practice, this double sum is truncated by
using vectorgy+ G of magnitude less than a suitably chosen
u(r+L,r'+L)=u(r,r) cutoff ke . o

We also allow for one-body optimization through the use
for any Bravais lattice vectdr. This implies that all Fourier  of the explicit one-body Jastrow factor. This one-body Ja-
coefficientsug, are zero unlesq—q’' =G, a reciprocal lat-  strow factor is also expanded in fluctuation coordinates,
tice vector. Thus translation symmetry greatly reduces the

number of variational parameters in the two-body terms. N
We arrange the wave function in the form Jip=ex ngG XcApG |, (15
¥=Jdind 1D, since including the constant average val(es) merely ad-

isolating the short-range component of the Jastrow factor éJStS the nor'mallzatlon of the wave funcpon. :
The coefficientsy, g+ @and xg, defined in Eqs(14)
and (15), are the final variational parameters of our wave
Jo= exr{ ; xAG)pE— >, UgdTij) |- function. The remaining sections of this paper describe the
IGl<G. i<] method we use to optimize these parameters such that the

The one-body term here is derived from the short-range corlt@l €nergy of a particular electronic system is stationary. A
. 0 ~ typical calculation presented below involves the simulta-
relation factorug, of Eq. (4), as xc(G) =Uug(G){pg), where

~ neous optimization of over 3000 parameters.
us(G) is the Fourier transform afig, for the reciprocal lat-
tice vectorG. The prefactor of N—1)/N, which should be
present from Eq(13), approaches unity for large systems,
and so is neglected. For computational efficiency we leave This section describes in detail an iterative approach to
this one-body term in its Fourier space representation, andolving the energy minimization problem for a given param-
G, is a cutoff chosen for the Fourier sum such that it isetrized wave function. The various steps involved in the
converged within a required accuracy. method are presented in the form of a flow chart in Fig. 1,
The remaining inhomogeneous part of the two-body Jaand are described now in bri¢precise definitions will be
strow factor is expanded using charge density fluctuation coprovided in subsequent sections for the fitting coefficients
ordinates and predictor function mentioned here

IIl. ENERGY MINIMIZATION
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(1) For a given set of variational parameter® we may B. Systematic energy fluctuations
construct the numerical trial wave functioh(«”). (2) Us- Consider fitting the local energ(R) to the functional
ing this wave function to guide a VMC calculation, we per- ¢.m
form a least-squares fit of the fluctuations in the energy of
the system to a prescribed functional form, producing a set of
fitting coefficientsV,,(a"), which are themselves functions Eo+2 Vi On(R), (21)
of the wave function parametes. (3) If theseV,, are zero, m
then the wave function is optimized with respect to its pa-
rameters.(4) However, if they are not zero, then we must in the least-squares sense, whif,} is the set of functions
attempt to set them to zero. This is not straightforward, sinc&vith which we fit the energy, anfV,} is the vector of fitting
we do not know the exact functional dependence/gfon coefficients. The IeaSt'SquareS prObIem reduces to minimiz-
@, and so, we construct our best estimate of thising the integral
dependence—the predictf,(, a")—defined for the given
set of parametera”. (5) We find the set of parameteé **
that sets this predictor to zero and use this as the next input
for construction of the wave function in steéf). This pro-
cess continues until thé,, are zero and the wave function is which is equivalenisee Appendix Bto solving the linear
optimized. system

2
(W[{ H=Bo=2 VnOmt [¥),

A. Euler-Lagrange equations

VilAOLAO)=(AEAO forall n. 22
We wish to optimize the wave function Em: m(AOmA On) =( w foralln. (22

V="(a), We recognize immediately that if the functiod,, are
those functions associated with variations of the wave func-
tion parameters,, [Eq. (19)], then the right-hand side of Eqg.
(22) is the vector of Euler-Lagrange derivatives in Ef8).

wherea={«,,} a vector of parameters, by solving the Euler-
Lagrange equations

H(H) Therefore, the Euler-Lagrange equatiofisq. (16)] are
=0, forallm. (16)  solved if all the fitted coefficient¥,, are zerd"
dam As an illustrative example, considdf,, an eigenstate of
We note that the Hamiltonian for the system is ‘H. Indeed, the local energy is a constant, independef, of

and so we would find that each of the fitted coefficienisis
1 zero. Therefore, the Euler-Lagrange derivatiVAs{AO,,)
H=— > E V?+Z Vext(ri)+2 V(rij), a7 are all zero, and so the energy must be stationary with re-
! : 1=l spect to variations inF';, as we would expect for an eigen-
state.

For the trial wave functionV' (), no choice ofa gives an
exacteigenstate of the Hamiltonian. However, for a particu-
lar choice of parameters, the absenceydtematiwvariations

(AHAO,)=0 forall m, (18) of the energy(i.e., variations correlated with the variations of
the functions®,,) ensures that the fitting coefficients, are
where, given a many-body configurati®{r;}, we define all zero and that the average energy is stationary with respect
AA(R)=A(R)—(A) for any operatoA; and the local values to all variations of the parameteea Within the parametric
of the operator®),, as, freedom of the trial wave functio®, this is our best ap-
proximation to an eigenstate.

where each sum is over the electrons in the system.
Solving Eq.(16) is equivalent(see Appendix Ato solv-
ing the system of equations

O(R d v (R —Pyq(R) for apn=ugy
=——-1In =
m(R) dam (R) Apg(R)*  for am=xc. C. Iterative procedure
(19 We now describe a procedure which aims, by appropriate

We shall refer to the local value of the Hamiltonian operatorchoice of the parametews, to set the fitted coefficientg,,

as the “local energy”: of the total energ¥ to zero. As defined in Eq22), theseV,
depend on the wave functiobi(a) and so are functions of
HY(R) the parametera. However, the functional dependence\if
E(R)= W(R) (20 on ais not available in its exact analytic form, and we are

unable to solve directly the syste¥),(a)=0, i.e., to find
We approach the problem of solving the Euler-Lagrangehe root @ which will guarantee the solution to the corre-
equations[Eq. (16)] indirectly, by considering systematic sponding Euler-Lagrange equations.
fluctuations of the energy for a given trial wave function Instead, using the wave functiohi(a”), for a particular
V(a). choice of the parametei®, we construct a predictor func-

155104-6



OPTIMIZATION OF INHOMOGENEOUS ELECTRON.. .. PHYSICAL REVIEW B6, 155104 (2002

tion V/(a; @), which approximates the unknown function as an approximate partition of the local energy coefficients
V(a@) for general values ofr. More precisely, we construct Vm- We define this partition as
V! (a;a) so that 0 0
Win(a@;a”)=Sy(a) +T(a;a”),
' 0. 0y 0
V(@™ a’)=Vy(a) 23 \where the sum of analytically derived coefficients is
(i.e., V|, is exact whenae=a°) and

= (i)
)= Uy (@),
V! (a;a®) =~V (a) (24) Sl @) armzlytic m (@)
for all relevant values otv. and the sum of numerically determined coefficients, evalu-
To determine this predictor, we use the specific form ofated using¥ (a°) and Eq.(27), is
the Hamiltonian[Eg. (17)] and trial wave functionV (Sec.

II), and we partition the local enerdy(R) into a sum of T (a: aO)EE v%)(a; o).

contributions, fitted
_ 0 We construct the predictov, (a;a®) such that it satisfies
E(R)=2 e(R), 29 Eq.(23), e,
where thee come from various terms in the kinetic and V(@ @)=V (a®) +Wy(a;a®) —Wy(a®a®) (29
potential energy(see below. Each contributione®)(R) is 0 . _
approximated with the functional form whereV,,(a”) are found by solving Eq22). We define our

iterative approach to determining the parametess for
_ _ which the coefficientd/ (@) are zero, as followssee also
e+ 2 v On(R). (26 Fig. 1):
m (1) Given the set of parametekg’, construct the wave
For some terms, using the specific form of the local energgunction ¥ ().
for W(a), we can expand) analytically as in Eq(26), (2) Evaluate the required expectation values in Egg)
enabling us to determine, exactly or approximately, the funcand (27), using ("), to find the fitting coefficients
tion 00 (). In this analytic formp(a) is independent of Vm(@") and numerical functions{)(; @”).

the choice ofa® and so remains equally valid for ad. (3) If the total energy fitting coefficients are zero, i.e.,
Where analytic expressions are too complex to derive, w&/m(a@")=0 for all m, thenwe are doneptherwisecontinue.
may approximate ()(a) by fitting €’ to Eq. (26). The fit- (4) Construct the predictor functiovy,(a; ") in Eq. (29)
ting coefficients fore() are found by solving the analog of using the fitted terms from stef®), and find the solution
Eq. (22), a""! to the system,
V(o' a")=0 forall m, (30)

> vi(AOLAO0)=(AeDAO,) forall n, (27)
m using the Newton-Raphson methtdsee Appendix € Use
this set of parametera”"? in step(1).

Iterations continue until the total energy coefficients
L{(/am(aﬁ) tend to zero, and the values of the parametets
converge. Note that even though the predidfQ( «; @) is
only an approximation to the exact functidi,(a), Eq. (23
guarantees that at the converged solution

wherev ) =1 (a0) is determined by using (a®) to evalu-
ate the required expectation values. This produces the val
of each coefficient at. We may also fit the derivatives of
e® with respect to, to determine the linear dependence of
eachv)(a). We may then approximate the function
_ _ _ W ,
uﬁ;])(a)wf;ﬁ(a;ao)=ug;)(a°)+§|) &—C: (ay—a?), 0=Vi(a;@)=Vy(a).
o (29 In other words, the parameter set solves the Euler-
o . Lagrange equations fqrH) exactly. Clearly, the larger the
wh(?e)re the values of the dernéatwes are found by fittingneighborhood within which the approximate relation in Eq.
deVlday to Eq. (26) using ¥ (a”). In evaluating the term (24) holds, the faster this iterative procedure will converge.
v 19 , we consider only the explicit variation of the term | the trivial case, if the exact analytic form Wt (a) were
v with ;. We do not include the implicit variation due to knowna priori, then we could just solve the Euler-Lagrange
the dependence of the probability distributioh(e)|? one.  equations in one step using a suitable root-finding method.
In practice, the only term for which we need to dit"/da Rather than starting the procedure from an initial guess
is explicitly linear in the parametets and so the linear ex- =0, we may begin at stef@®) using only the analytic terms
pansion in Eq(28) is valid over a wide range of values af in the predictor, since these are independent of the wave
Just as the energy contributioe® (R) partition the local  function and so do not require fitting. That is, we solve the
energy, we may regard the analytic and fitted coefficieﬁis system
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Sm(at)=0 forall m. 1. One-body Jastrow factor

. ) . Replacing¢(a) in Sec. Il D with J;(x), we derive an

The solution seir" is then used in steft). analytic expression for the energy contributié® (see Ap-
pendix D). From this we may extract those coefficients’
D. Partitioning the local energy of the functionsOG=Ap’G‘ :
We note that the potential energy operatdes; andV in 1 1

the HamiltonianH_, defingd ip Eq.(17), are muItipIicativg, U(Gl)()()zz(;ZXGjLE > X6-6'(G—G')-G'xg' .
and therefore their contributions #8(R) are constant with G’

respect to variations of the wave function parameters By assumption, the one-body contribution &f is zero.

Variations ofe affect only the contributions of the differen- that js the mean-field methods used to calculate the deter-
tial klr)etlc energy operator. Thus solving thg Egler-LagrangeminamD should removeapproximately all systematic one-
equations for(#) [Eq. (16)] amounts to adjusting the sys- poqy fluctuations in the local energy, and the use of “fluc-
tematic fluctuations of the kinetic energy to cancel those inyation functions” Apq in the two-body Jastrow factor

the potential energy exactly. approximately removes its effect on one-body operators.
If we extract a variational parg(a) of W, such that?’  Tperefore, we assume initially that the coefficienf®=0.

= ¢\If’,,_w.here¢> is dependent on the set of parametars  \ye are ynable to derive an analytic expression for the coef-
and¥" is independent of them. Then we may partitis(R) ficients v(Gz) of the energy contributior® and so, for the

as moment, we leave these aside. Constructing the full analytic

approximation
E(R)=eM(R)+eP(R)+ e®(R), PP

Se(x) =v&(x),

we see that the roots &g are trivially y=0, as we would

where we define

expect.
o= LS TIOR) "
€ 245 o(R) 2. Two-body Jastrow factor
According to Sec. Il, the two-body Jastrow correlation
V.¢(R) V,¥'(R) factor is divided into a short-range terdig, and an inhomo-
e€@(R)=- 2, geneous ternd;,. We optimize the variational parameters

=1 #(R)  w/(R) in Ji,. As for the one-body Jastrow, we expand the corre-

sponding energy contributiog™ which depends onJ;,

@ 12 vier R N alone(see Appendix E This leads us to an approximation to
=—_> "4 0+ ici i y=—Pgq in b
eD(R)=~3 2,1 vR & Vex(Ti) 24] V(rij) the coefficients of the function9,q = — P in e):
1
Clearly, €® is constant with respect to variations @f Fur- vgt),(u)=§uqqr(q2+q'2)+22 Ugk(K-K"){prr —1)Ukr g -
Kk

ther analysis of each of!) and €(? is necessary to deter-
mine how each depends @n However, for¢ expressible in

; , Again, we are unable to derive expressions for the coef-
the form of the Jastrow factors in Sec. Il, i.e.,

ficients corresponding te®). We extract a two-body contri-
bution from the constant contributiafd®) (see Appendix E

as vé?,%—%V(q) 8(q’'—q) for the electron interactiorv.

We replace the true interaction in this expression with a
pseudointeractio¥ s, which is generated for a given cutoff
where O are defined in Eq(19), we see thati) € is at  radiusr. and reference eigenvalee as explained in Ref. 24.
most linear ina, but involves terms coming fronr’, so that V,sis used to generate the short-range two-body funatign

it may be impossible to determine analytic expressions fo[Eq. (4)], used inJg,. The purpose of this modification of
the coefficients)3(); and(ii) e is at most quadratic in ,(® is to account for the presence af in ¥ and is ex-

«, and involves onlyg, for which we have an analytic ex- pjained in Appendix F.

pression, and therefore may derive analytic approximations From these contributions we construct the analytic predic-
to the coefficients (¥(a) (see Sec. Il E tor

’

d)(a):exp{ﬁll a0,

) . . 1
E. Analytic terms in the predictor Sqq'(U)ZU%)r(U)—EVps(OIW(CI—q')-
The initial predictorS,,(a) used in the iterative method
involves only analytic terms. We determine these by direcWWe notice that for periodic systems, this function is separable
expansion of particular local energy contributions, given then the pointsg of the first Brillouin zong(BZ). For eachy in
analytic form of the wave function. We now consider thethe BZ, we may expandSy.gq+c as a function of
contributions of the one- and two-body terms individually. {Ug; g q+c/}, With no coupling to parametensy 4y o+ n-
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for g’ #q. This block diagonal form of the analytic predictor for reciprocal lattice vector&,G’,H, andH'.

allows us to find the roota® by solving for each blocki.e., ~ In other words, we regard one- and two-body optimiza-
eachq) individually. We do this using the Newton-Raphson tions as independent for nonzekopoints in the first Bril-
method. louin zone®® If we also exclude the covariance terms be-

A reliable initial guess for the Newton-Raphson method,tween one- and two-body operators fipr=0, we find that
rather than usingu=0, is the homogeneous solution of this slows the convergence of the method for smaller sys-
Sy =0.If we regard the system as homogeneous, i.etems. For larger systems, this exclusion prevents the conver-

aq ' ; . )
(pg)=0 for G#0, then the solution is gence of the Newton-Raphson method at the first iteration of
our method, thus halting the optimization process. However,
8NV,{q) we are not, in any way, confined to using the Newton-
1+ ———1). (31 Raphson method to find the roots of the predictor, and other,
aq more robust, root-finding methods might overcome this
This Uy is used as the starting point for the Newton- Problem.
on iterati ied. this initial Note thate® depend he variational f th
Raphson iterations, and for all systems studied, this initial Note thate'”’ depends on the variational paft of the

1
Ugq' = o(q’ _Q)m

guess produced convergent rootsSgf, =0. wave function which is being optimized. The variational
components ardq, andJ;,(q) for eachq in the BZ, where
F. Numerical terms in the predictor we define

To complete the construction of the predictéf(a; a®)
defined in Eq(29), for a given set of variational parameters Jih(q):exr{ -> UgsGqr 6 Pat s o |

0 GG’

a’, we must determine some terms numerically by fitting
fluctuations in the energy of the system. We calculate

V() in Eq. (29) by fitting the entire local energy, using sq thatd;,=11,J;,(q). This greatly reduces the complexity of
Eqg. (22). Also, we use the fitting method to numerically de- the predictor, without sacrificing convergence of the method
termine the functions (e a°) given in Eq.(28), by fitting  for the systems studied here. Ultimately, the predictor
the energy contributior'® and each of its derivatives with v (aa?) is itself only an approximation of the true function
respect to the parameters to be optimized. Again, we notg (a), but by definition matches this function at the current
that ) is explicitly linear in the parametera and the ap-  values of the parameters being optimized. Therefore, ap-

proximation in Eq.(28) is exact in this case. proximations in the predictor affect only the rate of conver-
~To do all this numerical work we use Monte Carlo sam-gence of the method.
pling to determine the required expectation values The expressions foe? and its derivativege®/ gy for
(AOLAO,) the on.e-.body Jastrow factdr, are given in Appendix D.
' Upon fitting these terms to the operatds=Apg , we may
(AEAO,), construct the functiorv?(a;e®). This defines the fitted
termsTg in the predictornSec. Il C.
(AePAO,), For a givenq in the BZ, we use the expressions fdf)
and the derivativese®/dug, g 4+, given in Appendix E,
9 corresponding to the two-body Jastrow facig(q) defined
<A( aam)AO”>' above. We construct the functi ?qum,(uq), whereug

, ) ={Ugt+cqg+c’: for G,G'}, and define the numerical predic-
for mandn ranging over the number of _pa_rametarcﬁm the tor terms Tq. quG,:v(2+)G .o, which contribute to the
seta. However, for a simultaneous optimization of one- andlinear de endénce of tﬂe 'qredictor o

two-body terms, we make some simplifications to reduce the P P g

computational workload. If we assume that the parameter

can be varied independently af,, this corresponds to as- IV. RESULTS

suming thatfA0,,AO,)=0. ) L )

In the expansion of the analytic local energy terms com- We now apply this optimization method to diamond and
ing from J;,, outlined in Appendix E, we saw that these rhombohedral .grap'hlte. We shall compare the correlatlon
body terms contained Fourier coefficients of the averag&€neity and anisotropy of the electron charge density in
charge densitypy), which are zero foq+G, a reciprocal ~9raphite, relative to diamond. o -
lattice vector. Also, the analytic form of the predict@ec. The convergence criterion of our iterative optimization:
lll E) is separable in th& points of the first Brillouin zone. Vm(a")=0, requires the examination of possibly thousands
Therefore, we make the following approximations to the co-Of parameters, and it is difficult to visualize the overall con-

variance matrixAO,AO,), vergence of the method. For illustrative purposes, we use the
coefficientsV,(a") to construct a single functiod”. In the
(AOqg16,q+6'AO0qg 111 g +1)=0 forg#q’, chosen Fourier basis, this amounts to reconstructing the real-
space functio’v" from its Fourier coefficients. For one-body
(AOq1G,q+6/A0y)=0 for q#0, optimizations
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in the system. In particular, we may draw some conclusions
%‘:} about electron correlation in the system by an examination of

u. We may determine the isotropy ofoy comparing plots of
:%:S‘:}: u with the first electron kept at the same point but the second

electron moved in perpendicular directions, e.g., by compar-
ing plots designated b&A’ andAA”. The homogeneity o

% may be seen by comparing plots wfwith the second elec-

tron moving in parallel directions from different positions of

;% the first electron, e.g., by comparil§A’ and BB’. Any
differences between these plots wfare attributable to the
inhomogeneity and anisotropy of the electron correlation fac-
%5:}’ tors in the systems studied.
——————— B’ We use periodic boundary conditioflBBC’s) to approxi-
% mate the infinite crystdl.The simulation cells consist of an
N1 XN,X N3 unit cell arrangement. The unit cells in each
A’ system are defined by the Bravais lattice basis vectors. For
ﬁﬁ:ﬁ:} diamond, we use the basig(a/2,a/2,0);(0a/2,a/2);
(@) (a/2,0a/2)}, wherea=6.72 a.u., corresponding to a carbon

() bond length of 2.91 a.u. For rhombohedral graphite we use

FIG. 2. Crystal structure ofa) diamond andb) rhombohedral ~ the  basis {(0a,c);(— V3a/2,—~al2c);(V3a/2,~ ar2e)t,
graphite, illustrating stacked layers of hexagonally arranged carbowherea=2.68 a.u. is the bond length within the layers, and
atoms for graphite and buckled layers for diamond. In both strucC=6.33 a.u. is the layer separation. These are experimentally
tures, the poinA lies at the midpoint of a carbon-carbon bond, with determined structural parametéfs.
the linesAA’ andAA” extending within a layer and perpendicular ~ We construct the Slater determinadtfor both systems
to the layers, respectively. The poiBtlies midway between two using DFT calculations in the LDA> The LDA orbitals are
layers (at a hexagonal interstitial point in diamgnand the lines  expanded using a linear combination of atomic orbitals
BB’ andBB" extend between the layers and perpendicular to thgLCAO) centered on each of the two carbon atoms in the unit
layers, respectively. cell. These LDA/LCAO calculations follow the scheme of

Chanet al?® where, initially, the orbitals and ionic potential
are expanded in a basis of localized functid@aussians

— iG- X .
Vn(r)_% Ve(x"e™T, (32 defined by a set of decay constarasd then self-consistent
corrections to the Hartree and exchange-correlation poten-
and for two-body optimizations tials are determined in Fourier space. This scheme uses a

much smaller basis of planewaves than methods which re-

. . . "o quire the expansion of the orbitals and ionic potential en-
Vi(r =2 2 e OV g e (uM)el@rel tirely in planewaves.

a GG’
(33 A. Removal of cusp

In practice, we monitor the decrease of these functions, In Sec. Il A, we discussed the advantages of removing the
but they will never converge to zero due to inescapable stashort-range cusp from the functianin order to improve its
tistical fluctuations that result from the finite sampling usedrepresentability as a linear combination of smooth functions.
in the VMC approach to the least-squares fittii®ec. VC  Figure 3a) compares the pseudointeractidfys, generated
and Appendix G. using a cutoff radius of .=1.9 a.u. and energy eigenvalue

Two-body functions, such a¥"(r,r’) and the Jastrow e=0.2 hartree(as discussed in Ref. 24with the Coulomb
correlation functionu(r,r’), are functions of six variables interactionvV=e?/r. (In atomic unitse’?=1). The pseudoint-
and so, extracting useful information from them is difficult. eraction is used to generate a short-range Jastrow funtion
For illustrative purposes, we indicate in Fig. 2 two poiAts ug,, which is shown in Fig. @) for the relative angular
andB in both the diamond and rhombohedral graphite strucimomental=1 andl=0 corresponding to parallel spin and
tures, corresponding to high and low electron charge densitginti-parallel spin correlations, respectively. The short-range
regions, respectivelyA lies midway between two bonded Jastrow factor used in all subsequent calculations is that gen-
carbon atoms anB lies midway between two layers of car- erated with these particular values pf and e. Subsequent
bon atoms. We shall position the first electron at either  figures in this paper, which involve,, represent antiparallel
B. The second electron shall be moved away from this posispin correlation only.
tion along one of the following line segmertisdicated by The cutoff required for a convergent Fourier expansion of
heavy black lines in Fig. 2 AA" lying within a layer of a smooth cuspless function should be much less than that
carbon atomsAA” perpendicular to the layer®B’ lying  required for a function with a short-range cusp. Therefore,
between two layers; anBB” perpendicular to the layers. using a cuspless form greatly reduces the number of terms

By this means we may plot inhomogeneous two-bodyrequired to represent the inhomogeneous form of the Jastrow
functions in terms of the relative separation of the electrongactor accurately in Fourier space. We illustrate this point
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04— mately spin independent. Therefore, for eaglwe plot the
E 1 mean of the parallel spin and antiparallel spin values of the
—1=0 funcii
03 — 1= unctions.

In practice, we use the first zero of the Fourier transform
of Vs as the Fourier space cutdff used in the definition of
. Jin in Eq. (14). For r,=1.9 a.u. we use the cutofk,
=2.185 (a.u.) !, beyond which the Fourier transform of the
cusplesau function is approximately zer@=ig. 4). Combin-
ing both the short-range and inhomogeneous forms of the
; Jastrow factor using this scheme produces a form that is
0.0 _:,_, approximately independent of the cutoff, since decreasing

increases the reciprocal space cutqff

u_ (atomic units)

sr

interaction (atomic units)

0.0 M I P I N —0.1 P I P R |
60 1 2 3 4 5 0 1 2 3 4 5 B. Homogeneous Yukawa-style Jastrow factor
r (atomic units) r (atomic units) . . . .

@ (b) For comparison with the inhomogeneauigunctions de-

termined in the following sections we use the Yukawa-style
FIG. 3. (a) The pseudointeractiod, (solid line) and the Cou- homogeneous functiow, of Eq. (34) and construct a homo-
lomb interactionV=1/r (dashed lingvs electron separation (b) geneous trial wave function of the forfr=JgJ;,J;,D. As
The short-range Jastrow functio,, generated fronV,, vs elec-  with the inhomogeneous trial wave function, we represent
tron separatiom, for angular momenta=0 (solid ling) andl=1  short-range correlationg.e., the cuspusingJ,,, and repre-

(dashed ling Vs is generated using.= 1.9 a.u.(indicated by ver-  sent the remaining correlations using a homogeneous Jastrow
tical dotted ling and e=0.2 hartregsee the tejt factor

using a simple example. In Fig. 4 we plgt times the Fou- J—exd — E U(q)P
rier transform, for wave vectay, of the Yukawa-style homo- h e D qal:
geneous correlation factor i
where we define
A ~ .
up=—(1—e"""), (34) u(q)sf [up(r)—ug(r)Je "9 dr.
0

which has been used by many authors to approximate elec- For the uniform electron gas, Bohm and Pﬁ?emedicted
tron correlation in a variety of systerfi8>**?*%We setA that the true functiom should decay as ,r, at large sepa-
=lau. F is determined fromA to satisfy the cusp rationsr, wherew, is the plasma frequency. Rather than use
condition$? and depends on the relative spin of the elec-this limiting valueA=1/w, in Eq. (34), it is common to treat
trons. Also shown in Fig. 4 ig)? times the Fourier transform A as a free parameter such that the energy is minimized.
of the cuspless differenag,— ug,. We assume that, for large Using variational calculations we can determine the optimal
electron separations, the electron correlation is approxivalue ofA.?* We optimize the one-body Jastrow facthy, in
Eq. (15), using our iterative method.

14 . , . I . I : | : In Fig. 5 we plotu, and compare it with the reconstructed
X 2 1 function
12 - q FT(u) .
L 2 4
J— F‘I‘ —_ —~ .
10 SR ) u(r) =ug(r)+ >, U(qea’ (35
L g q<k¢

| for 3X3X3 unit cell simulations of diamond and rhombo-

. hedral graphite. Periodic boundary conditions and the anisot-
1 ropy of the unit cell make this reconstructed form appear
quite different from the original isotropic functian,.

In particular, for rhombohedral graphite the unit cell used
is quite anisotropic, leading to marked differences in the re-
constructed function along the perpendicular line segments
S — s 10 AA’ andAA". (The homogeneity ofi, is preserved and so
we only plot the function for poinA, since all other points
are equivalent.Note that the Jastrow function is defined

FIG. 4. Fourier transform timeg? of (a) the homogeneous Ja- UP to an arbitrary constant, much like a potential, since this
strow factoruy, (dashed ling and (b) the cuspless differenca;, constant affects only the wave function normalization and
—u,, (solid ling) vs wave vector. The homogeneous Jastrow factor contributes nothing to the description of correlation. There-
parameteA=1 a.u.[Eq. (34)]. fore, it is of no consequence that the functional fornugfn

q FT(u) (atomic units)
[=)Y

2

|
q (atomic units)
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4T 717 117 Lo~——T7 771171 shown in Figs. 6 and 7. Each iteration involves averaging
A ] 14; ----- wol] over 16 Monte Carlo samples. However, this amount of
1.2% — AA'| ] Lk - ﬁﬁ:' ] averaging is more than enough for an accurate implementa-
10'_2 - AA 1 12f - tion of the method. The optimization of the one-body terms
G M 1 in the 3x3X 3 simulation of graphitéFig. 7) involves only
% 08l i g 1'0__ ] 2.5x 10* samples per iteration, and is well converged.
5 508k & i Specific values of the total energy and its associated vari-
€ 06 O ance during the optimization process, for the largest simula-
= = 06 tions of diamond and graphite are presented in Table Il. On
= 04 = 04' average, the gain in energy following one-body optimization
’ is approximately 1.0 mhartree/atom for diamond and 2.5
02 0.2 mhartree/atom for graphite. We note that the necessity for a
0‘0' 00' one-body correction is a consequence of the inhomogeneity
AT L . of the electronic charge density in the syst&fand it is
0 2 4 6 8 1012 0 2 4 6 8 1012 pot surprising that the gain in energy is larger for the more
T (atomic units) r (atomic units) inhomogeneous system, graphite, than for diamond. We no-
@ (o) tice that there is no significant decrease in the variance for

FIG. 5. Jastrow correlation factors vs electron separatifor this ong-body opymlzanon. For th? smalller systems, the de-
(@ diamond and(b) rhombohedral graphite(i) The functionu,  C'€ase Is approximately 2% and is negligible for the larger
(dotted ling as defined in Eq(34) with optimized parameteA  SYSt€MS.
=1.739 for diamond and 2.170 for graph|(&) The reconstructed The Slatel’ determinant Used in the diamond Ca|Cu|ati0nS
function u of Eq. (35), from a 3x3x 3 simulation region in both of Fig. 6 is composed of single-particle orbitals generated
systems, for electron separations along the line segnekitgsolid ~ from the LDA/LCAO scheme already describ&dChe local-
line) andAA” (dashed lingfrom Fig. 2. ized functions use a Gaussian basis with three decays of

Eq. (34) appears shifted above the reconstructed forms comQ'24’ 0'7.97’ and 2.65, and the orblltals POSSEIH andd
ymmetries. The exchange-correlation functional used was

patible with PBC’s. This is due to the removal of the constant .
Fourier coefficient of the correlation functiar{G=0) from of the Ceperley-Aldérform. The cutoff for the Fourier space

the expansion of the reconstructed function in B§). We expansion of the charge density and Fhe iterati\{e corr_ections
note that the cusp conditioffsare maintained by all forms. (O the Hartree and exchange-correlation potential during the
We optimize the one-body Jastraly, using the method self-consistent LDA calculation was 64 Rydberg. Evaluation
described in Sec. Ill. For the diamond simulations we used &f the orbitals of the Slater determinant within the VMC
Fourier space cutof6,=5.0 (a.u.y %, giving 84 variational ~Sampling was achieved using a mixed-basis appfbaith a
one-body parameters. This is more than enough for an acctieal-space cutoff of 3.5 a.u. and a reciprocal-space cutoff of
rate representation of one-body terms in the wave functior®./ (au)yt
(see Sec. VA For graphite simulations we use@, The graphite calculations shown in Fig. 7 use a Slater
=3.1 (a.u.) !, giving 30 variational one-body parameters. determinant generated using a localized basis set swthd
The values of the electronic energy per atom for variougp symmetries only. Four Gaussian decays were used: 0.19,
optimizations of this homogeneous trial wave function are0.474, 1.183, and 2.95. The orbitals were generated from

(a) 1x1x1 (b) 1x1x2
o sasb T T T i_ - _5.472__ T T T T T 7
E sl II """"" I """" Jd g a6 _
L i 8 - 4 . .
% ~5.290 - 4 £ sas0| - FIG. 6. Energy of diamond, in Hartree/atom,
< a0l 1 r . for each iteration of the optimization process and
g | 1 §7%C 7] various simulation cell sizega) 1X1x1 unit
® S | | I [ © -sassf | | | [ cell, with N=8 electrons;(b) 1X1x2, N=16;
1 2 3 4 5 1 2 3 4 5 (c) 2xX2X2, N=64; (d) 3X3xX3, N=216. Op-
lteration — I Iteration timizations using different correlation factors are
(c) 2x2x2 — (d) 3x3x3 shown:J:Js,thlb, Yukawa-style hgmogeneous
sl ] T T T T — form (dashed _|In§3 and J=J,JiJ1p mk_lomoge-
T L 1 B sl | neous form(solid line). Total energy estimates for
[=3 o . . .
g 5664 1 £ L J each iteration are calculated using®1Blonte
g 5668 ] % 5708 - - Carlo samples. Error bars are equal to the stan-
£ r 1 £ L 1 dard error of the mean value of the energy.
= 5672~ 1 &
& L ] 8572 —
o Q
5 -5.676|- - & - -
u . _ L 1 1 1 1
76— 2 3 4 5
iteration iteration
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(a) Ix1x1 (b) Ix1x2

-5.635 -5.655 I I I I
5 —5.640 5 -5.660 [~ — o
§ 5 - - FIG. 7. Energy of rhombohedral graphite, in
£ 5645 g -5.665 N 7 Hartree/atom, for each iteration of the optimiza-
< < el -EZ‘:EKZ__M@.__:HT - tion process and various simulation cell sizes:
%"—5-650 §’ - - 1x1x1 unit cell, with N=8 electrons;(b) 1
® s °ses - T T T X1x2, N=16; (c) 2X2Xx2, N=64; (d) 3X3
- 3 7 1 2 3 4 5 X3, N=216. Optimizations using different cor-
fetion ™ n fteration relation factors are showd:=JgJJqp, Yukawa-
o i“ style homogeneous form(dashed ling J
() 2x252 o (d) 3x3x3 _=Js,JﬁJlb, optimal hom_ogeneous forr(dotted
-5.664 —¢ I I I I -5.692 line); and J=J¢J;nJ1, inhomogeneous form
0 Fo 1 £ r 1 (solid line). Total energy estimates for each itera-
g 56 1 g -S6% n tion are calculated using $0Monte Carlo
g [ 1 & [ i samples(The optimization of the Yukawa-style
5676 -~ g 5700 - . .
£ L { £ L J homogeneous form for the>33X 3 simulation
B _seml- 4 gﬂ 5704 - - used only 2.% 10* samples per iteration.
g . 1 % - .
1 1 | 1 1
-5.688 ~5.708— 7 3 n s
iteration iteration
LDA calculations incorporating the Hedin-Lundgvist The number of parameters for optimization could be

exchange-correlation functional, and a cutoff of 36 Rydbergyreatly reduced through exploitation of the crystal point-
for the Fourier space expansion of the charge density andgroup symmetry of the structures involved. However, it is
correction to the potential. The same mixed-basis cutoffsvorth noting that the optimization process preserves the
used in the diamond calculations were used here, for evaluratural symmetry of the systerfwithin statistical error
ation of the orbitals in the Slater determinant during VMC without such measures, illustrating that for nonsymmetric
sampling.(See Sec. V A for a discussion of basis-set conversystems with large numbers of parameters, this optimization
gence of the total energy in graphjte. process should be quite robust.

Figure 8 illustrates the convergence during optimization The one-body functiov"(r), reconstructed from the co-
of the one-body functiony(r) in Eq. (1) (where y is the efficients associated with the local enefdgy at iterationn
accumulation of all one-body terms from each of the Jastrovaccording to Eq(32), is shown in Fig. 9. Clearly, this func-
factorg for the 3X 3 3 diamond calculation. The optimized tion decreases in magnitude, indicating a decrease in the
function is statistically well-determined, and the change frommagnitudes of the Euler-Lagrange derivatives. Beyond the
the initial one-body functiony®= x° of Eq. (8) (as defined first iteration,V"(r) is of the same order of magnitude as its
in Refs. 20 and 21 is well defined. This alteration of the associated standard error, and so is statistically insignificant.
one-body function may be compared to similar calculationsTherefore, the method has essentially converged after only
performed using variance minimizatiéh?* one iteration. The noisiest regions ¥f'(r) correspond to
regions of low density where the Monte Carlo sampling is
less frequent.

0.10 T T

0.08

0.05

0.00

% (atomic units)
V' (atomic units)

=

=

[\

2

n

-0.05

|
&
o=l
2

1 (atomic units)

004 > 7 6 3
FIG. 8. The diamond one-body functignvs positionr along r (atomic units)
the line segmenfAA’ [Fig. 2@@)]. x" indicates the one-body func-
tion used at iteratiom of the optimization ofl,, in the presence of FIG. 9. The reconstructed one-body functiéf, defined in Eq.
Jy in Fig. 6(d). (32), vs positionr as for Fig. 8.
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TABLE |. The number of variational parameters in the correla- TABLE Il. The energies(E) and their variancesof) deter-
tion factors, used during the total energy calculations presented imined at each step of the optimization process for the largest (3
Figs. 6 and 7, for diamond and rhombohedral graphite. Simulation<x 3xX3) simulations of diamond and rhombohedral graphite using
cell sizes are described &5 X N, X N3 unit cell arrangementsl;;, various correlation factors. The standard error in the energy is com-
is the one-body Jastrow factody is the optimal homogeneous puted from the variance asE= =+ Ja?IN. The error in the vari-
correlation factor])y, is the optimal inhomogeneous correlation fac- ances(included in parenthesgss estimated assuming they have a
tor. (The Yukawa-style correlation factal, is not included as it chi-squared distribution(All numerical values in Hartree atomic

contains only one variational parameer. units per atomn).
simulation cell Jip NI Jin J Iteration E AE a?
diamond diamond
1x1x1 84 - 56 JsJd1pdn 1 —5.703030 0.000155 0.002@®
1X1x2 84 - 112 2 —5.704282 0.000151 0.002&
2X2X2 84 - 448 3 —5.704306 0.000151 0.002&
3X3X3 84 - 1151 4 —5.704 247 0.000151 0.002@3
graphite 5 —5.704 118 0.000 150 0.002 &
1xX1x1 30 11 132
1X1X2 30 21 242 Jsdindin 1 —5.703462 0.000 154 0.002@38
2X2X2 30 85 990 2 —5.713010 0.000139 0.001@2
3X3X3 30 282 3106 3 —5.713620 0.000138 0.001@
4 —5.713910 0.000139 0.001@
5 —5.713539 0.000140 0.001@5

C. Optimal homogeneous Jastrow factor

To compare directly with current homogeneous Jastrow graphite

factors®>33we also include the optimization of a generalized

homogeneous two-body functian This u function is con- a1 L —5.693702  0.000338  0.00265
structed according to E@35), but we allow complete varia- 2 —5.694640 0.000336 0.002&3
tional freedom in the terms(q). We optimize thesei(q) j _:'23: gg? 8'888 223 g'gggg
according to the method outlined in Sec. lll, except that, of 5 —5.695 882 0.000 353 0'003@
course,u is now homogenoeutbut still retains the varia- : ’ :
tional freedom for anisotropy Since this expansion is com-
plete up to the cutofk., it is equivalent to any other homo- Jor) 1T 1 —5.695342  0.000166 0.002@
geneous representation of and may be compared with 2 —5702535 0.000161  0.0026B
current homogeneous correlation factors. However, where 3 —5.702982  0.000161 0.00269
others have optimized the parameters in such correlation fac- 4 —5.702934  0.000162  0.002€3
tors using variance minimization, our optimal homogeneous 5 —5.703191 0.000163  0.002 &
u minimizes the total energy of the system. We denote the
optimal homogeneous part of the Jastrow factodfas The  Jsiwdin 1 —5.694342 0.000167 0.002 &)
Jastrow factod=JgJf J;,, combined with the Slater deter- 2 —5.704501  0.000158  0.002 ¢
minantD, is our best approximation of the true many-body 3 —5.705159  0.000155 0.002E&
eigenstate using a homogeneous two-body Jastrow factor. 4 —5.705730 0.000156 0.002 @&
Figure 7 illustrates the total energy of various graphite 5 —5705471 0.000159 0.002&4

systems during the optimization a8} . The initial guess for
b, used in iteration 1, is a solution to the RPA equations for
a homogeneous system. We note that the optimal homoggeneralization of the RPA equations. The solution to these
neous Jastrow factor produces total energies that are consgquations is the function; = ugpa, shown in Fig. 10 for the
tently lower than(or at least comparable tdhose of the 3X3X3 graphite simulation. We notice some inhomogene-
simpler Yukawa-stylel,,. This is an obvious consequence of ity in ugrpy at intermediate- and long-range electron separa-
the increased variational freedom &f . The numbers of tions. A more homogeneous and isotropig, was found for
variational parameters(q) used for each system are dis- diamond, as we would expect since diamond possesses a
played in Table 1. The specific values of the total energy andnCre uniform electron density than graphite.

its variance, during the optimization of the graphitx 3 In Figs. 6 and 7, the first point on all solid curves indi-
X 3 system, are given in Table II. cates the total energy per atom in each simulation calculated

usingugpa- IN comparison with the energy calculated using
the homogeneous Jastrow functiop, we see that the inho-
mogeneous RPA trial wave function is at best comparable in
The analytic guess for the two-body predictor functionsaccuracy with the optimized trial wave function with homo-
Sqq’(U), outlined in Sec. Il E 2, leads to an inhomogeneousgeneous two-body Jastrow factor, and often less accurate.

D. Inhomogeneous RPA Jastrow factor
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T T L stable. This is remarkable given that the system sizes range
from eight electrons and 140 independent parameters to 216
electrons and 3136 independent parameters. Also, we
used the same amount of Monte Carlo samplivig, 10
samples per iteration, to determine the required expectation
values for all simulations. In all cases the fully inhomoge-
neous form ofu allows us to determine more accurate trial
wave functions with substantially lower energies than the
homogeneous trial functions. In general, the gain in energy
through using an inhomogeneous rather than a homogeneous
wave function is of the order of 5 mhartree/atom for both
diamond and rhombohedral graphite. Specific values for the
T Y T S Y. e_nergy_and its variance are given in Table Il for the largest
r (atomic units) Slml'_”atlons' . )
Figure 11 illustrates the rapid convergence of the two-
FIG. 10. The Jastrow factargps Vs electron separationalong  body wave function parameters to their optimal values
the line segments indicated in Figb® for a 3x3X3 simulation  during the largest graphite optimization X3x3) and is
of rhombohedral graphite. typical of all the optimizations performed in both diamond
and graphite. Beyond the third iteration, no clear distinction

] 20 exists between subsequent sets of parameters. The optimal
These results are different from those of Gaudatiml.™ for  ja5trow functionu is significantly different from both the

model systems: they find that their inhomogeneous generalkpa functionu® and the homogeneous form, of Eq. (34).
zation of the RPA produces wave functions that yield lower
energies than the homogeneous form.

Uppa (atomic units)

he proof that this optimization succeeds in minimizing the
energy expectation value may be seen in Fig. (Which
comes from the same graphite calculation as Fig. Here

E. Optimal inhomogeneous Jastrow factor we plot the iterative decay of the two-body functigh(r,r’)

We simultaneously optimized the parameters in both théeconstr_ucteo_l from the ftotal energy cqefficients_ de_termined
one-body Jastrow factad,, and the fully inhomogeneous at each iteration, accor_dlr_lg to E(@.3)' Th|§ clearly |nd|cgtes
form of the two-body Jastrow factdk,,, using our iterative the rgducuon to zerdwithin statlsthal noisgof the .derlva—
method. The convergence of the total energy per atom foflves In t'he' quer—Lagrange equations, thus solving the en-
various simulations of diamond and rhombohedral graphité;”‘rgy minimization problem. . .
are shown in Figs. 6 and {The Slater determinants used in For the largest S|.m.ulat|on cells studied3x3 unit cell
combination with the homogeneous Jastrow fadipin Sec. a}rrangement CO”“”"”'T‘Q 216 ellectrﬁqrw.e compare the op-

IV B are also used hereConvergence of the total energy is timal Jastrow correlation functions of diamond and rhom-

achieved in approximately three iterations in all cases and igohedral graphite. Figures 13 and 14 show the function
plotted with respect to electron separation on various line

1.0 segments in the corresponding crystal structures, as already
' ' ' explained.
- llh
0.8} 1 _|
Y 04—V
. N "
U £ R N 5 1
£ 06 ol e
g PN u5 V2 _
g ........ u > Y
3 0.4 _ u6 _ g ..... v,
- E IRREI
0.2 | £
=
................... > i
0.0 | | | | | ]
0 2 4 6 8 10 12
T (atomic units)

FIG. 11. Graphite Jastrow correlation functianswith respect
to electron separationon the line segmemA’ (Fig. 2) for each
iterationn during optimization ofJ;, for a 3X3X 3 simulation re-
gion [Fig. 7(d)]. Also shown is the reconstruction of the homoge-  FIG. 12. The reconstructed two-body functiwfi, as defined in
neous functioru;, (heavy dotted lingdefined in Eq.(35) with an Eq. (33), vs electron separatianon the line segmerAA’, for each
optimized parameteA=2.170. iterationn during the optimization outlined in Figs(d) and 11.

r (atomic units)
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T " | I L TABLE Ill. Energies and energy corrections of diamond and
- rhombohedral graphitéin hartree/atorn (a) Total energy, deter-
..... AA" | mined by our VMC optimization method, for ax33Xx 3 unit cell

-- BB’ simulation region, using wave functions of similar variational free-
-~ BB" n dom (see texk (b) Finite size correction equal to the energy differ-
ence between an LDA calculation for thex3X 3 simulation re-
gion and an LDA calculation using a fully-converg&epoint set
(see the teyt (c) Correction for the zero-point phonon ener¢fyef.

34) (d) Total energy including the corrections. The numbers in pa-
rentheses indicate the statistical error in the last digits of the corre-
sponding energy.

g
=N

u (atomic units)
o
~

o
to

= Diamond Graphite

e
(=)

02 4 T 6 % 10 12 3x3x3 ~57129%14)  —5.7129114)

zero-point energy 0.006 65 0.006 10
FIG. 13. The optimized diamond Jastrow correlation factas  gig) —5.715 2914) —5.713 4114)

a function of electron separatianalong the line segments indi-
cated, for a X 3X 3 simulation region.

tion quoted in Table Il was determined usinG,
=3.1 (a.u.) ! as the cutoff for one-body terms.

A. Energies In graphite, the exclusion ad symmetry from the basis
For a direct comparison of the calculated energies of diaSet used to construct the LDA orbitals in the Slater determi-

mond and rhombohedral graphite, we shol@dmake some nant is energetically more important. In addition to the cal-
corrections based on the trial wave functions used @md culations described in Secs. IVB and IVE, we also per-
include finite size and zero-point phonon energy correctionéormed calculations for graphite using a Gaussian basis set
for the expected energy of the real infinite solid. Thewith s, p andd symmetry, and three Gaussian decays 0.22,
corrected energies for diamond and graphite are listed i0.766, and 2.67. For the>33X 3 simulation, includingd
Table 111 symmetry reduces the total VMC energy by @3

The Jastrow factors used in both solids are comparable imHartree/atom and also reduces the variance in the total en-
their variational freedom, the only significant difference be-ergy by 16%. Use of the Ceperley-Alder exchange correla-
ing the size of the cutoff used foy,,. However, a VMC tion functional to generate the single-particle orbitals in
calculation for diamond, using the same cutoff as in graphitgyraphite, rather than the Hedin-Lundqvist form, made no dif-
(Gc=3.1 (a.u.) !, corresponding to 25 variational param- ference(within statistical error to the VMC energies, and
eterg, resulted in an increase in energy of only @3  neijther did an increase in the cutoff for the Fourier space
mhartree/atom for diamond. Therefore, the high Fourier coexpansion of the LDA charge density from 36 to 64 Rydberg.
efficients of x;, contribute little to the total energy of the The graphite VMC energy for the>33x 3 simulation listed
system. The diamond VMC energy for the<3 X3 simula-  in Table Il was calculated using a trial wave function very

similar to that used for the calculation of the corresponding

V. DISCUSSION

1.0— — T diamond VMC energy. The cutoff for the one-body Jastrow
| factor wasG.=3.1 (a.u.) ! and the Slater determinant com-
08 ~AM prised LDA orbitals obtained usindi) a basis set withd
) -- BB’ symmetry (as outlined above (ii) the Ceperley-Alder ex-
— BB" 7 change correlation functional, aridi) a 64-Rydberg cutoff

0.6 T for the LDA charge density expansion.
We generate finite size corrections for th&3X 3 unit
. cell simulations of diamond and graphite, by calculating the
difference in energy between a LDA calculation which uses
points compatible with periodic boundary conditions of a 3
X 3X 3 simulation region and an LDA calculation using a
T~ fully convergedk-point set! Comparing the change in en-
0.0 DN N ergy between a 2 2 calculation and a 83X 3 calcula-
I e — 'g"“"‘"‘"'"'i'b—'—"'"ml"Q tion in both diamond and graphite, using LDA and VMC

r (atomic units) methods, we see that the changg in .VMC energy is abput

80% of the LDA energy change in diamond, and 70% in

FIG. 14. The optimized rhombohedral graphite Jastrow correlafhombohedral graphite. Perhaps more accurate estimates of
tion factoru as a function of electron separatioralong the line  the energy of the infinite solid may be obtained by an imple-
segments indicated, for @33 3 simulation region. mentation of a model periodic Coulomb interaction devel-

0.4

u (atomic units)

0.2
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oped recently. Tests of this approach have dramatically rethat the inclusion of anisotropy in the correlation factor is
duced finite size effects in the interaction enetyy.’ energetically more important. Both the inhomogeneous and

For diamond, we estimated the finite size correction to beptimal homogeneous forms produce significantly lower en-
—8.99 mhartree/atom, using a converged LDA calculatiorergies than the isotropic Yukawa-style correlation factor for
with 220k points in the irreducible Brillouin zone. For rhom- the larger systems.
bohedral graphite, incorporatirysymmetry in the basis set ~ The extra correlation energy gained using the inhomoge-
(as described aboyeand using 18% points in the LDA  neousJy, is not large enough to render the VMC method
calculation, we found the finite size correction to b&.56 ~ competitive with the DMC method for the calculation of
mhartree/atom. We also include the calculated zero-poinccurate ground state energies. The decrease in the variance
phonon energies of diamond and graphite, which are 6.68 ~5%, which would introduce small time savings for con-
and 6.10 mhartree/atom, respectiv&ly. vergence of DMC calculations, but this saving is likely to be

Adding all these corrections to the calculated VMC ener-canceled out by the extra computational cost of evaluating
gies(Table IIl), we estimate the energies of the infinite solidsJin (Sec. V Q. However, to determine quantities other than
to be —5.71529-0.00014 hartree/atom for diamond and total energiese.g., the pair correlation functipnmay re-
—5.71341+0.00014 hartree/atom for rhombohedral graph-duire more accurate trial wave functions. Therefore, it is im-
ite. This appears to indicate that rhombohedral graphite ifortant to emphasize that, whatever conclusions we would
less stable than diamond. However, given the approximatioike to draw from these calculations, our principal aim has
of using LDA finite size corrections, we m|ght expect a Sys-been to optimize the trial wave function for a given Hamil-
tematic error of the order of 2 mhartree/atom in each of theséonian, such that the expectation value of the total energy is
results. This indicates that, at the VMC level, the solids dia-minimized. This aim has been achieved for all the systems
mond and rhombohedral graphite have very similar total enstudied.
ergies. We note that in the atomic pseudopotential used in the
calculations presented hepeand higher angular momentum
scattering are all included in the local potential. It is possible
that the use of a separatepseudopotential might slightly Diamond, with a relatively homogeneous and isotropic
affect the relative energies in both systems. electron charge density, exhibits an approximately homoge-

In order to determine the cohesive energy of a solid, weneous, isotropic Jastrow correlation functiorfFig. 13). At
should subtract the energy per atom of the solid from thdarge electron separatioribeyond 6 a.y.we see that the
energy of the isolated atonk.=E,—Es. However, when electron correlation factar in diamond is well approximated
using approximate eigenfunctions, a reasonable estimate bff homogeneous and isotropic functions, as all the curves
the cohesive energy is obtainable only by subtracting thelotted are quite similar. Only slight deviations from homo-
energies estimated using similar trial wave functions. VMCgeneity exist at short and intermediate electron separations.
energies are available for the carbon atom where the trialThis inhomogeneity may be seen by comparinglotted
wave function is of the Jastrow-Slater fofftiThe orbitals of ~ with its fixed coordinate at different point&:A’ andAA” are
the Slater determinant are optimized using energy minimizaguite similar at short range, but clearly distinct fr@B’ and
tion and a sophisticated Jastrow factor is optimized usin@B” in the same region. This inhomogeneity may have sig-
variance minimization, yielding a VMC energy for the atom nificant effects on the short-range pair-correlation functions
of —5.4372£0.0001 mhartree. Using this energy, we find calculated for diamondlike systems using VMC
the cohesive energies to be 0.2#81.0002 hartree/atom for methods®~#!
diamond and 0.27620.0002 hartree/atom for graphite. We  Graphite, with clear regions of high electron charge den-
regard this atomic trial wave function to be close in form andsity and well-defined regions of very low electron charge
accuracy to our solid trial wave function. However, to remaindensity between its layers, is a highly inhomogeneous and
consistent with the inclusion af symmetry in the basis set anisotropic structure. This is borne out in Fig. 14, where the
of our LDA calculations, we could also refer to a multicon- functionu differs considerably in various regions and in vari-
figuration trial wave function for the carbon atom which in- ous directions. At short ranga,is surprisingly homogeneous
cludesd excitations. The VMC energy of the atom, using this in comparison with diamond. At intermediate separations the
wave function, is—5.45061 0.00002 hartre&’ leading to  function displays both inhomogeneous and anisotropic be-
estimates of the cohesive energies of diamond and rhombdwaviors. Given that the layer separation in these simulations
hedral graphite of 0.26470.0002 hartree/atom and 0.2628 is 6.33 a.u., this indicates that inhomogeneous correlation
+0.0002 hartree/atom, respectively. The experimental valuelsetween adjacent layers in the system is not insignificant.
are 0.271 hartree/atom for diamond, and 0.272 hartree/atoibhis may prove important for van der Waals interactions
for graphite® between the layers in graphtte.

Having considered the optimal homogeneous form of cor- At long range, the anisotropy of the graphite correlation
relation factor for graphite, it is clear from Fig. 7 that there factor is clearly shown in Fig. 13, where the correlation fac-
are only small energy gains to be made by including inho-ors for electron separation vectars-r lying parallel to the
mogeneity in the correlation factdrAccording to Table Il graphite planesAA’ andBB') are distinctly different from
this energy gain is (2:80.2) mhartree/atom.However, those with the separation vector perpendicular to the planes
given that the optimal correlation factor for graphite is not(AA” andBB"). Inhomogeneityi.e. an explicit dependence
strongly inhomogeneou§ig. 14 and Sec. V B it is evident  on the positionr of the first electropis displayed at long

B. Correlation factors
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range in the differences between the function ald#g and  pected, given that we must evaluate many first derivatives of
BB’. We might expect this, given that the line AA lies some energy contributiof&q. (28)]. There are two reasons
within the graphite planes, where the charge density is confor this: First, because we have expressed the variational
centrated, whereaBB'’ lies in the very low charge density components of the Jastrow factor as linear combinations of
region between the plangsee Fig.2b)]. On the other hand, the operator®,, (Sec. Ill). TheseO,, need only be evaluated
when the separation vector is oriented perpendicular to thence, for each electron configuration, in order to construct
graphite planesAA” andBB"), inhomogeneous effects are both the Jastrow factor and the predictor. Second, and more
substantially smaller at long range. importantly, since we must calculate the total energy as a
sum of various contributions defined by the Hamiltonian of
the system, all the energy contributions needed to construct
the predictor are already available, either directly or by some
In order to reduce the complexity of the physical results insimple manipulation.
Sec. IV, some computational details of the method were not The largest calculations presented in this paper were per-
discussed. We present and discuss some of these detailsfdirmed on a Beowulf cluster of fifteen 500 MHz dual-
this section. processor workstations. For a five iteration optimization us-
(1) For a system oN electrons, the computational cost of ing 10° samples per iteration, these calculations took about
the implementation of this method of energy minimization50 h on this cluster. However, perhaps half this amount of
must be evaluated. The usual computational costs of QM&Gampling would have produced comparable regsks item
calculations are not considered here, only the additional cogB) below]. The required memory for storing all the expecta-
of the method. The evaluation of the Slater determinant stiltion values necessary for this calculation scales quadratically
remains as a predominant factor in assessing the total cost @afith N, but with a small prefactor. As well as all other nec-
these calculations and improvements in that regard have ressary variables for the running of a VMC calculation, the
cently been developet. storage requirements are easily within the capabilities of cur-
For the optimization of a homogeneous correlation factorrent workstations, at approximately 20 MB for our largest
such asJ} , the number of variational parameters scales agalculation.
O(N), as does the computational cost of evaluatlfig [We (2) The Newton-Raphson methotsee Appendix ¢
ignore the computational cost of determining the relative powhile quadratically convergent near a root of a multidimen-
sitions of all the electrons, which scales@gN?), since this  sional system, does possess some convergence problems far
cost is common to all types of correlation factdrBhe cost, from the root. In the calculations presented in this paper, we
for J%, of sampling the required expectation values tofound that below a certain minimum amount of sampling, the
implement our energy minimization method scales adoise in the estimated expectation values used to construct

O(N?), but with a very small prefactor, since for the largest,the predictor caused divergence of the solution to BQ)
graphite 3x 3x 3 simulation, this amounts to only 1% of the Using the Newton-Raphson method. This problem might be

C. Computational details

total computational cost of the calculation. solved through the use of a more robust root-finding method
For the inhomogeneous correlation facigy, the number ~ for the predictor function. . o
of variational parameters scales é&NZ) However, the (3) From the analySIS n Appendlx G, we see that noise in

prefactor on this scaling is reduced somewhat by translathe iterative method comes from the finite sampling used to
tional symmetry. So much so, that the energy minimizatiorestimate those expectation valu@isted in Sec. IIl  re-
method still scales quadratically witil and comprises
~20% of the total calculation for the X833 graphite
simulation. However, the cost of the evaluation of the inho-
mogeneous Jastrow factor scales alsa%sl?) and com-
prises~25% of the largest calculation. For this large system _ _5 672
of 216 electrons, the optimization of the inhomogeneous Ja-&
strow factor takes 50% longer than the optimization of the &
homogeneous Jastrow factor, even though both require th& -5.676
same amount of VMC sampling and the same number of&
iterative steps for convergence. %

This iterative method is trivially parallelizable. To deter- g —5.680
mine the expectation values required to construct the predic ®
tor, Monte Carlo sampling may be performed independently s ¢q,
on many workstations, and the results combined. To obtair
total energies of the accuracy presented in this paper require
~10° Monte Carlo samples. However, for optimization of  -5.688 ' ' ' '
the wave function using our method, this amount of sam-
pling is also sufficient for accurate estimations of the expec-
tation values required to construct the predidi®ec. Il P. FIG. 15. Total graphite energy in hartree/atom vs iteration num-

The extra time required to accumulate the various contriber for a 2<2x 2 simulation region. The number of Monte Carlo
butions to the predictor is significantly smaller than first ex-samples per iteration ranges from*10 5x 10°.

-5.668 -

iteration
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0.15 - - - T - densities is also pertinent for the study of finite systems such
as molecules and clusters. While no work has been done to
date using our method of energy minimization for inhomo-
geneous correlation factors in finite, polyatomic systems, the
general theory of constructing the correlation fag®ec. 1))
and the methodology of energy minimizati¢8ec. Ill) are
still applicable here. Ultimately, what one requires is an
appropriate basis set for the expansion of the correlation
factor u.
For periodic solids, optimal inhomogeneous correlation
. factors can be used in the investigation of van der Waals
- RN interactions, and their contribution to the interlayer binding
"t I of graphite? Such information may prove invaluable to the
, N development of new exchange-correlation functionals in
BB’ (atomic units) . .
DFT which can accurately reproduce van der Waals energies.
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FIG. 16. The reconstructed two-body functidfi, vs electron
separatiorr along the line segmemB’ in graphite, from the fifth
iteration of each of the calculations in Fig. 15. VI. CONCLUSION

quired to construct the predictor. The effect of this noise on We have developed a generalized form of electron corre-
the wave function accuracy is not clear. To reduce the comkation factor for trial many-body wave functions of electrons
putational cost of these calculations we would prefer to ddn periodic solids. This form allows us to represent fully
the least amount of sampling necessary to produce the réahomogeneous electron correlation in real physical periodic
quired results. systems. It is computationally efficient to evaluate, since the
Figure 15 illustrates the effect of various amounts of samelectron cusp, which we express as a homogeneous correla-
pling on the convergence of the total energy in the optimization factor, is separated from the fully inhomogeneous form.
tion of the 2<2X 2 simulation of rhombohedral graphite. At \We have also developed a rapidly convergent iterative
10* samples per iteration, the estimation of the required exmethod for the optimization of all variational parameters in
pectation values, during the first iteration of our njethod,'isthese wave functions, minimizing the total energy of the
too crude to produce a convergent root of the predictor usingiven system. It uses the accurate techniques of gquantum
the Newton-Raphson method. This leads to a wave functionysnie Carlo sampling to achieve this optimization and has

used in the second iteration, with many noisy parameters\eq insights into the form of many-electron correlation
which are more difficult to optimize, as the convergence of.

the energy shows. However, for sampling involving 20° in systems with highly inhomogen_eous charge densities.
samples per iteration, or more, we see that the convergence We have demons.trated that_ using an ppt|mal form of ho-
of the total energy is identicdlwithin statistical accuragy rmogeneous correlanop factpr IS appropnate for the genera-
Comparison of the optimized wave function parameters aIs&Ion of accurgte energies with relat|vely low computa.uo.nal
reveals only small differences, indicating that the only mean&?St .In graph|'te, Itis ewden't that aIIovymg fora Qescrlptlon
of determining the true benefits of more sampling isOf anisotropy in the correlation factor is energetically more
by examination of the fitted coefficientd, (&) at each IMmpPortant than representing full inhomogeneity.
iterationn. Given the variational freedom to include full inhomoge-
In Fig. 16 we see, from the reconstructif(r,r’) of the neity in the correlation factor, we have found that, in dia-
fitted coefficients for two-body optimization at the fifth and Mond, the optimal correlation factor is approximately homo-
final iteration of the method, that the most sampling (59€n€ous and isotropic, with some inhomogeneity at short-
X 10° samples per iterationreduces the magnitude of the and intermediate-range electron separations. This is consis-
Euler-Lagrange derivatives the most, indicating that thes&€nt with its comparatively homogeneous and isotropic elec-
wave function parameters are the most accurate. HowevefO charge density. Graphite has an optimal correlation fac-
for practical purposes, there is little distinction between thd® Which is quite homogeneous at short-range electron
accuracy of the wave function once we increase the samplingeParation, but is significantly inhomogeneous and aniso-
beyond 2x< 10" samples per iteration. Thus the optimizations TOPIC at intermediate- and long-range electron separations,
presented in Sec. IV may have used more computational tim@S ©Né might expect from its highly inhomogeneous and an-
than was strictly necessary. However, more testing is relsotropic electron charge density. Nevertheless, it is remark-

quired to determine the minimum amount of sampling as aetb!e that de;pite the very large inhomogeneity in the electron
function of system size. pair-correlation function, found by previous authdts* the

ideal inhomogeneous Jastrow two-body term, calculated here
for diamond and graphite, displays a relatively small inho-
mogeneity. Whether this conclusion can be extended to other

The ability to accurately represent electron correlation insystems(e.g. involving strongly correlated electrons re-
systems with inhomogeneous and anisotropic electron chargeains an open question.

D. Future applications
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APPENDIX A: DERIVATIVE OF OBSERVABLES WITH Since, for any operators, andb, we may say that

RESPECT TO WAVE FUNCTION PARAMETERS (ab)— (a)(b)=(AaAb)

The derivative of the expectation value of an observable
A, with respect to a parameter,,e a of the parametrized whereAa=a—(a), then we are lead to the conclusion that
wave function¥ («), may be written as the least squares fitting is equivalent to solving the linear

system
HAY 9 (Y|AW)
day, dap, (VW) -

> Vi{AOAO)=(AEAO))
We assume tha& is independent of the parametars Also, K
for a time independent system, we may in general expbess
as a real function. Differentiating, we find that for eachl.

9 <\I’|‘I’>=2<\P|O |‘I’> APPENDIX C: NEWTON-RAPHSON METHOD
dam me o

An integral part of the iterative procedure outlined in Sec.
J Il C is the determination of the parameteatsthat solve the
W(\P|A|\If}z2(\lf|A(’)m|‘If>, system in Eq.(30). The determination of the roots of any
m multidimensional function can be troublesome. In all the op-
where we define the operator associated with variations dimizations presented in this paper, the predictor function

am asO,=4dlda,,, with a local value V! (a;a°) is a quadratic function oty, whose coefficients
are determined analytically, or by numerical fitting at the
_ 1 R _ 4 point &°. We ignore the implicit dependence 8§, on a” for
On(R) =35y =——In¥(R), e
Y(R) dayn  dan the purpose of finding a root, and solve the systéfif )

=0 for all m.
We use the Newton-Raphson methbtb determine the
roots. This is an iterative method of improving successive

for the many-body configuratioR.
Therefore, we may express the derivative( &) as

1 HA) (PIAOLP)  (P|A|W) (V|0 ¥F) guesses for a root of a function. It involves the computation
2 P Wy of the functionV/, and its Jacobian matrix of derivatives
am  (Y|¥) (V[w)  (¥|¥) : Lo . :
with respect taw, at each guess. The iterations continue until
=(A0 —(AXOn=(AAAO,), convergence of the solution is achieved within a predefined
tolerance.

where AA(R) =A(R) —(A) and AOn(R) = On(R) = (O)- The success of the Newton-Raphson method for multidi-

mensional systems relies heavily on the proximity of the
APPENDIX B: LEAST-SQUARES FITTING initial guess to the root we seek. For this reason, the initial
guess chosen is normally the parameter set of the previous
) iteration of the procedure outlined in Sec. Il C. To find the
X2= (|| H- Eo—z VOl W) first ;et of parameter;, by f|nd|ng' t.h.e roots of the analytic
K predictor S,,, we require a good initial guess of the root.
Since the one-body parameteyg are expected to be small
by construction, an initial guess of zero for @lwas found
to be sufficient to produce a convergent solution to the first
application of the Newton-Raphson method.
Eo=<E>—E ViKOw, For the two-body problem, we rescale the variahlgs
. to improve the convergence of the root-finding method. Ac-
where(E) is the expectation value of the total energy andcording to the RPAS? the long-range behavior of thefunc-

Our task is to minimize the integral

by choosing the appropriate parameté&s and {V,}. We
note first that, at the minimum,

(O, is the expectation value of the operatfg. To fulfill  tion should take the formu(r)=1/wyr, where the plasma
the minimization, we must set all the remaining first deriva-frequency for a homogeneous system with electron charge
tives of y? to zero, i.e., densityn is w,= y4mn. The charge density is determined
5 in the simulation region to b&l/Q), for N the number of
% - _ 2(\1’|(H— Eo— > Vkok] ol¥y=0 _electror_ls in the simulation vplun(e. Therefore, for smald
[ K in Fourier spaceuy behaves like
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41 1

Vidin
= —=wW,—. -
Qw,0° "Ng?

T Jin

1
u(a) eW=—3

1
— 5 2] (Vlzln ‘]ih+ |Vi|n Jih|2)'
This indicates large relative differences between values ofVe find that
u(q) for small g. Therefore, in inhomogeneous systems, it 1
would be appropriate to rescale the parametiggs by mul- — _ =N y2in3. = — = > 4 (q2+q'2)Pyy
tiplying by N|q||q’|, thus rendering all the variables of the = 2 El 2 % {44
same order of magnitude as the plasma frequency. This leads N—1
to a less pathological numerical problem for the Newton- _2 o E u /q2<p N Apk
Raphson method. Appropriate scaling must also be applied to q N q' a K d
the predictor functior\/;q, in Sec. lll. For the initial analytic

guess of the roots db,,, we use the homogeneous solution +const.
for Ugq- outlined in Eq.(31). We retain only the linear combination of the functiohg, .
The constant terms we may ignore, and the one-body terms
APPENDIX D: ONE-BODY ENERGY CONTRIBUTIONS (linear combinations of\pg) we assume are compensated

for by terms in the one-body Jastraly,.
If we ignore the removal of one-body terms from the

function qurz(quAp;,)[#” and consider using the func-

The variational part of# associated with one-body terms
is the Jastrow factordy, [Eg. (15)] with parametersy
={xs}. We expand the energy contributioe§" and e

defined in Sec. Ill D. Fody,, we have that tion ApgApg, instead, then we find that
2 1
6(1)5_52 Vidi _Ezi [Viln 3|2
25 Jp
1 =-2 u K-K" ) Uprg prr— kA A*,+"',
=-3 Z (V2N 315+ |ViinJyy?) % % ak( JUkrqr P —kAPgA Py
1 (ED
) % XcG*Ap§ where we have ignored constant and one-body terms in the

expansion. The produgi, —ApgApy, contains both two-
and three-body terms, since we may rewrjig, _, as
Apyr i+ {pr —x). We intend here to remove two-body fluc-
tuations and regard three-body fluctuations as much less sig-
The constant terms are not required, so we ignore them. nificant, so we retain only the two-body teth
The energy contributios(® cannot be expanded analyti- (pk,_k>quAp;‘, from the charge fluctuation products in Eq.
cally as a linear combination of the functiodspg since  (E), i.e.,
v’'=T/J,,is not explicitly a function of these coordinates.

O . =22, > Ugdk-K)Uprq{pio ) Apghpy + - -
- V.Jy, ViU A i q
B Ty e Videt
! 1b ' Now we make the assumption that removing one-body terms
. . . . * . .
However, e®? is explicitly linear in the parameterg, with ~ rom this expression , i.e., replaciigo A pg, with Pgq: is @

1
T3 > Xo_c(G—G')-G'xg Ap&+const.
GG’

derivatives good approximation, and obtain the expressiondﬁa),(u)
given in Sec. lll E 2.
9e@ A% The contributione'® cannot be expanded analytically in
xe =2 ViApG: BT the basis of fluctuation functioriy,, , However, it is clear

that € is linear inu, since, for¥'=W¥/J;,,

which are independent of.

A\
2)_ I
D=2 ug X Vipqq"?'
APPENDIX E: TWO-BODY ENERGY CONTRIBUTIONS qa’ !
The variational part off’ associated with two-body en- and has first derivatives

ergy contributions is the inhomogeneous Jastrow fatjaf
Eq. (14), with parametersi={uy,}. (For periodic systems g€ b 204
we use onlyug g q+c -) The energy cc_)ntri_butipns(') of Mg T Vil Ty
Sec. Ill D are expanded here. The contributidh is depen-
dent only on the form ofl;, and is expanded as which are independent of the parameters
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The final energy contributios® we attempt to express
analytically in terms of the two-body fluctuation functions
Pgg - If ¥'~D, the LDA Slater determinant, then the sum
of contributions from the external potential and the kinetic
energy term—(1/2),V2¥'/¥’ is a one-body contribution
defined by the Kohn-Sham Hamiltoni&hsince

1 V¢
2D

Z_

Ve 1) | = 2 [€5=Vi(r) = Vi1,

wheree[® are the Kohn-Sham eigenvalud, is the Hartree
potential andV,. is the exchange and correlation potential.

Therefore, the two-body contribution of these terms is ap-

proximately zero. We are left with the contribution of the
electron-electron interactiovi.

For a two-body potentiaV(r,r’), we may expand the
sum over electron pairs as

efiq-rieiq"rj
]

1
V(r,,ri)== Vg
izq (I j) ZqEq/ qu&

1 *
=35 Eq: Vag' (PgPg)1i#] »

for Fourier coefficientsVyq . In terms of the fluctuation

functionsPgq. , this may be rewritten as

1
\Y ri,ri)== Vyq' Pagr
;j ( i J) 2% qq’ " qq

N-1 .
—% TE Vaar{pq') |Apk + const.
q

[We assume thaV/(r,r') possesses exchange symmetry,
that Vqq=V_q _4.] Therefore, both one- and two-body
fluctuations arise from a two-body potential in the “charge

fluctuation” coordinate system. Note that the one-body fluc-> Vopd i)~ —

tuations are expressible in terms of the Hartree potentia
since

Vu(q)= Z qu’<Pq’>-
q

If the two-body potential is homogeneous, i.¥(r,r’)
=V(r—r'), then we may simplify the fluctuations since
qu,=V; 8(g—q'), where the Fourier transform of the ho-
mogeneous functiol/(r) is

1
V==

—iqg-r
q QJQV(r)e dr,

for a system volume). If V(r)=V(—r) then V§=Vq.
Therefore,

SOthat

PHYSICAL REVIEW B66, 155104 (2002

1
;,— v(ri-rih=5 % ViPaq

N-1 .
- Eq: V(pg)Api + const.

(E2

Again we ignore the one-body and constant terms in this
context.

APPENDIX F: CONSEQUENCES OF USING
THE SHORT-RANGE JASTROW FACTOR

The short range Jastrow factdy, is constructed from the
pseudointeractioV in the following way. For the isolated
two-electron scattering problem, we may find an eigenstate
o of the true two-electron Hamiltoniah, for a given en-
ergy eigenvalues. Upon replacing the true Coulomb inter-
action V with a generated pseudointeractids, we con-
struct the modified Hamiltoniah,s with an eigenstatef,s
corresponding t&. We constructl, such that

o= Jsr‘ﬂps-

Now, in a many-electron environment, we know that us-
ing Jg allows for a good approximation of short-range
correlations* We might imagine that for a many-electron
system with Hamiltoniarf{ and many-electron trial wave
functionJo W s, the true energy eigenvalue may be well ap-
proximated by

- HIs W pS__ Hpsqus
IV, W

ps

where Hpe=H—2;[V(rij) —Vpd{ri;)]. Now, disguising
the true interactionvV with Vot (V—V,d, and given the
transferability ofV,s over a wide range of energies, we see

Viz‘]sr _
Jsr

1

Vi‘]sr'vilpps
Jgo W

>

25

2, >
<i i ps

+> V(rij).

i<

Dividing two-body correlation into short-range and inho-
mogeneous terms, we use a Jastrow factor of the fayiy, .
The local energy determined using the trial wave function
v=J.Jy V', whereV'=W¥/(JsJ;n), may be expanded as
Vi2‘:lSI'

1 V., ViU,

-z - : +> V(1
223, 23, i, T V)
1 s Va3 Vi, ViV 1 s vap'
29 i T I w29 g

+ 2 Veudr)
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1o Vi < Vidn ViV
~ V r _ —_ —_—
Z’j pd13) ™ 5 Z Jin T Jin W

1.« V2O’
_EZ \IIf’ +2i Vexd(i)-

For this reason, we Us¥ in the expansion of the local
energy forJ;, to implicitly include the short-range Jastrow
factor J,.

APPENDIX G: CONVERGENCE OF THE METHOD

The convergence criterio’V,(a@)=0, is numerically
never exactly achieved. Given that the predidfgycontains
some terms determined by statistical fitting, finite samplin
errors exist, and this noise is passed on to the fitted para
eters inV}, from Egs.(22) and(27).

We consideV,={V,(a")}, the fitted coefficients of the
local energy at the™ iteration of the method. The method
may be regarded as an iterative mdp such that the coef-
ficients are determined vi&,,,=M(V,). There are two
sources of noise iV, 1: (i) noise inherited fronV,,, which
produced the parametes8 "1, which were used to construct
the wave function¥ (&), with which we evaluated the
expectation values used to calculafg, ; and (ii) finite

PHYSICAL REVIEW B6, 155104 (2002

oh 1 ~Sh 1t N[20?,

where A,=VyM(V,). For a convergent mapM, we are
guaranteed thah,|><1 at convergencé\,| is a measure of
the convergence rate of the map, with |A,|~0 implying
fast convergence anfh,|~1 implying slow convergence.
Note that if|\,|=1 the map is divergent.

Therefore, if we regards,~s and A,~\ for all n, for
constantss and A, then the converged value of the variance
in the fitted coefficients is

1

=m . (G)

*

We conclude that, given a convergent methdd the

grﬁ:esence of statistical noise does not lead to successively

nore ill-determined parameters, since their variance is
also convergent.

Note that Eq(G1) indicates that the variance in the fitted
coefficientsV,,(a) is always greater than or equal to the
variance estimated using finite sampling. However, our
implementation of the method represented by the vap
indicates thatA|<1, since we find that the majority of the
coefficientsV,(a) ultimately end up with magnitudes ap-
proximately equal to their finite sampling errors, signifying
that statistically they are zero.

sampling noise in the evaluation of the expectation values in Therefore, the final conclusion to be drawn from Eg1)
Egs.(22) and(27) via Monte Carlo sampling. Therefore, we js that the accuracy of our optimization method depends ul-
associate a set of variance§={co?, for eachm at stepn},  timately on the finite sampling error. Therefore, increasing
arising from these two sources of noise, to the coefficientshe computational workload, by increasing the amount of
V,. The variance due to finite sampling alone, at eachistep sampling, will result in more accurate optimizations of
is & and we use the initial condition?=s. This implies the wave function. This is demonstrated by the results in
that the variance obeys the following iterative map: Sec. V.
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