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Electrons in an annealed environment: A special case of the interacting electron problem
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The problem of noninteracting electrons in the presence of annealed magnetic disorder, in addition to
nonmagnetic quenched disorder, is considered. It is shown that the proper physical interpretation of this model
is one of electrons interacting via a potential that is long ranged in time, and that its technical analysis by
means of renormalization-group techniques must also be done in analogy to the interacting problem. As a
result, and contrary to previous claims, the model does not simply describe a metal-insulator transgition in
=2+ €(e<1) dimensions. Rather, it describes a transition to a ferromagnetic state that, as a function of the
disorder, precedes the metal-insulator transition close=t@. In d= 3, a transition from a paramagnetic metal
to a paramagnetic insulator is possible.
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[. INTRODUCTION can describe the transition by means of a local order param-
eter, and2) whether the order-parameter susceptibility in the
Local magnetic moments are known to play an importandisordered phase is an analytic function of the wave number.
role in the behavior of disordered electronic systems, but th@he second criterion has an important bearing on which ob-
precise nature of that role remains incompletely understoodservables can become critical at a MIT: Criticality do>2
One way to think about such local moments is that, in a(d=2 is the lower critical dimension for all known MIT’s of
disordered environment, the exchange interaction betweetisordered interacting electronanplies a logarithmic de-
the electrons may be locally enhanced to the point where thpendence on the renormalization-groli®G) length rescal-
electron spins order magnetically in a finite region in spface.ing factor, and hence on the wave number, in perturbation
The resulting magnetized regions are often referred to atheory ind=2. This in turn implies gweakej nonanalytic
local moments, or droplets, or rare regions. Since they areave number dependence @2 away from criticality’®
self-generated by the electron system, they are in thermodyAlthough the considerations in Ref. 6 do not provide a rig-
namic equilibrium with the other electronic degrees of free-orous mathematical proof, they strongly suggest thelt u
dom. It is therefore intuitively plausible that such local mo- cannot be critical at a MIT for a large class of models, which
ments can be modeled as annealed magnetic disorder, includes the model studied in Ref. 4.
addition to the underlying quenched disorder that produces In the current paper we provide a thorough reanalysis of
them. In Ref. 4 an explicit derivation has been given thathe model derived and studied in Ref. 4, and resolve this
corroborates this argument. There is experimental evidenceontradiction. We show that the RG analysis of the model
for such local moments to influence the transport propertieperformed in Ref. 4 had an incorrect structure and led to
of the electron system in important ways, and, in particulaunreliable results. A proper analysis of the model’s renormal-
they are suspected to influence the critical behavior near thizability, and the resulting RG flow equations, show that
metal-insulator transitiofMIT) that is observed in disor- dn/du is not singularly renormalized and hence not critical,
dered electron systemdHowever, a theoretical understand- in agreement with Ref. 6. In addition, it reveals that within a
ing of the coupling between local moments and transportontrollede expansion aboud=2, the model does not sim-
properties has proven to be very hard. Studying and undeply describe a metal-insulator transition. Rather, it displays a
standing the annealed disorder model mentioned above igriant of the phase-transition sequence that is known to oc-
expected to shed light on this important problem. cur in a related model with both quenched disorder and
Reference 4 provided such an analysis, and concludeelectron-electron interactiondut no annealed disordef’
that the annealed disorder leads to a very interesting type dfhat is, as the disorder increases, there is first a transition to
MIT. The most exciting feature was that the transition wasa ferromagnetic metallic state, and then, with further increas-
driven by the vanishing of the thermodynamic density susing disorder, a transition to a ferromagnetic insulator state.
ceptibility an/du, and thus resembled more a Mott transition For d=3, a transition directly from a paramagnetic metal to
than an Anderson transitichiThis was even more surprising a paramagnetic insulator is possible.
as the Coulomb interaction between the electrons, which is This paper is organized as follows. In the following sec-
what usually causes a Mott transition, had not been explicitlytion, we give intuitive physical arguments that explain our
taken into account in the model. model and our procedure to analyze it, and we summarize
Subsequently, Ref. 6 developed a general classification ajur results. In Sec. lll we formally define the model and
guantum phase transitions with respect(ip whether one write it in a way that facilitates a renormalization-group
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analysis. Section IV performs the renormalization to onedition function, and couple to the field by means of some
loop order, and Sec. V analyzes the results. Some technicabuplingS. that is determined by the actid®

issues regarding the model's renormalization properties are

relegated to Appendixes A and B, the flow equations for the

interacting and annealed disorder models are compared in Z~j D[®] P[(b]J Dlgle  Sel*sd®el (2,19
Appendix C, and a perturbative analysis of the free energy is

given in Appendix D. They therefore act like an annealed disorder. Note that in

giving Eq. (2.10 we implicitly assume that théannealey

Il. PHYSICAL ARGUMENTS disorder adjusts and comes to equilibrium with the fluctua-
ions ¢. If the disorder were fixed on the time scale of the
tuctuations, then it would be a quenched disorder. In the
atter case, for the average over saddle points to be meaning-
ful, In Z rather tharZ should be averaged over tHefields'?

In our case, we are interested in rare regions that carry a
A. Annealed disorder as a model for local moments magnetic moment. According to the arguments recalled

We start by recalling the argument for why annealed dis2bove, they can be modeled by annealed magnetic disorder

order models local momentsiny field-theoretical treatment " @ddition to the quenched disorder that allows for the in-
of a statistical-mechanics problem starts with a functiona®megeneous saddie-point solutions. In the simplest possible
integral representation of the partition functin model the annealed disorder has a Gaussian distribution, and

is static. The latter means that the coupling constant, or the

annealed magnetic disorder strength, will be proportional to
z:j D[¢] eS¢l (2.13  the temperatur&This is just the Boltzmann weight assigned

to these classical degrees of freedom that are in equilibrium
with the electrons. We emphasize that this model, and its
derivation in Ref. 4, is unaffected by our considerations con-

ation, and the mathematical nature of the fi¢ldlepends on S . . : : .
whether the system is classical or quantum mechanical coiferming its _analy3|s and interpretation, which differ from the
.~ .0ne given in that reference.

sists of fermions or bosons, and whether the model is a mi-
croscopic one in terms of fundamental fields or of an effec-
tive nature. The usual procedure is to identify a saddle point B. Annealed disorder as an effective interaction

of Sthat approximately contains the physics one is interested The physical effects of the annealed disorder are funda-
in, to expand about this saddle point, and to employ pertur-

. . mentally different from those of quenched, or frozen-in,
bation theory and the renormalization-group. In a syste Y d

with quenched disorder there will be, apart from homogg-blsordeﬁ The former gets integrated over at the level of the

. . . . artition function, cf. Eq(2.19, the latter, at the level of the
neous saddle-point SQIUt'OnS' solutions w_here th_e ﬁxel@r .?ree energy. Consequgntly, integrating out the annealed dis-
some components of it, are nonzero only In certain regions I, generates an effective physical interaction between the
space. Such mhpmogeneous saddle _pomts .have been pr&’égrees of freedom that couple to it, the electron spin density
posed as a description of rare regions in classical magnets I?Pf our case, which can be understood as resulting from an
Dotsenkoet al? This concept was generalized to quantum :

S i - exchange of annealed disorder fluctuations between the elec-
magnets and to the effective-field theories used to descrlbetrons The effects of the quenched disorder, on the other
MIT’s in quenched disordered electron systeéhis. a large ' '

. ) . hand, are more subtle and fundamentally different from those
system there will be many rare regions that interact only Very ¢ interactions
weakly, and thus exponentially many aimost-degenerate It is therefore plausible that a system of noninteracting

saddle points, since the orientation of the field on the rar%lectrons in the presence of both the quenched and annealed

regions is arbitrary. These saddle points are expected t0 Q@< ore will behave in many respects as one with the

sep_arated by Ia_rge energy barriers, and_th_us not to be pe_rt"ﬁhenched disorder only and an additional electron-electron
batively accessible from one another. Within the perturbat'or?nteraction. As the only difference one would expect that, if

Lhe%r();,) a;nd ddtigoifllggtér;l:?nzagdle_c)pnoénéglr?lghg(r)(;‘f(;?gr\?\frli(zg the annealed disorder is modeled as static, the resulting ef-
y ¥, fective interaction will be infinitely long ranged in time, a

the partition function feature that one would not expect to have qualitative effects.
This expectation is in contradition with the results of Ref. 4,
7= D[cp]e*S[‘I’(n)*“’]. .10 which found a b(_ehavior_that was (_Jlrastically diffe_rent fro_m
n that of electrons interacting via an instantaneous interaction.
In particular, this reference predicted a MIT of Mott type,
In the thermodynamic limit, the discrete set of saddle pointsvhere the thermodynamic susceptibilign/du vanishes.
becomes a saddle-point manifold that needs to be integratethis is in contradiction to both explicit calculations for
over. The saddle-point field configuratiods thus become quenched disordered, interacting electron systems, which
degrees of freedom that are governed by some probabilitfind thatdn/du is not singularly renormalizetf:* and very
distribution P[ @] are integrated over at the level of the par- general considerations in Ref. 6.

Since some of our detailed arguments are quite technic
we start by giving some intuitive physical arguments to ex-|
plain both our general strategy and our results.

The form of the actiorS defines the model under consider-
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The analysis that will be presented below removes thisThese constraints are conveniently implemented by param-
contradiction, and illustrates the technical issues behind thetrizing Q in terms of matricesy whose matrix elements,
above intuitive physical considerations. We will show thatq?2 are restricted to frequency labeis-0, m<0. In terms
the technical treatment of the annealed disorder in analogy tof the g, Q can be written in block matrix form
that of the quenched disorder in Ref. 4 was not only in dis-

agreement with the above physical arguments, but led to an —F_
unnatural structure of the theory. This in turn led to incorrect _ 1=qq' -1 q _ (3.20
assumptions about the behavior under renormalization, and q -v1l-q'q+1

ultimately to physically incorrect results. A treatment of the . .

annealed disorder in analogy to an interaction, on the other€'® the block matrices, clockwise from the upper left, cor-
hand, does not run into these problems and yields results thé‘?Spond to frequency IabeIB_,m>0; n>0, m<0; n,m

are in agreement with all known constraints. <0; andn<0, m>0, respectively.

QP = 81m8apQn (To®Sp) in Eq. (3.1) is a frequency ma-
trix with Q,,=2#Tn being a bosonic Matsubara frequency
andT being the temperatur& is a measure of the disorder

In this section we consider the same effective-field theonthat is proportional to the bare resistivity, and the frequency
as in Ref. 4. couplingH™) is proportional to the bare density of states at

the Fermi level. tr denotes a trace over all discrete degrees of
A. Effective-field theory freedom that are not shpwn explicitly.
_ . . _ _ The properties of this model are well knowh'>! The
~ Our starting point, as in Ref. 4, is Wegner's nonlinearpare action describes diffusive electrons, witke 1/GH®
sigma modef' (NLo'M) for noninteracting electrons with  the diffusion coefficient. Under renormalizatidd decreases
nonmagnetic quenched disorder. The action reads with increasing disorder until a MIT is reached at a critical
disorder value. The critical behavior is known in aexpan-
sion about the lower critical dimensiah=2. In the absence
ANLUM:%f dxtr[VQ(x)]*+ 2H(1)f dxtr[Q Q(x)]. of the Cooper channel, the MIT appears only at two-loop
(3.9  order at a critical disorder strength Gf( Je). H®, which
determines the specific-heat coefficient, the spin susceptibil-
Here Q(x) is a matrix field that comprises two fermionic ity, anddn/du is uncritical, which makes this MIT an Ander-
degrees of freedom. Accordingly) carries two fermionic  son transition.
Matsubara frequency indicesandm, and two replica indi- Now we add magnetic annealed disorder to the model.
cesa and B to deal with the quenched disorder. The matrix The motivation for this is the fact that the annealed disorder
elements Q2% are spin-quaternion valued to allow for models certain types of local moments, see Secs. | and Il
particle-hole and spin degrees of freedom. It is convenient tabove. A technical derivation of this has been given in Ref.
expand them in a basis®s; (r,i=0,1,3.3) wherery=5syis 4, and the main idea has been recapitulated in Sec. Il A. The
the 2xX 2 unit matrix, andry 3 5= — S 33= —ioy 33 With o;  annealed disorder implies that tQein the resulting terms all
the Pauli matrice®® carry the same replica indéx; otherwise, the functional
form of the resulting additional term in the action can be
taken from Ref. 15, which considered the quenched magnetic

Ill. THE MODEL AND ITS RENORMALIZABILITY

ﬁﬁ‘:Z Z 'Quek. (3.29  disorder. From that reference, we have
For simplicity, we will ignore the particle-particle or Cooper 1) 1 a2
channel, which amounts to droppimgandr, from the spin- A= 2T )f dx};« 121 tr[(ms@s)) Q“*(x)]%

quaternion basi&! The Q22 are then elements afx Q, (3.33
with C and Q the complex number field and the quaternion

. - 1 .
field, respectively. TheQ® obey the following symmetry The coupling constaritt!) is a measure of the strength of the
properties(for r=0,3):16 magnetic disorder. The temperature prefactor in (B3 is

a consequence of the static nature of the local moments con-
sidered within this model, as has been explained in Ref. 4
PQE=(—)"PQR, (3.2  and Sec. Il above. EquatiaB.33 is the only annealed mag-

netic disorder term if fluctuations of the matrix fie@lon all
QU= ()t ligke  (1-13.3) (3.20 length scales are taken into account in calculating the parti-
r<nm r<mn PO ' tion function. However, the N&M is an effective theory for
long-wavelength fluctuations, and it is therefore convenient
to project the annealed disorder term onto this regime as
well. It has been discussed in detail in Ref. 16 that this can
be achieved by means of a phase-space decomposition and a
relabeling of momenta. Applied to E¢B.33, this procedure
Q%(x)=1,trQ(x)=0. (3.20 generates another contribution to the action,

Alternatively, we can write the spin indices explicitly, and
consider matrix element@ﬁ;ﬁ’ij that are complex number
valued.Q is subject to the constraints
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3 —aT
A= 2TI® | dx2 2, [tr(75®5) Q(x) 1% A =—7 392 > > ()
a |= a =0,
(330 XA (7, 5o) QX)L (7, S9) Qi) ],
The coupling constarik?) s, in general, independent f%. (3.79
AL and AZ) enter the action additively with the under-
standing that only Iong-wavelen_g_th quctu_ations are int_e- A(l’t)ZW—TJ(l’t)E E 2 (=)
grated over in calculating the partition function. Note that in ann 4 ~
the case of quenched magnetic disorder, a complete phase-

a r=0,3

space decomposition leads to a term analogous t¢338}), 3 e wa
but it is zero in the replica limit because the replica sum is Xi:El (7 @) Qum(X¥) I (7 ®$;) Qmn(X) ],
then part of the trace.
As we will see, under renormalization the annealed disor- (3.79
der terms generate another contribution to the action that
takes the form eo_ T oy o
A= 92 2 2 )

Ag)=2H(2)f dxtr[sgnQ Q(x)], (3.9 3
X 2, il (7@s) QR () I (7,8 5) Q)]
so we add this right away. For a discussion on why this term
must be present on physical grounds, see Sec. V B. (3.70
where we have used EgS8.29 — (3.29. Here

A= Anom+ At AQ- A (35
J@Y=83@) 7 (3.79
is the complete action for our model, and the partition func—and
tion is obtained as the functional integral
JE8)=—3300= — 243/ 77, (3.7
Z=f D[Q]8[Q%—1] eMQl, (3.6)  This relation between the bare valuesJ&f® and J™-9 will
be important later. Notice thal®$<0, while J&9>0,
J@I>0,
B. Annealed disorder as a long ranged interaction Comparing these expression to the correspoding ones for

1 i _ an electron-electron interactidfpne sees that they have the
(;;l:ANLUMJ“Agn)n_defmeS the model studied in Ref. 4. o5 ne strycture except for the frequency sector. Transforming

AarmWas neglected in that reference, but this term will not befrom Matsubara frequency space into time space reveals that

of crucial importance in what follows. Terms that appearthe annealed disorder corresponds to an interaction that is

under renormalization and indicate the appearancel §f infinitely long ranged in time. This is physically plausible, as

were interpreted differently in Ref. 4, and we will discuss has been explained in Sec. Il B.

this point in Sec. V B below. A related point is that we have S _ _

written A{) in a form that is different from that in Ref. 4. C. Renormalizability considerations

The latter representation was modeled after the way one For reasons explained in Appendixes A and B, we will
would treat the quenched disorder, and it added and sulzhoose a field-theoretic RG metiamver a momentum-shell
tracted a term where all replica indices@fre not the same. RG1!’ Before we start analyzing our model by means of this
As we will see, this formulation, which is a matter of taste atmethod, we need to ask whether the model is renormalizable,
this point, is rather unnatural at the stage of a RG analysisand how many renormalization constants are required. Much
and this led to the incorrect RG treatment of the model inis known about the renormalization properties of theoA,

Ref. 4. We therefore write the annealed disorder term in &q. (3.1), with additional instantaneousinteraction terms.
form that is strictly diagonal in the replica index. This replica The pure NloM is known to be renormalizable with two
structure is common to both the annealed disorder term angnormalization constants, one for the coupling cons@nt
any electron-electron interaction term, and one would thereand one field renormalization constdrithe frequency cou-
fore expect the renormalization properties of the currenpling H® turns out not to carry a renormalization constant
model and one of interacting electrons to have common fezof its own. In the presence of an instantaneous interaction,
tures. To underscore this point, we rewrite the annealed dighe proof of renormalizability for the N&cM breaks down,
order part of the action by splitting it into spin-singlet and and the renormalizability of the model has never been

spin-triplet contributions, proven. However, there is much evidence that the model is
still renormalizable, with two additional renormalization
A= AR+ AR = AE9 + gD 42D (379 constants for the interaction, and wkt{") acquiring a renor-
malization constant of its own. The two renormalization con-
with stants for the interaction terms correspond to symmetric and
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respectively}®1° The same arguments apply to the present 3

model, and are given in Appendix B. From EdB1), we
conclude that we need to writd{L9= A9+ A% and

analogously splitd%) and AZY, with

Aoz 3 S S [ (%) X 9Q2(x)

a r=0

+= Er “(x)LQ2(X) |, (3.89

AGI= =277 09 f x> > > [?Qﬁ%(X)X?Qﬁ%(X)

) 2 r nn(x) Q (X) ) (38b)

3

E r nm(X)

AM=—27TIE0 | dx>, > >
nm « r=0,3

1 ) )
2| ] 1Qr01QEE(x) |

am(X)+ 5

(3.80

3
A= =27 TI [ x> > 2 | 2 1Q(x)
nm « i=1

. 1
X Qa0 —5 2 LQ ()1 Qi) | 4

(3.80

3
APY=27TIEY | dxX, > 2> | 2 QX
nm « r=03] i=1

S| ieroiex |,

N| =

XL Qe (x)+

(3.89

AY=277 [ 63 3 3 | 3 10g0
3
) 1 —
XlrQr%Crvn(X)_zZi r nm(X)Q (X)
(3.8f)

In writing Egs. (3.8) we have made use of Eq&3.29 —
(3.20. The symbol

is a shorthand for 8,—=%_,8;. The 3% are coupling
constants whose bare values are equal,

JH9= 3= g(Ls) (3.9

but in general they renormalize differently. Similarly,

JE = 30 =y, (3.90

J@0=732= 520 (3.99
in the bare theory, but under renormalization these equalities,
in general, do not remain valid. All of thé, require only
one renormalization constant, which we will denotezy,
and thel _ require another on&_ . In addition, a renormal-
ization constant foH?) is needed.

In addition to the relations given by Eq8.9), there is the
relation betweerd™) and J*Y given by Eq.(3.7). It will
turn out that these constraints leads to a degeneracy in the
RG flow. This is most easily handled by relaxing the condi-
tion (3.93. Instead of Eqs(3.9) and(3.7f) we therefore write

JE9= g9+ A, (3.10a9
J(il,t):J(l,Q (3.10p
J@H= g2, (3.100
and
JLe)4 33— (3.100

ChoosingA # 0 will remove the degeneracy in the RG flow.
In the end, we will consider the limih—0 to obtain the
behavior of our original model.
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IV. RENORMALIZATION TO ONE-LOOP ORDER
A. Perturbation theory
1. Gaussian propagators

We now perform a one-loop RG analysis of the model
defined in Sec. lll. To this end, we expand the action in
powers of the matri>q defined by Eq(3.28. To Gaussian
order we find

A=_§$ > 3 2 sl p) TP, ) 1012 ),
(4.13
with
r@k,0,)=k?G+HVQ, +H@27T
+ 80, PTG 8i0dst (1 - 8i0) 3]
(4.1b

being the bare two-point vertex. The Gaussiggropagators
are obtained by inverting this quadratic form. We find

. ) G.
(+912(k) Lasa(p)) = Ok, ~p013 024 Oy 5ij§ '"DyAK).
(4.2a

Here (---) denotes a Gaussian average, ard(fh;,a;),

etc., are indices that comprise both the Matsubara frequency

index and the replica label. The propagattfsread

D1o(K) = Dp -, (K) + By, ADS o (K), (4.20)

a1
33D15(K) =Dy, —)(K) + S, ADL _p (K),
(4.29
where
Dn(k)= - (4.20
" K+ GHMQ, +GH® 27T '
Dyik)= :
" k2+GHMQ, +GH®24T+GI, 27T’
(4.28
with
AD (k) =D (k) = Dy(k), (4.2f)
and
1 3
Jo=5 (IF9+909) -2 (3F9-3E0), (a.29
1 (1,%) (1,1 1 (2,1 (2,1)
J=5 QW0+ 300+ 2 @I, @4.2n

2. One-loop corrections

By expanding the action t®(g*) and calculating all dia-
grams with the topological structure shown in Fig. 1, we
obtain the one-loop correctionsG, sH®), etc. to the cou-
pling constants in the Gaussian propagators, E4%), or

PHYSICAL REVIEW B 66, 155101 (2002

FIG. 1. Structure of diagrams that renormalize the two-point
vertex.

the two-point vertex, Eq(4.1b. The explicit calculation is
similar to the one for the case of an instantaneous
interaction® but substantially simpler due to the absence of
cubic terms in thay expansion. We find

2

0G= 15 (K +K_) I, (4.39
—GHW
SHW = 5 (KetKo) I, (4.3b

-G 3 1
5H(2)=1—6[H(2)(K++ K_)+ E(JQ")+J(_1’I)+EJ(E")

1
— 5390) (Ly+L_—23B304 23(_2'0)} I,

3G 1 1
A R T P
G
+ 3o (Ke =Ko 1y, (4.39
-G
5JS=T(J§+ 339 1,
3G 11
+ 1—6(J(+2‘t)+\](2't)— Sl EL) I, (4.30
-G 1 1
5Jt=l—6( I+ 9004 2520 2 9@

X (IS4 JE04 3394 g0 3204 520y,

e

Here we have defined linear combinations of coupling con-
stants,

1
=L_

5 (4.30

G 1
- 1—6( JEN+IEI- S, +

Ko=J09+3300= x4, (4.43

L,=J09- 5@y, (4.4b
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B. Renormalization
1. Renormalization constants

We now proceed to renormalize the theory, i.e., we absorb
the singularities in thee—0 limit that are present in the
perturbation theory into renormalization constants. We define
renormalized coupling constargsh®), etc., by

€=,u,_5zgg, H(l)zzgl)h(l)’ H(Z):Zgz)h(z),
J(+l's):Z+j(+l'S)v Jgrl't)zz+j(+l't)i J(+2't):Z+j(+2't):

9=z js - 90—z a0 - gGI-7 jC,

(4.9
FIG. 2. Structure of diagrams that renormalize the one-poinwhere v is an arbitrary momentum scale. The renormaliza-
vertex. tion statement 5
where the second equality in E@.44 is due to Eqs(3.10). F(p.Qnigh i o in)
I\Tlesg;,:g be important later. We have also defined one-loop —ZNAPMN (.0 G H,I, ). (4.10

HereI'® is the renormalized\-point vertex functionZ is
the field renormalization constant, aiktland J.. represent
the various frequency and annealed disorder coupling con-
stants. The assertion thall vertex functions can be made
_ finite to all orders in the loop expansion by the five renor-
= Gf dp27TY, (Dy(p))?=—GIGHWe. malization constants defined in E¢.2), plus the field renor-
N (450 malization constant, is equivalent to saying that the theory is
' renormalizable with these renormalization constants. As we
Heree=d—2, andazGSd/(ZTr)d with S the surface area have mentioned before,.the_re is st'rong ev.idence fOI’. this
of the (d—1) sphere. In giving the second equalities in Eqs_statgment to be true', which is recapitulated in Appendix B,
(4.5 we have chosen to use dimensional regularization, angUt it has not been rigorously proven. _
in what follows we will use a field-theoretic RG method. At AASsuming that the theory is renormalizable, the six equa-
a perturbative level, this is a matter of choice, and we couldionS: EGs(4.3) and(4.6), suffice to determine the six renor-
just as well use the momentum-shell RG method. In thafhalization constants to one-loop order. Whl'le it is possible to
case, the factors of 1/e in Egs. (4.5 would be replaced by do so for' arb_ltrary bare yalue; of the coupling constapts, the
Inb, with b the RG length rescaling factor. For argumentsre_Sl.mS simplify ;ubstantlally if one USes Eq8.10. Usm_g
that go beyond perturbation theory, however, it is advantaMinimal subtractiorf, and taking the limitA—0, we obtain
geous to use the field-theory approach, as is explained in the

|1=Gf dp Dy(p) = — G/Ge, (453

. =1+ 2 )
Appendixes A and B. 2=1+0(9", (4.113
In addition to these renormalizations of the two-point Z,=1+0(g?), (4.11b
propagator or vertex function, we will also need the one-
point vertexI'™ to one-loop order. This is given by the 7= 11 0(qg2 411
diagram shown in Fig. 2, and a simple calculation yields h (99, (4.119
g -
G ZP=1+=k(g,h,j,,j_)/h?), 411
PO=(QE00) 1= (K +K )1, @8 I (@1
For later reference, we notice that the one-loop correc- 9264g.hj..j)
tions toG, HY, andI'® vanish in the limitA—0, and that Z. = SIS 10(g), (4116
T e
8Js+383,=0, (4.7)

g2¢49,h,j.j-)
as can be seen by using E¢3.10. Furthermore, the calcu- Z =1+ ° i +0(g?). (4.119

. +(1,8)4 (L)
lation shows that S P o e

G Here k and ¢4 are functions of the renormalized coupling
SHD+ SH@ 4+ 83 =— A 14, 4.9 constants that are given b§H'“’ and 6Js as functions of

16 the bare ones,

which also vanishes as—0. k(G,H,J)=—e€ sH®)(G,H,J)/G, (4.123
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b (G,H,J)=—€ 6], (G,H,J)/G. (4.12b solved explicitly and shown to describe a quantum phase-
' ’ transition by introducing, as in Ref. 10, a scaling variaple

An inspection shows that, in the limk—0, =gj®9h® that obeys
k(G,H,J)=—¢s(G,H,J). (4.129 dy
_ . —==—ey+y%2+0(yd. (4.19
Notice thatZ,=Z_, at least to one-loop order. Since the dl

bare values of the varioud. are identical, this means that \y, see that Eq4.15 allows for a fixed-point valug* = e

the renormalized values are also identical, and we ((:iig drop O(€?). Denoting the deviation from this fixed-point value

thg(ld;;stlr?ézltls())n between, andj_. We will thus write Y by 8y, we find
=j¥=j4% etc. We note that this is a consequence of the
relations expressed by Eq8.10, and would not necessarily Sy(b)=8y(b=1)b*c* O(ez), (4.16a
be true for more general models.
and
2. Flow equations and their solutions (b= (b= 1) b <O 416
We are now in a position to determine the RG flow equa- (b)=h"Hb=1) ' (4.160
tions for the coupling constants. Defining=—In u (or | Ly (L e+ 0(e?)
=Inb in an alternative momentum-shell approacind us- 0= b=1)b : (4.169
ing EqQ.(4.120, we obtain from Eqs(4.9) and (4.1
9 Eq.(4.129 0si4.9 and (.19 h®)(b) =h(3)(b=1) h+O(), (4.160
dg _ 3 2
7= —€9+0(g%, (4.133 g(b)=g(b=1) b ¢"0(), (4.166
4H The behavior of all observables of interest can be deduced
= ~0(g?), (4.13b from the above flows, see Sec. V A below.
V. DISCUSSION
dh®
T =—qg ¢S(g,h,j)+o(92), (4.130 A. Physical interpretation and results
For a physical interpretation of our results we first need to
djty  —g relate physical observables to the coupling constants of our
T ?¢S(g,h,j)+0(gz). (4.130  theory. Some observables can be identified directly in anal-

ogy to the corresponding identification in the case of an in-
The flow of the remaining coupling constarjtgan be ob- Stantaneous electron-electron interaction. From the deriva-
tained by relating them t('P(lvt)_ This is a consequence of tion of the NLO'M, G is known to be related to the bare

there being only two renormalization constants for all of theconductivity & viat*t
J. We obtai
€ obtan o=8/7G. (5.13
j9=j0 09 g0= - 3§, (4139 The single-particle or tunneling density of statdsat an
20 energy w from the Fermi level is related to the one-point
J@t vertex by
j@H=—___;(1b
j J(l,t)J : (4.130

4
_ N(ept w)=—T™ (iw,—w+i0). (5.1b
In order to determine the nature of these flows, we calcu- m

late ¢ from Eqgs.(4.3d and(4.12h. We find Equations(4.133 and (4.113 show thate and N are not
renormalized, at least to one-loop order,

. —3(] (l,t))2 j (29R1)
d9,h,j)= 2 ho _4(j(1,t))2 +0(9). d_U—O( : 5.2
(4.14 a9 '
We see thatp.<0, unlessd®V is larger than J*9)? in dN
suitable unitgnote that thel’s andH'’s all have the dimen- W=O(gz). (5.2b

sions of a density of statesThis makes physical sense:
From Eqs(3.70 and(3.7d we see thaid ") and A*Y are  The scaling behavior of the relevant operatdy, Eq.
spin-triplet interactions with different signS(9>0 pro- (4,164, determines the correlation length exponent. Denot-
motes ferromagnetism, anli*Y>0 weakens that tendency. ing the dimensionless distance from the critical pointtby

In two dimenSionS, for phySICaIIy sensible values of the COU-gnd the correlation |ength bS/, one finds for smalt
pling constants, we thus have<0, andh® andj®? both

scale to infinity. Ind>2, the RG flow equations can be Eoc|t| 7Y, (5.39
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with a correlation length exponent term (amongst other coupling mechanigmand hence can
scale as energy or temperature. The spin susceptibility is ob-
v=1/e+0O(1). (5.30  tained by differentiating twice with respect td, and once

Other quantities of interest are various susceptibilities, in;[/ herefore expectys to scale as the specific-heat coefficient,

particular the specific heat coefficiemt,=C,, /T, the spin

susceptibilityys, and the density susceptibilisn/dw. Their O ~|t| 77, (5.8a
relations to the coupling constants in the field theory are less

obvious. We therefore use scaling arguments, in conjunctiodith a critical exponent

with the perturbation theory for the free energy, to determine

their respective cricital behavior. We start with a homogene- y=a=1+0(e). (5.8b
ity law for the free energy. From the Gaussian propagatorsagain, the perturbation theory confirms that the leading con-
Egs.(4.2), we see that, that in principle, there are three dif-tribution obtained in this way is nonzero. This is easily seen
ferent time scales in the theory, given by from Egs.(D1b) and (D1c) by taking into account thaB

#0 leads to a masgagB in two of the spin-triplet propaga-

— sdyh(l) _ ¢z
n=¢'gh & (549 tors that contribute to the Gaussian approximation for the
free energy.
— ¢dyh(2) _ ¢z
2= Egho= %, (5.40) Finally, we considemn/du. Although the chemical po-
4= £99 0~ 7. (5.49 tential u has the dimensionality of energy, it differs funda-

mentally from eitherT or ugB, since it represents the mi-
Herez, , 3 are the dynamical exponents related to these tim@roscopic energy or inverse time scale. As such, it must have

scales. To one-loop order we have an effective scale dimension of zero. Consequently, we ob-
tain from Eq.(5.6), by differentiating twice with respect to
z;=d—e+0(€?)=2+0(€?), (558 4,
z,=23=d— e+ e+0(e?)=d+0O(€?) (5.5b (an/dw)(t)=constr O(t"(d+2)), (5.9

leaving us with two times scales and dynamical exponentsin/du thus has only a weak nonanalyticdependence in
The free energy densitytherefore has two different scaling addition to a leading noncritical contribution. Again, this is

parts, and we can write consistent with perturbation theory: The onlydependence
—(d+2)) Uy oz , of the free energy, EdD1b), is through the various coupling

f(t,T,...)=b Y (tb™ Th,Tb%2, ...) constants in the propagators. All of these multiply either a
+h= @2 £t T A, T b2, .. ). frequency or a temperature. Differentiation with respegt to

therefore does not produce a singular integral unietself
(5.6) becomes singular. Power counting shows that this happens

Heref, andf, are scaling functions, and the ellipses denotePnly for dimensionsd=< —2, in agreement with Eq(5.9).

the dependence df on external fields that are not shown This failure of differentiation with respect to a field to pro-

explicitly. duce a singularity is an illustration of a more general argu-
The specific-heat coefficient is obtained by differenting Ment given in Ref. 6. _ _

twice with respect tdr. The leading contribution is obtained _ The physical interpretation of these results is now clear.

by differentiatingf, with respect to the temperature scale 1he RG flow at one-loop order is qualitatively the same as
that carries the dynamical exponemst This yields for electrons interacting via an instantaneous interaction, see

the comparison between the two flows given in Appendix C.

wt)~[t] =, (5.79 In the latter case, the runaway flow of the equivalenj &P
. . (k; in Appendix Q at one-loop order id=2 suggests a
with a critical exponent ferromagnetic ground state. ld=2+ ¢ there is a phase-

transition where the homogeneous magnetic susceptibilit
@=v(22;~d=2)=1+0(e). ©.79 diverges. This transition hasgbeen identifiged with a ferr?)mag¥
To ascertain that this leading contribution has a nonzero prefaetic phase transition where the magnetic susceptibility di-
actor we check against the perturbation theory for the freeerges likeys~|t| =7, as in Eq(5.89.1°2°The runaway flow
energy, which is given in Appendix D. From Eq81b) and  thus simply reflects the fact thais RG relevant at a ferro-
(D1c) we see that there is indeed a contribution from differ-magnetic transition. The result of this interpretation agrees
entiating twice with respect to the temperature in the propawith a more direct, and more explicit, theory for the ferro-
gators, which carries a dynamical exponentThe tempera- magnetic transitiod® In the current case, the theory de-
ture prefactor in the expressidi= — (T/V)In Z for the free  scribes an infinite-range version of this transition, due to the
energy density has been absorbed into the frequency integrarteraction being infinitely long-ranged in time. These con-
tion measure. The frequency, however, scales as a waw@derations strongly suggest that the physical results we have
number squared, and therefore carries an expanent derived above to one-loop order actually hold to all orders in

A very similar argument applies to the spin susceptibility.the loop expansion, as they do in the instantaneous interac-
A magnetic fieldB couples to the electrons via a Zeemantion case' In particular, we expect thatn/du is not renor-
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malized to all orders, in agreement with Ref. 6. It also fol-the annealed disorder in Ref. 4 was modeled after that of
lows that the phase diagram for the present model isjuenched magnetic disorder. As we have argued above, this
qualitatively similar to the one for the interacting case, withis physically not plausible.
a ferromagnetic transitiomlways preceding a MIT ford Second, the appearance of a term with the structure of
=2, while ford=3 a direct transition from a paramagnetic A&, Eq. (3.4), is plausible on physical grounds. The term
metal to a paramagnetic insulator is possi8leThere are, With coupling constant®) in the NLoM represents a fre-
however, differences in the detailed properties of the transiquency coupling with a microscopic time scale, on the order
tion as compared to the one studied in Refs. 20 and 10. F&f an inverse Fermi energyn units wherei =1). An inter-
instance, in the latter the specific heat has a much weakéction that is short ranged in time does not add a new time
singularity than the spin susceptibility, while here they showscale to the problem. It therefore renormalit£3), but does
the same scaling behavior. In this respect the current case i@t generate a new frequency coupling. An interaction that is
reminiscient of the Brinkman-Rice theory of the Hubbardlong ranged in time, on the other hand, does introduce a new
MIT. %L time scale and hence a new frequency coupling. In the gen-
Although the transition in the present model is classicalgral case of a frequency-dependent interaction with a con-
in the sense that the order parameter is purely static, #inuum of time scales, one would expect a frequency-
couples to quantum-mechanical degrees of freedom in thdependent coupling constait whose scaling properties
form of the diffusive electrons. An explicit description of the would have to be studied by means of a functional RG. In
transition could be obtained along the lines of Ref. 20. How-our simple model where the annealed disorder is static,
ever, given the schematic nature of our model, we will notwhich means that the resulting effective interaction has an
pursue this here. The same conclusion, namely, that thigfinite range in time, one additional frequency coupling suf-
model under consideration describes a ferromagnetic transfices, which isH(?). The infinite-time scale corresponds to a
tion of a classical nature, has recently been reached by Vojtéanishing frequency scale, in accord with the discontinuous
and Narayanan by means of very different arguménwe  frequency dependence sgnin Eq. (3.4). In this context, we
stress, however, that our goal here has not been to describenate that theH® term does not represent an inelastic life-
magnetic transition. Rather, it was to resolve the conflict betime. Rather, it is a true mass in the two-point propagators
tween the results of Refs. 4 and 6, and to check whether dhat is produced by the interaction long ranged in time. This
not our model of electrons with both quenched and annealei$ analogous to the mass corresponding to the plasmon pole
disorders describes an unusual MIT. As we have seen, thidat is produced by an interaction that is long ranged in
answer to the latter question is negative. space.
Third, the structure of the renormalization scheme used in
Ref. 4 did not reflect the constraints discussed in Appendix
B. Comparison with previous treatments B. This is only of minor concern if one neglects the coupling
The crucial difference between the treatment of the anconstantt®Y and uses one renormalization constant each for
nealed disorder model given above and the one in Ref. 4 ids andJ;, as was done in Ref. 4. It becomes crucial, how-
related to the occurrence of the coupling constdf®. In  €Ver, in the presence 6f*?, which forces the issue of how
the perturbation theory, i.e., in an expansion in powerg,of Many renormalization constants are needed.
the annealed disorder generates terms that have the structureFinally, the treatment of Ref. 4 led to results that were not
of the last term on the right-hand side of Bg.1h, except ~ consistent with independent, very general, considerations. In
that they are not constrained to being diagonal in the replicRarticular, its prediction thazn/Ju is singularly renormal-
index. There are two possible interpretations of such termdZ€d, and critical at a MIT, contradicted one of the results of
(1) They could represent terms quadraticQnthat are not Ref. 6. This point requires some explanation. The critical

diagonal in replica space. This was the interpretation given ifpehavior predicted implies a nonanalytic dependence on the
Ref. 4.(2) They could present a new tefiinear in Q, which ~ RG length scale, and hence a nonanalytic dependence on the

was not present in the original action. The term with cou-Wave numbetq| in perturbation theory. In two dimensions,
pling constantH @ introduced in the present paper servesf[h's takes the form_of a |g| term in perturbatlon theory that
that purpose. By means of high-order perturbation theory oné$ caused by the diffusive electron dynamicsdir2, these
can, in principle, distinguish between these two possibiiitiessame integrals over diffusion poles lead to [a|*"?
but this would be extremely cumbersome. Let us instead adependencEThe predicted critical behavior @f/d at the
gue on general structural and physical grounds that the seMIT, and the mechanism that causes it, therefore implies a
ond interpretation is the correct one. nonanalytic wave number dependence of this susceptibility
First, we have argued in Sec. Il that the annealed disordel) the metallic phase. However, it was shown on general
since it gets averaged over at the level of the partition funcgrounds in Ref. 6 tha#n/Ju is an analytic function of the
tion, should indeed be interpreted as an effective interactiod/ave number for a large class of models, which includes the
between the electrons. As such, all involved degrees of fre€2n® under consideration here. This discrepancy prompted the
dom must occur with the same replica index, and the gener&urrent investigation, see the discussion in Sec. | above.
tion of an interaction ternfi.e., one quadratic irQ) for
which this is not the case makes no physical sense. Terms
guadratic inQ with more than one replica index are charac- In conclusion, we have found that the treatment in Ref. 4
teristic for quencheddisorder, and indeed the treatment of of the electron problem in the presence of annealed disorder,

C. Conclusion and outlook
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in addition to quenched one, was not correct. The perturbgposes we can restrict ourselves to a few basic features.

tion theory was correct, but the assumptions made about the In the Wilsonian method one renormalizes the Hamil-
RG structure of the theory were not. This was the reason fotonian or action itself, generating new interactions as one
the discrepancy between the explicit results found in Ref. 4oes along, and checking all newly generated terms for their
and later, more general considerati6riBhe current proce- scale dimensions, and hence for their being RG relevant,
dure, which considers the annealed disorder as an effectivierelevant, or marginal. Irrelevant ones can be dropped, while
electron-electron interaction that is long ranged in time, isrelevant or marginal ones must be added to the model and
physically and technically more convincing. It yields resultsincluded in a repetition of the renormalization process. In the
that are consistent with all the available information, and infield-theoretic method, one renormalizes specific propagators
particular with Ref. 6. Physically, the model of static, an-or vertex functions, and one needs to know from the outset
nealed magnetic disorder representing a type of local mohow many renormalization constants are needed in order to
ments thus turns out to be less interesting than Ref. 4 hachake all the vertex functions finite to all orders.

given reason to believe. Instead of describing an unusual For many modelge.qg., for ¢* theory there is only a
MIT, the model describes a variant of the ferromagnetic transmall number of relevant or marginal terms. In these cases,
sition of itinerant electrons that has been studied before. It ithe momentum-shell method is often preferred since it is
important to note that the same model with quenched insteaphysically more intuitive, and since it provides an explicit
of annealed magnetic disorder is well known to contain acheck for the generation of additional terms that must be
MIT in d=2+ €.2% This serves to underscore the fundamen-kept. However, the NizM does not belong to this class, as it
tal physical difference between the quenched and annealdths an infinite number of marginal terms @=2: In an
disorders that we have stressed several times in this paperexpansion of Eq(3.1) in powers ofg, all terms are marginal.

We finally mention a possible consequence of our obserk is a priori unclear how the infinitely many coupling con-
vation, discussed in Sec. V B, that an electron-electron interstants multiplying these terms renormalize, although their
action with more than one time scale produces more than ontgare values all coincide. The field-theoretic RG method
frequency coupling in the NiM, which in turn requires proves that these coupling constants all renormalize the same
additional renormalization constantdn the present case, way?>° This fixes the structure of the renormalized theory,
there was one additional time scale, infinity, one additionabnd it then suffices to consider a small number of vertex
coupling,H®, and one additional renormalization constant. functions in order to determine the renormalized theory ex-
At a MIT, the coupling constant that was denoted above byplicitly. In the momentum-shell method, on the other hand,
H® acquires a power-law frequency dependence. This isne needs to explicitly consider a large number of vertex
equivalent to saying that there are infinitely many time scale$unctions or propagatorén principle, infinitely many in the
in the problem, and this raises doubts about the validity otase of the NirM) in order to do the same.
renormalizing the action with just one renormalization con- The same considerations apply to the terms in addition to
stant for the frequency coupling. It is therefore possible thathe NLoM. Equations(3.7) add six coupling constants to the
a complete description of the dynamics near a MIT wouldmodel. Within a momentum-shell RG, one would have to
require a functional RG. A complete understanding of thisconsiderg* vertices in order to determine how they renor-
problem would also require a solution of the renormalizabil-malize. The field-theoretic method, on the other hand, allows
ity problem for models of interacting electrons, which is ex-us to argue that all of thé split into two pieces that pairwise
plained in Appendix B. renormalize in the same way, see Sec. Il C and Appendix B.
As a result, we need to explicitly renormalizg vertices
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DMR-01-32726. In this appendix we recall the answer to the following
question: Consider the NtM, Eq. (3.1), which is known to
be renormalizable in two-dimensions with two renormaliza-
tion constant€>° Now add to this action symmetry-breaking
operators. How does this affect the renormalizability, and

In this appendix we explain our choice of a field-theoretichow many additional renormalization constants are needed?
formulation of the renormalization procedure. For the case of operators that give some components of

There exist two basic formulations of the RG, the field-the basic fieldQ(x) in our case, a magsassive insertions
theoretic one that originated in high-energy phySiemd this question has been studied in detfilf the NLoM is
Wilson’s momentum-shell methdd which was invented for invariant under transformations that form a symmetry group
the study of critical points. After Wilson’s breakthrough, it G, then the operators in question must be expanded in a basis
was shown that the field-theoretic method can also be apsf irreducible representations 6f All operators that belong
plied to critical phenomen&The relation between these two to the same irreducible representation renormalize the same
formulations of the RG is complicatéfi,but for our pur- way, i.e., for each irreducible representation one additional

APPENDIX B: INVARIANT DECOMPQOSITION
OF ANNEALED DISORDER TERMS

APPENDIX A: MOMENTUM-SHELL RENORMALIZATION
VERSUS FIELD-THEORETIC RENORMALIZATION
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renormalization constant is needed. dg

In our case, it is most convenient to write the spin degrees ar - 9t 0(g®), (Cla
of freedom explicitly, and consider the complex numbers
Qﬁﬁ’ij as the matrix elements @@. The NLoM action is

then invariant under unitary transformations. We are inter- %: §gk+0(gz) (C1b
ested in symmetry-breaking operators that are quadra@c in dl - 8v" ’
This case was first considered by Pruisk®ihere are two
irreducible representations that correspond to symmetrized dk, -3 5
and antisymmetrized products @ Any operator ar - g 9k+0(99), (Clo
= dk, 1
0 f dX%4012,34Q12(X) Q34(X) (Bla d_lt: Egkrzlh- (C1d)
should thus be written as A comparison with Eqs(4.13 shows that the two behaviors
are very similar, except that in the instantaneous interaction
0=0,+0_, (Blb)  casek, flows to infinity much faster thar k. In particular,
_ the conductivity andIn/du are not renormalized in either
with case(and neither is the density of statewhile the magnetic

susceptibility and the specific-heat coefficient both diverge,
1 albeit the latter only logarithmically in the instantaneous in-
Ef dxlz234012,34[Q12(X) Q34(X) £ Q32(X) Qu4X)]. teraction case’ Strictly at one-loop order, the physical inter-
' (B1o) pretation of the RG flow was long considered not obvious, as
has been stressed in the literature many times. However, the
Here 1=(ny,a;,iy), etc.O, andO_ require one renormal- analysis given in Ref. 10, combined with the detailed discus-
ization constant each, so two additional renormalization consion of the ferromagnetic transition in Ref. 20, has shown
stants are needed to renormalize theoWL with arbitrary  that the proper interpretation is in terms of a ferromagnetic

0.=

massive insertions of ordep?. transition ind=2+ ¢, as has been discussed in Sec. V A.
A complication lies in the fact that in the present model,

the coupling constantsi®™ and H® multiply frequency- APPENDIX D: PERTURBATION THEORY

dependent terms, and the frequency gets integrated over in FOR THE FREE ENERGY

perturbation theory. As a result, ratios of theandH appear
in perturbation theory, and the proof given in Refs. 26 does Here we calculate the free energy in perturbation theory.
not apply. This is true fortiori in the case of an instanta- This serves as a check on our scaling arguments for various
neous electron-electron interaction, where the additional opPbservables in Sec. V A.
erators are not even massive insertions. Nevertheless, while To zeroth order in a loop expansion, the free energy den-
no actual proof of renormalizability exists in this case, Ref.Sity f is given by the saddle-point action. This yields free-
19 has presented substantial evidence from perturbaticﬁﬂectron values for all thermodynamic quantities. The first
theory that the model is still renormalizable with two addi- correction,Af, is obtained by integrating over the fieldsn
tional renormalization constants for the interaction. The saméaussian approximation. From Edg.1) we find
conclusion is expected to hold in the annealed disorder case.

Af=Aft3Af,. (D13

APPENDIX C: COMPARISON WITH THE CASE
OF AN INSTANTANEOUS INTERACTION

Here

In this appendix we compare the flow equations derived 1
in Sec. IV B with those for the case of an instantaneous Afs,t:m‘]s,tf dn (H®+ 535
electron-electron interaction. 0

In the instantaneous interaction case one has spin-singlet 1 o
and spin-triplet interactions amplitud&s andK, which are Xy > f do n(w/T) D%(k,0,T), (D1b)
analogous td*9 andJ*Y, respectively. The analog df>Y ke Jo
does not exist. Instead of the two frequency couplikg®
and H® there is only one coupling constaht, which is
proportional to the specific-heat coefficiedn/du and yg

with [cf. Eq. (4.26]

are proportional tdH + K¢ andH + K, respectively. DK, w,T)= 1

In the absence of magnetic impurities, a magnetic field, or o K2—iGHDw+GH®+ 5d  )27T
spin-orbit scattering; flows towards large values, and after ’ (D10
some transient behavior the one-loop flow equations take the
form The function
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1 x\ 1 Matsubara frequencies into a real-frequency integral, and we
n(x)= >coth 51—, (D1d)  have used the familiar “charging formula” trick of integrat-
ing over the interaction constants in order to improve con-

X
serves as a convenient means for transforming the sum oveergence.
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