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Electrons in an annealed environment: A special case of the interacting electron problem
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The problem of noninteracting electrons in the presence of annealed magnetic disorder, in addition to
nonmagnetic quenched disorder, is considered. It is shown that the proper physical interpretation of this model
is one of electrons interacting via a potential that is long ranged in time, and that its technical analysis by
means of renormalization-group techniques must also be done in analogy to the interacting problem. As a
result, and contrary to previous claims, the model does not simply describe a metal-insulator transition ind
521e(e!1) dimensions. Rather, it describes a transition to a ferromagnetic state that, as a function of the
disorder, precedes the metal-insulator transition close tod52. In d53, a transition from a paramagnetic metal
to a paramagnetic insulator is possible.
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I. INTRODUCTION

Local magnetic moments are known to play an import
role in the behavior of disordered electronic systems, but
precise nature of that role remains incompletely understo1

One way to think about such local moments is that, in
disordered environment, the exchange interaction betw
the electrons may be locally enhanced to the point where
electron spins order magnetically in a finite region in spac2

The resulting magnetized regions are often referred to
local moments, or droplets, or rare regions. Since they
self-generated by the electron system, they are in thermo
namic equilibrium with the other electronic degrees of fre
dom. It is therefore intuitively plausible that such local m
ments can be modeled as annealed magnetic disorde
addition to the underlying quenched disorder that produ
them. In Ref. 4 an explicit derivation has been given t
corroborates this argument. There is experimental evide
for such local moments to influence the transport proper
of the electron system in important ways, and, in particu
they are suspected to influence the critical behavior near
metal-insulator transition~MIT ! that is observed in disor
dered electron systems.1 However, a theoretical understan
ing of the coupling between local moments and transp
properties has proven to be very hard. Studying and un
standing the annealed disorder model mentioned abov
expected to shed light on this important problem.

Reference 4 provided such an analysis, and conclu
that the annealed disorder leads to a very interesting typ
MIT. The most exciting feature was that the transition w
driven by the vanishing of the thermodynamic density s
ceptibility ]n/]m, and thus resembled more a Mott transiti
than an Anderson transition.5 This was even more surprisin
as the Coulomb interaction between the electrons, whic
what usually causes a Mott transition, had not been explic
taken into account in the model.

Subsequently, Ref. 6 developed a general classificatio
quantum phase transitions with respect to~1! whether one
0163-1829/2002/66~15!/155101~13!/$20.00 66 1551
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can describe the transition by means of a local order par
eter, and~2! whether the order-parameter susceptibility in t
disordered phase is an analytic function of the wave num
The second criterion has an important bearing on which
servables can become critical at a MIT: Criticality ind.2
(d52 is the lower critical dimension for all known MIT’s o
disordered interacting electrons! implies a logarithmic de-
pendence on the renormalization-group~RG! length rescal-
ing factor, and hence on the wave number, in perturba
theory ind52. This in turn implies a~weaker! nonanalytic
wave number dependence ind.2 away from criticality.7,8

Although the considerations in Ref. 6 do not provide a r
orous mathematical proof, they strongly suggest that]n/]m
cannot be critical at a MIT for a large class of models, whi
includes the model studied in Ref. 4.

In the current paper we provide a thorough reanalysis
the model derived and studied in Ref. 4, and resolve
contradiction. We show that the RG analysis of the mo
performed in Ref. 4 had an incorrect structure and led
unreliable results. A proper analysis of the model’s renorm
izability, and the resulting RG flow equations, show th
]n/]m is not singularly renormalized and hence not critic
in agreement with Ref. 6. In addition, it reveals that within
controllede expansion aboutd52, the model does not sim
ply describe a metal-insulator transition. Rather, it display
variant of the phase-transition sequence that is known to
cur in a related model with both quenched disorder a
electron-electron interactions~but no annealed disorder!.10

That is, as the disorder increases, there is first a transitio
a ferromagnetic metallic state, and then, with further incre
ing disorder, a transition to a ferromagnetic insulator sta
For d53, a transition directly from a paramagnetic metal
a paramagnetic insulator is possible.

This paper is organized as follows. In the following se
tion, we give intuitive physical arguments that explain o
model and our procedure to analyze it, and we summa
our results. In Sec. III we formally define the model a
write it in a way that facilitates a renormalization-grou
©2002 The American Physical Society01-1



e
ic
a

th
d
y

ic
x

is
t
na

r-

co
m
ec
oi
te
tu
em
e

s
p

ts
m
ib

er
ra
ar
o
rt
io

nt
at

ili
r-

t in

a-

the
ing-

ry a
led
rder
in-
ible
and
the
l to
d
ium
its

on-
he

da-
in,
he

dis-
the

sity
an
lec-

ther
ose

ing
aled

the
tron
, if

ef-
a
cts.
4,
m
ion.
e,

r
hich

D. BELITZ AND T. R. KIRKPATRICK PHYSICAL REVIEW B 66, 155101 ~2002!
analysis. Section IV performs the renormalization to on
loop order, and Sec. V analyzes the results. Some techn
issues regarding the model’s renormalization properties
relegated to Appendixes A and B, the flow equations for
interacting and annealed disorder models are compare
Appendix C, and a perturbative analysis of the free energ
given in Appendix D.

II. PHYSICAL ARGUMENTS

Since some of our detailed arguments are quite techn
we start by giving some intuitive physical arguments to e
plain both our general strategy and our results.

A. Annealed disorder as a model for local moments

We start by recalling the argument for why annealed d
order models local moments.4 Any field-theoretical treatmen
of a statistical-mechanics problem starts with a functio
integral representation of the partition function,11

Z5E D@f# e2S[f] . ~2.1a!

The form of the actionS defines the model under conside
ation, and the mathematical nature of the fieldf depends on
whether the system is classical or quantum mechanical,
sists of fermions or bosons, and whether the model is a
croscopic one in terms of fundamental fields or of an eff
tive nature. The usual procedure is to identify a saddle p
of S that approximately contains the physics one is interes
in, to expand about this saddle point, and to employ per
bation theory and the renormalization-group. In a syst
with quenched disorder there will be, apart from homog
neous saddle-point solutions, solutions where the fieldf, or
some components of it, are nonzero only in certain region
space. Such inhomogeneous saddle points have been
posed as a description of rare regions in classical magne
Dotsenkoet al.2 This concept was generalized to quantu
magnets,3 and to the effective-field theories used to descr
MIT’s in quenched disordered electron systems.4 In a large
system there will be many rare regions that interact only v
weakly, and thus exponentially many almost-degene
saddle points, since the orientation of the field on the r
regions is arbitrary. These saddle points are expected t
separated by large energy barriers, and thus not to be pe
batively accessible from one another. Within the perturbat
theory, and denoting thenth saddle-point field configuration
by F (n) and the fluctuations byw, one can therefore write
the partition function

Z'(
n

D@w#e2S[F(n)1w] . ~2.1b!

In the thermodynamic limit, the discrete set of saddle poi
becomes a saddle-point manifold that needs to be integr
over. The saddle-point field configurationsF thus become
degrees of freedom that are governed by some probab
distributionP@F# are integrated over at the level of the pa
15510
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tition function, and couple to the fieldw by means of some
couplingSc that is determined by the actionS,

Z'E D@F# P@F#E D@w#e2S[w] 1Sc[F,w] . ~2.1c!

They therefore act like an annealed disorder. Note tha
giving Eq. ~2.1c! we implicitly assume that the~annealed!
disorder adjusts and comes to equilibrium with the fluctu
tionsw. If the disorder were fixed on the time scale of thew
fluctuations, then it would be a quenched disorder. In
latter case, for the average over saddle points to be mean
ful, ln Z rather thanZ should be averaged over theF fields.12

In our case, we are interested in rare regions that car
magnetic moment. According to the arguments recal
above, they can be modeled by annealed magnetic diso
in addition to the quenched disorder that allows for the
homogeneous saddle-point solutions. In the simplest poss
model the annealed disorder has a Gaussian distribution,
is static. The latter means that the coupling constant, or
annealed magnetic disorder strength, will be proportiona
the temperature.4 This is just the Boltzmann weight assigne
to these classical degrees of freedom that are in equilibr
with the electrons. We emphasize that this model, and
derivation in Ref. 4, is unaffected by our considerations c
cerning its analysis and interpretation, which differ from t
one given in that reference.

B. Annealed disorder as an effective interaction

The physical effects of the annealed disorder are fun
mentally different from those of quenched, or frozen-
disorder.12 The former gets integrated over at the level of t
partition function, cf. Eq.~2.1c!, the latter, at the level of the
free energy. Consequently, integrating out the annealed
order generates an effective physical interaction between
degrees of freedom that couple to it, the electron spin den
in our case, which can be understood as resulting from
exchange of annealed disorder fluctuations between the e
trons. The effects of the quenched disorder, on the o
hand, are more subtle and fundamentally different from th
of interactions.

It is therefore plausible that a system of noninteract
electrons in the presence of both the quenched and anne
disorders will behave in many respects as one with
quenched disorder only and an additional electron-elec
interaction. As the only difference one would expect that
the annealed disorder is modeled as static, the resulting
fective interaction will be infinitely long ranged in time,
feature that one would not expect to have qualitative effe
This expectation is in contradition with the results of Ref.
which found a behavior that was drastically different fro
that of electrons interacting via an instantaneous interact
In particular, this reference predicted a MIT of Mott typ
where the thermodynamic susceptibility]n/]m vanishes.
This is in contradiction to both explicit calculations fo
quenched disordered, interacting electron systems, w
find that ]n/]m is not singularly renormalized,13,1 and very
general considerations in Ref. 6.
1-2
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ELECTRONS IN AN ANNEALED ENVIRONMENT: A . . . PHYSICAL REVIEW B66, 155101 ~2002!
The analysis that will be presented below removes
contradiction, and illustrates the technical issues behind
above intuitive physical considerations. We will show th
the technical treatment of the annealed disorder in analog
that of the quenched disorder in Ref. 4 was not only in d
agreement with the above physical arguments, but led to
unnatural structure of the theory. This in turn led to incorr
assumptions about the behavior under renormalization,
ultimately to physically incorrect results. A treatment of t
annealed disorder in analogy to an interaction, on the o
hand, does not run into these problems and yields results
are in agreement with all known constraints.

III. THE MODEL AND ITS RENORMALIZABILITY

In this section we consider the same effective-field the
as in Ref. 4.

A. Effective-field theory

Our starting point, as in Ref. 4, is Wegner’s nonline
sigma model14 (NLsM) for noninteracting electrons with
nonmagnetic quenched disorder. The action reads

ANLsM5
21

2GE dx tr @“Q~x!#212H (1)E dx tr @V Q~x!#.

~3.1!

Here Q(x) is a matrix field that comprises two fermion
degrees of freedom. Accordingly,Q carries two fermionic
Matsubara frequency indicesn andm, and two replica indi-
cesa andb to deal with the quenched disorder. The mat
elements Qnm

ab are spin-quaternion valued to allow fo
particle-hole and spin degrees of freedom. It is convenien
expand them in a basist r ^ si (r ,i 50,1,3.3) wheret05s0 is
the 232 unit matrix, andt1,3.352s1,3.352 is1,3.3, with s j
the Pauli matrices,15

Qnm
ab5(

r
(

i
r
i Qnm

ab . ~3.2a!

For simplicity, we will ignore the particle-particle or Coope
channel, which amounts to droppingt1 andt2 from the spin-
quaternion basis.15,1 The Qnm

ab are then elements ofC3Q,
with C andQ the complex number field and the quaterni
field, respectively. Ther

i Qnm
ab obey the following symmetry

properties~for r 50,3):16

r
0Qnm

ab5~2 !r
r
0Qmn

ba , ~3.2b!

r
i Qnm

ab5~2 !r 11
r
i Qmn

ba ~ i 51,3.3!. ~3.2c!

Alternatively, we can write the spin indices explicitly, an
consider matrix elementsQnm,i j

ab that are complex numbe
valued.Q is subject to the constraints

Q2~x![1,trQ~x![0. ~3.2d!
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These constraints are conveniently implemented by par
etrizing Q in terms of matricesq whose matrix elements
qnm

ab , are restricted to frequency labelsn.0, m,0. In terms
of the q, Q can be written in block matrix form

Q5S A12qq†21 q

q† 2A12q†q11
D . ~3.2e!

Here the block matrices, clockwise from the upper left, c
respond to frequency labelsn,m.0; n.0, m,0; n,m
,0; andn,0, m.0, respectively.

Vnm
ab5dnmdabVn (t0^ s0) in Eq. ~3.1! is a frequency ma-

trix with Vn52pTn being a bosonic Matsubara frequen
andT being the temperature.G is a measure of the disorde
that is proportional to the bare resistivity, and the frequen
couplingH (1) is proportional to the bare density of states
the Fermi level. tr denotes a trace over all discrete degree
freedom that are not shown explicitly.

The properties of this model are well known.14,15,1 The
bare action describes diffusive electrons, withD51/GH(1)

the diffusion coefficient. Under renormalization,D decreases
with increasing disorder until a MIT is reached at a critic
disorder value. The critical behavior is known in ane expan-
sion about the lower critical dimensiond52. In the absence
of the Cooper channel, the MIT appears only at two-lo
order at a critical disorder strength ofO(Ae). H (1), which
determines the specific-heat coefficient, the spin suscept
ity, and]n/]m is uncritical, which makes this MIT an Ander
son transition.

Now we add magnetic annealed disorder to the mod
The motivation for this is the fact that the annealed disor
models certain types of local moments, see Secs. I an
above. A technical derivation of this has been given in R
4, and the main idea has been recapitulated in Sec. II A.
annealed disorder implies that theQ in the resulting terms all
carry the same replica index;12 otherwise, the functiona
form of the resulting additional term in the action can
taken from Ref. 15, which considered the quenched magn
disorder. From that reference, we have

Aann
(1)52TJ(1)E dx(

a
(
j 51

3

tr @~t3^ sj ! Qaa~x!#2.

~3.3a!

The coupling constantJ(1) is a measure of the strength of th
magnetic disorder. The temperature prefactor in Eq.~3.3a! is
a consequence of the static nature of the local moments
sidered within this model, as has been explained in Re
and Sec. II above. Equation~3.3a! is the only annealed mag
netic disorder term if fluctuations of the matrix fieldQ on all
length scales are taken into account in calculating the pa
tion function. However, the NLsM is an effective theory for
long-wavelength fluctuations, and it is therefore conveni
to project the annealed disorder term onto this regime
well. It has been discussed in detail in Ref. 16 that this c
be achieved by means of a phase-space decomposition a
relabeling of momenta. Applied to Eq.~3.3a!, this procedure
generates another contribution to the action,
1-3
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Aann
(2)52TJ(2)E dx(

a
(
j 51

3

@ tr ~t3^ sj ! Qaa~x!#2.

~3.3b!

The coupling constantJ(2) is, in general, independent ofJ(1).
Aann

(1) and Aann
(2) enter the action additively with the unde

standing that only long-wavelength fluctuations are in
grated over in calculating the partition function. Note that
the case of quenched magnetic disorder, a complete ph
space decomposition leads to a term analogous to Eq.~3.3b!,
but it is zero in the replica limit because the replica sum
then part of the trace.

As we will see, under renormalization the annealed dis
der terms generate another contribution to the action
takes the form

A V
(2)52H (2)E dx tr @sgnV Q~x!#, ~3.4!

so we add this right away. For a discussion on why this te
must be present on physical grounds, see Sec. V B.

A5ANLsM1Aann
(1)1Aann

(2)1A V
(2) ~3.5!

is the complete action for our model, and the partition fun
tion is obtained as the functional integral

Z5E D@Q#d@Q221# eA[Q] . ~3.6!

B. Annealed disorder as a long ranged interaction

A5ANLsM1Aann
(1) defines the model studied in Ref.

Aann
(2) was neglected in that reference, but this term will not

of crucial importance in what follows. Terms that appe
under renormalization and indicate the appearance ofA V

(2)

were interpreted differently in Ref. 4, and we will discu
this point in Sec. V B below. A related point is that we ha
written Aann

(1) in a form that is different from that in Ref. 4
The latter representation was modeled after the way
would treat the quenched disorder, and it added and s
tracted a term where all replica indices ofQ are not the same
As we will see, this formulation, which is a matter of taste
this point, is rather unnatural at the stage of a RG analy
and this led to the incorrect RG treatment of the mode
Ref. 4. We therefore write the annealed disorder term i
form that is strictly diagonal in the replica index. This repli
structure is common to both the annealed disorder term
any electron-electron interaction term, and one would the
fore expect the renormalization properties of the curr
model and one of interacting electrons to have common
tures. To underscore this point, we rewrite the annealed
order part of the action by splitting it into spin-singlet an
spin-triplet contributions,

Aann[Aann
(1)1Aann

(2)[Aann
(1,s)1Aann

(1,t)1Aann
(2,t) , ~3.7a!

with
15510
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Aann
(1,s)5

2pT

4
J(1,s)(

nm
(
a

(
r 50,3

~2 !r

3tr@~t r ^ s0!Qnm
aa~x!#tr@~t r ^ s0!Qmn

aa~x!#,

~3.7b!

Aann
(1,t)5

pT

4
J(1,t)(

nm
(
a

(
r 50,3

~2 !r

3(
i 51

3

tr@~t r ^ si !Qnm
aa~x!#tr@~t r ^ si !Qmn

aa~x!#,

~3.7c!

Aann
(2,t)5

2pT

4
J(2,t)(

nm
(
a

(
r 50,3

~2 !r

3(
i 51

3

tr@~t r ^ si !Qnn
aa~x!#tr@~t r ^ si !Qmm

aa ~x!#,

~3.7d!

where we have used Eqs.~3.2a! – ~3.2c!. Here

J(2,t)58J(2)/p ~3.7e!

and

J(1,s)523J(1,t)5224J(1)/p. ~3.7f!

This relation between the bare values ofJ(1,s) andJ(1,t) will
be important later. Notice thatJ(1,s),0, while J(1,t).0,
J(2,t).0.

Comparing these expression to the correspoding ones
an electron-electron interaction,16 one sees that they have th
same structure except for the frequency sector. Transform
from Matsubara frequency space into time space reveals
the annealed disorder corresponds to an interaction tha
infinitely long ranged in time. This is physically plausible,
has been explained in Sec. II B.

C. Renormalizability considerations

For reasons explained in Appendixes A and B, we w
choose a field-theoretic RG method9 over a momentum-shel
RG.17 Before we start analyzing our model by means of t
method, we need to ask whether the model is renormaliza
and how many renormalization constants are required. M
is known about the renormalization properties of the NLsM,
Eq. ~3.1!, with additional instantaneousinteraction terms.
The pure NLsM is known to be renormalizable with two
renormalization constants, one for the coupling constanG
and one field renormalization constant.9 The frequency cou-
pling H (1) turns out not to carry a renormalization consta
of its own. In the presence of an instantaneous interact
the proof of renormalizability for the NLsM breaks down,
and the renormalizability of the model has never be
proven. However, there is much evidence that the mode
still renormalizable, with two additional renormalizatio
constants for the interaction, and withH (1) acquiring a renor-
malization constant of its own. The two renormalization co
stants for the interaction terms correspond to symmetric
1-4
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antisymmetric combinations of terms bilinear inQ,
respectively.18,19 The same arguments apply to the pres
model, and are given in Appendix B. From Eqs.~B1!, we
conclude that we need to writeAann

(1,s)5A1
(1,s)1A2

(1,s), and
analogously splitAann

(1,t) andAann
(2,t) , with

A1
(1,s)522pTJ1

(1,s)E dx(
nm

(
a

(
r 50,3

F r
0Qnm

aa~x!3 r
0Qnm

aa~x!

1
1

2 (
i

r
i Qnn

aa~x!r
i Qmm

aa ~x!G , ~3.8a!

A2
(1,s)522pTJ2

(1,s)E dx(
nm

(
a

(
r 50,3

F r
0Qnm

aa~x!3 r
0Qnm

aa~x!

2
1

2 (
i

r
i Qnn

aa~x!r
i Qmm

aa ~x!G , ~3.8b!

A1
(1,t)522pTJ1

(1,t)E dx(
nm

(
a

(
r 50,3 F (

i 51

3

r
i Qnm

aa~x!

3 r
i Qnm

aa~x!1
1

2 (
i S 3

2

2

2

D
i

r
i Qnn

aa~x!r
i Qmm

aa ~x!G ,

~3.8c!

A2
(1,t)522pTJ2

(1,t)E dx(
nm

(
a

(
r 50,3 F (

i 51

3

r
i Qnm

aa~x!

3 r
i Qnm

aa~x!2
1

2 (
i S 3

2

2

2

D
i

r
i Qnn

aa~x!r
i Qmm

aa ~x!G ,

~3.8d!

A1
(2,t)52pTJ1

(2,t)E dx(
nm

(
a

(
r 50,3 F (

i 51

3

r
i Qnn

aa~x!

3 r
i Qmm

aa ~x!1
1

2 (
i S 3

2

2

2

D
i

r
i Qnm

aa~x!r
i Qnm

aa~x!G ,

~3.8e!
15510
t
A2

(2,t)52pTJ2
(2,t)E dx(

nm
(
a

(
r 50,3 F (

i 51

3

r
i Qnn

aa~x!

3 r
i Qmm

aa ~x!2
1

2 (
i S 3

2

2

2

D
i

r
i Qnm

aa~x!r
i Qnm

aa~x!G .

~3.8f!

In writing Eqs. ~3.8! we have made use of Eqs.~3.2a! –
~3.2c!. The symbol

S 3
2

2

2

D
i

is a shorthand for 3d i02( j 51
3 d i j . The J6

(1,s) are coupling
constants whose bare values are equal,

J1
(1,s)5J2

(1,s)5J(1,s), ~3.9a!

but in general they renormalize differently. Similarly,

J1
(1,t)5J2

(1,t)5J(1,t), ~3.9b!

J1
(2,t)5J2

(2,t)5J(2,t) ~3.9c!

in the bare theory, but under renormalization these equali
in general, do not remain valid. All of theJ1 require only
one renormalization constant, which we will denote byZ1 ,
and theJ2 require another one,Z2 . In addition, a renormal-
ization constant forH (2) is needed.

In addition to the relations given by Eqs.~3.9!, there is the
relation betweenJ(1,s) and J(1,t) given by Eq.~3.7f!. It will
turn out that these constraints leads to a degeneracy in
RG flow. This is most easily handled by relaxing the con
tion ~3.9a!. Instead of Eqs.~3.9! and~3.7f! we therefore write

J6
(1,s)5J(1,s)6D, ~3.10a!

J6
(1,t)5J(1,t), ~3.10b!

J6
(2,t)5J(2,t), ~3.10c!

and

J(1,s)13J(1,t)50. ~3.10d!

ChoosingDÞ0 will remove the degeneracy in the RG flow
In the end, we will consider the limitD→0 to obtain the
behavior of our original model.
1-5
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IV. RENORMALIZATION TO ONE-LOOP ORDER

A. Perturbation theory

1. Gaussian propagators

We now perform a one-loop RG analysis of the mod
defined in Sec. III. To this end, we expand the action
powers of the matrixq defined by Eq.~3.2e!. To Gaussian
order we find

A5
24

G

1

V (
p

(
12

(
i ,r

r
i q12~p! G (2)~p,Vn12n2

! r
i q12~2p!,

~4.1a!

with

G (2)~k,Vn!5k2/G1H (1)Vn1H (2)2pT

1da1a2
pTG @d i0Js1~12d i0!Jt#

~4.1b!

being the bare two-point vertex. The Gaussianq propagators
are obtained by inverting this quadratic form. We find

^ r
i q12~k! s

j q34~p!&5dk,2pd13d24d rs d i j

G

8
iD12~k!.

~4.2a!

Here ^•••& denotes a Gaussian average, and 1[(n1 ,a1),
etc., are indices that comprise both the Matsubara freque
index and the replica label. The propagatorsiD read

0D12~k!5Dn12n2
~k!1da1a2

DD n12n2

s ~k!, ~4.2b!

1,3.3D12~k!5Dn12n2
~k!1da1a2

DD n12n2

t ~k!,

~4.2c!

where

Dn~k!5
1

k21GH(1)Vn1GH(2)2pT
, ~4.2d!

D n
s,t~k!5

1

k21GH(1)Vn1GH(2)2pT1GJs,t2pT
,

~4.2e!

with

DD n
s,t~k!5D n

s,t~k!2Dn~k!, ~4.2f!

and

Js5
1

2
~J1

(1,s)1J2
(1,s)!2

3

4
~J1

(2,t)2J2
(2,t)!, ~4.2g!

Jt5
1

2
~J1

(1,t)1J2
(1,t)!1

1

2
~J1

(2,t)2J2
(2,t)!. ~4.2h!

2. One-loop corrections

By expanding the action toO(q4) and calculating all dia-
grams with the topological structure shown in Fig. 1, w
obtain the one-loop correctionsdG, dH (1), etc. to the cou-
pling constants in the Gaussian propagators, Eqs.~4.2!, or
15510
l

cy

the two-point vertex, Eq.~4.1b!. The explicit calculation is
similar to the one for the case of an instantaneo
interaction,1 but substantially simpler due to the absence
cubic terms in theq expansion. We find

dG5
G2

16
~K11K2! I 2 , ~4.3a!

dH (1)5
2GH(1)

16
~K11K2! I 2 , ~4.3b!

dH (2)5
2G

16 FH (2)~K11K2!1
3

2 S J1
(1,t)1J2

(1,t)1
1

2
J1

(2,t)

2
1

2
J2

(2,t)D ~L11L222J1
(2,t)12J2

(2,t)!G I 2

2
3G

16 S J1
(2,t)1J2

(2,t)2
1

2
L11

1

2
L2D I 1

1
G

32
~K12K2! I 1 , ~4.3c!

dJs5
2G

8
~Js

213Jt
2! I 2

1
3G

16 S J1
(2,t)1J2

(2,t)2
1

2
L11

1

2
L2D I 1 , ~4.3d!

dJt5
2G

16 S J1
(1,t)1J2

(1,t)1
1

2
J1

(2,t)2
1

2
J2

(2,t)D
3~J1

(1,s)1J1
(1,t)1J2

(1,s)1J2
(1,t)2J1

(2,t)1J2
(2,t)!I 2

2
G

16S J1
(2,t)1J2

(2,t)2
1

2
L11

1

2
L2D I 1 . ~4.3e!

Here we have defined linear combinations of coupling c
stants,

K65J6
(1,s)13J6

(1,t)56D, ~4.4a!

L65J6
(1,s)2J6

(1,t) , ~4.4b!

FIG. 1. Structure of diagrams that renormalize the two-po
vertex.
1-6
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where the second equality in Eq.~4.4a! is due to Eqs.~3.10!.
This will be important later. We have also defined one-lo
integrals

I 15GE dp Dn~p!52Ḡ/Ge, ~4.5a!

I 25GE dp 2pT(
n

~Dn~p!!252Ḡ/GH(1)e.

~4.5b!

Heree5d22, andḠ5GSd /(2p)d with Sd the surface area
of the (d21) sphere. In giving the second equalities in E
~4.5! we have chosen to use dimensional regularization,
in what follows we will use a field-theoretic RG method. A
a perturbative level, this is a matter of choice, and we co
just as well use the momentum-shell RG method. In t
case, the factors of21/e in Eqs.~4.5! would be replaced by
ln b, with b the RG length rescaling factor. For argumen
that go beyond perturbation theory, however, it is advan
geous to use the field-theory approach, as is explained in
Appendixes A and B.

In addition to these renormalizations of the two-po
propagator or vertex function, we will also need the on
point vertex G (1) to one-loop order. This is given by th
diagram shown in Fig. 2, and a simple calculation yields

G (1)[^0
0Qnn

aa~x!&21512
G

16
~K11K2! I 2 . ~4.6!

For later reference, we notice that the one-loop corr
tions toG, H (1), andG (1) vanish in the limitD→0, and that

dJs13dJt50, ~4.7!

as can be seen by using Eqs.~3.10!. Furthermore, the calcu
lation shows that

dH (1)1dH (2)1dJs5
G

16
D I 1 , ~4.8!

which also vanishes asD→0.

FIG. 2. Structure of diagrams that renormalize the one-po
vertex.
15510
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B. Renormalization

1. Renormalization constants

We now proceed to renormalize the theory, i.e., we abs
the singularities in thee→0 limit that are present in the
perturbation theory into renormalization constants. We de
renormalized coupling constantsg, h(1), etc., by

Ḡ5m2eZgg, H (1)5Zh
(1)h(1), H (2)5Zh

(2)h(2),

J1
(1,s)5Z1 j 1

(1,s), J1
(1,t)5Z1 j 1

(1,t) , J1
(2,t)5Z1 j 1

(2,t) ,

J2
(1,s)5Z2 j 2

(1,s), J2
(1,t)5Z2 j 2

(1,t) , J2
(2,t)5Z2 j 2

(2,t) ,
~4.9!

wherem is an arbitrary momentum scale. The renormaliz
tion statement is9

GR
(N)~p,Vn ;g,h, j 1 , j 2 ;m!

5Z(N/2)G (N)~p,Vn ;G,H,J1 ,J2!. ~4.10!

Here GR
(N) is the renormalizedN-point vertex function,Z is

the field renormalization constant, andH and J6 represent
the various frequency and annealed disorder coupling c
stants. The assertion thatall vertex functions can be mad
finite to all orders in the loop expansion by the five reno
malization constants defined in Eq.~4.2!, plus the field renor-
malization constant, is equivalent to saying that the theor
renormalizable with these renormalization constants. As
have mentioned before, there is strong evidence for
statement to be true, which is recapitulated in Appendix
but it has not been rigorously proven.

Assuming that the theory is renormalizable, the six eq
tions, Eqs.~4.3! and~4.6!, suffice to determine the six reno
malization constants to one-loop order. While it is possible
do so for arbitrary bare values of the coupling constants,
results simplify substantially if one uses Eqs.~3.10!. Using
minimal subtraction,9 and taking the limitD→0, we obtain

Z511O~g2!, ~4.11a!

Zg511O~g2!, ~4.11b!

Zh
(1)511O~g2!, ~4.11c!

Zh
(2)511

g

e
k~g,h, j 1 , j 2!/h(2), ~4.11d!

Z1511
g

e

2fs~g,h, j 1 , j 2!

j 1
(1,s)1 j 2

(1,s)
1O~g2!, ~4.11e!

Z2511
g

e

2fs~g,h, j 1 , j 2!

j 1
(1,s)1 j 2

(1,s)
1O~g2!. ~4.11f!

Here k and fs,t are functions of the renormalized couplin
constants that are given bydH (2) and dJs,t as functions of
the bare ones,

k~G,H,J!52e dH (2)~G,H,J!/G, ~4.12a!

t

1-7
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fs,t~G,H,J!52e dJs,t~G,H,J!/G. ~4.12b!

An inspection shows that, in the limitD→0,

k~G,H,J!52fs,t~G,H,J!. ~4.12c!

Notice thatZ15Z2 , at least to one-loop order. Since th
bare values of the variousJ6 are identical, this means tha
the renormalized values are also identical, and we can d
the distinction betweenj 1 and j 2 . We will thus write j 1

(1,s)

5 j 2
(1,s)[ j (1,s), etc. We note that this is a consequence of

relations expressed by Eqs.~3.10!, and would not necessaril
be true for more general models.

2. Flow equations and their solutions

We are now in a position to determine the RG flow equ
tions for the coupling constants. Definingl 52 ln m ~or l
5 ln b in an alternative momentum-shell approach!, and us-
ing Eq. ~4.12c!, we obtain from Eqs.~4.9! and ~4.11!

dg

dl
52eg1O~g3!, ~4.13a!

dh(1)

dl
5O~g2!, ~4.13b!

dh(2)

dl
52g fs~g,h, j !1O~g2!, ~4.13c!

d j (1,t)

dl
5

2g

3
fs~g,h, j !1O~g2!. ~4.13d!

The flow of the remaining coupling constantsj can be ob-
tained by relating them toj (1,t). This is a consequence o
there being only two renormalization constants for all of t
J. We obtain

j (1,s)5 j (1,t) J(1,s)/J(1,t)523 j (1,t), ~4.13e!

j (2,t)5
J(2,t)

J(1,t)
j (1,t). ~4.13f!

In order to determine the nature of these flows, we cal
late fs from Eqs.~4.3d! and ~4.12b!. We find

fs~g,h, j !5
23

2

~ j (1,t)!2

h(1) F12
j (2,t)h(1)

4~ j (1,t)!2G1O~g!.

~4.14!

We see thatfs,0, unlessJ(2,t) is larger than (J(1,t))2 in
suitable units~note that theJ’s andH ’s all have the dimen-
sions of a density of states!. This makes physical sense
From Eqs.~3.7c! and~3.7d! we see thatA (1,t) andA (2,t) are
spin-triplet interactions with different signs.J(1,t).0 pro-
motes ferromagnetism, andJ(2,t).0 weakens that tendency
In two dimensions, for physically sensible values of the co
pling constants, we thus havefs,0, andh(2) and j (1,t) both
scale to infinity. Ind.2, the RG flow equations can b
15510
op
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solved explicitly and shown to describe a quantum pha
transition by introducing, as in Ref. 10, a scaling variabley
5g j (1,t)/h(1) that obeys

dy

dl
52ey1y2/21O~y3!. ~4.15!

We see that Eq.~4.15! allows for a fixed-point valuey* 5e
1O(e2). Denoting the deviation from this fixed-point valu
by dy, we find

dy~b!5dy~b51! b e1O(e2), ~4.16a!

and

h(2)~b!5h(2)~b51! b e1O(e2), ~4.16b!

j (1,t)~b!5 j (1,t)~b51! b e1O(e2), ~4.16c!

h(1)~b!5h(1)~b51! b01O(e2), ~4.16d!

g~b!5g~b51! b2e1O(e2). ~4.16e!

The behavior of all observables of interest can be dedu
from the above flows, see Sec. V A below.

V. DISCUSSION

A. Physical interpretation and results

For a physical interpretation of our results we first need
relate physical observables to the coupling constants of
theory. Some observables can be identified directly in an
ogy to the corresponding identification in the case of an
stantaneous electron-electron interaction. From the der
tion of the NLsM, G is known to be related to the bar
conductivitys via14,1

s58/pG. ~5.1a!

The single-particle or tunneling density of statesN at an
energyv from the Fermi level is related to the one-poi
vertex by13

N~eF1v!5
4

p
~G (1)!21~ ivn→v1 i0!. ~5.1b!

Equations~4.13a! and ~4.11a! show thats and N are not
renormalized, at least to one-loop order,

ds

dl
5O~g2!, ~5.2a!

dN

dl
5O~g2!. ~5.2b!

The scaling behavior of the relevant operatordy, Eq.
~4.16a!, determines the correlation length exponent. Den
ing the dimensionless distance from the critical point byt,
and the correlation length byj, one finds for smallt

j}utu2n, ~5.3a!
1-8
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with a correlation length exponent

n51/e1O~1!. ~5.3b!

Other quantities of interest are various susceptibilities
particular the specific heat coefficientgV5CV /T, the spin
susceptibilityxs, and the density susceptibility]n/]m. Their
relations to the coupling constants in the field theory are
obvious. We therefore use scaling arguments, in conjunc
with the perturbation theory for the free energy, to determ
their respective cricital behavior. We start with a homoge
ity law for the free energy. From the Gaussian propagat
Eqs.~4.2!, we see that, that in principle, there are three d
ferent time scales in the theory, given by

t15jdgh(1);jz1, ~5.4a!

t25jdgh(2);jz2, ~5.4b!

t35jdg j (1,t);jz3. ~5.4c!

Herez1,2,3 are the dynamical exponents related to these t
scales. To one-loop order we have

z15d2e1O~e2!521O~e2!, ~5.5a!

z25z35d2e1e1O~e2!5d1O~e2! ~5.5b!

leaving us with two times scales and dynamical expone
The free energy densityf therefore has two different scalin
parts, and we can write

f ~ t,T, . . . !5b2(d1z1) f 1~ t b1/n,T bz1,T bz2, . . . !

1b2(d1z2) f 2~ t b1/n,T bz1,T bz2, . . . !.

~5.6!

Here f 1 and f 2 are scaling functions, and the ellipses den
the dependence off on external fields that are not show
explicitly.

The specific-heat coefficient is obtained by differentinf
twice with respect toT. The leading contribution is obtaine
by differentiating f 1 with respect to the temperature sca
that carries the dynamical exponentz2. This yields

gV~ t !;utu2a, ~5.7a!

with a critical exponent

a5n~2z22d2z1!511O~e!. ~5.7b!

To ascertain that this leading contribution has a nonzero p
actor we check against the perturbation theory for the f
energy, which is given in Appendix D. From Eqs.~D1b! and
~D1c! we see that there is indeed a contribution from diff
entiating twice with respect to the temperature in the pro
gators, which carries a dynamical exponentz2. The tempera-
ture prefactor in the expressionf 52(T/V)ln Z for the free
energy density has been absorbed into the frequency inte
tion measure. The frequency, however, scales as a w
number squared, and therefore carries an exponentz1.

A very similar argument applies to the spin susceptibili
A magnetic fieldB couples to the electrons via a Zeem
15510
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term ~amongst other coupling mechanisms!, and hence can
scale as energy or temperature. The spin susceptibility is
tained by differentiatingf twice with respect toB, and once
therefore expectsxs to scale as the specific-heat coefficien
viz.

xs~ t !;utu2g, ~5.8a!

with a critical exponent

g5a511O~e!. ~5.8b!

Again, the perturbation theory confirms that the leading c
tribution obtained in this way is nonzero. This is easily se
from Eqs. ~D1b! and ~D1c! by taking into account thatB
Þ0 leads to a massmBB in two of the spin-triplet propaga
tors that contribute to the Gaussian approximation for
free energy.

Finally, we consider]n/]m. Although the chemical po-
tential m has the dimensionality of energy, it differs fund
mentally from eitherT or mBB, since it represents the mi
croscopic energy or inverse time scale. As such, it must h
an effective scale dimension of zero. Consequently, we
tain from Eq.~5.6!, by differentiating twice with respect to
m,

~]n/]m!~ t !5const1O~ tn(d1z1)!. ~5.9!

]n/]m thus has only a weak nonanalytict dependence in
addition to a leading noncritical contribution. Again, this
consistent with perturbation theory: The onlym dependence
of the free energy, Eq.~D1b!, is through the various coupling
constants in the propagators. All of these multiply eithe
frequency or a temperature. Differentiation with respect tom
therefore does not produce a singular integral unlessf itself
becomes singular. Power counting shows that this happ
only for dimensionsd<22, in agreement with Eq.~5.9!.
This failure of differentiation with respect to a field to pro
duce a singularity is an illustration of a more general arg
ment given in Ref. 6.

The physical interpretation of these results is now cle
The RG flow at one-loop order is qualitatively the same
for electrons interacting via an instantaneous interaction,
the comparison between the two flows given in Appendix
In the latter case, the runaway flow of the equivalent ofj (1,t)

(kt in Appendix C! at one-loop order ind52 suggests a
ferromagnetic ground state. Ind521e there is a phase
transition where the homogeneous magnetic susceptib
diverges. This transition has been identified with a ferrom
netic phase transition where the magnetic susceptibility
verges likexs;utu2g, as in Eq.~5.8a!.10,20The runaway flow
thus simply reflects the fact thatt is RG relevant at a ferro-
magnetic transition. The result of this interpretation agre
with a more direct, and more explicit, theory for the ferr
magnetic transition.20 In the current case, the theory de
scribes an infinite-range version of this transition, due to
interaction being infinitely long-ranged in time. These co
siderations strongly suggest that the physical results we h
derived above to one-loop order actually hold to all orders
the loop expansion, as they do in the instantaneous inte
tion case.10 In particular, we expect that]n/]m is not renor-
1-9
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D. BELITZ AND T. R. KIRKPATRICK PHYSICAL REVIEW B 66, 155101 ~2002!
malized to all orders, in agreement with Ref. 6. It also f
lows that the phase diagram for the present mode
qualitatively similar to the one for the interacting case, w
a ferromagnetic transitionalways preceding a MIT ford
*2, while for d53 a direct transition from a paramagnet
metal to a paramagnetic insulator is possible.10,1 There are,
however, differences in the detailed properties of the tra
tion as compared to the one studied in Refs. 20 and 10.
instance, in the latter the specific heat has a much we
singularity than the spin susceptibility, while here they sh
the same scaling behavior. In this respect the current ca
reminiscient of the Brinkman-Rice theory of the Hubba
MIT.21

Although the transition in the present model is classic
in the sense that the order parameter is purely static
couples to quantum-mechanical degrees of freedom in
form of the diffusive electrons. An explicit description of th
transition could be obtained along the lines of Ref. 20. Ho
ever, given the schematic nature of our model, we will n
pursue this here. The same conclusion, namely, that
model under consideration describes a ferromagnetic tra
tion of a classical nature, has recently been reached by V
and Narayanan by means of very different arguments.22 We
stress, however, that our goal here has not been to descr
magnetic transition. Rather, it was to resolve the conflict
tween the results of Refs. 4 and 6, and to check whethe
not our model of electrons with both quenched and anne
disorders describes an unusual MIT. As we have seen,
answer to the latter question is negative.

B. Comparison with previous treatments

The crucial difference between the treatment of the
nealed disorder model given above and the one in Ref.
related to the occurrence of the coupling constantH (2). In
the perturbation theory, i.e., in an expansion in powers oq,
the annealed disorder generates terms that have the stru
of the last term on the right-hand side of Eq.~4.1b!, except
that they are not constrained to being diagonal in the rep
index. There are two possible interpretations of such ter
~1! They could represent terms quadratic inQ that are not
diagonal in replica space. This was the interpretation give
Ref. 4.~2! They could present a new termlinear in Q, which
was not present in the original action. The term with co
pling constantH (2) introduced in the present paper serv
that purpose. By means of high-order perturbation theory
can, in principle, distinguish between these two possibiliti
but this would be extremely cumbersome. Let us instead
gue on general structural and physical grounds that the
ond interpretation is the correct one.

First, we have argued in Sec. II that the annealed disor
since it gets averaged over at the level of the partition fu
tion, should indeed be interpreted as an effective interac
between the electrons. As such, all involved degrees of f
dom must occur with the same replica index, and the gen
tion of an interaction term~i.e., one quadratic inQ) for
which this is not the case makes no physical sense. Te
quadratic inQ with more than one replica index are chara
teristic for quencheddisorder, and indeed the treatment
15510
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the annealed disorder in Ref. 4 was modeled after tha
quenched magnetic disorder. As we have argued above,
is physically not plausible.

Second, the appearance of a term with the structure
A V

(2) , Eq. ~3.4!, is plausible on physical grounds. The ter
with coupling constantH (1) in the NLsM represents a fre-
quency coupling with a microscopic time scale, on the or
of an inverse Fermi energy~in units where\51). An inter-
action that is short ranged in time does not add a new t
scale to the problem. It therefore renormalizesH (1), but does
not generate a new frequency coupling. An interaction tha
long ranged in time, on the other hand, does introduce a
time scale and hence a new frequency coupling. In the g
eral case of a frequency-dependent interaction with a c
tinuum of time scales, one would expect a frequen
dependent coupling constantH whose scaling propertie
would have to be studied by means of a functional RG.
our simple model where the annealed disorder is sta
which means that the resulting effective interaction has
infinite range in time, one additional frequency coupling s
fices, which isH (2). The infinite-time scale corresponds to
vanishing frequency scale, in accord with the discontinuo
frequency dependence sgnV in Eq. ~3.4!. In this context, we
note that theH (2) term does not represent an inelastic lif
time. Rather, it is a true mass in the two-point propagat
that is produced by the interaction long ranged in time. T
is analogous to the mass corresponding to the plasmon
that is produced by an interaction that is long ranged
space.

Third, the structure of the renormalization scheme used
Ref. 4 did not reflect the constraints discussed in Appen
B. This is only of minor concern if one neglects the coupli
constantJ(2,t) and uses one renormalization constant each
Js and Jt , as was done in Ref. 4. It becomes crucial, ho
ever, in the presence ofJ(2,t), which forces the issue of how
many renormalization constants are needed.

Finally, the treatment of Ref. 4 led to results that were n
consistent with independent, very general, considerations
particular, its prediction that]n/]m is singularly renormal-
ized, and critical at a MIT, contradicted one of the results
Ref. 6. This point requires some explanation. The criti
behavior predicted implies a nonanalytic dependence on
RG length scale, and hence a nonanalytic dependence o
wave numberuqu in perturbation theory. In two dimensions
this takes the form of a lnuqu term in perturbation theory tha
is caused by the diffusive electron dynamics. Ind.2, these
same integrals over diffusion poles lead to auqud22

dependence.8 The predicted critical behavior of]n/]m at the
MIT, and the mechanism that causes it, therefore implie
nonanalytic wave number dependence of this susceptib
in the metallic phase. However, it was shown on gene
grounds in Ref. 6 that]n/]m is an analytic function of the
wave number for a large class of models, which includes
one under consideration here. This discrepancy prompted
current investigation, see the discussion in Sec. I above.

C. Conclusion and outlook

In conclusion, we have found that the treatment in Ref
of the electron problem in the presence of annealed disor
1-10
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in addition to quenched one, was not correct. The pertu
tion theory was correct, but the assumptions made abou
RG structure of the theory were not. This was the reason
the discrepancy between the explicit results found in Re
and later, more general considerations.6 The current proce-
dure, which considers the annealed disorder as an effec
electron-electron interaction that is long ranged in time
physically and technically more convincing. It yields resu
that are consistent with all the available information, and
particular with Ref. 6. Physically, the model of static, a
nealed magnetic disorder representing a type of local
ments thus turns out to be less interesting than Ref. 4
given reason to believe. Instead of describing an unus
MIT, the model describes a variant of the ferromagnetic tr
sition of itinerant electrons that has been studied before.
important to note that the same model with quenched ins
of annealed magnetic disorder is well known to contain
MIT in d521e.23 This serves to underscore the fundame
tal physical difference between the quenched and anne
disorders that we have stressed several times in this pap

We finally mention a possible consequence of our obs
vation, discussed in Sec. V B, that an electron-electron in
action with more than one time scale produces more than
frequency coupling in the NLsM, which in turn requires
additional renormalization constants.~In the present case
there was one additional time scale, infinity, one additio
coupling,H (2), and one additional renormalization constan!
At a MIT, the coupling constant that was denoted above
H (1) acquires a power-law frequency dependence. Thi
equivalent to saying that there are infinitely many time sca
in the problem, and this raises doubts about the validity
renormalizing the action with just one renormalization co
stant for the frequency coupling. It is therefore possible t
a complete description of the dynamics near a MIT wo
require a functional RG. A complete understanding of t
problem would also require a solution of the renormalizab
ity problem for models of interacting electrons, which is e
plained in Appendix B.
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APPENDIX A: MOMENTUM-SHELL RENORMALIZATION
VERSUS FIELD-THEORETIC RENORMALIZATION

In this appendix we explain our choice of a field-theore
formulation of the renormalization procedure.

There exist two basic formulations of the RG, the fie
theoretic one that originated in high-energy physics,9 and
Wilson’s momentum-shell method,17 which was invented for
the study of critical points. After Wilson’s breakthrough,
was shown that the field-theoretic method can also be
plied to critical phenomena.9 The relation between these tw
formulations of the RG is complicated,24 but for our pur-
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poses we can restrict ourselves to a few basic features.
In the Wilsonian method one renormalizes the Ham

tonian or action itself, generating new interactions as o
goes along, and checking all newly generated terms for t
scale dimensions, and hence for their being RG relev
irrelevant, or marginal. Irrelevant ones can be dropped, w
relevant or marginal ones must be added to the model
included in a repetition of the renormalization process. In
field-theoretic method, one renormalizes specific propaga
or vertex functions, and one needs to know from the ou
how many renormalization constants are needed in orde
make all the vertex functions finite to all orders.

For many models~e.g., for f4 theory! there is only a
small number of relevant or marginal terms. In these ca
the momentum-shell method is often preferred since it
physically more intuitive, and since it provides an explic
check for the generation of additional terms that must
kept. However, the NLsM does not belong to this class, as
has an infinite number of marginal terms ind52: In an
expansion of Eq.~3.1! in powers ofq, all terms are marginal.
It is a priori unclear how the infinitely many coupling con
stants multiplying these terms renormalize, although th
bare values all coincide. The field-theoretic RG meth
proves that these coupling constants all renormalize the s
way.25,9 This fixes the structure of the renormalized theo
and it then suffices to consider a small number of ver
functions in order to determine the renormalized theory
plicitly. In the momentum-shell method, on the other han
one needs to explicitly consider a large number of ver
functions or propagators~in principle, infinitely many in the
case of the NLsM) in order to do the same.

The same considerations apply to the terms in addition
the NLsM. Equations~3.7! add six coupling constants to th
model. Within a momentum-shell RG, one would have
considerq4 vertices in order to determine how they reno
malize. The field-theoretic method, on the other hand, allo
us to argue that all of theJ split into two pieces that pairwise
renormalize in the same way, see Sec. III C and Appendix
As a result, we need to explicitly renormalizeq2 vertices
only. This is the reason why in this paper we choose
field-theoretic method over the momentum-shell one.

APPENDIX B: INVARIANT DECOMPOSITION
OF ANNEALED DISORDER TERMS

In this appendix we recall the answer to the followin
question: Consider the NLsM, Eq. ~3.1!, which is known to
be renormalizable in two-dimensions with two renormaliz
tion constants.25,9 Now add to this action symmetry-breakin
operators. How does this affect the renormalizability, a
how many additional renormalization constants are need

For the case of operators that give some component
the basic field,Q(x) in our case, a mass~massive insertions!,
this question has been studied in detail.26 If the NLsM is
invariant under transformations that form a symmetry gro
G, then the operators in question must be expanded in a b
of irreducible representations ofG. All operators that belong
to the same irreducible representation renormalize the s
way, i.e., for each irreducible representation one additio
1-11
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renormalization constant is needed.
In our case, it is most convenient to write the spin degr

of freedom explicitly, and consider the complex numbe
Qnm,i j

ab as the matrix elements ofQ. The NLsM action is
then invariant under unitary transformations. We are in
ested in symmetry-breaking operators that are quadratic iQ.
This case was first considered by Pruisken.18 There are two
irreducible representations that correspond to symmetr
and antisymmetrized products ofQ. Any operator

O5E dx(
1234

v12,34Q12~x! Q34~x! ~B1a!

should thus be written as

O5O11O2 , ~B1b!

with

O65
1

2E dx (
12,34

v12,34@Q12~x! Q34~x!6Q32~x! Q14~x!#.

~B1c!

Here 1[(n1 ,a1 ,i 1), etc.O1 andO2 require one renormal
ization constant each, so two additional renormalization c
stants are needed to renormalize the NLsM with arbitrary
massive insertions of orderQ2.

A complication lies in the fact that in the present mod
the coupling constantsH (1) and H (2) multiply frequency-
dependent terms, and the frequency gets integrated ov
perturbation theory. As a result, ratios of theJ andH appear
in perturbation theory, and the proof given in Refs. 26 do
not apply. This is truea fortiori in the case of an instanta
neous electron-electron interaction, where the additional
erators are not even massive insertions. Nevertheless, w
no actual proof of renormalizability exists in this case, R
19 has presented substantial evidence from perturba
theory that the model is still renormalizable with two add
tional renormalization constants for the interaction. The sa
conclusion is expected to hold in the annealed disorder c

APPENDIX C: COMPARISON WITH THE CASE
OF AN INSTANTANEOUS INTERACTION

In this appendix we compare the flow equations deriv
in Sec. IV B with those for the case of an instantaneo
electron-electron interaction.

In the instantaneous interaction case one has spin-sin
and spin-triplet interactions amplitudesKs andK t , which are
analogous toJ(1,s) andJ(1,t), respectively. The analog ofJ(2,t)

does not exist. Instead of the two frequency couplingsH (1)

and H (2) there is only one coupling constantH, which is
proportional to the specific-heat coefficient.]n/]m and xs
are proportional toH1Ks andH1K t , respectively.1

In the absence of magnetic impurities, a magnetic field
spin-orbit scattering,K t flows towards large values, and aft
some transient behavior the one-loop flow equations take
form
15510
s
s

r-

d

-

,

in

s

p-
ile
.
on

e
e.

d
s

let

r

he

dg

dl
52eg1O~g3!, ~C1a!

dh

dl
5

3

8
gkt1O~g2!, ~C1b!

dks

dl
5

23

8
gkt1O~g2!, ~C1c!

dkt

dl
5

1

2
gkt

2/h. ~C1d!

A comparison with Eqs.~4.13! shows that the two behavior
are very similar, except that in the instantaneous interac
casekt flows to infinity much faster than2ks. In particular,
the conductivity and]n/]m are not renormalized in eithe
case~and neither is the density of states!, while the magnetic
susceptibility and the specific-heat coefficient both diver
albeit the latter only logarithmically in the instantaneous
teraction case.10 Strictly at one-loop order, the physical inte
pretation of the RG flow was long considered not obvious
has been stressed in the literature many times. However
analysis given in Ref. 10, combined with the detailed disc
sion of the ferromagnetic transition in Ref. 20, has sho
that the proper interpretation is in terms of a ferromagne
transition ind521e, as has been discussed in Sec. V A.

APPENDIX D: PERTURBATION THEORY
FOR THE FREE ENERGY

Here we calculate the free energy in perturbation theo
This serves as a check on our scaling arguments for var
observables in Sec. V A.

To zeroth order in a loop expansion, the free energy d
sity f is given by the saddle-point action. This yields fre
electron values for all thermodynamic quantities. The fi
correction,D f , is obtained by integrating over the fieldsq in
Gaussian approximation. From Eqs.~4.1! we find

D f 5D f s13D f t . ~D1a!

Here

D f s,t5
iG

H (1)
Js,tE

0

1

dh ~H (2)1hJs,t!

3
1

V (
k
E

0

`

dv n~v/T! D s,t~k,v,T!, ~D1b!

with @cf. Eq. ~4.2e!#

D s,t~k,v,T!5
1

k22 iGH (1)v1G~H (2)1hJs,t!2pT
.

~D1c!

The function
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n~x!5
1

2
cothS x

2D2
1

x
, ~D1d!

serves as a convenient means for transforming the sum
s
nd

he
fre
P.
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Matsubara frequencies into a real-frequency integral, and
have used the familiar ‘‘charging formula’’ trick of integra
ing over the interaction constants in order to improve co
vergence.
-

-
nti-

rk-

l

on

s

y

s

1See, e.g., D. Belitz and T.R. Kirkpatrick, Rev. Mod. Phys.66, 261
~1994!.

2This is the local moment concept that was considered in a cla
cal context by Viktor Dotsenko, A.B. Harris, D. Sherrington, a
R.B. Stinchcombe, J. Phys. A28, 3093 ~1995!, and that was
generalized to quantum-field theories in Refs. 3 and 4. Ot
more spatially localized, local moment concepts have also
quently been discussed in the literature; see R.N. Bhatt and
Lee, Phys. Rev. Lett.48, 344 ~1982!; R.N. Bhatt and D.S.
Fisher, ibid. 68, 3072 ~1992!; In the context of the disordere
interacting electron problem that we will frequently refer t
local moments have been discussed by C. Castellani, C. DiC
tro, P.A. Lee, M. Ma, S. Sorella, and E. Tabet, Phys. Rev. B30,
1596 ~1984!; A.M. Finkelstein, Pisma Zh. E´ksp. Teor. Fiz.40,
63 ~1984! @JETP Lett.40, 796 ~1984!#; and more recently by
A.V. Andreev and A. Kamenev, Phys. Rev. Lett.81, 3199
~1998!; and by B.N. Narozhny, I.L. Aleiner, and A.I. Larkin
Phys. Rev. B62, 14 898~2000!.

3R. Narayanan, T. Vojta, D. Belitz, and T.R. Kirkpatrick, Phy
Rev. B60, 10 150~1999!.

4D. Belitz, T.R. Kirkpatrick, and Thomas Vojta, Phys. Rev. Le
84, 5176~2000!.

5For a general discussion and classification of metal-insulator t
sitions, see, N.F. Mott,Metal-Insulator Transitions~Taylor &
Francis, London 1990!.

6D. Belitz, T.R. Kirkpatrick, and Thomas Vojta, Phys. Rev. B65,
165112~2002!.

7D. Belitz, T.R. Kirkpatrick, and Thomas Vojta, Phys. Rev. B55,
9452 ~1997!.

8This is true within the NLsM description of the MIT, where the
Goldstone modes in the ordered~i.e., metallic! phase are also the
soft modes that drive the transition. This results in the somew
surprising conclusion that, for any given observable, there
relation between its critical behavior at the critical fixed po
and its corrections to scaling at the stable fixed point that
scribes the ordered phase. This is true for any NLsM, including
the one for the classical Heisenberg ferromagnet~Ref. 9!. Re-
lated considerations have at times led to a debate as to wh
the ferromagnetic transition found within the NLsM in d52
1e and the one found withinf4 theory in d542e are really
physically identical; see E. Bre´zin and S. Hikami,
si-

r,
-

A.

s-

n-

at
a

-

er

cond-mat/9612016~unpublished!, and references therein.
9See, J. Zinn-Justin,Quantum Field Theory and Critical Phenom

ena ~Clarendon Press, Oxford, 1989!, and references therein.
10T.R. Kirkpatrick and D. Belitz, J. Phys.: Condens. Matter2, 5259

~1990!; Phys. Rev. B45, 3187~1992!. In these papers, the pre
cise nature of the first phase-transition was unclear. The ide
fication as a ferromagnetic transition was provided by T.R. Ki
patrick and D. Belitz,ibid. 53, 14 364~1996!, and in Ref. 20.

11See, e.g., C. Itzykson and J.-M. Drouffe,Statistical Field Theory
~Cambridge University Press, Cambridge, 1989!.

12See, e.g., G. Grinstein, inFundamental Problems in Statistica
Mechanics VI, edited by Cohen E.G.D.~North Holland, Amster-
dam, 1985!.
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