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Mesoscopic circuits with charge discreteness: Quantum current magnification
for mutual inductances
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Current magnification is studied for a system of two rings with external magnetic flux; we have considered,
in addition to self-inductance, a mutual inductance between the rings. The system is studied using a method
recently proposed by Li and Chen, which takes into account the charge quantization of the system, allowing for
a simplified description. We find that, for some values of the external flux enclosed by one of the rings,
guantum current magnification exists in the other ring. This magnification effect is a purely quantum phenom-
enon, which is given here an alternative explanation, different from the detailed quantum-mechanical expla-
nation.
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[. INTRODUCTION of the charge is considered in a similar manner as it is done
in previous work-? Current magnification is obtained as a
Mesoscopic physics deals with the frontiers between claseonsequence of charge discreteness and quantum effects.
sical and quantum physics. Phenomena such as persistentCircuit quantization with continuous chardes straight-
currents, Coulomb blockage, magnetoresistance fluctuationggrward. In fact, if Q denotes the charge flowing through a
and others, are currently studied in this area. In a recergection of a circuit andg is the internal magnetic flux
paper, Li and Cheh considered explicitly the effects of through the inductance, then quantization follows from the
charge discreteness in mesoscopic circuits, finding a simplasual rules, i.e.,
way to obtain many of the results found in mesoscopic phys-
ics. The main point of their theory is the inclusion of charge 9
discreteness as an essential element of the discussion. In Ref. Q—Q; ¢—ih 70" 1)
2, an application and extension of the above theory was con-

sidered; in this work, quantum transmission lines and the'ﬁowever, when charge discreteness is assumed, the quanti-

ques of propagation, calledrquitons were StUd'?d' Cir- ation process must be reconsidered. In this case, the charge
quitons are found to be closely related to charge dlscretene;i

and are described by non linear equations. The inclussion perator assumes discrete eigenvalues of the tyrlq.,,
. . y . d L A herel is an integer and. is the elementary charge which is
electrical resistanceyery important for electrical circuits,

| idered ) | ih th a fixed parameter. So, roughly speaking, the derivative must
\(/:valsdiratsi nC;%QSSIIheri ' fusmgt r;mdi ainatc;gr)]/ wi e adequately replaced by a finite difference of step gize
aldirola-na eory of quantu ssipation. (see Ref. 1 for a rigorous treatmgrnito be explicit, consider
The study of the persistent current in metallic rings en-

closing magnetic flukis the paradigm of mesoscopic phys-
ics. These currents are related to coherence effetéstic
scattering within the ring; the existence of these persistent
currents has been verified experimentali§A surprising ef-
fect related to these currents is the so-called quantum current
magnification:®~*3 In this case, two rings with current are
coupled magnetically through the magnetic flux, where the
current induced in one of the rings is larger than the current
in the other. In fact, that system is described by a ring with a
bubble(second ring The ring encloses an external magnetic
flux, while the bubble does not enclose any external flux; for
some values of the external flux, quantum current magnifi-
cation exists in the bubble. As pointed out in Refs. 10-13,
this is a purely quantum effect which has no classical analog,
since it depends on the charge discreteness and the Planck
constant. FIG. 1. A drawing of a simple two ring system. The first ring
In this work we consider two metallic rings enclosing has self-inductancé,, and it encloses an external fluix. The
external fluxegsee Fig. 1 The rings have self-inductances second ring has self-inductantg and encloses a flut,. The
L, andL, and mutual inductanckl. Moreover, discreteness mutual inductance i$1.

I
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an inductance. in the continuous charge cafgg. (1)] the 1., 1 ., o i )

magnetic energy operatdr is given by L= §L1Q1+ §L2Q2+ MQ1Qz— (f1Q1+f2Q2), (8)
1. where the terms within the bracket represent the electromo-
T= i(bz. (2)  tive force (emf) induced by the external flux in each ring,

and the dot over a quantity represents its time derivative. The
then, from Refs. 1, 2 charge discreteness is obtained from tr@bove expression defines the canonical varigbteonjugate
formal change to the chargeQ by the expressionp=(dL/9Q). Then the

Hamiltonian{ of the system becomes
~ 2h (O~
= 5.5 272 ) 3 1, 01, 1 . .
¢ H:I‘ﬁl“‘I¢2+W¢1¢2+(f1Q1+f2Q2), 9
in the kinetic energy operat¢Eg. (2)]. We remark that this 1 2
change allows us to keep the usual commutation rulgvhere the “momentum’s physically represents the induced

[Q,ff)]ziﬁ. Using Eqgs.(2) and(3) we compute the current flux in each ring. The equations of motion derived from the

in the inductancelQ/dt=[T,Q]/i%, obtaining above Hamiltonian may be obtained easily, and are ex-
pressed in terms of the effective inductantés given by

@t o,

—sin %¢>

7 Li=(Lil=M3)/L,=(1-Kk3)Ly,
dt Lqge

Ly=(LiL,—M?)/L;=(1-K?)L,,
in agreement with Refs. 1, 2. It is important to note that in 2=(halz JLa=( L2
Eq. (3), the operato#b is not the flux operator, since that role M’ =(L;L,—M2)/M=(1—k?)JL,L,/k,
is played here by the operatbdQ/dt; therefore, to avoid
misunderstanding, in this work we will refer tﬁ& as the
pseudoflux operator. Moreover, it is easy to show that th
commutator between charge and current is not proportional
to the identity operator because of charge discreteh®ss.

For definiteness, for a ring enclosing an external, time-

where we have defined the paraméte+M?/(L,L,)<1, as
ét is customary in electrical circuit theory.

IIl. QUANTUM TWO RING SYSTEMS WITH CHARGE
DISCRETENESS

dependent flux (t), the Hamiltonian with charge discrete-  In the case of continuous charge, the quantization of the
ness Is above Hamiltonian is straightforward, singeandQ become
canonical operators. However, after Li and Chewhen
. 2h% [ Qe- df . charge discreteness is considered, the charge operator has
H= L_q§_5|n2 2% + aQ’ (5) discrete eigenvaluesg, wheren is an integer andj, is the

elementary charge and, as said before, a fixed parameter.
Charge discreteness modifies the flux operator as pointed-out
in Sec. I. Then, from Eg9:3) and (9) the quantized Hamil-
tonian of the system, which properly accounts for charge
discreteness must be given by

where, as stated previouslyQ,¢]=i%. In this case, the

evolution equation for the pseudoflyk obtained from this
Hamiltonian becomes

d. df ) )
<D= —T ~ 2h q ~ 2h q R
T ©) fi= —sinz(—e )—i——sinz(—e )
From Egs.(4) and (6), the current in the ring becomes 2
H qe" ) . (Qe'* PPN N
- + Sin| 551 |Sinl 55, | +(F1Q+ T .
e (qe[f(t)+ ¢°] (7) Mg (Zﬁd)l o 2] T (11Qu 1)
——=-—=sin ,
dt Lge \% 10
where ¢° is the initial condition and it is related to the The above Hamiltonian is the basis of our calculations. Our
pseudoflux operator in the Schiiager picture. system has parametets,, L,, and M, assumed known;

while g, represents the elementary charge of the theory
which corresponds to the electronic charge. In the ligqit
—0 the operatof10) becomes théusua) quantum version

As stated previously, we consider two rings with self- of the classical Hamiltonian operatfq. (9)], as expected.
inductancel 1, L,, and mutual inductanckl, under the in-  This limit defines the parametets, L, andM in a well-
fluence of external magnetic fields, so that the external magdefined fashion.

Il. CLASSICAL TWO RING SYSTEMS

netic fluxes aref,(t) and f,(t). If Q, and Q, are the From the quantum HamiltonialEq. (10)], and using the
respective charges across a section of each ring at time Heisenberg equations of motion, the dynamical equations for
then the Lagrangiaf of the system is given by the current and the pseudoflux operators become
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d. h Oe-~
—Q1= ,sin( -1
dt qeLl h

dQ Ao (
—Qo=——sin
dt Qel 2

2h Oe~ | . [ e
+qu,cos<E¢l>sm(2—¢2 ,

o]

e~

P

=

2h de~ | . e~
+mco{ﬁ¢2>sm(ﬁ¢l ,

d. (d |- d. [d )A
b= | g f)l and gda=| 5 fa]l, (11)

which in the limitg.—0 have the expected form.

Consider now the case in which only the first ring en-
closes a nonzero external magnetic field flux, i.e., wef Jet
=f,(t) and f,=0, then, from Eq.(11), the total enclosed
fluxes become

=111+ 8] and ¢,=¢3, (12

where$? and ¢J are the initial pseudoflux conditions corre-
sponding to the pseudoflux operators in the Sdimger pic-
ture. The equations for the current operators become

d. [ Ge - ~g
at 1—E5m(g(f1|+¢1)
e .~ 20| Yeno
+qe COE(Zﬁ(fﬂ-i-d)l) Sln(2ﬁ¢2>’ (13
d,\ _ ﬁ . quo Zh qE"
i g ) eod 59
X sin —(f 1+¢9)|. (14

For the sake of simplicity, consider a stdtg), so that the
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= 1st ring
\ == 2nd ring
I I — I
i

2n

-1

o

FIG. 2. Plot of the currents in both rings, divided by their re-
spective maximum values, as a function of the argument
=Qef1 /A, for O<a<2w, when f,=0. Showing the quantum
magpnification, atw= 7.

ring is maximal wherg,f%#% =7 and the current in the first
ring is zero(quantum magnification

A final point respect to Eqg15) and (16). The classical
limit may formally be obtained if we take the limif,— 0 in
these equations. So, classically, when the current is zero in
the first ring it is zero also in the second ring.

IV. DISCUSSION AND CONCLUSIONS

The equations for the currertggs.(15) and(16) abovs,

have a sinusoidal nonlinearity which has the quantum mag-
nification effect as a consequence. It is also interesting to
consider the effect of sinusoidal time-varying perturbations.
Levy et al” have studied the effect of a slowly time-varying
(1) = dyct dacSin(wt), externally applied flux, over a dilute
statistical sample of TOnoninteracting copper rings on a
saphire substrate at low temperatures, and measured the in-

average of the pseudoflux operators, computed for this statguced magnetic momentg, as a function of the field

are($?)=(¢$3)=0. With all this the equations of motion for
the averaged current operator E(E3) and (14) simplify to

d.\ & .(qe )
an —ESIH ?fl s (15)

d. 2h ( Je
an M sm %fl) (16

Consider the case where the external magnetic field
constant, then the external fliix=f°. The surprising fact is
that whenqf%# =1, for an integerl, the current in the

second ring, where the external flux vanishes, is at an extrénay be written a

strength. They compute the Fourier amplitudes of the mag-
netic moments, as

2an=2a(T)J2n(8)siN(0), 17

Mon+1=2a(T)Ion+1(6)cOS 0), (18)

whered=2m ¢,/ ¢, and 0=2m ¢4/ ¢, and ¢, is the as-
sumed flux periodicity of the average moment.

Starting from Eqs(15) and(16), for our two ring system,
jwe obtain expressions for th@verage induced currents
wich are of the same general form as EGs)) and(18). To

be precise, the Fourier components of the cur(@(t)),
3(1)

mum, and the current in the first ring vanishes. This is known

ificati 10 =21M73,,(5,)sin( 6;)
as quantum current magnification, or quantum current en- 2n 0 Janlo1 1)
hacement, and it is clearly a purely quantum effect since its

existence depends on Plank’s constant&sndg, being both

nonzero. In Fig. 2 we show a plot of the currents within the

two rings, as a function of théconstant external fluxf°.
Flux variation changes the sign of the currémramagnetic

150, 1= 21513551 1(81)cog 6y),

where 1{M=#/(ql}), 61=2mda/dY, and 6,
=2mgc/ d, and ¢V =2mh/qe; while for the current

or diamagneti; and one sees that the current in the secoanz(t» in the other ring, the Fourier componerhfé), are
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|(22n):2|£)1)‘]2n(52)3ir( 6,), sponding gxperimentql setup would be different than in the
case considered in this work.

We have also considered the case of a continuous-charge
ring interacting with a discreteness-charge ring. We let the
@) ) @) seco_nd ri_ng enclose an external flux, with no _external flux on
where 157=24/(qeM’),  6,=27m¢ac/dy’, and 6,  the first ring. We obtain the somewhat surprising result that
=2mhacl ), andpP'=2¢" . Note also that, in our ex- the magnification effect is still present.
pressions for the current magnification, the flux is a periodic In conclussion, quantum current magnification exist for
function of the external flux, with period,=27#%/q, or @ system of two ring with mutual inductance and charge
2®,. We point out here that that the “quantum of chargg” discreteness when one of them encloses an external flux
may be identified here with the electronic charge, but the15), (16).
theory outlined here is unable to predict its value indepen-

16, 1 =211, 1(8,)cod 6,),

dently. Therefore, one may regard parameters sudh & ACKNOWLEDGMENTS
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