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Mesoscopic circuits with charge discreteness: Quantum current magnification
for mutual inductances

J. C. Flores*
Departamento de Fı´sica, Universidad de Tarapaca´, Casilla 7-D, Arica, Chile

Constantino A. Utreras-Dı´az†

Instituto de Fı´sica, Universidad Austral de Chile, Casilla 567, Valdivia, Chile
~Received 25 January 2002; revised manuscript received 12 July 2002; published 31 October 2002!

Current magnification is studied for a system of two rings with external magnetic flux; we have considered,
in addition to self-inductance, a mutual inductance between the rings. The system is studied using a method
recently proposed by Li and Chen, which takes into account the charge quantization of the system, allowing for
a simplified description. We find that, for some values of the external flux enclosed by one of the rings,
quantum current magnification exists in the other ring. This magnification effect is a purely quantum phenom-
enon, which is given here an alternative explanation, different from the detailed quantum-mechanical expla-
nation.
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I. INTRODUCTION

Mesoscopic physics deals with the frontiers between c
sical and quantum physics. Phenomena such as persi
currents, Coulomb blockage, magnetoresistance fluctuati
and others, are currently studied in this area. In a rec
paper, Li and Chen1 considered explicitly the effects o
charge discreteness in mesoscopic circuits, finding a sim
way to obtain many of the results found in mesoscopic ph
ics. The main point of their theory is the inclusion of char
discreteness as an essential element of the discussion. In
2, an application and extension of the above theory was c
sidered; in this work, quantum transmission lines and th
modes of propagation, calledcirquitons, were studied. Cir-
quitons are found to be closely related to charge discreten
and are described by non linear equations. The inclussio
electrical resistance,2 very important for electrical circuits
was also considered, using an analogy with
Caldirola-Kanai3–5 theory of quantum dissipation.

The study of the persistent current in metallic rings e
closing magnetic flux6 is the paradigm of mesoscopic phy
ics. These currents are related to coherence effects~elastic
scattering! within the ring; the existence of these persiste
currents has been verified experimentally.7–9 A surprising ef-
fect related to these currents is the so-called quantum cu
magnification.10–13 In this case, two rings with current ar
coupled magnetically through the magnetic flux, where
current induced in one of the rings is larger than the curr
in the other. In fact, that system is described by a ring wit
bubble~second ring!. The ring encloses an external magne
flux, while the bubble does not enclose any external flux;
some values of the external flux, quantum current magn
cation exists in the bubble. As pointed out in Refs. 10–
this is a purely quantum effect which has no classical ana
since it depends on the charge discreteness and the P
constant.

In this work we consider two metallic rings enclosin
external fluxes~see Fig. 1!. The rings have self-inductance
L1 andL2 and mutual inductanceM. Moreover, discretenes
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of the charge is considered in a similar manner as it is d
in previous work.1,2 Current magnification is obtained as
consequence of charge discreteness and quantum effect

Circuit quantization with continuous charge14 is straight-
forward. In fact, if Q denotes the charge flowing through
section of a circuit andf is the internal magnetic flux
through the inductance, then quantization follows from t
usual rules, i.e.,

Q→Q; f→ i\
]

]Q
. ~1!

However, when charge discreteness is assumed, the qu
zation process must be reconsidered. In this case, the ch
operator assumes discrete eigenvalues of the formql5 lqe ,
wherel is an integer andqe is the elementary charge which
a fixed parameter. So, roughly speaking, the derivative m
be adequately replaced by a finite difference of step sizeqe
~see Ref. 1 for a rigorous treatment!. To be explicit, consider

FIG. 1. A drawing of a simple two ring system. The first rin
has self-inductanceL1, and it encloses an external fluxf 1. The
second ring has self-inductanceL2 and encloses a fluxf 2. The
mutual inductance isM.
©2002 The American Physical Society10-1
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an inductanceL in the continuous charge case@Eq. ~1!# the
magnetic energy operatorT̂ is given by

T̂5
1

2L
f̂2, ~2!

then, from Refs. 1, 2 charge discreteness is obtained from
formal change

f̂→ 2\

qe
sinS qe

2\
f̂ D , ~3!

in the kinetic energy operator@Eq. ~2!#. We remark that this
change allows us to keep the usual commutation r

@Q̂,f̂#5 i\. Using Eqs.~2! and ~3! we compute the curren
in the inductancedQ̂/dt5@ T̂,Q̂#/ i\, obtaining

dQ̂

dt
5

\

Lqe
sinS qe

\
f̂ D , ~4!

in agreement with Refs. 1, 2. It is important to note that
Eq. ~3!, the operatorf̂ is not the flux operator, since that ro
is played here by the operatorLdQ̂/dt; therefore, to avoid
misunderstanding, in this work we will refer tof̂ as the
pseudoflux operator. Moreover, it is easy to show that
commutator between charge and current is not proportio
to the identity operator because of charge discreteness.1,15

For definiteness, for a ring enclosing an external, tim
dependent fluxf (t), the Hamiltonian with charge discrete
ness is

Ĥ5
2\2

Lqe
2
sin2S qe

2\
f̂ D1

d f

dt
Q̂, ~5!

where, as stated previously,@Q̂,f̂#5 i\. In this case, the
evolution equation for the pseudofluxf̂, obtained from this
Hamiltonian becomes

d

dt
f̂5

d f

dt
. ~6!

From Eqs.~4! and ~6!, the current in the ring becomes

dQ̂

dt
5

\

Lqe
sinS qe

\
@ f ~ t !1f̂0# D , ~7!

where f̂0 is the initial condition and it is related to th
pseudoflux operator in the Schro¨dinger picture.

II. CLASSICAL TWO RING SYSTEMS

As stated previously, we consider two rings with se
inductanceL1 , L2, and mutual inductanceM, under the in-
fluence of external magnetic fields, so that the external m
netic fluxes aref 1(t) and f 2(t). If Q1 and Q2 are the
respective charges across a section of each ring at timt,
then the LagrangianL of the system is given by
15341
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L5
1

2
L1Q̇1

21
1

2
L2Q̇2

21MQ̇1Q̇22~ ḟ 1Q11 ḟ 2Q2!, ~8!

where the terms within the bracket represent the electro
tive force ~emf! induced by the external flux in each ring
and the dot over a quantity represents its time derivative.
above expression defines the canonical variablef conjugate
to the chargeQ by the expressionf5(]L/]Q̇). Then the
HamiltonianH of the system becomes

H5
1

2L18
f1

21
1

2L28
f2

21
1

M 8
f1f21~ ḟ 1Q11 ḟ 2Q2!, ~9!

where the ‘‘momentum’’f physically represents the induce
flux in each ring. The equations of motion derived from t
above Hamiltonian may be obtained easily, and are
pressed in terms of the effective inductancesL8, given by

L185~L1L22M2!/L25~12k2!L1 ,

L285~L1L22M2!/L15~12k2!L2 ,

M 85~L1L22M2!/M5~12k2!AL1L2/k,

where we have defined the parameterk25M2/(L1L2)<1, as
it is customary in electrical circuit theory.

III. QUANTUM TWO RING SYSTEMS WITH CHARGE
DISCRETENESS

In the case of continuous charge, the quantization of
above Hamiltonian is straightforward, sincef andQ become
canonical operators. However, after Li and Chen,1 when
charge discreteness is considered, the charge operato
discrete eigenvaluesnqe wheren is an integer andqe is the
elementary charge and, as said before, a fixed param
Charge discreteness modifies the flux operator as pointed
in Sec. I. Then, from Eqs.~3! and ~9! the quantized Hamil-
tonian of the system, which properly accounts for cha
discreteness must be given by

Ĥ5
2\2

L18qe
2
sin2S qe

2\
f̂1D1

2\2

L28qe
2
sin2S qe

2\
f̂2D

1
4\2

M 8qe
2
sinS qe

2\
f̂1D sinS qe

2\
f̂2D1~ ḟ 1Q̂11 ḟ 2Q̂2!.

~10!

The above Hamiltonian is the basis of our calculations. O
system has parametersL1 , L2, and M, assumed known;
while qe represents the elementary charge of the the
which corresponds to the electronic charge. In the limitqe
→0 the operator~10! becomes the~usual! quantum version
of the classical Hamiltonian operator@Eq. ~9!#, as expected.
This limit defines the parametersL18 , L28 and M in a well-
defined fashion.

From the quantum Hamiltonian@Eq. ~10!#, and using the
Heisenberg equations of motion, the dynamical equations
the current and the pseudoflux operators become
0-2
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d

dt
Q̂15

\

qeL18
sinS qe

\
f̂1D1

2\

qeM 8
cosS qe

2\
f̂1D sinS qe

2\
f̂2D ,

d

dt
Q̂25

\

qeL28
sinS qe

\
f̂2D1

2\

qeM 8
cosS qe

2\
f̂2D sinS qe

2\
f̂1D ,

d

dt
f̂15S d

dt
f 1D Î , and

d

dt
f̂25S d

dt
f 2D Î , ~11!

which in the limit qe→0 have the expected form.
Consider now the case in which only the first ring e

closes a nonzero external magnetic field flux, i.e., we lef 1
5 f 1(t) and f 250, then, from Eq.~11!, the total enclosed
fluxes become

f̂15 f 1~ t ! Î 1f̂1
0 and f̂25f̂2

0 , ~12!

wheref̂1
0 andf̂2

0 are the initial pseudoflux conditions corre
sponding to the pseudoflux operators in the Schro¨dinger pic-
ture. The equations for the current operators become

d

dt
Q̂15

\

q
e
L18

sinS qe

\
~ f 1Î 1f̂1

0! D
1

2\

qeM 8
cosS qe

2\
~ f 1Î 1f̂1

0! D sinS qe

2\
f̂2

0D , ~13!

d

dt
Q̂25

\

q
e
L28

sinS qe

\
f̂2

oD1
2\

qeM 8
cosS qe

2\
f̂2

0D
3sinS qe

2\
~ f 1Î 1f̂1

0! D . ~14!

For the sake of simplicity, consider a stateuc&, so that the
average of the pseudoflux operators, computed for this s
are^f̂1

0&5^f̂2
0&50. With all this the equations of motion fo

the averaged current operator Eqs.~13! and ~14! simplify to

K d

dt
Q̂1L 5

\

qeL18
sinS qe

\
f 1D , ~15!

K d

dt
Q̂2L 5

2\

qeM 8
sinS qe

2\
f 1D . ~16!

Consider the case where the external magnetic field
constant, then the external fluxf 15 f 0. The surprising fact is
that whenqef 0/\5 lp, for an integerl, the current in the
second ring, where the external flux vanishes, is at an ex
mum, and the current in the first ring vanishes. This is kno
as quantum current magnification, or quantum current
hacement, and it is clearly a purely quantum effect since
existence depends on Plank’s constants\ andqe being both
nonzero. In Fig. 2 we show a plot of the currents within t
two rings, as a function of the~constant! external flux f 0.
Flux variation changes the sign of the current~paramagnetic
or diamagnetic!, and one sees that the current in the seco
15341
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ring is maximal whenqef 0/\5p and the current in the firs
ring is zero~quantum magnification!.

A final point respect to Eqs.~15! and ~16!. The classical
limit may formally be obtained if we take the limitqe→0 in
these equations. So, classically, when the current is zer
the first ring it is zero also in the second ring.

IV. DISCUSSION AND CONCLUSIONS

The equations for the currents@Eqs.~15! and~16! above#,
have a sinusoidal nonlinearity which has the quantum m
nification effect as a consequence. It is also interesting
consider the effect of sinusoidal time-varying perturbatio
Levy et al.7 have studied the effect of a slowly time-varyin
f(t)5fdc1facsin(vt), externally applied flux, over a dilute
statistical sample of 107 noninteracting copper rings on
saphire substrate at low temperatures, and measured th
duced magnetic momentsm, as a function of the field
strength. They compute the Fourier amplitudes of the m
netic moments, as

m2n52ma~T!J2n~d!sin~u!, ~17!

m2n1152ma~T!J2n11~d!cos~u!, ~18!

whered52pfac /fp andu52pfdc /fp , andfp is the as-
sumed flux periodicity of the average moment.

Starting from Eqs.~15! and~16!, for our two ring system,
we obtain expressions for the~average! induced currents
wich are of the same general form as Eqs.~17! and~18!. To
be precise, the Fourier components of the current^Q̇1(t)&,
may be written asI n

(1)

I 2n
(1)52I 0

(1)J2n~d1!sin~u1!,

I 2n11
(1) 52I 0

(1)J2n11~d1!cos~u1!,

where I 0
(1)5\/(qeL18), d152pfac /fp

(1) , and u1

52pfdc /fp
(1) , and fp

(1)52p\/qe ; while for the current

^Q̇2(t)& in the other ring, the Fourier componentsI n
(2) , are

FIG. 2. Plot of the currents in both rings, divided by their r
spective maximum values, as a function of the argumenta
5qef 1 /\, for 0<a<2p, when f 250. Showing the quantum
magnification, ata5p.
0-3
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I 2n
(2)52I 0

(1)J2n~d2!sin~u2!,

I 2n11
(2) 52I 0

(1)J2n11~d2!cos~u2!,

where I 0
(2)52\/(qeM 8), d252pfac /fp

(2) , and u2

52pfdc /fp
(2) , andfp

(2)52fp
(1) . Note also that, in our ex

pressions for the current magnification, the flux is a perio
function of the external flux, with periodF052p\/qe or
2F0. We point out here that that the ‘‘quantum of charge’’qe
may be identified here with the electronic charge, but
theory outlined here is unable to predict its value indep
dently. Therefore, one may regard parameters such asL, M,
andF0, as well as the currentsI 0

(1) and I 0
(2) , as experimen-

tally defined.
There are other ways to drive a system such as this;

example, one may apply an external electromotive force,
a slightly different coupling, but the main result describ
here should remain valid. Note that, in this case, the co
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sponding experimental setup would be different than in
case considered in this work.

We have also considered the case of a continuous-ch
ring interacting with a discreteness-charge ring. We let
second ring enclose an external flux, with no external flux
the first ring. We obtain the somewhat surprising result t
the magnification effect is still present.

In conclussion, quantum current magnification exist
a system of two ring with mutual inductance and char
discreteness when one of them encloses an external
~15!, ~16!.

ACKNOWLEDGMENTS

J.C. Flores acknowledges support from UTA~Grant No.
DIPOG 4725! and Grant No. FONDECYT 1000-439. Usefu
disscussion were carried out with Professor P. Orellana~Uni-
versidad Cato´lica del Norte! and Professor O. Kunstma
~Universidad Austral de Chile!. C. A. Utreras acknowledge
support from Universidad Austral~DID Grant No. 2001-20!.

.

,

9D. Mailly, C. Chapelier, and A. Benoit, Phys. Rev. Lett.70, 2020
~1993!.

10A.M. Jayannavar and P.S. Deo, Phys. Rev. B49, 13 685~1994!.
11T.P. Pareek, P.S. Deo, and A.M. Jayannavar, Phys. Rev. B52,

14 657~1995!.
12C. Benjaminet al., Mod. Phys. Lett. B15, 19 ~2001!.
13C. Benjamin and A.M. Jayannavar, cond-mat/011407~unpub-

lished!.
14W. H. Louisell, Quantum Statistical Properties of Radiatio

~Wiley, New York, 1973!.
15Y. -Q. Li, Spin-Statistical Connection and Commutation Re

tions: Experimental Test and Theoretical Implications, edited by
R. C. Hilborn and G. M. Tino, AIP Conf. Proc. No. 545~AIP,
Melville, 2000!.
0-4


