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Two ground-state modifications of quantum-dot beryllium
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Exact electronic properties of a system of four Coulomb-interacting two-dimensional electrons in a parabolic
confinement are reported. We show that degenerate ground states of this system are characterized by qualita-
tively different internal electron-electron correlations, and that the formation of Wigner molecule in the strong-
interaction regime is going on in essentially different ways in these ground states.
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Quantum doté—artificial electron systems realizable in of the single-particle problem of quantum-dotdrogen(N
modern semiconductor structures—are ideal physical objects 1) (Ref. 17 are characterized by the radimbnd asimutal
for studying effects of electron-electron correlations. Theyl (angular momentuinquantum numbers. The ground state
contain a few(N) two-dimensional interacting electrons of quantum-dohelium(N=2) (Ref. 18 is characterized by
moving in the plane=0 in a lateral confinement potential the total angular momentulm=0 and the total spi®=0. In
V(x,y). The potentiaV can often be modeled by a harmonic the |imit of weak interaction. <1 two electrons with oppo-
oscillator form V=K (x?+y?)/2, with a ch-ar.acteristic fre-  site spins occupy the single-particle statel}=(0,0), form-
quency wo=yK/m* and a characteristic lengthlo  jng the configuration (0,0,). The state ,S)=(0,0) re-
= VAi/m”w, (herem” is the effective mass of electronghe  mains the ground state at ahy also in the regime of strong
relative strength of interaction and kinetic effects can b§neraction. The first excited state of quantum-dot helium is

characterized by the dimensionless parameter the state [,S)=(1,1).
In quantum-dotlithium (N=3) (Ref. 14 the N depen-
N = |_o_ /e2/aBoc 9_2 1 dence of the ground-state properties is more complicated. In
Tag Y hop 32 @ the regime of weak interaction<1 electrons form the con-

figuration[ (0,0,1 |),(0,1,1)] with (L,S)=(1,1/2). The state
determined by the ratio of quantum-mechanical and interact1,1/2) remains the ground state upe A ~4.343, where
tion length(energy scales &g is the effective Bohr radius of @ transition to another ground state with, §) =(0,3/2) oc-
the host semiconductprThe curvature of the confinemeit  curs. All physical properties of the dot sharply change at the
and hence the interaction parametercan be experimentally transition point. At >\ electron distribution in the dot has
varied, so that quantum dots are often referred to as artificidthe form of an angle-averaged equilateral triangthe
atoms with tunable physical properties. A theoretical study ofWigner moleculg
physical properties of such “atomsds a function ofthe The goal of this paper is to presestactresults of solu-
Coulomb-interaction paramet&rmay give a valuable infor- tion of the four-electron quantum-daeryllium problem at
mation about the role of electron-electron correlations in inB=0. Some results for the energy of states at a few points
teracting quantum systems. The physics of interactions besn the \ axis, obtained by different variational methods,
comes especially interesting in a zero external magnetic fieldvere reported in the literatur@.g., Refs. 2, 7, and 12We
B, when electronic spins are not polarized and are activgomplete and essentially improve these results, presenting
players in the game. Detailed theoretical study of physicathem for the ground and a number of excited states in a
properties of quantum-dot atoms, including the Fermi-broad range ands a function of\. A principal finding of
liquid—Wigner-molecule crossover in the ground state withthis work results from a detailed study of ground-state prop-
growing strength of intra dot Coulomb interaction, is one oferties of quantum-dot beryllium. The ground state of this
the challenging problems in this field, which was attractingatom is degenerate with respect to the total spin projection
increasing interest in recent ye&rs (for more references S;, and we show that electron-electroorrelation functions

see Ref. 14 and a recent reviéy as well as theirspin density are substantially different in
The Hamiltonian of ariN-electron dot, different ground states. As a result, the formation of Wigner
molecules with the growing interaction strength is going on
N P2 mwk?| 1 N e? in qualitatively different ways, dependent on the value of the
A=Y ( Ly 0 ') - ——, (2) total spin projectiorS, (0 or *1). This result is valid not
i=1\2m* 2 251 |ri_rj| only in the considered parabolic quantum-dot model. It has a

general character and should be the case in any strongly in-
commutes with the operators of the total angular momentungeracting many-electron systefe.g. in natural atomswith
L% L., total spinS and its projectiors; on some axis. So- degenerate ground states.
lutions The Schrdinger equation with Hamiltoniai2) and N
=4 is solved by the exact-diagonalization method described
En=hawo(2n+]|l|+1) (3) in Ref. 14. The many-body wave function is expanded in a
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FIG. 1. (&) The energy of the ground staté ,§)=(0,1) of
quantum-dot beryllium as a function of the interaction parameter
together with the clasical contributiok, and the energyE
+4hw,. (b) The energies of a few excited statég 5)— E oy (the
ground-state energy is subtractes a function of\. Calculations
were performed withE, =224 wg, Npps= 14453. The energy unit
on both plots ish w.

complete setV', of many-body eigenstates of the Hamil-
tonian H, of noninteracting particlesH ¥ ,=E ¥, with
the number of basis stat®$,,s restricted by the condition
E,<E:,, whereE,, is a threshold value. The larger the
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TABLE I. The ground and a few lowest excited states of
quantum-dot beryllium: the total angular momentum and spin
(L,S), energy in the weak-interaction limE_g(A—0) (in units
hwg), and degeneracy of the states. The states are shown in the
order of increasing of their energy r&<1.
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Eq=6[(1+/8)/412%e%1), 14=(e?/m*wd)*? (4)

(the energy of four Coulomb-interacting pointlike particles in
a parabolic potenti&!?9, and with the curveE, + 44w,

(the classical energy plusw, per particle. The ground state

is characterized by quantum numbets $)=(0,1), and is
threefold degenerate. In the weak-interaction regime the cor-
responding wave functions ar;, (¥,+W¥;)/\2 and¥,
(S,=+1,0, and—1, respectively, where

q’l:[(olO’Tl)’(oi_1!T)1(0111T)]1

\PZZ[(O,O,T\L),(O,_1,T),(0,1¢)],
)
\P3:[(0101Tl)1(01_11l)1(0111T)]1

TABLE II. Energies of the ground staté (S)=(0,1) and of the
fully spin-polarized statel(,S)=(2,2) in quantum-dot beryllium
from exact diagonalizatiofthis work) and Quantum Monte Carlo
calculationgRef. 2. Exact data in the first five lines were obtained
with E;,=22hwy, which corresponds td\,,,s— 14453 for the
ground state andll,,,= 3248 for the spin polarized state. The data
in the three last lines were obtained with,=244wy (Nmps
=24348) for the state (0,1) and wily,=26h wqy, Npyps= 8721 for
the state (2,2).

threshold energ¥,,, the higher the accuracy of the calcu-

lated energy at a given value ®f and the broader the range
of \’s, in which results have a given accuracy. We performec?
calculations until a sufficientvery high accuracy has been 4
achieved in the wholéstudied range ofA (A<10). Forthe 6
ground-state energy our accuracy is about two orders of
magnitude higher than in corresponding quantum Monteg
Carlo (QMC) calculations; at\ =10 it comprises about 6 1g
X 10" %% (see Table Il beloyw 15
Figure 1a) shows the ground-state energy of a four-,q
electron parabolic quantum dot as a function of the interac-

0,2 0,p? (2,2 (2,24
13.6180 13.7®) 14.2535 14.3()
19.0323 19.1@) 19.3565 19.4¢1)
23.5958 23.62) 23.8025 23.7912)
27.6696 27.7Q) 27.8203 27.82@1)
31.4122 31.4Q) 31.5326 31.5382)
31.4120 31.4®) 31.5323 31.5382)
39.8163 39.8970
47.4002 47.4013

tion parameten, together with the classical contribution
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FIG. 2. Electron densityrl2n,(r) of spin-up and down polar- FIG. 4. The same as in Fig. 2, but for the ground state Bjth
ized electrongn,(r)=n (r)] as a function of radial coordinatél, ~ =+ 1. The total(charge densityn;(r)+n (r) is the same as in

in the ground statel(,S) = (0,1) with S,=0 at a few values of the Fig. 2.
interaction parametex.

\P4:[(0101Tl)1(01_1vl)!(011’l)] 2r

Figure 1b) shows the energies of a few excited statie or
ground-state energy is subtractedt small A the first and
the second excited states aré,$)=(2,0) and (,S)

-4 -4 -4 -4
-4 -2 [¢] 2 4 —4 -2 s} 2 4 —4 -2 o] 2 4 -4 -2 0 2 4
FIG. 3. Pair-correlation function®,(r,r')=P (r,r") (left FIG. 5. Pair-correlation functionB,(r,r") (left column, and
column and P (r,r")=P; (r,r') (right column in the ground P (r,r") (right column in the ground statel(,S)=(0,1) with S,
state (,S)=(0,1) with S,=0, as a function of atr’=(0,—R) =+1, as afunction of atr’=(0,—R)) (the length unitid,, and

(the length unit isly). The interaction parametexr assumes the the second subscript corresponds to the electron fixed at’the
values\=0.2, 2, and 8, from up to dowrR(,/1;=0.57, 1.24, and  point). The interaction parametarassumes the valuas=0.2, 2, 3,
1.97, respectively R, =4[ (1+ v8)/4]'? is the classical radius of and 4.5, from up to downR_,/l,=0.57, 1.24, 1.42, and 1.62, re-
the Wigner molecule. spectively.
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=(0,0), respectively. The staté (S)=(2,0) is twofold de-
generate, and corresponds, in the lilit-0, to the configu-
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electrons are polarized up and one electron is polarized
down. In the weak- and moderate-interaction regimes (
=<2) they form atriangular structure with onddown) elec-

state (,S)=(0,0) is nondegenerate, and corresponds to th&on occupying the center of the dot, and th(ep) electrons

configuration @,—¥5)/\2 at\ —0. These and some other

rotating around; see Figs. 4 and 5. Whenincreases, the

excited states are listed in Table | in the order of increase ogrowing Coulomb interaction pushes the down-electron out

their energies ah<<1. At larger\'s the order of excited
levels changes, as seen from Figu(b)1The level crossings
are the case at~3.40[the statesl(,S)=(0,0) and (2,0)],

A~4.42[the states (1,1) and (2,0)], and=2.37[the states
(2,2) and (3,1)]. The statd_(S)=(0,1) remains the ground
state at all(studied values of\ (<10).

Table Il exhibits numerical data, at a fewpoints, for the
ground statel(,S)=(0,1), and for one of the excitedully
spin-polarizedl state (,S)=(2,2). Here we also compare
our results with QMC calculations from Ref. 2. Notice that
although the QMC results are, in general, in a good agre
ment with exact ones for the fully spin-polarizéelxcited
state, they have an essential systematic error for the grou
state (,S)=(0,1): for instance, ak =10 the absolute error
of the QMC methodabout 0.07. w,) is substantially larger
than the energy difference between the states (0,1) and (O,
(estimated as<0.013 wy at A =10).

Now consider physical properties of quantum-dot beryl-

lium in the ground statesL(S,S;)=(0,1,0) and (,S,S;)

=(0,1,+1). These states are essentially different. In th
ground state witl5,=0 two electrons are polarized up and
two electrons are polarized down. They form a symmetri
square structure, with two up- and two down-polarized ele
trons occupying opposite corners of a square; see Figs. 2 a
3 showing the density and the pair-correlation functions o

rom the center, and the triangular configuration is smoothly
transformed to aclassical-typg square-form structure. In
Fig. 5 one sees how this process begins a3 (the third
row of plotg and how it is completed ax=4.5 (the last
row). Thus correlations between electrons with different
spins are essentially different in ground states vk 0
andS;=*1, and the formation of Wigner molecules is go-
ing on in qualitatively different ways in these states.

The coexistence of degenerate ground states with qualita-
tively different electron-electron correlations is obviously in-

' dependent of the 2D nature of the electrons and of the para-
%olic form of the confinement potential in the present model.

The same situation should be also the case, for example, in a
tural carbon atom, which h&-=1 in the ground state. In
a hypothetic case of a quantum system v8th2 and more
articles one should also expect that degenerate ground
ates withS,=0, =1, and =2 are characterized, in the
strong-interaction regime, by qualitatively different inter-
electron correlations.
To conclude, we have studied energy spectra, charge and

e's’pin densities, and electron-electron correlations in quantum-

dot beryllium — a system of four strongly interacting elec-

Grons in a harmonic oscillator potential. It was shown that

Céais artificial atom can exist in two essentially different

ound states, characterized by qualitatively different
electron-electron correlation functions.

electrons in this state. The relative electronic distribution

holds its square form at al’s, also in the regime of small
interactionsA<1. In the ground state witls,=+1 three
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