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Competing order in the mixed state of high-temperature superconductors
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We examine the low-temperature behavior of the mixed state of a layered superconductor in the vicinity of
a quantum critical point separating a pure superconducting phase from a phase in which a competing order
coexists with superconductivity. At zero temperature, we find that there is an avoided critical point in the sense
that the phase boundary in the limitB→0 does not connect to theB50 critical point. Consequently, there
exists a quasi-one-dimensional~1D! regime of the phase diagram, in which the competing order is largely
confined to 1D ‘‘halos’’ about each vortex core, and in which interactions between neighboring vortices,
although relevant at low temperature, are relatively weak.
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Whereas in many well understood metallic compoun
over a broad range of compositions and temperatures,
only two phases encountered are the normal~Fermi liquid!
and superconducting phases, in the cuprate high temper
superconductors, and other highly correlated electronic
tems, there are many ordered phases which appear to
pete and sometimes coexist. In addition to the unifo
d-wave superconducting state, compelling evidence exist
ordered antiferromangetic~Néel!, unidirectional charge den
sity wave~‘‘charge-stripe’’!, unidirectional, colinear, incom
mensurate spin-density wave~‘‘spin-stripe’’! phases, and
those with coexisting superconducting and stripe order.1 Pre-
liminary evidence also exists of possibled-density-wave or
staggered flux order,2,3 electron nematic,4 d1 id or d1 is
superconducting order,5,6 and various other phases in whic
more than one of these orders coexist.

One rather direct way to look for competing order para
eters in a system which is globally superconducting was
cently proposed by Zhang and co-workers7,8 and others.9–11

The idea is that if the superconducting order is only sligh
favored over a competing order, then where the superc
ducting order is suppressed in the core of a vortex, the c
peting order will be manifest. Indeed, recent neutron scat
ing experiments of Lakeet al.12 on La22xSrxCuO4 have
revealed a strong enhancement of ‘‘spin-stripe’’ order at l
energies produced by modest magnetic fields. Similar res
have been obtained in La2CuO4 by Birgeneauet al.13 More-
over, in scanning tunnelling microscopy~STM! studies by
Hoffman et al.14 of near optimally doped Bi2Sr2CaCu2O81d
in a 7 T magnetic field, large induced ‘‘halos’’ about ea
vortex core have been imaged where the density of state
modulated with a spatial period (4a) equal to that expected15

for ‘‘charge-stripe’’ order. Additional evidence that there is
substantial degree of local charge stripe order
Bi2Sr2CaCu2O81d comes from the similar patterns of de
sity of states modulation observed in the zero-field ST
studies of Howaldet al.16 on the same material.~This inter-
pretation is, however, being challenged in a forthcoming
per by Hoffmanet al.17!
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The notion of a competing order developing an expec
tion value in a vortex core is basically a mean-field notio
However, in all the examples mentioned above, the com
ing order is associated with spontaneously broken symme
so that fluctuation effects may fundamentally alter the ph
ics. Specifically, in a planar system, the vortex core is a fin
size system, and so cannot support a spontaneously br
symmetry, while in three-dimensional superconductors
vortex core is a one-dimensional system, so cannot exh
any symmetry breaking except atT50, and there only for
discrete symmetries.

I. PHASE DIAGRAM

Our principal results are summarized in the schema
zero temperature phase diagram~Fig. 1! for a layered system
in which superconducting order, with an order parameter
noted byC, competes with another type of order, who
order parameter is denoted byf. The two axes represent th
magnetic inductionB and a control parameter ‘‘a, ’’ such as
pressure or doping concentration, with the convention t
increasinga disfavorsf order. It is assumed that atB50
there exists a continuous quantum phase transition aa
5ac ~the heavy circle! separating a pure superconductin
phase from a phase with coexistingf and superconducting
order.

While the considerations here are rather general, it is u
ful to have specific realizations in mind. For us, the mo
important case is that in whichf represents18 stripe orienta-
tional ~‘‘nematic’’ ! order. In the absence of crystal field e
fects, the orientation of the stripes is arbitrary and can
parametrized by an angle 0<u,p. Hence, in this casef
would then be adirector, a headless vector, which in tw
dimensions can be represented by a complex scalar field
fined so thatf5ufuei2u corresponds to stripes lying along
preferred directionêu5 x̂cosu1ŷsinu. ~Note thatu50 and
u5p are physically equivalent.! In this limit, f has a con-
tinuousXY symmetry. However, in a crystal with appropria
point-group symmetry19 there are only two preferred strip
©2002 The American Physical Society16-1
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orientations. In this case,f reduces to a real scalar fiel
reflecting the Ising character of the symmetry breaking.

If, on the other hand the relevant stripe order is magn
~incommensurate SDW! order, in addition to orientationa
symmetry the relevant broken symmetry is spin rotatio
invariance, so for each stripe orientation,f is a three com-
ponent real vector field corresponding to Heisenberg sym
try. We shall see that this case is slightly different than
lower symmetry situations. Stripe states can also spont
ously break translational symmetry, but since a vortex c
explicitly breaks this symmetry in any case, issues of spa
symmetry breaking are more subtle, and will be discus
elsewhere.20

In the phase diagram shown in Fig. 1, the solid lines r
resent actual phase boundaries, and the broken lines
crossovers. The most striking feature of this phase diagra
the presence21 of an ‘‘avoided critical point,’’ i.e., the phase
boundaryac(B) has a discontinuity atB50:

lim
B→0

ac~B!Þac . ~1!

This discontinuity in the phase boundary is a consequenc
the fact that the magnetic field is a singular perturbation.

The assumed competition~mutual suppression! between
superconducting andf order~the latter assumed to be esse
tially uncoupled toB) is seen in the fact that the critical line
a5ac(B) separating the pure and coexistence phases i
increasing function ofB up to the point at which supercon
ductivity is completely suppressed by a magnetic field

FIG. 1. Schematic zero-temperature phase diagram of a lay
superconductor as a function of a control parametera ~described in
the text! and the magnetic inductionB, i.e., the actual magnetic field
which penetrates the system. HereC and f denote, respectively
the expectation values of the superconducting and competing o
parameters and it is assumed that forB50 there is a continuous
transition ata5ac between a pure superconducting phase an
phase with a coexistingC andf order. The solid lines denote phas
boundaries and the other lines are crossovers~all are described in
the text!. In particular,ac(B) represents the boundary between t
pure superconducting and the phase with coexistingf and super-
conducting order, anda1[ limB→0ac(B) marks the point at which
the f ‘‘halo’’ about an isolated vortex-line undergoes a transiti
from a quantum disordered state~for a.a1) to an ordered or qua
siordered state fora,a1. (a1

(0) is the mean-field value ofa1.!
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excess ofB5Hc2. The dashed line marks a crossover fro
quasi one dimensional to fully three-dimensional ord
~where f is more or less uniform in space!. It essentially
coincides with the phase boundary derived by Demleret al.11

for the case in which interactions between layers
neglected.22 The dotted line represents a crossover associa
with the mean-field phase boundary; just to the left of t
line, there is a ‘‘halo’’ of the competing order surroundin
each vortex core, but each halo fluctuates essentially in
pendently, and there is no truef order.

The arguments that lead to this phase diagram const
the bulk of the present paper. The reader should be war
that there are some subtleties~which we will discuss below!
associated with one or another specific type of compe
order that can affect the shape, and even the topology of
phase diagram, as does even weak quenched disorder
simplicity of discussion, for most of the paper we will a
sume the extreme type II limit, in which the London penet
tion depthl5`, although this assumption is not necessa
Some of the experimental consequences of this phase
gram are discussed in the final section of this paper.

II. THE BASIC PHYSICS

In this section, we sketch the basic physics that lead
the phase diagram in Fig. 1. All actual derivations are
ferred to later sections. For simplicity, let us first consider
case in which the broken symmetry associated with the c
peting order is Ising-like, i.e.,f is a real scalar, and there i
a symmetry underf→2f.

A. The Ising case

We start our discussion by considering the structure o
single, isolated vortex in the uniform superconducti
state,23 i.e., a.ac . If a is large, the structure of the vorte
is unaffected by the proximity of thef ordered phase, but i
a is sufficiently close toac , then at mean-field level, the
suppression ofC in a vortex core region of sizej0 ~the
superconducting coherence length! will result in a halo with
radius equal to the critical correlation lengthjf@j0, in
which fÞ0. An important aspect of the structure of th
vortex, first emphasized in this context by Demleret al.,11 is
that the magnitude of the superconducting order param
does not return to its bulk value exponentially, but rather,
a vortex at the origin and forr @j0, has a power-law form

uC~rW !u2;C0
2@12~j0 /r !21•••#. ~2!

This 1/r 2 fall-off is a necessary consequence of the sl
decay of the superfluid flow around an isolated vortex, a
results in a somewhat larger halo off order around a vortex
than would otherwise occur. In any case,jf;ua2acu2n di-
verges with a critical exponentn asa→ac . Sincen is the
quantum critical exponent of a system ind53 spatial dimen-
sions, it presumably takes its mean-field valuen51/2 ~up to
logarithmic corrections to scaling!.

Within a single superconducting plane the halo is a fin
size system, and so cannot actually support a broken sym
try state, i.e., quantum fluctuations will cause the system
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COMPETING ORDER IN THE MIXED STATE OF HIGH- . . . PHYSICAL REVIEW B 66, 144516 ~2002!
tunnel between the positive and negativef states with a
matrix elementh[h(a). Thus, in the absence of interplan
couplings, there can be no truef order established untilB is
large enough, i.e., the vortex density is large enough,
there is significant coupling between neighboring vortic
Because the size of the halo increases with increasingjf ,
we expect thath vanishes in the limitjf /j0→`. We derive
an explicit expression for this, below in Eq.~20!, from the
Landau-Ginzburg theory of competing orders. Howev
even if the microscopic coupling between the order para
eterf on neighboring planesJ0 is weak, the large size of th
halo implies a large effective couplingJ between the halos
on neighboring planes, withJ;J0f 2̄jf

2 , where f 2̄ is the
mean squared value off in the vortex halo. From the
Landau-Ginzburg theory, this coupling is seen to diverge
jf /j0→`, although only logarithmically,J}J0ln(jf /j0), as
shown in Eqs.~13! and ~19!.

Thus, along an isolated vortex, the low energy fluctu
tions are equivalent to an effective transverse-field Is
model with Ising couplingJ and transverse fieldh. This
model has an ordered ground-state providedJ/h.1. Since
asa approachesac , the limit J/h→` is realized, it follows
that for a nearac , an isolated vortex line has an ordere
ground state Moreover, in this limit, no matter how smallB,
the intervortex coupling can never be ignored, and ind
leads to a finite transition temperature. We can estimate
transition temperature using standard methods24 of quasi-
one-dimensional systems: We estimate the intervortex c
pling to be Jinter;exp(2r/jf);exp(2A/ABjf

2 ), where r is
the spacing between vortices andA is a number of order 1
At low temperatures, we estimate the susceptibility of
isolated vortex line to be that of the 1D Ising chainxf(T)
;exp(A8J/T). Finally, we estimate Tc according to
xf(Tc)Jinter51. This leads to the estimate

Tc~B!;jfJAB;B1/2ua2acu21/2ln@ac /ua2acu#, ~3!

where in the second expression we have adopted the Lan
Ginzburg estimate ofJ.

Reversing the present logic, it is clear that with increas
a, we will eventually encounter a condition in whichh
.J. Here, the ground state of the isolated vortex line
quantum disordered, and hence even atT50, there is nof
ordering until a critical field strengthBc(a) is exceeded,
such that the interactions between neighboring vortice
strong enough to induce ordering. The critical valueac(B)
→a1 in the limit B→0 marks the quantum critical point o
the isolated vortex, whereJ(a1)/h(a1)51. ~For small ua
2a1u, the phase boundary is nonanalytic25—a subtlety
which we have neglected in sketching Fig. 1.!

The remaining phase boundaries that occur at larger
ues of B are determined by the obvious and conventio
physics of competing orders. We now discuss the physic
the two crossover lines shown in Fig. 1.

Where thef halos about the vortices start to overla
strongly, there is a crossover from a quasi-one-dimensio
regime in which the magnitude off is substantially inhomo-
geneous, to a regime where the variations off are relatively
small. ~Indicated by the dashed line in Fig. 1.! At first guess
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might be that this crossover occurs when the spacing
tween vortices is of orderjf or in other words whenB*
;ua2acu2n5ua2acu ~up to logarithmic corrections to sca
ing!. In fact, as shown by Demleret al.,11 this crossover
occurs at somewhat smallerB due to the slow recovery ofC
away from the vortex core. If we consider the case in wh
f is homogeneous, then it is as if there were a magnetic fi
dependent reduction of the effective aeff5a

2g̃uBu lnuHc2 /Bu where, as we will see in the next section,ḡ
is proportional to the coupling strength between the two
der parameters. ConsequentlyB* ;ua2acu/ lnuac /(a2ac)u.
@Precisely ata5ac , the same line of reasoning leads to t
conclusion thatTc;uB ln(Hc2 /B)unz, wherez is the dynamical
scaling exponent, and hence depends on the dynamics of.#

For large enougha.a1
(0) , the competing order is suffi

ciently disfavored that, even at mean field level, no halo
nonzerof is induced about the vortex core. Thus, for sm
B andac(B),a,a1

(0) , there are substantial localf corre-
lations along each vortex, but the quantum fluctuations
sufficiently large that the coupling between vortices can
neglected, and no true long-rangef order develops. Fora
.a1

(0) , there are no substantialf fluctuations induced by
the presence of vortices.@The value ofa5a1

(0) at which a
nonzero value off appears at mean-field level is comput
from Landau-Ginzburg theory in Eq.~15!; roughly it is the
point at whichjf;j0.#

We note, in passing, that even in 2D the Ising case is q
different than than Heisenberg case considered by Dem
et al.11 In particular, as discussed in Ref. 22, in the Ising ca
the transition to the coexistence phase occurs when the s
ing between vortices is parametrically large compared tojf .
Consequently, although limB→0ac(B)5ac , for a close to
ac(B) andB small, f is not spatially uniform but rather is
strongly peaked in halos about individual vortex cores.

B. XY and Heisenberg cases

If f is not an Ising variable, but has higher symmetry, t
above considerations are somewhat modified. In the cas
an XY variable, the physics of the isolated vortex is equiv
lent to the well-known physics of the 1D quantum rot
model. Again, there is a single site~i.e., intraplane! term,
which can be characterized by the energy gaph between the
ground state and first excited state of a single rotor; ma
festly, h is proportional to the inverse moment of inertia
the rotor and largeh favors a quantum disordered state. O
dering, however, is again promoted by an ‘‘exchange’’ int
action J between neighboring ‘‘sites,’’ i.e., neighborin
planes. As in the Ising case, we estimate the dependenceJ
on a from the Landau-Ginzburg treatment, below, and w
the same result. For a continuous symmetry,h does not in-
volve tunneling, and so its dependence ona is much weaker
than in the Ising case; indeed, we will see from the Land
Ginzburg treatment thath has the inverse dependence asJ,
i.e., h(a)}1/J(a).

There is still a quantum disordered phase possible ifh/J
is sufficiently large. However, at smallerh/J the ordered
phase of the Ising chain is replaced by a conformally inva
ant ~power-law! phase in theXY chain. The susceptibility in
6-3
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KIVELSON, LEE, FRADKIN, AND OGANESYAN PHYSICAL REVIEW B66, 144516 ~2002!
this phase is a power-law in temperature,xf(T)
;J21(J/T)K, where K(J/h) is an increasing function o
J/h. So long asK.0, this susceptibility still diverges asT
→0, so the topology of the phase diagram is similar to t
in the Ising case. However, nowa1 is determined implicitly
from the relationK(a1)50. For a1.a.ac , whereK(a)
.0, we can use the same intervortex mean-field theory
estimate the ordering temperature

Tc;J exp@2A/~KjfAB!#, ~4!

i.e., Tc rapidly becomes immeasurably small at smallB.
The classical Heisenberg ferromagnet has an orde

ground state, even in one dimension. However, theO(3)
quantum rotor model, which represents the low ene
theory of the quantum Heisenberg antiferromagnets, d
not. In the absence of Berry-phase terms, the o
dimensionalO(3) chain possesses26 a Haldane gap, and
hence a nondivergent zero-temperature susceptibility. T
means that the topology of the phase diagram is different
the Heisenberg case, and that there is no avoided cri
point. However, since the Haldane gap vanishes expon
tially for large J/h, EHaldane;exp@2A9J/h#, it follows from
simple scaling arguments thatxf(T50);exp@2A9J/h#.
Thus, following a line of argument similar to the one whic
in the Ising case led to Eq.~3!, intervortex mean-field theory
leads to an estimate for the criticalB,

Bc~a!;@jfJ/h#22;
u~a/ac!21u

ln2u~a/ac!21u
, ~5!

where in the second expression we have adopted the Lan
Ginzburg estimates ofh andJ.

It is also possible to imagine that a single vortex cor
sponds to a half-integer spin chain, in which case there
Berry’s phase and consequently no Haldane gap. In this c
the situation is essentially equivalent to theXY case, with the
susceptibility exponentK51 ~up to logarithmic corrections!.
However, it seems to us that since the effective Heisenb
model in the present case is not sharply defined on the la
scale, fluctuation effects are likely to smear out the sub
interference phenomena responsible for the special beha
of half-integer spins, leaving us with the physics of the ro
described above.

C. Further subtleties

There are still other subtleties to worry about. In this e
tire discussion we have assumed that the vortex textur
C(rW) does not lift the symmetries which are spontaneou
broken by the ordering off. However, where one of thos
broken symmetries is translation invariance, the presenc
a vortex core is an explicit symmetry breaking field. If th
effect is significant~as it may well be in the case of strip
order!, it greatly complicates the analysis. A related issue
that we have assumed that there is no frustration of globaf
order which arises from the form of the vortex lattice and
nature of the coupling between neighboring halos. We
lieve that, in the absence of the just mentioned symme
breaking terms, this assumption is reasonable, but it is m
14451
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festly unreasonable in their presence. Finally, especially
the regime where the physics is quasi one dimensional
results are likely to be extremely sensitive to even ti
amounts of quenched disorder. We have not fully explo
the implications of any of these further problems.

III. LANDAU-GINZBURG THEORY

While most features of the problem are largely det
mined by considerations of order parameter symmetry, i
pedagogically useful to make them explicit by consideri
the Landau-Ginzburg treatment of two competing order
rameters. We are interested in ground-state properties, s
must ultimately analyze a (D11)-dimensional quantum ac
tion, whereD53 is the spatial dimension. However, we w
be analyzing this action semiclassically, in the sense that
will first consider time-independent field configuration
which minimize the action, and then analyze quantum fl
tuations about this classical ground state. Thus, we star
considering only the classical~static! Landau-Ginzburg free
energy density functional in a single plane of a layered s
tem

F@C,f#5FSC@C#1Ff@f#1
g

2
uCu2ufu21•••, ~6!

whereC, a complex scalar field, is the superconducting
der parameter andf, which may have multiple component
represents the competing order parameter. In the presen
per, we will only focus on ‘‘competing’’ orders in the sens
that we will always assume thatg.0. Indeed, we assum
thatg is not small—ifg is small it means that the two orde
parameters hardly interact, as happens, for instance, in
ventional superconductors whenf andC originate from dif-
ferent pieces of the Fermi surface. The free energy mus
invariant under a global U~1! transformation C(rW)
→eia0C(rW) due to gauge invariance and, depending on
nature of the competing order, under an additional set
global transformationsf(rW)→gf(rW), whereg are elements
of an appropriate coset space. For instance, iff corresponds
to Nèel order, thengPSU(2)/U(1). In Eq.~6!, the super-
conducting contribution toF is of the usual form

FSC5
k0

2
US ¹W

i
2

2e

c
AW DCU2

2
C0

2

2
uCu21

1

4
uCu41•••,

~7!

whereAW is the vector potential,j05Ak0/2C0
2 is the coher-

ence length, and here, and elsewhere,••• refers to higher
order terms in powers of the order parameters. The com
ing order is governed by

Ff5
kf

2
u¹W fu21

a

2
ufu21

1

4
ufu41•••. ~8!

The mean-field solution is obtained by solving th
Landau-Ginzburg~LG! equationsdF/dCuC̄5dF/dfuf̄50.
For the most part, we will focus on states deep in the sup
conducting phase, where we can treatC̄(rW) as a given func-
6-4
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COMPETING ORDER IN THE MIXED STATE OF HIGH- . . . PHYSICAL REVIEW B 66, 144516 ~2002!
tion, leaving us with the task of computingf̄. By symmetry,
f̄50 is always a solution; where a nontrivial solution exis
it leads to a condensation energy

Econd5E drW@F~C̄,f̄ !2F~C̄,0!#52E drW
uf̄u4

4
. ~9!

In the spatially uniform caseC̄(rW)5C0, there is a non-
trivial solution f̄(rW)5A(ac2a)/(12g2) for a,ac5

2gC0
2, while f̄50 for a.ac . In thef disordered phase, i

is easy to see that any inhomogeneous solution of the
equations will decay exponentially with a correlation leng
jf5Akf /(a2ac).

In the case of a single vortex at the origin, we look for
solution of the formC̄(rW)5eiwuC̄(r )u wherew is the azi-
muthal angle. While the exact form ofuC̄(r )u is somewhat
complicated, at larger it is easily seen to beuC̄(r )u
5C0$12(1/2)(j0 /r )21O@(j0 /r )4#%. @Of course, if mag-
netic screening is taken into account,uC̄(r )u approachesC0
exponentially forr @l, with the London penetration length
in the high-temperature superconductors,l is very large, so
it is reasonable to approximate it as infinite.# Since none of
our results depend critically on the short distance (r ,j0)
behavior of this solution, we will adopt the approximation

uC̄~r !u25C0
2@12~j0 /r !2# for r .j0 ~10!

and uC̄(r )u250 for r ,j0. Thus, the LG equation for an
isolated vortex is

F2
]2

]x2
2

1

x

]

]x
1S j0

jf
D 2

2
g̃

x2
1f2~x!Gf~x!50, ~11!

where x5r /j0 , g̃52gC0
2j0

2/kf and f̄(r )
5(Akf/j0)f(x). This equation is valid forx.1; for x

,1, the termg̃/x2 is replaced byg̃. Manifestly, at largex,
f(x);x21/2exp@2x(j0 /jf)# falls with the appropriate
Ornstein-Zernicke form, so where a nontrivial solution e
ists, the condensation energy is always finite.~As expected,
in unscaled units, the vortex halo has a radiusjf .)

At the critical point,a5ac ~i.e., j0 /jf50), it is easy to
see that the solution of Eq.~11! is

f~x!5A11g̃x21 for x.1. ~12!

@In the screened case, forx.(l/j0), the solution is of the

same form, but withA11g̃→1.# It thus follows that for
largejf /j0 , f̄ looks critical for a large intermediate rang
jf.r .j0. From this, it follows that, asa→ac

1 ,

E drWuf̄u2;2pkf~11g̃ !lnuAjf /j0u,

E drWuf̄u4;2pS kf

j0
D 2

~11g̃ !2A8, ~13!
14451
,

G

-

whereA and A8 are numbers of order 1. The first of thes
results is the essential ingredient leading to the existenc
an avoided critical point in this problem. Note that the lon
range tails of the vortex profile contribute to, but are n
essential to this result; even if the vortex is screened,f̄ at the
critical coupling still has a 1/r form, so the second momen
still diverges logarithmically as the critical coupling is a
proached, although with a somewhat different prefactor.

For a not so close toac , we expect a critical value o
a5a1

(0) such that fora.a1
(0) there are no nontrivial solu

tions to the LG equations in the presence of an isolated v
tex. It is relatively straightforward to prove that a necess
and sufficient condition for the existence of a non-trivial s
lution is that the quadratic kernel inF have at least one
negative eigenvalue, i.e., that

F2
]2

]x2
2

1

x

]

]x
1guC̄~r !u2Gf0~r !5ef0~r ! ~14!

has a solution withe,0. Thus,a1
(0) is defined implicitly

from the conditione50. For g̃51 and the approximate
form of the vortex profile introduced above,

a1
(0)520.75

kf

j0
2

or jf51.97j0 . ~15!

Similar estimates can be obtained for any positiveg̃. Finally,
it is clear from the asymptotic form of the single vorte
solutions that for dilute vortices, the effects of coupling b
tween vortices are of order

Jinter;exp@2R/jf#, ~16!

whereR@jf is the spacing between vortices.

IV. THE EFFECTIVE ACTION

To complete the quantum description of the order para
eter fluctuations in the presence of an isolated vortex line,
define an effective Euclidean action which includes int
plane couplings and the simplest possible quantum dyn
ics. We will consider the dynamics only of the slow modes
the order parameterf. However, we will ignore the effects
of the ~possibly interesting! coupling to superconducting
quasiparticles and other low-energy degrees of freedom
least in a BCSd-wave superconductor they have a vanis
ingly small density of states and their effects on the dyna
ics of the order parameters of interest here is likely small
addition, since the phase mode of the superconducting o
parameterC decouples at long wave length from the rest
the degrees of freedom, it is reasonable to suppose that q
tum fluctuations of the superconducting order parameter
be integrated out to produce a small renormalization of
effective parameters; we thus consider only static configu
tions ofC, and omit any dependence onĊ. For all the cases
of competing orderf that we are discussing here, the effe
tive Euclidean action takes the form
6-5
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S@f,C#5(
j
E

0

b

dtE drW$~M /2!uḟu21F@f j ,C#

2J0~f j
†f j 111H.c.!%, ~17!

where rW is a 2D vector in each plane,j labels the planes
f j (rW) is the order parameter field in planej, and we only
consider the case in whichC j (rW)5C(rW) is independent of
layer index, i.e., when we consider a vortex core, we assu
the vortex line is static and precisely perpendicular to
layers. Other forms of thef dynamics can be considered, b
we believe that, for the most part, the results will not
qualitatively different.

Our goal is to obtain explicit expressions for the co
plings in the effective Hamiltonian, discussed in Sec.
above. In particular, wherever there is a nontrivial solution
the mean-field equations, there are clearly a family
equivalent solutions, and important fluctuations which co
potentially restore the broken symmetry are those wh
carry the system from one solution to another.

We begin with the case in which the order parameterf
has Ising symmetry. In the Ising case, the classical gro
states aref5sf̄, where s561. Thus, at low tempera
tures, the relevant states are of the formf j (rW)5s j f̄(r ). The
effective Hamiltonian has matrix elements, denoted below
h, connecting these classical states with each other via
neling processes~‘‘spin flip’’ !. However, while a detailed
calculation of these matrix elements requires additio
analysis to determine the tunneling paths that locally per
the system to fluctuate from one ground state to the other
end result is quite simple: the resulting effective Hamilton
must be of the form of a transverse-field Ising model

Heff5h(
j

s j
x2J(

j
s j

zs j 11
z , ~18!

whereJ is given by

J/2J05E drWuf̄~r !u2. ~19!

In Eq. ~18!, h is the tunneling matrix element which ther
fore depends exponentially on the product of the effect
massM* times the barrier heightEcond. Since the effective
mass is renormalized by precisely the same factorM* /M
5J/2J0, it follows that

ln h;2A9AM* uEcondu;2Aln@jf /j0#, ~20!

where the prefactorA9 is a constant determined by details
the tunneling process. This implies that this problem
proaches the classical 1D Ising ferromagnet asa→ac .

This sort of analysis becomes simpler in the case in wh
a continuous symmetry is broken byf. For instance, con-
sider theXY and Heisenberg cases in whichf is, respec-
tively, a two or three component vector, whilef̄, which is
the solution of the LG equations, can be taken to be a sc
Then, the full set of mean-field solutions can be written
f(rW)5Vf̄(r ), whereV is a unit vector in order-paramete
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space. Now, for the case of weak interlayer coupling a
large ‘‘mass’’ M* we can ignore ‘‘amplitude’’ fluctuations
and focus our attention on the soft Goldstone modes by
stricting our attention to field configurations of the form

f j~rW,t!5Vj~t!f̄~r ! ~21!

so that the effective Hamiltonian is

Heff5(
j

uL j u2

2M*
2J(

j
Vj•Vj 11 , ~22!

whereL j is the angular-momentum conjugate toV, andJ is
given by the same expression, Eq.~19!, as in the Ising case
This is the Hamiltonian of a 1D array of quantum rotors,
discussed previously. Clearly, it follows from Eq.~13! that as
a→ac , both J and M* diverge, making the system mor
and more nearly a classical ferromagnet.

These results flesh out the general physical argum
made in the beginning of this paper. The effect of amplitu
fluctuations have not been included in any of the pres
considerations—since ultimately we are dealing with a
quantum system, we believe they are generally less im
tant than the ‘‘phase’’ fluctuations we have explicitly treate
We have not analyzed the further fluctuation corrections
test this supposition.

V. CONCLUDING REMARKS

When there is more than one competing order in a syst
and the interactions between the two orders are strong, a
remarkably large and varied set of phase diagrams
possible.7,27,28The avoided critical point we have found he
is a particularly striking example. In the context of strip
order, the situation is likely to be even more complex, sin
several distinct stripe orders have been observed in mate
with stripy tendencies. Thus, when stripe order compe
with superconductivity, the full phase diagram should ha
multiple, possibly nested versions of the relatively simp
phase diagram discussed in the present paper.

There are a few additional observations we would like
make. The existence of vortex halos has ma
consequences,29 which we have not explored, for the chara
ter of the thermal vortex states. In particular, it gives rise
vortices that effectively have two30 core radii, jf and j0
rather than a single vortex core radius as in conventio
BCS superconductors. In this context, it is interesting to n
that Wanget al.,31 from an analysis of the Nernst effect in
variety of high-temperature superconductors, have rece
adduced evidence for the existence of well-defined vor
excitations at temperatures well above the superconduc
Tc . Moreover, from an analysis of the magnetic field depe
dence of the Nernst coefficient in La22xSrxCuO4 and
YBa2Cu3O72d , they showed that there were two charact
istic magnetic field strengths in the putative vortex liqu
state, which they identified as corresponding to two disti
vortex core radii. If this interpretation is accepted, t
smaller characteristic field, which they callB* , is to be as-
sociated with the maximal core radiusR* [Af0/2pB* ,
wheref05hc/2e is the superconducting flux quantum. A
6-6
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temperatures well below the zero-fieldTc , B* is typically in
the range of 30 T, corresponding toR* 532 Å. Since this
length scale is comparable to the vortex halo rad
observed14 in STM studies of near-optimally dope
Bi2Sr2CaCu2O81d , it is very tempting to associateR* with
jf . In the Nernst effect experiments,B* is seen to vary
roughly linearly with temperature at low temperatures,
this identification could be tested by looking for similar tem
perature dependence of the vortex halo radius in STM
periments.

Finally, we note that the picture advocated here has al
‘‘dual’’ version12,32,29in which one or the other form of strip
order is dominant, and superconducting order is subdo
nant. In this case, a finite density of topological defects of
stripe state,dislocations, which could be induced by som
form of shear or by disorder, plays the role of the vort
o
d

s

v.
I.
e

ce

s

.N

J.

ys

e

y

,
a

c-
T.

.J.
50

ki,

14451
s

o

x-

a

i-
e

density the problem considered in the present paper. Thu
similar phase diagram as that in Fig. 1~with the labels
changed! can be constructed for dislocation induced sup
conductivity in a stripe ordered phase.
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