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We examine the low-temperature behavior of the mixed state of a layered superconductor in the vicinity of
a quantum critical point separating a pure superconducting phase from a phase in which a competing order
coexists with superconductivity. At zero temperature, we find that there is an avoided critical point in the sense
that the phase boundary in the linBt—~0 does not connect to thB=0 critical point. Consequently, there
exists a quasi-one-dimensiondlD) regime of the phase diagram, in which the competing order is largely
confined to 1D “halos” about each vortex core, and in which interactions between neighboring vortices,
although relevant at low temperature, are relatively weak.
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Whereas in many well understood metallic compounds The notion of a competing order developing an expecta-
over a broad range of compositions and temperatures, th#n value in a vortex core is basically a mean-field notion.
only two phases encountered are the norg&armi liquid However, in all the examples mentioned above, the compet-
and superconducting phases, in the cuprate high temperatuitg order is associated with spontaneously broken symmetry,
superconductors, and other highly correlated electronic sys0 that fluctuation effects may fundamentally alter the phys-
temsl there are many ordered phases which appear to Coriﬁ.s. Specifica”y, ina planar SyStem, the vortex core is a finite
pete and sometimes coexist. In addition to the uniformSiZ€ System, and so cannot support a spontaneously broken
d-wave superconducting state, compelling evidence exists giymmetry, while in three-dimensional superconductors the
ordered antiferromangetitNéel), unidirectional charge den- vortex core is a one.-dlmen5|onal system, so cannot exhibit
sity wave (“charge-stripe”), unidirectional, colinear, incom- any symmetry brgaklng except @t=0, and there only for
mensurate spin-density wavgspin-stripe”) phases, and discrete symmetries.
those with coexisting superconducting and stripe otdne-
liminary evidence also exists of possildedensity-wave or I. PHASE DIAGRAM
staggered flux ordér’ electron nematié,d+id or d+is

superconducting ordéfr} and various other phases in which  Our principal results are summarized in the schematic
more than one of these orders coexist. zero temperature phase diagréfig. 1) for a layered system
One rather direct way to look for competing order param-in which superconducting order, with an order parameter de-
eters in a system which is globally superconducting was renoted by ¥, competes with another type of order, whose
cently proposed by Zhang and co-worKétsnd others=**  order parameter is denoted By The two axes represent the
The idea is that if the superconducting order is only slightlymagnetic inductiorB and a control parametera,” such as
favored over a competing order, then where the supercorpressure or doping concentration, with the convention that
ducting order is suppressed in the core of a vortex, the comincreasinga disfavors¢ order. It is assumed that &=0
peting order will be manifest. Indeed, recent neutron scatteithere exists a continuous quantum phase transition at
ing experiments of Lakeet al’? on La,_,Sr,CuQ, have =a. (the heavy circle separating a pure superconducting
revealed a strong enhancement of “spin-stripe” order at lowPhase from a phase with coexistiggand superconducting
energies produced by modest magnetic fields. Similar resul@rder. . . o
have been obtained in LBUO, by Birgeneatet al3 More- While the con§|Qerat|Qns here are r_ather general, it is use-
over, in scanning tunnelling microscog®TM) studies by ful to have spe_cmc re_allzat_lons in mind. For us, t_he most
Hoffman et al* of near optimally doped BBr,CaCyOg. s important case is that in whicl represent$ stripe orienta-
in a 7 T magnetic field, large induced “halos” about each tional (“nematic”) order. In the absence of crystal field ef-
vortex core have been imaged where the density of states {§CtS, the orientation of the stripes is arbitrary and can be
modulated with a spatial period &} equal to that expectéd ~ Parametrized by an angle<0<m. Hence, in this case
for “charge-stripe” order. Additional evidence that there is aWould then be adirector, a headless vector, which in two
substantial degree of local charge stripe order ind_|men3|ons can be represented by a com_plex s_calar field de-
Bi,SK,CaCy Oy, ; comes from the similar patterns of den- fined so thawp=| |2’ corresponds to stripes lying along a
sity of states modulation observed in the zero-field STMpreferred directiore,=xcosg+ysiné. (Note that¢=0 and
studies of Howalcet all® on the same materialThis inter-  #= are physically equivalentln this limit, ¢ has a con-
pretation is, however, being challenged in a forthcoming patinuousXY symmetry. However, in a crystal with appropriate
per by Hoffmanet al?) point-group symmetry there are only two preferred stripe
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B excess oB=H.,. The dashed line marks a crossover from
quasi one dimensional to fully three-dimensional order
(where ¢ is more or less uniform in spacelt essentially
H, coincides with the phase boundary derived by Derateal 1

for the case in which interactions between layers are
neglected” The dotted line represents a crossover associated
with the mean-field phase boundary; just to the left of this
line, there is a “halo” of the competing order surrounding
each vortex core, but each halo fluctuates essentially inde-
pendently, and there is no trug order.

The arguments that lead to this phase diagram constitute

i the bulk of the present paper. The reader should be warned

o Quasi ID regime " 0" o that there are some subtleti@shich we will discuss beloyv
associated with one or another specific type of competing

FIG. 1. Schematic zero-temperature phase diagram of a layeregrder that can affect the shape, and even the topology of the
superconductor as a function of a control parametédescribed in phase diagram, as does even weak quenched disorder. For
the texi and the magnetic inductid, i.e., the actual magnetic field  simplicity of discussion, for most of the paper we will as-
which penetrates the system. Hekeand ¢ denote, respectively, sume the extreme type Il limit, in which the London penetra-
the expectation values of the superconducting and competing ordefgn depth\ =, although this assumption is not necessary.
parameters and it is assumed that Bx+0 there is a continuous ggme of the experimental consequences of this phase dia-

transition ata= a, between a pure superconducting phase and agram are discussed in the final section of this paper.
phase with a coexisting’ and¢ order. The solid lines denote phase

boundaries and the other lines are crossovaltsare described in
the texy. In particular,a;(B) represents the boundary between the
pure superconducting and the phase with coexisipngnd super-
conducting order, and,=limg_ ca.(B) marks the point at which
the ¢ “halo” about an isolated vortex-line undergoes a transition
from a quantum disordered stdfer «> «4) to an ordered or qua-
siordered state fon<a;. (a{” is the mean-field value of;.)

Il. THE BASIC PHYSICS

In this section, we sketch the basic physics that leads to
the phase diagram in Fig. 1. All actual derivations are de-
ferred to later sections. For simplicity, let us first consider the
case in which the broken symmetry associated with the com-
peting order is Ising-like, i.e ¢ is a real scalar, and there is

. . . . a symmetry undetp— — ¢.
orientations. In this casep reduces to a real scalar field 4 y ¥ ¢

reflecting the Ising character of the symmetry breaking.

If, on the other hand the relevant stripe order is magnetic
(incommensurate SDWorder, in addition to orientational We start our discussion by considering the structure of a
symmetry the relevant broken symmetry is spin rotationakingle, isolated vortex in the uniform superconducting
invariance, so for each stripe orientatiaf,is a three com- statei.e., a>a.. If a is large, the structure of the vortex
ponent real vector field corresponding to Heisenberg symmaes unaffected by the proximity of theé ordered phase, but if
try. We shall see that this case is slightly different than thex is sufficiently close toe., then at mean-field level, the
lower symmetry situations. Stripe states can also spontanguppression of’ in a vortex core region of siz&, (the
ously break translational symmetry, but since a vortex corguperconducting coherence lengttill result in a halo with
explicitly breaks this symmetry in any case, issues of spatialadius equal to the critical correlation lengy>¢£,, in
symmetry breaking are more subtle, and will be discussethich ¢+#0. An important aspect of the structure of the
elsewhere? vortex, first emphasized in this context by Demé¢ral, ! is

In the phase diagram shown in Fig. 1, the solid lines repthat the magnitude of the superconducting order parameter
resent actual phase boundaries, and the broken lines ag@es not return to its bulk value exponentially, but rather, for
crossovers. The most striking feature of this phase diagram is vortex at the origin and far>¢&,, has a power-law form
the presenc@ of an “avoided critical point,” i.e., the phase

A. The Ising case

boundarya(B) has a discontinuity a8=0: | W ()2~ 1—(&/r)2+---]. )
lim au(B)# a.. (1 This 1t2 fall-off is a necessary consequence of the slow
B0 decay of the superfluid flow around an isolated vortex, and

results in a somewhat larger halo ¢forder around a vortex

This discontinuity in the phase boundary is a consequence dhan would otherwise occur. In any cafg,~|a— a7 di-
the fact that the magnetic field is a singular perturbation. verges with a critical exponent as a— «. Sincev is the

The assumed competitiofmutual suppressigrbetween quantum critical exponent of a systemde- 3 spatial dimen-
superconducting ang order(the latter assumed to be essen-sions, it presumably takes its mean-field vaiue1/2 (up to
tially uncoupled tdB) is seen in the fact that the critical line, logarithmic corrections to scaling
a= a¢(B) separating the pure and coexistence phases is an Within a single superconducting plane the halo is a finite
increasing function oB up to the point at which supercon- size system, and so cannot actually support a broken symme-
ductivity is completely suppressed by a magnetic field intry state, i.e., quantum fluctuations will cause the system to
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tunnel between the positive and negatigestates with a might be that this crossover occurs when the spacing be-
matrix elemenh=h(a). Thus, in the absence of interplane tween vortices is of ordeg, or in other words wherB*
couplings, there can be no trgeorder established untis  ~|a— a¢|?"=|a— a.| (up to logarithmic corrections to scal-
large enough, i.e., the vortex density is large enough, thaing). In fact, as shown by Demleet al,'! this crossover
there is significant coupling between neighboring vorticesoccurs at somewhat smallBrdue to the slow recovery oF
Because the size of the halo increases with increagjng away from the vortex core. If we consider the case in which
we expect thah vanishes in the limig,/§,—. We derive ¢ is homogeneous, then itis as if there were a magnetic field
an explicit expression for this, below in ER0), from the  dependent reduction of the effective ag=a
Landau-Ginzburg theory of competing orders. However,—%|B|In|H,,/B| where, as we will see in the next sectiq_n,
even if the microscopic coupling between the order paramis proportional to the coupling strength between the two or-
eter¢ on neighboring planed, is weak, the large size of the (er parameters. Consequen®f ~|a— ag|/In|as/(a—ay)|.
halo implies a large effective couplinhbetween the halos [precisely atr= a,, the same line of reasoning leads to the
on neighboring planes, witB~Jo¢2§2¢, where ¢? is the  conclusion thal .~ |B In(H.,/B)|"?, wherezis the dynamical
mean squared value op in the vortex halo. From the scaling exponent, and hence depends on the dynamigs]of
Landau-Ginzburg theory, this coupling is seen to diverge as For large enoughy> a(lo), the competing order is suffi-
41—, although only logarithmically<JoIn(é,/4), as  ciently disfavored that, even at mean field level, no halo of
shown in Egs(13) and(19). nonzerog is induced about the vortex core. Thus, for small
Thus, along an isolated vortex, the low energy fluctuaB and a (B)<a< a(lo), there are substantial locdl corre-
tions are equivalent to an effective transverse-field Isingations along each vortex, but the quantum fluctuations are
model with Ising couplingd and transverse fielth. This  sufficiently large that the coupling between vortices can be
model has an ordered ground-state pl’OVidéIUl>l. Since neglected, and no true |0ng_rangeorder develops. Fow

asa appl’oache&c, the limit J/h—oo is realized, it follows >6¥(10), there are no Substantiaj fluctuations induced by
that for a nearac, an isolated vortex line has an ordered {he presence of vortice§The value ofa=a{?) at which a

. T 1
ground state Moreover, in this limit, no matter how sn&ll  57er0 value ofp appears at mean-field level is computed

the intervortex coupling can never be ignored, an_d indeeglrom Landau-Ginzburg theory in Eq15); roughly it is the
leads to a finite transition temperature. We can estimate th'ﬁoint at whiché s~ &.]

transition temperature using standard metfibds quasi- We note, in passing, that even in 2D the Ising case is quite
one-dimensional systems: We estimate the intervortex COljgterent than than Heisenberg case considered by Demler
pling to be Jine~exp(—r/é,)~exp(-A/VBE,), wherer is et 1M |n particular, as discussed in Ref. 22, in the Ising case
the spacing between vortices aAds a number of order 1. the transition to the coexistence phase occurs when the spac-
At low temperatures, we estimate the susceptibility of anng petween vortices is parametrically large compareg;to
isolated vortex line to be that of the 1D Ising chaip(T) Consequently, although lign.oac(B)=a., for a close to
~exp@'JT). Finally, we estimate T, according to 4 (B) andB small, ¢ is not spatially uniform but rather is

X 4(Tc)Jiner=1. This leads to the estimate strongly peaked in halos about individual vortex cores.

To(B)~£4,0VB~B*a—a| YAn[ac/|a—al], (3)

B. XY and Heisenberg cases

where in the second expression we have adopted the Landau- If ¢ is not an Ising variable, but has higher symmetry, the
Ginzburg estimate od. above considerations are somewhat modified. In the case of
Reversing the present logic, it is clear that with increasingan XY variable, the physics of the isolated vortex is equiva-
@, we will eventually encounter a condition in whidh |ent to the well-known physics of the 1D quantum rotor
>J. Here, the ground state of the isolated vortex line ismodel. Again, there is a single sitee., intraplang term,
quantum disordered, and hence eveT a0, there is nop  which can be characterized by the energy bdgtween the
ordering until a critical field strengtiB.(«) is exceeded, ground state and first excited state of a single rotor; mani-
such that the interactions between neighboring vortices ifestly, h is proportional to the inverse moment of inertia of
strong enough to induce ordering. The critical valy€B)  the rotor and largén favors a quantum disordered state. Or-
—ay in the limit B—0 marks the quantum critical point of dering, however, is again promoted by an “exchange” inter-
the isolated vortex, wheré(a,)/h(a;)=1. (For small|« action J between neighboring “sites,” i.e., neighboring
—ay|, the phase boundary is nonanalftiea subtlety planes. As in the Ising case, we estimate the dependente of
which we have neglected in sketching Fig) 1. on a from the Landau-Ginzburg treatment, below, and with
The remaining phase boundaries that occur at larger vathe same result. For a continuous symmelrgloes not in-
ues of B are determined by the obvious and conventionalvolve tunneling, and so its dependence®is much weaker
physics of competing orders. We now discuss the physics ahan in the Ising case; indeed, we will see from the Landau-
the two crossover lines shown in Fig. 1. Ginzburg treatment thét has the inverse dependenceJdas
Where the¢ halos about the vortices start to overlapi.e., h(a)x1/J(a).
strongly, there is a crossover from a quasi-one-dimensional There is still a quantum disordered phase possiblg Jf
regime in which the magnitude @f is substantially inhomo- is sufficiently large. However, at smalldr/J the ordered
geneous, to a regime where the variationgpadre relatively  phase of the Ising chain is replaced by a conformally invari-
small. (Indicated by the dashed line in Fig.) At first guess  ant(power-law phase in theX'Y chain. The susceptibility in
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this phase is a power-law in temperaturey,(T) festly unreasonable in their presence. Finally, especially in
~J"YJITX, whereK(J/h) is an increasing function of the regime where the physics is quasi one dimensional, all
J/h. So long ask>0, this susceptibility still diverges a6  results are likely to be extremely sensitive to even tiny
—0, so the topology of the phase diagram is similar to thaamounts of quenched disorder. We have not fully explored
in the Ising case. However, now; is determined implicitly ~ the implications of any of these further problems.

from the relationK(a4)=0. For @;>a>a;, whereK(a)

>0, we can use the same intervortex mean-field theory to [ll. LANDAU-GINZBURG THEORY

estimate the ordering temperature )
While most features of the problem are largely deter-

T~J exq—A/(K§¢\/§)], (4) mined by considerations of order parameter symmetry, it is

, ) ) pedagogically useful to make them explicit by considering
i.e., T, rapidly becomes immeasurably small at sniall the Landau-Ginzburg treatment of two competing order pa-

The classical Heisenberg ferromagnet has an orderegimeters. We are interested in ground-state properties, so we
ground state, even in one dimension. However, @) st ultimately analyze a+ 1)-dimensional quantum ac-
quantum rotor model, which represents the low energyio \whereD =3 is the spatial dimension. However, we will
theory of the quantum Heisenberg antiferromagnets, doe§e gnalyzing this action semiclassically, in the sense that we
not. In the absence of Berry-phase terms, the oney;j first consider time-independent field configurations
dimensional O(3) chain possess€sa Haldane g9ap, and \hich minimize the action, and then analyze quantum fluc-
hence a nondivergent zero-temperature susceptibility. Thig ations about this classical ground state. Thus, we start by
means that the topology of the phase diagram is different fOEonsidering only the classicéstatio Landau-Ginzburg free

the Heisenberg case, and that there is no avoided CriﬂC@nergy density functional in a single plane of a layered sys-
point. However, since the Haldane gap vanishes exponeRgm

tially for large J/h, Epagans~exd —A"Jd/h], it follows from
simple scaling arguments thag ,(T=0)~exd2A"J/h]. Y
Thus, following a line of argument similar to the one which 7‘[‘1’,¢]=7:sc{‘1’]+7¢[¢]+§|‘1’|2|¢|2+ e, (6)
in the Ising case led to E@3), intervortex mean-field theory
leads to an estimate for the criticg) whereWV, a complex scalar field, is the superconducting or-
der parameter ang, which may have multiple components,
[(alag)—1] represents the competing order parameter. In the present pa-
m’ ®) per, we will only focus on “competing” orders in the sense
¢ that we will always assume that>0. Indeed, we assume
where in the second expression we have adopted the Landatirat y is not small—ify is small it means that the two order
Ginzburg estimates di andJ. parameters hardly interact, as happens, for instance, in con-
It is also possible to imagine that a single vortex corre-ventional superconductors whenand¥ originate from dif-
sponds to a half-integer spin chain, in which case there is gerent pieces of the Fermi surface. The free energy must be
Berry’s phase and consequently no Haldane gap. In this casgwariant under a global (@) transformation W (r)
the situation is essentially equivalent to K& case, with the
susceptibility exponert =1 (up to logarithmic corrections

Be(a)~[£,d/h] ?~

Hei“O\P(F) due to gauge invariance and, depending on the

However, it seems to us that since the effective Heisenbernature of the competinq order, *under an additional set of
model in the present case is not sharply defined on the latticdloPal transformationg(r) —gé(r), whereg are elements
scale, fluctuation effects are likely to smear out the subtl@®f @n appropriate coset space. For instance, dorresponds
interference phenomena responsible for the special behavid? Neel order, thenge SU(2)/U(1). In Eq.(6), the super-

of half-integer spins, leaving us with the physics of the rotorconducting contribution t¢ is of the usual form

described above. -
vV 2e.
(.___A)q,

| C

2 2
—— P2 A
O e

There are still other subtleties to worry about. In this en- _ @
tire discussion we have assumed that the vortex texture affhereA is the vector potentialéy= \/K0/2‘I'02 is the coher-
W(r) does not lift the symmetries which are spontaneoushence length, and here, and elsewhere, refers to higher
broken by the ordering of. However, where one of those order terms in powers of the order parameters. The compet-
broken symmetries is translation invariance, the presence dfg order is governed by
a vortex core is an explicit symmetry breaking field. If this 1
effect is significant(as it may well be in the case of stripe _Keve e Ey 2y DA,
orden, it greatly complicates the analysis. A related issue is T 2 Vol 2 ¢+ 4|¢)| o ®)
that we have assumed that there is no frustration of glgbal
order which arises from the form of the vortex lattice and the The mean-field solution is obtained by solving the
nature of the coupling between neighboring halos. We beLandau-GinzburdLG) equationssF/ 6¥ |y = 671 6| ,=0.
lieve that, in the absence of the just mentioned symmetry-Or the most part, we will focus on states deep in the super-
breaking terms, this assumption is reasonable, but it is manzonducting phase, where we can trégr) as a given func-

Ko
fsc:7

C. Further subtleties
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tion, leaving us with the task of computing By symmetry, whereA andA’ are pur_nbers .of orderll. The first Qf these
$=0 is always a solution; where a nontrivial solution exists,reg'mts.IS the .e'ssenthl mgre@ent leading to the existence of
it leads to a condensation energy an av0|d_ed critical point in thls_ problem. Note that the long-
range tails of the vortex profile contribute to, but are not
o o e|$|4 essential to this result; even if the vortex is screeredt the
Econdzf dr[A(V,¢)—FV¥,0]= —f drT. (9) critical coupling still has a 1/form, so the second moment
still diverges logarithmically as the critical coupling is ap-
— proached, although with a somewhat different prefactor.
In the spatially uniform cas#’(r) =", there is a non- For « not so close tor,, we expect a critical value of
trivial solution ¢(r)=+(a.—a)/(1-9?) for a<a.=  a=al? such that fora>a{® there are no nontrivial solu-
— 7\112, while gzo for a>a. . In the ¢ disordered phase, it tions to the LG equations in the presence of an isolated vor-
is easy to see that any inhomogeneous solution of the L&eXx. Itis relatively straightforward to prove that a necessary
equations will decay exponentially with a correlation lengthand sufficient condition for the existence of a non-trivial so-
E5= m_ lution is that the quadratic kernel i have at least one
In the case of a single vortex at the origin, we look for anegative eigenvalue, i.e., that
solution of the formW¥ (r)=e€'¢|W(r)| where ¢ is the azi- >
muthal angle. While the exact form ¢¥ (r)| is somewhat YW (N)|2|do(r)=edo(r)  (14)

——
complicated, at larger it is easily seen to bdW¥(r)| ax? X X

=Wo{1—(1/2)(&/r)%+ O[ (& /r)*]}. [Of course, if mag-
netic Screening is taken into accouhl—l(r)| approacheﬁ/ has a solution withe<O. ThUS,ag_O) is defined ImpIICItIy
) 0
exponentially forr> X\, with the London penetration length; from the conditione=0. For y=1 and the approximate
in the high-temperature superconductorss very large, so form of the vortex profile introduced above,
it is reasonable to approximate it as infinjt&ince none of
our results depend critically on the short distance §p) P
behavior of this solution, we will adopt the approximation al¥= —0.755—;S or £,=1.97. (15)
0

W(r)[2=W1—-(&/r)?] for r> 10
. ¥l ol 1= (&/r)’] fo (10 Similar estimates can be obtained for any posiﬁvﬁnally,
and |\If(r)|2=0 for r<¢&,. Thus, the LG equation for an it is clear from the asymptotic form of the single vortex
isolated vortex is solutions that for dilute vortices, the effects of coupling be-

tween vortices are of order

2 2 7
J 190 +(é) —12+(]52(X)
X

g, d(x)=0, (11) Jiner—exXd —R/& 4], (16)

~ 2.2 — whereR> ¢ is the spacing between vortices.
where X=rl&y, y=2y¥5éo/ Kk and o(r)

= (x4l &) #(x). This equation is valid forx>1; for x
<1, the termy/x? is replaced byy. Manifestly, at largex,
¢(x)~x*1’2exp[—x(§0/§¢)] falls with the appropriate To complete the quantum description of the order param-
Ornstein-Zernicke form, so where a nontrivial solution ex-eter fluctuations in the presence of an isolated vortex line, we
ists, the condensation energy is always fin{es expected, define an effective Euclidean action which includes inter-

IV. THE EFFECTIVE ACTION

in unscaled units, the vortex halo has a radjys) plane couplings and the simplest possible quantum dynam-
At the critical point,a=«. (i.e., &,/§4=0), itis easy to ics. We will consider the dynamics only of the slow modes of
see that the solution of Eq1l) is the order parametap. However, we will ignore the effects
of the (possibly interesting coupling to superconducting
d(X)=\1+7yx"L for x>1. (12)  Quasiparticles and other low-energy degrees of freedom—at

least in a BCSd-wave superconductor they have a vanish-
[In the screened case, far>(M\/&y), the solution is of the ingly small density of states and their effects on the dynam-

same form, but withy1+75—1.] It thus follows that for  icS Of the order parameters of interest here is likely small. In

arge ¢/, & looks criical for a large imermediate range, 72 00 R e o the restof
£,>1>&p. From this, it follows that, as«— a , b P J o

the degrees of freedom, it is reasonable to suppose that quan-

tum fluctuations of the superconducting order parameter can

f dF|$|2"‘2’7TK¢(1+;/)|”|A§¢/§0|, be int_egrated out to produce a smgll renormali;ation Qf the
effective parameters; we thus consider only static configura-

2 tions of ¥, and omit any dependence 8h For all the cases
(1+7)%A7, (13)  of competing ordew that we are discussing here, the effec-
tive Euclidean action takes the form

f dF|$|4~2w(';—:
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B . - space. Now, for the case of weak interlayer coupling and
SERAEDS JO dTJ dr{(M/2)|¢|*+ F ¢;, V] large “mass”M* we can ignore “amplitude” fluctuations,
: and focus our attention on the soft Goldstone modes by re-
_JO(¢JT¢1+1+ H.c)l, (17)  stricting our attention to field configurations of the form
wherer is a 2D vector in each plang,labels the planes, &;(r,7)=Q;(1) (1) (21

¢;(r) is the order parameter field in plajeand we only  gg that the effective Hamiltonian is
consider the case in whictlr;(r)=W(r) is independent of
layer index, i.e., when we consider a vortex core, we assume |LJ-
the vortex line is static and precisely perpendicular to the Heff:z. * _JZ Q- Q4 (22)
. . i 2M i
layers. Other forms of thée dynamics can be considered, but
we believe that, for the most part, the results will not bewherel; is the angular-momentum conjugate(® andJ is
qualitatively different. given by the same expression, E#9), as in the Ising case.
Our goal is to obtain explicit expressions for the cou-This is the Hamiltonian of a 1D array of quantum rotors, as
plings in the effective Hamiltonian, discussed in Sec. Il,discussed previously. Clearly, it follows from Eg.3) that as
above. In particular, wherever there is a nontrivial solution toe— «, both J and M* diverge, making the system more
the mean-field equations, there are clearly a family ofand more nearly a classical ferromagnet.
equivalent solutions, and important fluctuations which could These results flesh out the general physical arguments
potentially restore the broken symmetry are those whicimade in the beginning of this paper. The effect of amplitude
carry the system from one solution to another. fluctuations have not been included in any of the present
We begin with the case in which the order parameter considerations—since ultimately we are dealing with a 3D
has Ising symmetry. In the Ising case, the classical groundquantum system, we believe they are generally less impor-
states arep=a ¢, wheres==1. Thus, at low tempera- tantthan the “phase” fluctuations we have explicitly treated.
We have not analyzed the further fluctuation corrections to
)}est this supposition.

| 2

tures, the relevant states are of the fouﬁrjmf) =oj¢(r). The
effective Hamiltonian has matrix elements, denoted below b
h, connecting these classical states with each other via tun-
neling processe$“spin flip” ). However, while a detailed

calculation of these matrix elements requires additional \yhen there is more than one competing order in a system
analysis to determine the tunneling paths that locally permigng the interactions between the two orders are strong, and a
the system to fluctuate from one ground state to the other, th@markably large and varied set of phase diagrams are
end result is quite simple: the resulting effective Hamiltonian,ossible’ 2728 The avoided critical point we have found here

V. CONCLUDING REMARKS

must be of the form of a transverse-field Ising model is a particularly striking example. In the context of stripe
order, the situation is likely to be even more complex, since
Her=h>, U}(_JE UJ_ZU]ZH, (18  several distinct stripe orders have been observed in materials
] ]

with stripy tendencies. Thus, when stripe order competes
with superconductivity, the full phase diagram should have
multiple, possibly nested versions of the relatively simple
L phase diagram discussed in the present paper.
J/2J0=f dr|o(r)|?. (19 There are a few additional observations we would like to
make. The existence of vortex halos has many
In Eq. (18), h is the tunneling matrix element which there- consequences,which we have not explored, for the charac-
fore depends exponentially on the product of the effectivger of the thermal vortex states. In particular, it gives rise to
massM* times the barrier heighE g Since the effective vortices that effectively have twb core radii, &, and &
mass is renormalized by precisely the same fadidr/M rather than a single vortex core radius as in conventional

whereJ is given by

=J/2],, it follows that BCS superconductors. In this context, it is interesting to note
that Wanget al,! from an analysis of the Nernst effect in a
Inh~—A"\M*|Eond ~ — \/In[§¢,/§o], (200  variety of high-temperature superconductors, have recently

. ) ) adduced evidence for the existence of well-defined vortex
where the prefactoh” is a constant determined by details of gycitations at temperatures well above the superconducting
the tunneling process. This implies that this problem ap— _ woreover, from an analysis of the magnetic field depen-
proaches the classical 1D Ising ferromagnewasa. . - _ dence of the Nernst coefficient in 4aSrCuQ, and

Th|§ sort of analysis b(_acomes simpler in _the case in Wh'ch(BaZCu307,5, they showed that there were two character-
a continuous symmetry is broken hy. For instance, con- igtic magnetic field strengths in the putative vortex liquid
sider theXY and Heisenberg cases in whighis, respec-  giate, which they identified as corresponding to two distinct
tively, a two or three component vector, whi which is  vortex core radii. If this interpretation is accepted, the
the solution of the LG equations, can be taken to be a scalagmaller characteristic field, which they c&F, is to be as-
Then, the_full set of mean-field solutions can be written associated with the maximal core radilR* =\/¢o/27B*,
H(r)=Qa¢(r), whereQ is a unit vector in order-parameter where ¢,=hc/2e is the superconducting flux quantum. At

144516-6
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temperatures well below the zero-field, B* is typically in  density the problem considered in the present paper. Thus, a
the range of 30 T, corresponding B =32 A. Since this similar phase diagram as that in Fig. (ith the labels
length scale is comparable to the vortex halo radiushanged can be constructed for dislocation induced super-

observed in STM studies of near-optimally doped conductivity in a stripe ordered phase.

Bi,Sr,CaCyOg, s, it is very tempting to associaf®* with
é4. In the Nernst effect experiment&* is seen to vary

roughly linearly with temperature at low temperatures, so

this identification could be tested by looking for similar tem-
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