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Increasing superconductingT.’'s by a factor of 1000 with large hopping anisotropies
in two-dimensional t-J model systems
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We have studied the enhancement of the superconducting transition tempé&iatara t-J-U model of
electrons moving on a square lattice in which anisotropic electronic hopping is introduced. For this model we
have calculatedr, for singlet pairing using the non-self-consistent Thouless criterion, and find a dramatic
enhancement of . induced by large hopping anisotropies. Further, the maximum increabg i1obtained
when the system is pushed towards théreme anisotropy limitthat is, when the hopping of electrons is
confined to occur in only one dimension, while superexchange couples the electrons both parallel and perpen-
dicular to the direction in which hopping occurs. We demonstrate that in this limit the incredse imith
respect to the isotropic system, can be of the order of 1000. We have also determined that in the extreme
anisotropy limit the superconducting gap is an equal mixture afidd pairing symmetriegtwo choices of
such a combination being+d and s+id) owing to the reducedsquare to rectangulasymmetry of the
system in the presence of hopping anisotropies. Thus the preserttevafe superconducting features in
materials whose symmetry is very different from that of a two-dimensional square lattice is not unexpected.
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I. INTRODUCTION In a recent paper we introduced a model that may mimic
one aspect of the stripe correlations by incorporating an an-
Being able to predict the physical circumstances that willisotropic hopping Hamiltoniafithat is, carriers are expected
lead to higher superconducting transition temperatufes)  to be able to move much more readily along the direction of
has been a goal of condensed-matter physics over the last 8@e stripes, so-called rivers of charfythan perpendicular to
years. In this paper we will present theoretical evidence thathe stripes. Allowing the carriers to interact via Heisenberg
quasi-two-dimensional systems that show strong electronisuperexchanggising a two-dimensionatJ mode), and ex-
correlations and have a large hopping anisotropy are gooduding double occupancyU—«), we have found exact
candidates for highef's. solutions for the two electron bound-state problem, viz., in
Our work was motivated by the high; cuprates, and, in the dilute electron-density limit. Our calculations demon-
particular, the appearance of stripes in these compoundstrated how hopping anisotropies can prod(ge vanishing
Support for the existence of stripes in high-cuprates, and value for the threshold exchange couplidg/t that is re-
other transition-metal oxides, has been provided by manyuired for the stabilization of two-particle bound states, and
experiments:? This leads to the question: Do stripe correla- (i) a dramatic increase in the two-electron binding enefJies.
tions help, hinder, or even possibly create the pairing instaThe physical interpretation of these results is particularly
bility that leads to superconductivity? In this paper we dem-nteresting—for the same problem in either one dimension,
onstrate that perhaps one feature of stripelike correlation®r in two dimensions with isotropic hopping, a critical super-
namely, highly anisotropic hopping, strongly enhances thexchange of]l./t=2 is obtained. However, in the extreme
superconducting transition temperatilie However, our as- anisotropy limit the electrons are confined to hop in only one
sociation of this mechanism for enhanciig with stripe lattice direction, and for such a system we found that an
physics of the cuprates is very speculative — the more geninfinitesimal J/t produces bound states. The explanation of
eral message of this paper is that highly anisotropic hoppinghis result follows from recognizing that in the bound state
can lead to dramatically highdr,’s. the two electrons will travel in opposite directions on near-
In part, we reached our model Hamiltonian by analogyneighbor “chains,” and when they are on near-neighbor
with the following results. A previous examination of the sites, and have antiparallel spinsSaS~ spin-exchange in-
magnetic properties of the very weakly doped cupratesteraction flips the chains on which the electrons are traveling.
modeled the observed experimental support for stripéAn infinitesimal J/t using this mechanism is sufficient to
correlationd using an effective Hamiltonian in which(apa-  produce a two-electron pair. It is appropriate to think of this
tially) anisotropic exchange interaction was implemented taesult as binding produced by dimensional confinement. This
represent the stripe-induced magnetic energy scales. That isteresting result naturally leaves us with the task of investi-
in the direction parallel to the stripes the full local Cu-Cu gating the transition to a superconducting phase in a system
exchange would be present, while perpendicular to thevith a nonzero electronic density as the system undergoes a
stripes a reduced exchange would be encountered acrossossover from an isotropic two-dimensional to one in which
such stripes. Renormalized Hamiltonians of a similar simpli-strongly anisotropic hopping is introduced.
fying spirit were also used in other studies of the doped In this paper we present the results of our investigation on
cuprates.”’ the effects of hopping anisotropies dn. We use the non-
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self-consistent Thouless criteribto determineT,, a proce- Il IDENTIFYING T, IN THE LADDER APPROXIMATION
dure that is known to reproduce the BCS result for the su-

perconducting transition temperatdfewe find a dramatic We use the non-self-consistent Thouless criteftoriden-

enhancement GF. the areater the dearee of hoopin anisot_tify the temperature at which our system becomes unstable

roov. and the maclximu?fr obtained ig found topSatL?rate in with respect to a low-temperature superconducting phase. To
Py, . ¢ : this end, we determine the equation for the two-particle ver-

the extreme anisotropy limit. For certain system parameters,, . - tective interaction. in the singlet channel. It is

. | I - g
this enhancement can be of the order of 1000! Thus thi nown that at low electron densitiésone may evaluate the

simple model provides a robust demonstration supporting th\(?ertex function via the ladder approximation to the Bethe-

ggmi;tlé:)errgl];tiozgpp'ng anisotropies can indeed augmer§alpeter equation, and the lack of convergence of the sum of
' the ladder diagrams identifies the critical temperature, viz.
when the sum converges the system should be in the normal

Il. MODEL HAMILTONIAN state. The non-self-consistent formulation of the ladder ap-

strongly interacting electrons using the followirgd-u  State, and has been shown to lead to an identical transition

model: temperature to 0that found in the BCS theory of
superconductivity'
+ 1 Thus we focus on evaluating the effective interactlon
H= _<i%:0 tij (Ci,6Cj,0F H.c.)+<izj> Jij| S §—Zzmin when all particle-particle diagrams are included. The integral

equation for this function in this approximation can be writ-
ten as(note that we only need to considEr; || ,*" and to
+UZ Ni N (1) eliminate the proliferation of spin indices in the equations
that follow from now on we suppress all spin dependencies
In this Hamiltonian, the sites of a two-dimensional squarefrom our equations
lattice of sizelL, XL, with periodic boundary conditions are

labeled by the indices andj, tj; and J;; are the hopping d3q 0
integrals and exchange couplings between sitasd j, re- F(k,k',Q)ZV(k—k')—f 3 V(k—a)G™(q)
spectively,c; , is the annihilation operator for electrons at (2m)

sitei of spino, n; , is the number operator for electrons at X G2AQ-q)T'(q,k",Q). ®)

sitei with spin o, andU is the on-site Hubbard energy. . o

The most familiar strong-coupling variant of the Hubbard The above integral equation is known as the Bethe-Salpeter
model is thet-J model, and the physics abquare lattice equation in th_e Iadder gpproan_atlé%and the_ various func-
doped Mott insulators described by this model was reviewedOn'S appearing in this equation are defined as follows:
by Dagotto'* As emphasized by, e.g., Anderstna vital G®(q) is the zeroth-order single-particle Green’s function
component of thet-J Hamiltonian is the constraint of no defined by
double occupancy. That is, in thiel model one does not use 1
the electron creation and annihilation operators of €. G%q)=GY%qiwy)=—; (4
but rather one uses constrained creation and annihilation op- lwn—(gq— 1)

erators(for example, see the discussions in Ref). How-  he Fermionic Matsubara frequencies are givendy- (2n
ever, the above-J-U Hamiltonian can be used to accom- +1)(a/B); for our anisotropic hopping model the single-

plish this same mathematical projection by takingyaricle dispersion of noninteracting band electrons is given
U —co—this simplifying approach has been noted by a vari-},

ety of researcherésee, e.g., Refs. 13—15and will also be
used by us. £q= — 2t(COSy+ cOSQy); 5)
In this paper we restridt; andJ;; to be nonzero for near

neighborgNN's) only. Further, as we did in Ref. 8, we allow # S the chemical potential. _
the hopping integral in the directiont,, to be different than To proceed to the solution of the Bethe-Salpeter equation,

the hopping integral in thg directiont, . We have also in- we need to red_uce it accc_)rding to symmetries. That is, the
vestigated the physics that arises whnis allowed to be anisotropy thatis present in E€L) when Osr <1 reflects a
different thand,, but find that no qualitatively new physics lowering of the point-group symmetry of the system from
arises as long as botl andJ, remain nonzero. Thus from that of a square to that of a rectangle. Recall that the basis

now on we sefi=J,=J,, and we analyze the resulting hop- fur)ctlonsfccr)]rrespor;c_ilng tq theI relevant Iwre_dumble represen-
ping anisotropy problem in terms of tations of the two-dimensional square lattice are 1, kzos

+cosk,) and (cos—cosky), which correspond to on-site
t swave, extended-wave, andd-wave gap symmetries, re-
L=t f:T- 2 spectively. Then note that in our anisotropic model these
symmetries are mixed and map onto the fully symmefric
Thus we have three dimensionless energy scales in the prolireducible representation of the rectangular point group. As
lem, viz., U/t, J/t, andr; the U/t—o limit reduces this a result, it is helpful to decompose the interaction, in the
number to 2. singlet channe(even ink), according to the basis functions
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of A; of the rectangular point-group symmetry. That is, we 1
artificially setJ,#J,, analyze the resulting interaction in Co=g > GUq)G(—a)T'(q.k),
terms of a linear combination of th, basis functions of 1, d
cosk,, and cok,, and then, in the last step of the calcula- 1
tion, restore the square lattice symmetry of the superex- Co=— 2 ¢(q)GAq)G(—I'(q,k),
change interaction by resettidg=J, . N “q

Following this prescription, and focusing on singlet pair-
ing only, we write the bare interaction teri{k—k’) as

1
=N 2 HOC(WE(-al(ak). 10

The variousQ=0 susceptibilities are functions @f and T,

V(k=K")=U—=2J,¢x(k) py(k") —2Jydy(K) py(K'),
©) and are defined by

where ¢, (k) = cok, and ¢, (k) = cok, . Substituting Eq(6) 1
into EqQ. (3) we obtain Xo=1y Z GO(k)GO(—k),
K

I'(k,k",Q)=[U—2Jx(k) dx(k') = 2dyby(K) py(K")]

1
o X 2 $(KIG(KG(—K),
- f S[U=23,8,(K) ()
(2m)° .
0 0
~23,4,(0,(Q)1G°(Q) =R 2 HGNGA—K),
XGUQ-a)I'(a.k Q). ()

Z||—\

Ek b (K)GO(K)GO(—K),

The above equation is an integral equation for the vertex

I'(q,k’,Q), and demonstrates how the irreducible represen-

tations of the square lattice group point are mixed in the

rectangular phase. To solve this equation we use a standard Xxy=™
projection techniquée.g., see Ref. J3and setting the total

; Su(k)GO(K)GO(—k),

Z| -

center-of-mass momentu®=0, we obtain the following 1
set of equations: Xyy=N > $y(K)GAUK)GO(—K). 11
K
(1+Uxo) —2J4x« —2Jyxy Co(k) To study the pairing instability we determine the tempera-
Uy (1= 23 —Jux Cy(k) ture at which a divergence of the vert€Xq,k’,Q) occurs.
X XA yxy K Clearly, I'(g,k’,Q) depends upon the coefficien®,, C,,
Uxy —2J3Xxy (1=2Jdyxyy) (k) andC,, defined by Eq(10), and a singularity in them de-
mands the vanishing of the determinant of the coefficient
Xo = 2J,xxPx(K) —2Jyxyby(K) matrix appearing on the left-hand side of Eg); the vanish-
=| ¥« [1=2xxx®x(K)] — 23y XxyPy(K) |. !ng o_f thishdeterminant is thys a simp_lg way in which we can
% 20 (k) (1—20,x,,6,(K)) identify the superconducting transition temperature, and

henceT. is obtained numerically as a function of the chemi-
(8)  cal potential . However, a different and perhaps more

_ _ _ _ physical way of displaying our results is to determineas a
We will also discuss results obtained in the no double occufynction of the electron density per lattice siteand in the

pancy limit,U/t—o0, and in this limit Eq8) becomes BCS approximatiom at T, is given by
_ _ Co(k 1
Xo 2Jyxx 2‘]yXy CO(k) n(/-LaTc):ZE W (12
Xx  (1=2dxx) _2‘]yXxy x(K) ke +1
Xy —2dxxy (1—2Jyxyy) Cy(k) Below we use this latter equation to pl6t vs n.
Figure 1 shows our results fat/t=0 andJ/t=1/3 (simi-
Xo —2dxxdy(K) —2Jyxydy(K) lar results are found for other ratios aft) with a hopping
_ 1-2 K _9 K anisotropy of r=0.1,0.01, and 0.001.(We have sett
X I XK1 IyXoyby(K) ' =1 eV as a representative energy; also, this allows us to
Xy —2xXxyPx(K) [1-2Jyxyydy(K)] expressT, in K.) As is known from the results corresponding

(99  to the isotropic cas€'®for U/t=0 the low density f~
—4t) region is dominated byon-site s-wave pairing, that is
The various functions appearing in the above two equation® say that the maximurii, is obtained fors-wave pairing,
are defined as whereas near half filling £~0), the d-wave instability
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The maximumT, at low densities, viz.Tg'?*~70 K
(again taking=1 eV) occurs at about=0.08. As a striking
demonstration of the effectiveness of hopping anisotropy in
increasingT., note for isotropic hopping,J/t=1/3, U/t
=00, and a density ofh=0.08 electrons per site, we find that
T.~0.08 K. That is,we find an enhancement of, Bue to
hopping anisotropy of a factor of about 100Qlearly, this
dramatic increase in the superconducting transition tempera-
ture supports the conjecture that highly anisotropic hopping
(possibly generated in the cuprates by stripelike correlations
can strongly affect pairing, and, at the very least, can greatly
augment the stability of the superconducting phase at higher
0.5 temperatures.

The above analysis was completed in the ladder approxi-
FIG. 1. The dependence of the superconducting transition temr_natiqn to the _Bethe-SaIpeter equati_on,_and_ _the non-self-

- : i o n consistent version of such a formulation implicitly assumes
peratureT. vs the electronic density per lattice sitefor U/t=0 .
andJ/t=1/3. We have sett=1 eV and expres3, in K. The three ey pl.anes Can.be besF deSCI’.Ibed asa Weak.ly. perturbed
curves correspond to anisotropic hopping ratiosf r=0.1,0.01, state relative to nonlnterac'glng lattice f(_armldﬁﬂerml-llqwd
and 0.001. theory). Due to the dimensional reduction, for-0, of the

hopping Hamiltonian, this is not necessarily the case—this

dominates. Asr deviates from the isotropic case, the two system could display some of the physics associated with
pairing symmetries mix and we find a decrease in the value®ne-dimensionalLuttinger liquids. At present we have not
of T. near half filling, and an enhancement Th at low  concluded our analysis of this possibility. Of course, in the
densities. For =0.1 we see that there still exists a signaturedilute limit the ladder approximation is exact, so we antici-
of two broad transitionsd wave and on-sites wave. Asr  pate that as long as we are working with small electron den-
decreases further the two transitions merge Witﬁ'zﬂfx sities, our results should be valid. Fortunately, as shown in
~200 K. the above figures, the most interesting density region corre-

Intermediate ratios ofJ/t lead to results that smoothly sponds ton~0.1, or 1/20th filling, which is indeed very
interpolate betweebl/t=0 andU/t=9, and in the interests close to the dilute limit.
of brevity we only show these two limiting values bf/t. Some results demonstrating an enhancemeiit, afue to
U/t= excludes the possibility of an on-sigeawave order Orthorhombic distortions have been given earlier by Li
parameter, hence the pairing symmetry has predominanti§t al,> although the extreme anisotropy limit was not con-
extendeds- and d-wave Componentg;ee the discussion and sidered; the importance of this latter limit was made apparent
numerical results in the next sectio®ur T, vs n results for ~ t0 us in our study of the bound-state formation for the same
these parameters are shown in F|g 2 for the same hoppir’damiltonian as in this paper, albeit for Only two E|eCtr8nS.
anisotropies as in Fig. 1. We also note that the onset of superconducting pairing

In both of these figures, it should be noted that when wecaused by interchain single-particle tunnel{i§T) has been
take the hopping anisotropy to be even smaller tman considered earlier by Bourbonnais and Cafbrstarting
=0.001, no noticeable change occurs—thus our numericdfom & Luttinger liquid modela linear array of conducting

results for this ratio are representative of the 0 extreme chains separated by some distantewas shown in the limit
hopping anisotropy limit. of small interchain hopping IST leads to an effective pair

tunneling which may eventually induce superconductivity in
the singlet channel below a temperatdrg (signifying a
crossover to a higher dimensionality, viz., a Luttinger liquid
to Fermi-liquid transitioin

80

60 In the quasi-one-dimensional systems studied in Ref. 21,
was also found the transition temperatdrgapproximately
. scaled ag, , the interchain hopping integrgbr as ¢,)*
5040 where a(=1) is a continuous function of the interaction
=)

parametef. Our Fig. 3 shows the variation of the maximum
T. (as a function of electron density) vs hopping anisot-
ropy r for U/t=0,1/3, and=, and forJ/t=1/3. The depen-
dence is found to be roughly linear, thus providing some
support for the conjecture made by Bourbonretisl 2!

20

0
0 0.1 0.2 " 0.3 04 0.5 IV. BCS GAP EQUATION
FIG. 2. The same as Fig. 1, where the lirbift—c has been As mentioned earlier, anisotropic hopping couples the su-
implemented. perconducting gaps in the andd-wave channels, and this
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FIG. 3. The maximumT,, found as a function of electronic ) ) ]
density for each hopping anisotropy, is plotted as a function of the FIG. 4. The ratio of the gap amplitudes, vias/Aq, vs the
hopping anisotropy, for U/t=0,1/3, and~ and J/t=1/3. As in chemical potentiafin units oft), for ans+id order parameter with
Figs. 1 and 2, we have expressEdin K usingt=1 eV. r=0.1,0.01, and 0.001. The other parameters are chosen to be

U/t=o andJ/t=1/3.

leads one to think in terms of a mixing between the two

symmetries having the following fornf822%(i) ans+id  merically for both choices of the relative phase viz. 0

state, where there is a phase differenceré between the = /2 (corresponding te+id) and #=0 (corresponding to

gap functions ins and d channels, andii) an s+d state, s+d).

where the phase difference is zero. Our numerical results for the ratio of gap amplitudes for
We have evaluated the ratio of these gaps by solving thé+id are shown in Fig. 4—since the results fet-d are

zero temperature BCS gap equation, which can be written agualitatively very similar, for brevity we omit that plot. The
r=0.1 case corresponding to tlse-d symmetry shows a

A(K") variation in the raticAs/A4 from ~0.8 (~0.6 fors+d) for
A(k)=—2 V(KK ) ——, (13 electronic densities near half filling, te- 1.3 (~1.3 for s
K’ 2Ey +d) for u=—2t(1+r) (low densities. Thus at low densi-

ties the extended-wave contribution is somewhat larger,
whereas near half filling thd-wave component is stronger.
As the anisotropy is increased, the ratidbg/A 4 for both s

+id ands+d become almost equal to unity for all densities.

We note that similar results have been obtained earlier
using variational Monte Carlo studies usingt-d modef®
where the authors found no distinguishable difference be-
tweens+d ands+id pairing symmetries. More generally,
they found that this result was true for any arbitr@rin Eq.

(13).

At this stage we cannot ascertain which of the above pair-
ing states is chosen by the system in presence of hopping
anisotropy, so there is a necessity to calculate the condensa-
f(k) = cosk,+ cosk, , (15) tion _energies .for the;e pairing symmetries using a micro-

scopically derived Ginzburg-Landau free energy functional
— we leave this problem for a future publication.

where E, = \/(e,— u)?+]A(K)|?. Note that in theU/t—oe
limit, the on-sitesswave component is suppressed and one i
left to consider only the extended and thed-wave symme-
tries. For simplicity, in this section we only report on this
region of parameter spact)(t— ). This allows us to write
the trial gap function irk space with arbitrary phase differ-
enced in the form,

A(k)=Af(k)+e’Aqfq(Kk), (14)

with Ag andA representing the amplitudes of the gap func-
tions, which are real, and

fq(k)=cosk,—cosk, .

Ignoring the on-site term, we write the interaction in terms of V. CONCLUSIONS
the above-defined basis functions:
To conclude, we find a dramatic enhancement of the su-
V(k,k")=V(k—k")=—2J[cogk,—k,)+cogk,— k)’,)] perconducting transition temperature at low electronic densi-
(16)  ties due to hopping anisotropies. Also, we find that the maxi-
mum T, is found to saturate as—0, that is, in the extreme
=—J[fo(k)fo(k")+fq(k)fa(k")]. anisotropy limit. In fact, one can show th@t tracks the
electronic density of states, consistent with the fact that our
Using Eqgs.(14)—(16) in Eq. (13), one can take the real and determination of the superconducting instability is essen-
imaginary parts of Eq(13), and thus obtain coupled equa- tially a mean-field theory. As the hopping anisotropy mixes
tions for Ag and Ay. We have solved these equations nu-different pairing symmetries, such as on-sgvave, ex-
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tendeds-wave, andd-wave, it is expected that the system for a moderately doped antiferromagnet. Last, implicitly we
may choose either a+d, or s+id, or more generally a are assuming that the=0 system is not better described as
pairing of the formA4(k)+e'?A4(k), where # may be a a plane of Luttinger liquidgviz., chaing coupled to one
function of temperature and anisotropy. To shed some lightnother by superexchange. At present we are further investi-
on this issue we have solved the zero-temperature BCS gagating these latter two limitations.
equation and have evaluated the ratio between the gap am- Nonetheless, the results that we published in Ref. 8 on
plitudes. Our results demonstrate an equal mixing betweetwo-electron bound-state formation, as well as the substantial
the s andd gap functions in the extreme anisotropy limit.  increase inT; that we are presenting in this paper, demon-
We do not wish to give the impression that we are certairstrate the possible importance of including large hopping
that this model is an adequate way of modeling the effectanisotropies in realistic microscopic theories.
that stripelike rivers of charge create. For example, we have
ignored all features associated with the discreteness of the
stripes. Also, although we are including a near-neighbor an-
tiferromagnetic exchange, the ladder approximation that we We wish to thank Claude Bourbonnais for directing our
are using to determine a pairing instability will not be ad- attention to a number of helpful references. This work was
equate near half filling, and thus our theory is not justifiedsupported in part by the NSERC of Canada.
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