
PHYSICAL REVIEW B 66, 144507 ~2002!
Increasing superconductingTc’s by a factor of 1000 with large hopping anisotropies
in two-dimensional t-J model systems

Saurabh Basu,* A. Callan-Jones,† and R. J. Gooding
Department of Physics, Queens University, Kingston, Ontario, Canada K7L 3N6
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We have studied the enhancement of the superconducting transition temperatureTc in a t-J-U model of
electrons moving on a square lattice in which anisotropic electronic hopping is introduced. For this model we
have calculatedTc for singlet pairing using the non-self-consistent Thouless criterion, and find a dramatic
enhancement ofTc induced by large hopping anisotropies. Further, the maximum increase inTc is obtained
when the system is pushed towards theextreme anisotropy limit, that is, when the hopping of electrons is
confined to occur in only one dimension, while superexchange couples the electrons both parallel and perpen-
dicular to the direction in which hopping occurs. We demonstrate that in this limit the increase inTc , with
respect to the isotropic system, can be of the order of 1000. We have also determined that in the extreme
anisotropy limit the superconducting gap is an equal mixture ofs andd pairing symmetries~two choices of
such a combination beings1d and s1 id) owing to the reduced~square to rectangular! symmetry of the
system in the presence of hopping anisotropies. Thus the presence ofd-wave superconducting features in
materials whose symmetry is very different from that of a two-dimensional square lattice is not unexpected.

DOI: 10.1103/PhysRevB.66.144507 PACS number~s!: 74.62.2c, 71.27.1a, 71.10.Fd
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I. INTRODUCTION

Being able to predict the physical circumstances that w
lead to higher superconducting transition temperatures (Tc’s!
has been a goal of condensed-matter physics over the la
years. In this paper we will present theoretical evidence
quasi-two-dimensional systems that show strong electro
correlations and have a large hopping anisotropy are g
candidates for higherTc’s.

Our work was motivated by the high-Tc cuprates, and, in
particular, the appearance of stripes in these compou
Support for the existence of stripes in high-Tc cuprates, and
other transition-metal oxides, has been provided by m
experiments.1,2 This leads to the question: Do stripe corre
tions help, hinder, or even possibly create the pairing in
bility that leads to superconductivity? In this paper we de
onstrate that perhaps one feature of stripelike correlatio
namely, highly anisotropic hopping, strongly enhances
superconducting transition temperatureTc . However, our as-
sociation of this mechanism for enhancingTc with stripe
physics of the cuprates is very speculative — the more g
eral message of this paper is that highly anisotropic hopp
can lead to dramatically higherTc’s.

In part, we reached our model Hamiltonian by analo
with the following results. A previous examination of th
magnetic properties of the very weakly doped cuprat3

modeled the observed experimental support for str
correlations4 using an effective Hamiltonian in which a~spa-
tially! anisotropic exchange interaction was implemented
represent the stripe-induced magnetic energy scales. Th
in the direction parallel to the stripes the full local Cu-C
exchange would be present, while perpendicular to
stripes a reduced exchange would be encountered ac
such stripes. Renormalized Hamiltonians of a similar sim
fying spirit were also used in other studies of the dop
cuprates.5–7
0163-1829/2002/66~14!/144507~6!/$20.00 66 1445
ll

90
at
ic
d

s.

y

-
-
s,
e

n-
g

y

e

o
is,

e
oss
i-
d

In a recent paper we introduced a model that may mim
one aspect of the stripe correlations by incorporating an
isotropic hopping Hamiltonian;8 that is, carriers are expecte
to be able to move much more readily along the direction
the stripes, so-called rivers of charge,4 than perpendicular to
the stripes. Allowing the carriers to interact via Heisenbe
superexchange~using a two-dimensionalt-J model!, and ex-
cluding double occupancy (U→`), we have found exac
solutions for the two electron bound-state problem, viz.,
the dilute electron-density limit. Our calculations demo
strated how hopping anisotropies can produce~i! a vanishing
value for the threshold exchange couplingJc /t that is re-
quired for the stabilization of two-particle bound states, a
~ii ! a dramatic increase in the two-electron binding energie8

The physical interpretation of these results is particula
interesting—for the same problem in either one dimensi
or in two dimensions with isotropic hopping, a critical supe
exchange ofJc /t52 is obtained. However, in the extrem
anisotropy limit the electrons are confined to hop in only o
lattice direction, and for such a system we found that
infinitesimal J/t produces bound states. The explanation
this result follows from recognizing that in the bound sta
the two electrons will travel in opposite directions on ne
neighbor ‘‘chains,’’ and when they are on near-neighb
sites, and have antiparallel spins, aS1S2 spin-exchange in-
teraction flips the chains on which the electrons are travel
An infinitesimal J/t using this mechanism is sufficient t
produce a two-electron pair. It is appropriate to think of th
result as binding produced by dimensional confinement. T
interesting result naturally leaves us with the task of inve
gating the transition to a superconducting phase in a sys
with a nonzero electronic density as the system undergo
crossover from an isotropic two-dimensional to one in wh
strongly anisotropic hopping is introduced.

In this paper we present the results of our investigation
the effects of hopping anisotropies onTc . We use the non-
©2002 The American Physical Society07-1
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self-consistent Thouless criterion9 to determineTc , a proce-
dure that is known to reproduce the BCS result for the
perconducting transition temperature.10 We find a dramatic
enhancement ofTc the greater the degree of hopping anis
ropy, and the maximumTc obtained is found to saturate i
the extreme anisotropy limit. For certain system paramet
this enhancement can be of the order of 1000! Thus
simple model provides a robust demonstration supporting
conjecture that hopping anisotropies can indeed augm
pairing correlations.

II. MODEL HAMILTONIAN

We consider model systems withn a square lattice of
strongly interacting electrons using the followingt-J-U
model:

H52 (
^ i , j &,s

t i j ~ci ,s
† cj ,s1H.c.!1(

^ i , j &
Ji j S Si•Sj2

1

4
ninj D

1U(
i

ni ,↑ni ,↓ . ~1!

In this Hamiltonian, the sites of a two-dimensional squa
lattice of sizeLx3Ly with periodic boundary conditions ar
labeled by the indicesi and j, t i j and Ji j are the hopping
integrals and exchange couplings between sitesi and j, re-
spectively,ci ,s is the annihilation operator for electrons
site i of spin s, ni ,s is the number operator for electrons
site i with spin s, andU is the on-site Hubbard energy.

The most familiar strong-coupling variant of the Hubba
model is thet-J model, and the physics of~square lattice!
doped Mott insulators described by this model was review
by Dagotto.11 As emphasized by, e.g., Anderson,12 a vital
component of thet-J Hamiltonian is the constraint of no
double occupancy. That is, in thet-J model one does not us
the electron creation and annihilation operators of Eq.~1!,
but rather one uses constrained creation and annihilation
erators~for example, see the discussions in Ref. 11!. How-
ever, the abovet-J-U Hamiltonian can be used to accom
plish this same mathematical projection by taki
U→`—this simplifying approach has been noted by a va
ety of researchers~see, e.g., Refs. 13–15!, and will also be
used by us.

In this paper we restrictt i j andJi j to be nonzero for nea
neighbors~NN’s! only. Further, as we did in Ref. 8, we allow
the hopping integral in thex directiontx , to be different than
the hopping integral in they direction ty . We have also in-
vestigated the physics that arises whenJx is allowed to be
different thanJy , but find that no qualitatively new physic
arises as long as bothJx andJy remain nonzero. Thus from
now on we setJ[Jx5Jy , and we analyze the resulting hop
ping anisotropy problem in terms of

tx[t, r 5
ty

t
. ~2!

Thus we have three dimensionless energy scales in the p
lem, viz., U/t, J/t, and r; the U/t→` limit reduces this
number to 2.
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III. IDENTIFYING Tc IN THE LADDER APPROXIMATION

We use the non-self-consistent Thouless criterion9 to iden-
tify the temperature at which our system becomes unsta
with respect to a low-temperature superconducting phase
this end, we determine the equation for the two-particle v
tex, or effective interaction, in the singlet channel. It
known that at low electron densities16 one may evaluate the
vertex function via the ladder approximation to the Beth
Salpeter equation, and the lack of convergence of the sum
the ladder diagrams identifies the critical temperature,
when the sum converges the system should be in the no
state. The non-self-consistent formulation of the ladder
proximation allows us to work exclusively in the norm
state, and has been shown to lead to an identical trans
temperature to that found in the BCS theory
superconductivity.10

Thus we focus on evaluating the effective interactionG
when all particle-particle diagrams are included. The integ
equation for this function in this approximation can be wr
ten as~note that we only need to considerG↑↑,↓↓ ,17 and to
eliminate the proliferation of spin indices in the equatio
that follow from now on we suppress all spin dependenc
from our equations!

G~k,k8,Q!5V~k2k8!2E d3q

~2p!3
V~k2q!G0~q!

3G0~Q2q!G~q,k8,Q!. ~3!

The above integral equation is known as the Bethe-Salp
equation in the ladder approximation,16 and the various func-
tions appearing in this equation are defined as follow
G0(q) is the zeroth-order single-particle Green’s functi
defined by

G0~q!5G0~q,ivn!5
1

ivn2~«q2m!
; ~4!

the Fermionic Matsubara frequencies are given byvn5(2n
11)(p/b); for our anisotropic hopping model the single
particle dispersion of noninteracting band electrons is giv
by

«q522t~cosqx1r cosqy!; ~5!

m is the chemical potential.
To proceed to the solution of the Bethe-Salpeter equat

we need to reduce it according to symmetries. That is,
anisotropy that is present in Eq.~1! when 0<r ,1 reflects a
lowering of the point-group symmetry of the system fro
that of a square to that of a rectangle. Recall that the b
functions corresponding to the relevant irreducible repres
tations of the two-dimensional square lattice are 1, (cokx
1cosky) and (coskx2cosky), which correspond to on-site
s-wave, extendeds-wave, andd-wave gap symmetries, re
spectively. Then note that in our anisotropic model the
symmetries are mixed and map onto the fully symmetricA1
irreducible representation of the rectangular point group.
a result, it is helpful to decompose the interaction, in t
singlet channel~even ink), according to the basis function
7-2
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of A1 of the rectangular point-group symmetry. That is, w
artificially set JxÞJy , analyze the resulting interaction i
terms of a linear combination of theA1 basis functions of 1,
coskx , and cosky , and then, in the last step of the calcul
tion, restore the square lattice symmetry of the super
change interaction by resettingJx5Jy .

Following this prescription, and focusing on singlet pa
ing only, we write the bare interaction termV(k2k8) as

V~k2k8!5U22Jxfx~k!fx~k8!22Jyfy~k!fy~k8!,
~6!

wherefx(k)5coskx andfy(k)5cosky . Substituting Eq.~6!
into Eq. ~3! we obtain

G~k,k8,Q!5@U22Jxfx~k!fx~k8!22Jyfy~k!fy~k8!#

2E d3q

~2p!3
@U22Jxfx~k!fx~q!

22Jyfy~k!fy~q!#G0~q!

3G0~Q2q!G~q,k8,Q!. ~7!

The above equation is an integral equation for the ver
G(q,k8,Q), and demonstrates how the irreducible repres
tations of the square lattice group point are mixed in
rectangular phase. To solve this equation we use a stan
projection technique~e.g., see Ref. 13!, and setting the tota
center-of-mass momentumQ50, we obtain the following
set of equations:

F ~11Ux0! 22Jxxx 22Jyxy

Uxx ~122Jxxxx! 2Jyxxy

Uxy 22Jxxxy ~122Jyxyy!
GF C0~k!

Cx~k!

Cy~k!
G

5F x0 22Jxxxfx~k! 22Jyxyfy~k!

xx @122Jxxxxfx~k!# 22Jyxxyfy~k!

xy 22Jxxxyfx~k! ~122Jyxyyfy~k!!
G .

~8!

We will also discuss results obtained in the no double oc
pancy limit,U/t→`, and in this limit Eq.~8! becomes

F x0 22Jxxx 22Jyxy

xx ~122Jxxxx! 22Jyxxy

xy 22Jxxxy ~122Jyxyy!
G S C0~k!

Cx~k!

Cy~k!
D

5F x0 22Jxxxfx~k! 22Jyxyfy~k!

xx @122Jxxxxfx~k!# 22Jyxxyfy~k!

xy 22Jxxxyfx~k! @122Jyxyyfy~k!#
G .

~9!

The various functions appearing in the above two equati
are defined as
14450
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C05
1

N (
q

G0~q!G0~2q!G~q,k!,

Cx5
1

N (
q

fx~q!G0~q!G0~2q!G~q,k!,

Cy5
1

N (
q

fy~q!G0~q!G0~2q!G~q,k!. ~10!

The variousQ50 susceptibilities are functions ofm andT,
and are defined by

x05
1

N (
k

G0~k!G0~2k!,

xx5
1

N (
k

fx~k!G0~k!G0~2k!,

xy5
1

N (
k

fy~k!G0~k!G0~2k!,

xxx5
1

N (
k

fx~k!G0~k!G0~2k!,

xxy5
1

N (
k

fx~k!G0~k!G0~2k!,

xyy5
1

N (
k

fy~k!G0~k!G0~2k!. ~11!

To study the pairing instability we determine the tempe
ture at which a divergence of the vertexG(q,k8,Q) occurs.
Clearly, G(q,k8,Q) depends upon the coefficientsC0 , Cx ,
and Cy , defined by Eq.~10!, and a singularity in them de
mands the vanishing of the determinant of the coeffici
matrix appearing on the left-hand side of Eq.~9!; the vanish-
ing of this determinant is thus a simple way in which we c
identify the superconducting transition temperature, a
henceTc is obtained numerically as a function of the chem
cal potential m. However, a different and perhaps mo
physical way of displaying our results is to determineTc as a
function of the electron density per lattice siten, and in the
BCS approximationn at Tc is given by

n~m,Tc!52(
k

1

e2bc(«k2m)11
. ~12!

Below we use this latter equation to plotTc vs n.
Figure 1 shows our results forU/t50 andJ/t51/3 ~simi-

lar results are found for other ratios ofJ/t) with a hopping
anisotropy of r 50.1,0.01, and 0.001.~We have set t
51 eV as a representative energy; also, this allows us
expressTc in K.! As is known from the results correspondin
to the isotropic case,18,19 for U/t50 the low density (m;
24t) region is dominated by~on-site! s-wave pairing, that is
to say that the maximumTc is obtained fors-wave pairing,
whereas near half filling (m;0), the d-wave instability
7-3
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dominates. Asr deviates from the isotropic case, the tw
pairing symmetries mix and we find a decrease in the va
of Tc near half filling, and an enhancement inTc at low
densities. Forr 50.1 we see that there still exists a signatu
of two broad transitions (d wave and on-sites wave!. As r
decreases further the two transitions merge with aTc

max

;200 K.
Intermediate ratios ofU/t lead to results that smoothl

interpolate betweenU/t50 andU/t5`, and in the interests
of brevity we only show these two limiting values ofU/t.
U/t5` excludes the possibility of an on-sites-wave order
parameter, hence the pairing symmetry has predomina
extendeds- andd-wave components~see the discussion an
numerical results in the next section!. Our Tc vs n results for
these parameters are shown in Fig. 2 for the same hop
anisotropies as in Fig. 1.

In both of these figures, it should be noted that when
take the hopping anisotropy to be even smaller thanr
50.001, no noticeable change occurs—thus our numer
results for this ratio are representative of ther→0 extreme
hopping anisotropy limit.

FIG. 1. The dependence of the superconducting transition t
peratureTc vs the electronic density per lattice siten for U/t50
andJ/t51/3. We have sett51 eV and expressTc in K. The three
curves correspond to anisotropic hopping ratiosr of r 50.1,0.01,
and 0.001.

FIG. 2. The same as Fig. 1, where the limitU/t→` has been
implemented.
14450
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The maximum Tc at low densities, viz.Tc
max;70 K

~again takingt51 eV) occurs at aboutn50.08. As a striking
demonstration of the effectiveness of hopping anisotropy
increasingTc , note for isotropic hopping,J/t51/3, U/t
5`, and a density ofn50.08 electrons per site, we find tha
Tc;0.08 K. That is,we find an enhancement of Tc due to
hopping anisotropy of a factor of about 1000!Clearly, this
dramatic increase in the superconducting transition temp
ture supports the conjecture that highly anisotropic hopp
~possibly generated in the cuprates by stripelike correlatio!
can strongly affect pairing, and, at the very least, can gre
augment the stability of the superconducting phase at hig
temperatures.

The above analysis was completed in the ladder appr
mation to the Bethe-Salpeter equation, and the non-s
consistent version of such a formulation implicitly assum
that the planes can be best described as a weakly pertu
state relative to noninteracting lattice fermions~Fermi-liquid
theory!. Due to the dimensional reduction, forr→0, of the
hopping Hamiltonian, this is not necessarily the case—t
system could display some of the physics associated w
~one-dimensional! Luttinger liquids. At present we have no
concluded our analysis of this possibility. Of course, in t
dilute limit the ladder approximation is exact, so we anti
pate that as long as we are working with small electron d
sities, our results should be valid. Fortunately, as shown
the above figures, the most interesting density region co
sponds ton'0.1, or 1/20th filling, which is indeed very
close to the dilute limit.

Some results demonstrating an enhancement ofTc due to
orthorhombic distortions have been given earlier by
et al.,20 although the extreme anisotropy limit was not co
sidered; the importance of this latter limit was made appar
to us in our study of the bound-state formation for the sa
Hamiltonian as in this paper, albeit for only two electrons8

We also note that the onset of superconducting pair
caused by interchain single-particle tunneling~IST! has been
considered earlier by Bourbonnais and Caron.21 Starting
from a Luttinger liquid model~a linear array of conducting
chains separated by some distance!, it was shown in the limit
of small interchain hopping IST leads to an effective p
tunneling which may eventually induce superconductivity
the singlet channel below a temperatureTx1 ~signifying a
crossover to a higher dimensionality, viz., a Luttinger liqu
to Fermi-liquid transition!.

In the quasi-one-dimensional systems studied in Ref.
was also found the transition temperatureTc approximately
scaled ast' , the interchain hopping integral@or as (t')a

where a(>1) is a continuous function of the interactio
parameter#. Our Fig. 3 shows the variation of the maximu
Tc ~as a function of electron densityn) vs hopping anisot-
ropy r for U/t50,1/3, and̀ , and forJ/t51/3. The depen-
dence is found to be roughly linear, thus providing som
support for the conjecture made by Bourbonnaiset al.21

IV. BCS GAP EQUATION

As mentioned earlier, anisotropic hopping couples the
perconducting gaps in thes- and d-wave channels, and thi

-

7-4



wo

th
n

e

is

-

c

o

d
-
u

for

e

r,
r.

s.
lier

be-
,

air-
ping
nsa-
ro-
nal

su-
nsi-
xi-

our
en-
es

th

o be

INCREASING SUPERCONDUCTINGTc’s BY A FACTOR . . . PHYSICAL REVIEW B 66, 144507 ~2002!
leads one to think in terms of a mixing between the t
symmetries having the following forms:20,22,23 ~i! an s1 id
state, where there is a phase difference ofp/2 between the
gap functions ins and d channels, and~ii ! an s1d state,
where the phase difference is zero.

We have evaluated the ratio of these gaps by solving
zero temperature BCS gap equation, which can be writte

D~k!52(
k8

V~k,k8!
D~k8!

2Ek8
, ~13!

whereEk5A(«k2m)21uD(k)u2. Note that in theU/t→`
limit, the on-sites-wave component is suppressed and on
left to consider only the extendeds- and thed-wave symme-
tries. For simplicity, in this section we only report on th
region of parameter space (U/t→`). This allows us to write
the trial gap function ink space with arbitrary phase differ
enceu in the form,

D~k!5Dsf s~k!1eiuDdf d~k!, ~14!

with Ds andDd representing the amplitudes of the gap fun
tions, which are real, and

f s~k!5coskx1cosky , ~15!

f d~k!5coskx2cosky .

Ignoring the on-site term, we write the interaction in terms
the above-defined basis functions:

V~k,k8!5V~k2k8!522J@cos~kx2kx8!1cos~ky2ky8!#
~16!

52J@ f s~k! f s~k8!1 f d~k! f d~k8!#.

Using Eqs.~14!–~16! in Eq. ~13!, one can take the real an
imaginary parts of Eq.~13!, and thus obtain coupled equa
tions for Ds and Dd . We have solved these equations n

FIG. 3. The maximumTc , found as a function of electronic
density for each hopping anisotropy, is plotted as a function of
hopping anisotropyr, for U/t50,1/3, and` and J/t51/3. As in
Figs. 1 and 2, we have expressedTc in K using t51 eV.
14450
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merically for both choices of the relative phaseu, viz. u
5p/2 ~corresponding tos1 id) andu50 ~corresponding to
s1d).

Our numerical results for the ratio of gap amplitudes
s1 id are shown in Fig. 4—since the results fors1d are
qualitatively very similar, for brevity we omit that plot. Th
r 50.1 case corresponding to thes1d symmetry shows a
variation in the ratioDs /Dd from ;0.8 (;0.6 for s1d) for
electronic densities near half filling, to;1.3 (;1.3 for s
1d) for m.22t(11r ) ~low densities!. Thus at low densi-
ties the extendeds-wave contribution is somewhat large
whereas near half filling thed-wave component is stronge
As the anisotropy is increased, the ratiosDs /Dd for both s
1 id ands1d become almost equal to unity for all densitie

We note that similar results have been obtained ear
using variational Monte Carlo studies using at-J model20

where the authors found no distinguishable difference
tweens1d and s1 id pairing symmetries. More generally
they found that this result was true for any arbitraryu in Eq.
~13!.

At this stage we cannot ascertain which of the above p
ing states is chosen by the system in presence of hop
anisotropy, so there is a necessity to calculate the conde
tion energies for these pairing symmetries using a mic
scopically derived Ginzburg-Landau free energy functio
— we leave this problem for a future publication.

V. CONCLUSIONS

To conclude, we find a dramatic enhancement of the
perconducting transition temperature at low electronic de
ties due to hopping anisotropies. Also, we find that the ma
mum Tc is found to saturate asr→0, that is, in the extreme
anisotropy limit. In fact, one can show thatTc tracks the
electronic density of states, consistent with the fact that
determination of the superconducting instability is ess
tially a mean-field theory. As the hopping anisotropy mix
different pairing symmetries, such as on-sites-wave, ex-

e FIG. 4. The ratio of the gap amplitudes, viz.Ds /Dd , vs the
chemical potential~in units of t), for ans1 id order parameter with
r 50.1,0.01, and 0.001. The other parameters are chosen t
U/t5` andJ/t51/3.
7-5



m

ig
g
a
ee

ai
c
av
t

an
w
d-
ed

e
as

sti-

on
tial
n-
ing

ur
as

nd
ov

ip

to
nd

E.

tt

n-

hys.

.

ys.

SAURABH BASU, A. CALLAN-JONES, AND R. J. GOODING PHYSICAL REVIEW B66, 144507 ~2002!
tendeds-wave, andd-wave, it is expected that the syste
may choose either as1d, or s1 id, or more generally a
pairing of the formDs(k)1eiuDd(k), where u may be a
function of temperature and anisotropy. To shed some l
on this issue we have solved the zero-temperature BCS
equation and have evaluated the ratio between the gap
plitudes. Our results demonstrate an equal mixing betw
the s andd gap functions in the extreme anisotropy limit.

We do not wish to give the impression that we are cert
that this model is an adequate way of modeling the effe
that stripelike rivers of charge create. For example, we h
ignored all features associated with the discreteness of
stripes. Also, although we are including a near-neighbor
tiferromagnetic exchange, the ladder approximation that
are using to determine a pairing instability will not be a
equate near half filling, and thus our theory is not justifi

*Permanent address: Physics Group, BITS Pilani, Rajasthan, I
†Present address: Department of Physics, Brown University, Pr
dence, RI 02912.
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