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The response of mesoscopic superconductors to an ac magnetic field is numerically investigated on the basis
of the time-dependent Ginzburg-Landau equations. We study the dependence with fregquamtydc mag-
netic fieldH 4. of the linear ac susceptibility(Hq4¢,®) in square samples with dimensions of the order of the
London penetration depth. Aty.=0 the behavior oy as a function oftw agrees very well with the two-fluid
model, and the imaginary part of the ac susceptibijity(w), shows a dissipative maximum at the frequency
vo=C?/(4maN?). In the presence of a magnetic field a second dissipation maximum appears at a frequency
wp<vy. The most interesting behavior of mesoscopic superconductors can be observeg ((H §hecurves
obtained at a fixed frequency. At a fixed number of vortigggHy.) continuously increases with increasing
Hq4c. We observe that the dissipation reaches a maximum for magnetic fields right below the vortex penetration
fields. Then, after each vortex penetration event, there is a sudden suppression of the ac losses, showing
discontinuities iny”"(Hq4.) at several values ofly.. We show that these discontinuities are typical of the
mesoscopic scale and disappear in macroscopic samples, which have a continuous behgWqg)ofWe
argue that these discontinuitiesyfiH ) are due to the effect afascent vorticesvhich cause a large variation
of the amplitude of the order parameter near the surface before the entrance of vortices.
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I. INTRODUCTION These barriers allow for the existence of metastable states of
constant vorticity as a function of magnetic field. Each meta-
The response of superconductors to an ac magnetic fielstable state becomes unstable atithepenetration fieldH ;
has been of interest for a long tinie and particularly in the  in which vortices enter the sample and the magnetization has
last year$.™* The microwave surface impedan@&=R; a discontinuous jump. These jumps have been observed
—iX, and the ac magnetic susceptibilify=x’+ix” have  numerically}®?%?° and experimentally in mesoscopic Al
been extensively studig¢d!* Interesting behavior has been disks?°
found for different values of the frequency, the magnetic In the last years numerical simulations of the time-
field, the pinning force, and the thermal fluctuatiéné, —dependent Ginzburg Land&liDGL) equations have been an
whereas linear and nonlinear response appear depending pfiportant tool in the study of the static and dynamic proper-
the strength of the ac signalThe main interest so far has ties of superconductor§:*1~*°The TDGL model has been
been on the electrodynamics of macroscopic samples COoRsed to study the flux growth dynamits®? the magnetic
taining a large number of vortices. In this case, it is possibleresponség% and the I-V characteristics of superconducting
to use phenomenological models to describe the macroscop'%mmegg In particular, Enomotcet al3® using the TDGL
behavior of the superconducting sampﬂé%.. _ quations studied the temperature dependence of the ac sus-
Recently the_re has been an Increasing mgterest n th‘? stu ptibility at a fixed frequency in the absence of a dc mag-
of vortex physics on a mesoscopic scale’’ a regime in netic field for a large sample. For increasing temperature

which a small number of vortices are confined in a small hey found thay’ exhibits a steplike change from a negative
sample. The behavior of mesoscopic superconductors is diF— Iy ' 1140 t ?ﬂ i 't'g v ri f 9
ferent from the behavior of bulk samples. In mesoscopic suvalue ' = ) to zero, whiley" initially rises from

perconductors surface effettsre very important since the ZEro, goes through a r.naX|mu.m,_and then returns t.o a small
interaction of vortices with the surface currents is l&ge. Valué nearTc, which is qualitatively consistent with the
The magnetic properties strongly depend on the sample siz&¥erall behavior observed in experiments.

and geometr§?2?The most studied geometries are the the N this paper we perform numerical simulations of the
mesoscopic disk826 the mesoscopic sldf” and the time-dependent Ginzburg-Landau equation to study the ac

mesoscopic  squafé=?® In particular, the mesoscopic magnetic response of type-ll superconductors on a mesos-
samples can develop Abrikosov multivortex stétemd de-  COPIC scale. We study the frequency g, dependence of
pending on the size of the sample it is possible to observéhe linear ac susceptibility x(Hgc,w)=x'(Hgc, )

first- or second-order transitioR%.The electric charge of +ix”(Hgc,®) of square samples with dimensions of the or-
vortices?® a paramagnetic effett?® and the surface der of the London penetration depth . Our results were
barrief®3° on a mesoscopic scale have also been studiedbtained in the absence of bulk pinning and in the linear
One interesting characteristic of the magnetic properties ofegime.

mesoscopic superconductors is the behavior of the dc mag- The paper is organized as follows. In Sec. Il we review
netization curves. In a mesoscopic scale, the vortices that atbe known results for the ac magnetic response of macro-
inside the sample induce a reinforcement of the surface bascopic superconductors, in order to later compare them with
rier at fields greater than the first penetration fide{g.29 our results in mesoscopic samples. In particular, the two-
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fluid model for the Meissner state and the Coffey and Clemy.j)s5 /2. The complex permeabilitg(w), or the complex
model for the mixed state are reviewed. In Sec. Ill we de-, Bt : ~

) ; . . ) [ =x"(0)+ix"(w)= —1)/Am, de-
scribe the TDGL equations used in the simulations. In Sec?uszeﬁubr:lty)ﬁ(w) X éw)l 'X (wi] [M(w?f. ]r/] 7 d? h
IV we present our numerical results for the ac magnetic rePend both om(w) and also on the specific shape of the

sponse of mesoscopic square samples. Section IVA is d sample, since the ac penetration of magnetic fields is a sur-

voted to the study of the frequency dependence'ofand ace phenomenon. In the case of a square samp_l_e oi_Lsize
X". We find that forH =0 the behavior of the sample is XL an approximate expression for the permeability in the

well described by the two-fluid model. Atw=p, limitA<Lis

=c?/(4woN?) a maximum in the imaginary part of(w,0) N 5

appears. In the Meissner state fdf.~H, another maxi- ;Square% _( 1— _)_ (3)
mum appears iry" (). This behavior, characterized by the L L

presence of two dissipation maxima is also observed in th%xact expressions fdi for squares, cylinders, and slabs can

mixed state. At the same time, for increasing frequencyb . .
, . .’be found, for example, in Ref. 4. Sometimes the complex
x' (w,Hyo) changes from London screening to a perfect dia- ~

magnetic state at high frequency. This transition is due to SUrface impedancg; is used, it can be defined whan<L
decrease of the ac penetration length. In Sec. IV B we stud@sZs=Rs—iXs=iw(47/c?)\(w).

the Hy. dependence of’ and y” at a fixed frequency. De- In the Meissner state the ac response has been usually
pending on the sample size, we find well-defined mesoscopidescribed with the two-fluid modét* In the mixed state,
and macroscopic behaviors. For mesoscopic samples we ofile magnetic flux enters in the form of quantized vortices.
serve that, in the magnetic field ranges in which the numbef herefore the dynamics of the vortices has been included in
of vortices is constanty”(H4.) continuously increases for the qle§cription_ of the magnetic ac response of the mixed
increasingH . At theith vortex penetration fielth ,;, the ~ State.”" In particular, Coffey and Clem have extended the
entrance of vortices produces a considerable suppression #yo-fluid model by including the equation of motion of vor-
the ac losses ang”’(Hgyo) decreases with a discontinuous tices for small displacementsSimilar results were obtained
jump. On the contrary, samples of macroscopic sizes show By Brandt and by van der Beelet al” All these models
continuous behavior i (Hg.), with x”(Hg4.) monotonically assume tha_t there is a Iargt_a number of vortices in tht_a sample
increasing withH .. In Sec. V we study the time evolution and a continuous description of the vortex lattice is used

of the order parameter in mesoscopic superconductors. V\;é(a“d for B>|—!C1)' L "
show that at high frequencies and in mesoscopic samples, the The two-fluid model consists in writing the total current
vortices are fixed and only play a secondary role in the a@s the sum of the supercurrent and the normal current,
response of the sample. We show that the main dissipation J=J+] @)
mechanism in mesoscopic superconductors is due to the ef- s
fect of “nascent vortices.” They cause large variations of thewith
amplitude of the order parameter at the boundary of the
sample before the entrance of vortices. Finally in Sec.VI we
give a summary of our results and conclusions.

o, A

c at’ ®)

J,=0,E=

and the supercurrent given by the London model,
II. AC RESPONSE OF MACROSCOPIC SAMPLES:

REVIEW OF KNOWN RESULTS

VXJS:—ﬁ(B—bv). (6)

A. Two-fluid model and Coffey and Clem model m\2

When ‘an ac magnetic field is appliet(t) =Hqc Here\_ is the static London penetration depth dngdis the

+haccost), an effective complex penetration deptw)  |ocal vortex magnetic field. In the absence of vortices,
can be defined assuming that the fluctuating field inside a.g the two-fluid model has the characteristic tirhe

semi-infinite sample fok>0 has the form =4m\lo,/c? for the transformation of supercurrents into

SRy normal currents, sincé,=ty,0J;/dt. The Coffey and Clem
SH=h.e X/)\(w)e ot (1) . . X i

ac model includes the equation of motion of vortices for small
or from a generalization of London’s expression for thedisplacementsi(x,t) from their equilibrium positions,
current,

. 1 ~
U+ kU= E‘]SX by (7)

VXJI(w)=— (o). (2

4\ (w) B where 7, is the viscous drag coefficienk,, is the restoring

~_ force constantLabusch parametgf a pinning potential
E[can be. related~to the frequency-dependent conduct|V|.ty a\ﬁ/ell, and a the local vortex direction. Here we have ne-
\(w)=Vic*/4mwo(w). In the case of a normal metal with glected thermal fluctuation effects. The small vortex dis-
conductivity o, , the complex penetration depth is directly placements induce perturbations of the local vortex magnetic
related to the skin depths,=\c?27wo, as N\,=(1 field, b,+ &b, , which depend ash,=V X (uxB).’
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In the case of fieldsH|h,. and parallel to the surface, and for very low frequencies such that<w, , dissipation
using Egs(2) and(4)—(7) the effective complex penetration diminishes linearly as
deptH can be obtained as

2
B .ol
o O A X'e— . (12
1+ )\—2_Ia)tff )\L+ )\—2_|5—2
T2=)2 C _ C ff )
L 1-iwt, 2\2 D. Vortices with pinning
—i— I .
ﬁ In the presence of bulk pinning;,#0, the relevant time

, , scale istc=tN&/NZ=17,/k,. Now instead of the finite-
with the Campbell penetratlzond deptig =Bdo/dmry, the  gjze peak aiw, , there is a vortex dissipation peak when
flux-flow time scalet;;=4m\{o;/c?, the flux-flow conduc- wte~1. It is worth mentioning that this peak frequency,
tivity or=c?7,/B®,, and the flux-flow skin deptl’ﬁff

202/2’77(1)0'” . SinCEO'ffNO'anle, we haveO'ff>0'n and Kp
t;s>ty. Therefore the highest characteristic frequencygs wc* ,7_ (13
=1i,, which for conventional superconductors is abogt ’
~10-100 GHZ® is independent of magnetic field. For low frequenciese
<1, the real part of the penetration depth tends te=X ¢
B. Meissner state =Z+\Z, while the imaginary part\”"~wtcA2/2\c.

In the absence of vortices the Comp|ex penetra’[ion deptﬂ—hus for low frequencies the dissipation diminishes Iinearly

is simplyX2=\%/(1—i wty). This leads to a dissipation peak With @ as
in x” whenwty=~1. For large frequenciegyty,>1 (i.e., 5, )
<\.), the system behaves as a normal métarmal-state "o ikwt (14)
skin depth effegtwith 2m XL O
1 Therefore in the presence of vortices there is a new dissipa-
N =N Doty (9 tion peak, in addition to the “two-fluid peak,” either at,_or

- o at wc depending on the importance of pinning. At low fre-
Therefore dissipation goes as<\"/L~w~"*for largew.  quencies the relevant length scale for penetration of the ac
For low frequencieswto<1 (i.e., 6>\ ), the system is field is eitherL (in the absence of pinningr A (if pinning

dominated by the Meissner effect and is importani and the dissipation is linear with frequency in
1 both cases.
)\,NAL, )\,’N}\szto, (10)
E. Surface barrier effects
and therefore dissipation goes @5<\"/L~ o for low o. At the surface of a type-Il superconductor there is a po-
tential barrier that prevents the entran@and the exit of
C. Vortices without pinning vortices. This barrier has been calculated by Bean and

In the presence of vortices, the interesting frequenc;h'vmgslt_c'm' Tr?e surface b:_:lrne_r 'nhh'b'ts (;he pe_netI:at;on of
range iswty<1l since for frequenciest,>1 the system ux at He;, where penetration Is thermodynamically favor-

. ; able. Instead oHq, vortices start to enter at the first pen-
always behaves as in E(P), corresponding to the normal- L ¢l -
st\gteyskin de\;;th effelct ® ponding etration fieldH ,>H_,. AboveH,, the Bean-Livingston sur-

Let us first discuss the case when there is no bulk pinning::]""Ce b.?g'.er can bStab'f“Ze t.me‘??g?ﬁle. tstatels fW'th a
Kk,=0 (\c=2). For frequencies such thait;;>1, the sys- | oncautibnium nUMBEr o VOTces:— 1Ne Interval of ex-

tem behaves similarly to the Meissner state, with a dissipat_ernal magnetic fields where these metastable states exist in

tion peak atwty~1, as described previously. For frequenciesmacroscoplc superconductors has been obtained in Refs. 44—

such it 1 e system s cominatd by oo (0,112 D5 o0 0ot o fite e ooy |
skin depth effect” due to the flux-flow conductivitys. In > Sep Y ya

o o > . gion because of the effect of the surface barrier. The length
this limit A “~i 65;/2=i\{/wts;, and therefore the suscepti-

o of this vortex-free regiolf~*®is dgg=\_cosh }(H/B). The

bility for low frequencies should diverge a8~ Y2 This  ac magnetic response has been calculated by Sonin and
divergence is cut off by the finite system size. At low fre- Traito® in this case. They assume that the number of vortices
quencies the real part of the effective penetration depth is fixed, and they allow the size of the vortex free regikp
saturates to the system sike This leads to a dissipation to fluctuate with the rf fielch,.e~'“*. A different dissipation
peak at a frequen€y peak is found at a frequency

c? B tant?(dsg/\
o« — (11) Wsg~ ( SB L)

oF ' 19
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which for B<H, is wgg~1/t;;. For low frequenciesw Therefore one would expect that the TDGL equations are
<wgp, the effective penetration depth goes as particularly well suited to study mesoscopic systems, even
not very close tor .

We solve numerically the TDGL equations following the
same procedure as in our previous work in Ref. 29, using a
standard finite difference discretization schethave dis-

% 270w cretize space in a rectangular mesh with spacixigsndAy
c?

d in each direction. The order parameter and vector potentials
. SB
smhz<

— are defined at the nodes of the rectangular mésh

A =(1,J3)], and the link variableleM,J——exp(—uchMAM,J) (u
Therefore, according to this approach, the dissipation shoule-x,y) are introduced in order to maintain the gauge invari-
go asy”=\"/L~ w*?if surface barrier effects are important. ance under discretization. We assume that the sample has a
Experimentally, dissipation maxima attributed to surface barsquare shape in the,y direction and it is infinite in the
riers have been measured, for example, in Ref. 47. In platelet direction. We apply the magnetic field parallel to the
samples with a perpendicular magnetic field, geometrical efz direction, therefore the problem is reduced to two dimen-
fects enhance the surface barrier, giving place to a “geosions neglecting all derivatives aloagThe symmetry of the
metrical barrier.” Morozovet al*® have measured the effect problem implies for all mesh pointd ;= (Ay 5,Ay1,3,0)

of geometrical barriers in the ac response of a supercongng B, ;=(0,0B,,,), Wwhere leyjz(vx,&)zz(axA
ductor. In this case there is a dissipation maximum as a func- 3yA.3)-

tion of magnetic field foH=H,, which is independent of  The dynamical equations must be complemented with the

d
>\’~>\Lcoti—( E‘) (16)
A

)\//%

yl,J

frequency. appropriate boundary conditions for both the order parameter
and the vector potential. For the order parameter we have
Ill. MODEL AND DYNAMICS used the boundary condition
Our numerical simulations are carried out using the time- (MW =(V—iA)- ¥ =0 (19

dependent Ginzburg-Landau equations complemented with
the appropriate Maxwell equations. In the zero-electric pousually known as the superconductor-insulg®+l) bound-
tential gauge we have*° ary condition because it implies that the perpendicular com-
ponent of the superconducting current is equal to zero at the
ﬂzE[(V_iA)zq,Jr(l_T)(l_|q,|2)q,] (17) surface (E:O). This boundary condition also minimizes
a7 ’ the free energy at the sample surface.

Our numerical approach neglects the three dimensional
magnetic-field distribution, and therefore demagnetization
effects are not taken into account. This is equivalent to as-
_sume that the sample is infinite in the direction of the exter-
wherel andA are the order parameter and vector potenUaI,naI magnetic fieldthe z direction. Therefore, strictly speak-

respectively, andl is the temperature. Equatiori$7) and . ) .
(18) are in their dimensionless form. Lengths have beer{ng’ our results describe square samples that are mesoscopic

) . ; ) . only in thexy plane(perpendicular to the magnetic figland
tscgljd n }';'QlltSZOfAth.e coh.?renfle_ileng'(l@)é tlmesdl? units of infinite along thez axis. In this approximation, the difference
0= ATTnALIC ’ﬂ_ in-units OI °2r(] )g(.), ]f’mh e?pera- in the screening magnetic fields with respect to the truly
tures in units ofT. # Is equal to the ratio of the character- ., gimensional square samples will be more important at
istic time t, for the relaxation ofA and the timetg, for the

small fields.
relaxation of ¥: p=tg /to=Cc?/(4mo,k?D), with tg_

5 . i o , The ac magnetic field is introduced in the simulation
=¢&°/D, whereo, is the quasiparticle conductivity aridlis through the boundary condition for the vector potential
the electron diffusion constant. For superconductors wit

o o P > hﬁx#u. We consider the case where the ac magnetic figld
magnetic impurities we haveéy,=c*/(48mk0y), and 5" paraliel to the dc componekty., and both fields are in
thereforep=12 in this case.

: ; ) the z direction:
The time-dependent Ginzburg-Landau equations have

been proposéd as a time-dependent generalization of the B,|s=(VXA),|s=Hgc+hacog wt);

mean-field approach of the Ginzburg-Landau theory. Gorkov

and Eliasberty demonstrated that the TDGL equations canthis expression is evaluated at the ;ample_surface. we s;udy
he response of a superconductor in the linear regime, i.e.,

be obtained from the microscopic BCS theory in the case OE Ho The ti d d f th | .
gapless superconductors. In general, they are also expectdac<Hdc- The time dependence of the sample magnetiza-

to be approximately correct close Ta where the supercon- tion can be obtained from the magneti.c induction averaged
ducting gap is small. Moreover, experimental results fre-OVer the sampléB(t)) through the relation

guently show that the TDGL equations are often valid in a 47M(t)=(B(t))—H(t)

higher range of temperature and magnetic field. In the case '

of mesoscopic superconductors, mesoscopic fluctuationshe ac magnetic susceptibilities are obtained from the Fou-
tend to remove the singularities in the density of statesrier transform ofM (t):

oA .
— = (I=DIMW*(V=iA)¥]-k?V X VXA, (18
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1 2w
X' (Hge,0)= —J M (t)coq wt)d(wt), 0.191 1
mhaclo
£ 0.190 1
1 2w I
X" (Hge,0)= —f M(t)sin(wt)d(wt).  (20) 0.180 -
mhaclo

A\
A\

In what follows, we have solved the TDGL equations nu-
merically for a type-Il superconductor witt= 2, mean-field
temperatureT =0.5, and the parametej=12. We used a
spatial discretization chAx=Ay=0.5¢ and, in order to make (a)
efficient calculations, we have chosen adequately the time 0.129 . , , .
step with values\t<0.015,,. 0.0 0.5 1.0 1.5 2.0

0.130 1

-4nM(t)

IV. AC SUSCEPTIBILITY IN MESOSCOPIC
SUPERCONDUCTORS

In a mesoscopic sample the behavior of the ac magnetic Q\...
response in the presence of a dc magnetic field can be dif 2% ",
ferent than in the macroscopic case. On one hand, the mode e, “v,‘
typically used for macroscopic samplese Sec. )lassume "‘.

a high density of vortice¢and therefore an almost uniform = -0-13001 e

magnetic-field profile inside the sampleapplied magnetic % "

fields such thaH ;<H<H,,, and very largésemi-infinite = "\"
e,

samples. On the other hand, in mesoscopic samples there is -0.1304 1

small number of vortices, surface barriers cannot be ne- "\5
glected, and the finite size of the sample is important. Here (b)

we perform simulations of squares samples of sizes in the -0.1308 r . r
range from 5 X 5\ to 20\ X 20\ using the TDGL equations. 0.189 0.190 0.191

We start by showing in Figl a typical high-frequency ac
magnetic response of a small sample. In Fig) Wve plot the
driving flelc_i ;l\;t) N F:cd°h+ haccoslwt V?/nd rt]he Cr?rrespondlng f FIG. 1. Response of a superconductor to a high-frequency mag-
magnetizatiorM (t) of the sample. We show the response o netic field. (@) Time variation of the driving field and the sample

the system after a long equilibr.ation tintgypically around magnetization, anb) the magnetization loop that shows the pres-
100 periods of the external ac figldt can be observed that o of dissipation inside the sampl&ample size: 20X 20\,

the magnetization has a sinusoidal behavior, which is a Sig, —0.384,,(T), wt,=0.028.)

nal that we are in the linear regime and also that the sample

is following the external perturbation. It can also be observedull x”(w) curves obtained for fields such that there are no

that there is a phase shift between the magnetization and thwrtices within the sample, i.e., in the Meissner state. For

external field due to the presence of dissipation. Figubg 1 fields above the first penetration fiett},, vortices enter into

shows the magnetization loop obtained from the signals othe sample. The full frequency dependencey®fw) in the

Fig. 1(a). The area inside the loop is proportional to the timepresence of vortices, i.e., for field$y.>H,, is shown in

average of the energy dissipated in the sample and it is prd~ig. 2(c).

portional to the imaginary part of the ac susceptibility. The simplest case to understand is the behavior when

The appearance of dissipation changes the relationship béiere is no external field appliet .,=0. In this case the

tweenM ,.(t) andH ,.(t) and therefore the real part of the ac complex susceptibility agrees very well, both qualitatively

susceptibility, ' (Hq4c, @), will depend on the frequency of and quantitatively, with the two-fluid model described in Sec.

the ac signal as well as on the bias fiélg.. II B. For low frequenciesy” has a linear dependence with

as given by Eq(10). There is a maximum iry”(w,0) atw

=v,=1/,. At high frequencieso> v, the dissipation is due

] ) . to the normal electrons and follows the expected dependence
In order to understand the different dynamical regimes ofy” — » =12 as given by Eq(9), corresponding to the normal-

the ac response, we study first the dependencg =of’ state skin depth effect.

+ix" with frequencyw for different values of the dc mag- For small magnetic fields within the Meissner state, 0

netic fieldHq.. In Figs. 2 and 3 we show the imaginary and <Hy.<H,, the behavior is qualitatively similar to the .

the real part of the susceptibility, respectively. These curves=0 case, with a peak at=v,. The main difference is that

were obtained for a sample of & 20\. the slope of the loww linear dependence increases with
Figure 2a) shows the low-frequency behavior gf for  magnetic field, as can be seen in Figa)2According to Eq.

several values of the magnetic field. Figurd)2shows the (10), the linear slope for low frequencies is proportional to

H(t)

A. Frequency dependence
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FIG. 2. Frequency dependence of the imaginary component of
the ac susceptibility” at different fieldsH 4, for samples of size FIG. 3. (8 Frequency dependence of the real component of the
20N X 20\. (a) Low-frequency behavior for fields in the Meissner @C susceptibilityy’ at different values ofH, (black symbols:
state[black symbolsHg./H(T)=0,0.30] and in the mixed state Meissner state; open symbols: mixed staed (b) effective ac
[open symbolsH./H,(T)=0.40,1.0]. The continuous lines cor- Penetration depth .. as a function of frequency.
respond to a linear dependengé~ . (b) Frequency dependence . N
in the Meissner statérumber of vorticesN, =0). The dashed line , as mentioned before. As can be observed in Fig.
corresponds to a dependenge~ w2 (c) Frequency dependence 2(c), the main charactenghc of the mlxe_d state is that the_re
in the mixed state N,#0). The frequency is normalized are two dissipation maxima as a function of frequency in
by ve= 1/, x"(w). The high-frequency maximum corresponds to the

“two-fluid peak” at w~wv,. The low-frequency maximum

AL . This implies that the London penetration depth shouldthat appears at a frequeneay, <, is a continuation of the
be dependent on magnetic fieldi (H). Also, Fig. 2b)  maximum observed wheid4.<H,. The peak frequency,
shows that the magnitude gf (w) at any givenw increases shows a weak dependence with magnetic fielg,first de-
for increasingHy.. These two effects are easily understoodcreases and then increases with increasing. For fields
since the Meissner screening currents deplete the magnitudi,.=H.; the sample is completely in the normal state and
of the order parameter at the surface, which leads to a largehere is a single maximum in thg” vs o curve. It corre-
static penetration depth_(H) (see also Sec. IVBand to an  sponds to the frequency at which the normal-state skin depth
increase in the normal electron dissipation. The most inters, equals the system side
esting result is that foH 4. near but stillbelow H, a second Let us now analyze the frequency dependence of the real
dissipative maximum appears if(w). This second peak is part of the susceptibilityy’ (w), which is shown in Fig. GJ)
at a frequencyw, two orders of magnitude belowy, . for some values ofl 4.. From ' (w) it is possible to extract

For Hyc>H, the vortices enter into the sample. In this the real part of the effective ac penetration depth.
case we still find a low-frequency linear dependence =\’(w) using Eq.(3). The length\ .. represents the length
~w, as shown in Fig. @). Only for large fields close tbl ., scale for the penetration of the ac component of the magnetic
a small departure from linear dependence is obseryéd, field and its frequency dependence is shown in Fif).3n
~w®, with a~0.8. The behavior for very large frequencies the absence of a bias fielH(.=0), x'(w) is well de-
w>v, is the same for all magnetic fields, since it corre-scribed by the two-fluid model, as given in E¢8) and(10).
sponds to the normal-state skin depth effect wigi =~ The sample changes from a London screeningdetv,,

Y2

144505-6



ac MAGNETIC RESPONSE OF MESOSCOPIC TYPE-!. PHYSICAL REVIEW B 66, 144505 (2002

with N,c=~\_, to a perfect diamagnetic state far>v,, 0.050 7

with A ,.~0. At low frequenciesy’ is larger than— 1/4x o045 "7 y —v—n=003
due to the penetration of the field in a region of sizenear o] j‘ A
the sample surfacey’ ~(— 1/47)(1—4x,/L). At high fre- oo™ KY

quency the ac penetration depthNg.<A, and y'(w)=~ 0030 o 14

—1/47r. The opposite case is foty,=1.9H .»(T)>H 3 with . o] o v e\

the sample mostly in the normal stdg this field the surface = ] e,

superconductivity disappears and there is superconductivity 00207 K

only at the corner of the sampfe. As can be expected, in 0.015 1 F

this case the system behaves as a normal metal and is dorr 00191 ; v‘v
nated by the skin depth effect with,.~ 6,,/2. For low fre- 0.005 1 ::’/./ \w
guencies, the skin depthy, equals the system size and thus 0.000 1 = M
x'~0. For magnetic fields within the Meissner state, 0 0.00001 o000t 0.001 001 04 ! - 100 1000
<Hgc<H,, we find that for low frequenciesy< vy, the ac @/v,

penetration depth saturates to the field-dependent London
penetration deptih, (H), which increases witil. The most
interesting case is fdflyc<H,, which is shown in Fig. 3. In state (N,=0) near the penetration field,H=H H
this situation, one can distinguish three frequency regimes, ( 354 ;(T). The inset shows the depéndenc’)é wia;
as it was found before in the dissipative pat(w). Atthe ¢, Hdc:CO-

frequencies for which there are maxima in the dissipatign,

andwy,, there is a rapid change in the valuexdf(w) [orin  has a strong dependence on magnetic field, which is not ob-
Nac(w)]. For > v, the normal-fluid behavior of Eq9) is  served hereiii) Pinning: since there is no disorder in the
followed, as expected for all values &fy.. For the fre-  model, no bulk pinning is expected. However, in a very small
quency rangen,<w< vy, there is a shoulder if’(w) [and  sample one may argue that, given the smallness of the sys-
Nac(w)], which basically corresponds to an ac penetrationtem, the sample itself acts as a confinement potential for
depth of the order of the expected value fqr(H) at that  vortices. In this casex, in Eq. (7) would represent the vor-
field. At low frequenciesw<w,, the ac penetration depth tex elastic response for small oscillations within this confine-
saturates to a lengty which is smaller than the system size ment potential. The characteristic frequency for pinning ef-
and larger tham (H). fects, wc, is independent of magnetic field in macroscopic
In summary, the most interesting feature observed insamples, according to E¢13). The weak-field dependence
Y(w) is the appearance of a dissipation maximum at fre-of wp, may still be consistent with this resuthe effectivex,
quenciesw,(H)<vq in the presence of a magnetic field. A may depend on the number and distribution of vortices inside
dissipation maximum in macroscopic samples is expectethe sample in this hypothetic case of “confinement poten-
whenH #0, as we discussed in Sec. Il. It can be caused byial”). Also the fact that\,.<L for o<w, in Fig. 3b) is
several reasongi) finite size, (i) surface barriers, ofiii) consistent with a finite “Campbell’s penetration deptha
bulk pinning. However, the behavior predicted in any of (and thenl,=\¢). However, we also have to discard this
these cases is not followed in the mesoscopic samples stugessibility, since we find that there is a dissipation maximum
ied. Let us discuss each of the possibilitiés Finite size: in  at w, even when there are no vortices in the sample
a small sample this is the first effect to analyze. The characshown in Fig. 2b) the dissipation peak already appears for
teristic frequency for finite-size effects, , should increase magnetic fields just below the penetration fi¢id. To be
linearly with B and decrease with system size, as given bymore precise, we have explicitly calculated the topological
Eq. (11). However,w, has a weak and nonmonotonous de-number of total vorticity asN,=(1/®,)$(A+ Jo/|¥ |3 dl.
pendence with magnetic field, as seen in Fig).2n Fig. 4  We obtainN,=0 at all times for the magnetic fields shown
we show x”(w) in a smaller sample with. =5\ (and »  in Fig. 2(b). Therefore all arguments based on the oscillation
=12) forHy.<H,. We see that the maximum appears at theof vortices, as for example the Coffey and Clem moal
same frequencw, as in theL =20\ case for the same mag- Eqg. (8), which work very well for macroscopic samples, are
netic field[Fig. 2(b)]. Thereforew, has no size dependence. not enough to explain the dissipation maxima observed in
Furthermore, in Fig. 3 we see that when-0 the sample is these mesoscopic samples.
still diamagnetic and ,.<L [a finite-size effect would have In Fig. 4 we show thaty, depends directly on the time
X' (w—0)=~0 and\,.=L]. (i) Surface barrier: in mesos- scale for the relaxation of the amplitude of the order param-
copic samples, surface barriers are very importain.mac-  eter,tg, = nto. We consider a magnetic fieldyc<H, and
roscopic samples, the effect of surface barriers, assumingwe change the value aof in Egs.(17) and (18). The “two-
large number of vortices, gives a low-frequency dependencBuid peak” is always at the same frequengy= 1/,, since
for dissipation ag/” ~ w® with a=1/2; see Eq(16) and Ref.  tq is fixed. We find that when decreasing the frequency
8. However, we find a linear frequency dependence in mosi,, shifts to higher values and increases monotonically with
cases as shown in the inset of Figa)2 and even when there 1/tg,, until the rather unphysical case tf, <ty (<1),
is a departure from linearity, it is with an exponent @f  when only the two-fluid peak at, is observed. The depen-
~0.8>0.5. Also the characteristic frequeneyg of Eq. (15) dence ofw, with tg, shows that variations in the amplitude

FIG. 4. Dependence with the TDGL time scalg = ntg. x" Vs
o curves for small mesoscopic samples>65\ in the Meissner
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0.020
0.018 4 A — —H,=0.38 H_,(T) (Meissner)
1 —&—H, =0.38 H_,(T) (NV=10)
0.016 - \
0.014 A cot0 H, =0.6 H_,(T) FIG. 5. History dependenpe 92/1". VS w curves
1 A a.008 for Hyc near the penetration fieldd, [Hqc
0.012 7 A 5, 0w J' =0.38H,(T)]. Black triangles: decreasing fre-
:  0.010- \ 0.004 f \‘k quency from a highw state without vortices
= 1 \AK A&A 0.002 N/df. \ (N,=0); the branch forw above the jump has
0008__ A ﬁA % 00[?.0001 0001001 01 A 10 100 30-010'00 NU:0 and below the Jumml):lo Whlte trl-
0.006 - EA hat ‘\ M, angles: increasing frequency from a lawstate
1 7 A\ with N,=10. Sample size is 20<20\. The in-
0.004 7 /2/ a set shows the absence of history dependence for a
0.002 A N larger magnetic fieldH 4= 0.6H ,(T).
] A N
AN o
0.0001  0.001 0.01 0.1 1 10 100 1000 10000
®/v,

of the order parameter are the main mechanism of this didser of vortices. These jumps occur at successive magnetic
sipation maximum, as we will see more clearly later in Secfields H,=H,;,Hpo Hps, - .. 2% In the regions ofH,;
V. In the inset of Fig. 4 we verify that faH ;=0 the behav-  <H<H ) the number of vorticed\, is constant. The
ior is independent otg , since this case can be simply only penetration events occur Hit,;, when vortices enters
described with the two-fluid model. _ into the sample. In the region of constant vorticit, < H

The appearance of the dissipation maximum for @ mag=n ., one may think that no vortices enter the sample
netic field belowH,, just before the penetration of vortices pecause of the effect of the surface barrier.
into the sample, leads to history dependent effects. The Figure 8a) shows the behavior of”(Hy.) obtained at a

curves in Fig. 2 were generateq increasing the ﬂt:hjg at  fived frequencyw=0.004/,< w, in a mesoscopic sample of
low f_requency and then measunqg(@ for increasingw. size 10.x 10N. At small Hg, in the Meissner statey” in-
Lnumése:v;y{/é?t?cg:r;'[e;ﬁriorlt;?]é?eg%(rcﬁh%de thelfsvz\i/;ne creases continuously with increasihty.. The presence of
follow the opposite rocedu?e e we incr%aisgccét hiah the dc magnetic field in the Meissner state induces static
P P PR g supercurrents which deplete the order parameter at the

frequency and then measujé(w) for decreasingw, the X . .
curves can show discontinuous jumps at certain frequenciéﬁoundary' As explained before in Spc. IVA, the f’eP'e“F’” of
e order parameter leads to an increase of dissipation for

values due to vortex penetration. This occurs because |rJf ; 2" e
creasing the field at high frequency can generate a metastad[¥réasingHqc. When the dc magnetic field is increased
state that can become unstable at low frequencies. In Fig. 8P0Ve the first penetration field ;=H,, the first vortices
we show this case, for a field near the first penetration fiel@nter into the samplﬂe. Figurded shows that there is a dis-
Hac~H,. Depending on the history, the high-frequency continuous jump iny W|th a decrease of d|SS|pat|on_Just at
branch can have eithét, = 10 vortices oiN,=0. In the case Hp- TWO states are possible exactlythy: one state without
when the frequency is decreased from a high-frequency stat¥ortices and high dissipation, and one state with vortices
there is a large jump iy () at a frequency neav,, from |n_s|de the §ample anibw dissipation. ThIS.IS in agreement
a metastable branch witd, =0 for o>/, to a branch with with the history dependence Sbserved in Fig. S. Further
N, =10 for @<w,. In contrast, we see in the inset of Fig. 5 JUMPs in the dissipation curvg”(Hqc) are present at the

that for a fieldH 4 # H,, the curves of¢’ () are independent other. magnetic fields for vortex penetrati(.bmpz,Hp'g, cee
of history. The jumps are followed by a later continuous increase of

x"(Hge) with increasingH 4. while the number of vortices
N, remains fixed. Figure (6) was obtained in a sample of
the same size of Fig.(8 but at a higher frequencyw
Experimentally, the ac frequency is fixed and the dc mag=0.06v,>w,. The frequencies used in Figs(ap and (b)
netic field or the temperature can be varied. In this sectiorare at both sides of the dissipation maximum that appears at
we will study the ac magnetic response of mesoscopic supets,. Both curves are similar in their qualitative features, but
conductors varying the bias dc magnetic field. We will showshow a few differences. At high magnetic fields there are
results at different frequencies and for different sample sizefewer jumps iny”(Hg4.) in Fig. &b) than in Fig. §a). This is
In the absence of the ac field, the dc magnetic behavior dbecause at high frequencies it is possible to remain in a meta-
mesoscopic superconductors is different from the continuoustable state with a fixed number of vortices in a wider range
macroscopic behavidf:>® In mesoscopic samples each vor- of magnetic field. At the same time, the higher frequency of
tex entrance event produces discontinuous jumps in the magrig. 6(b) produces a decrease in the amplitude of the jumps.
netization curve at certaifly. values. Each discontinuous The behavior ofy”(Hq4.) of Figs. 6a) and (b) is different
jump in M (H) corresponds to a sudden increase in the numfrom the behavior of bulk samples. For example, Fi(t)6

B. Magnetic-field dependence
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FIG. 6. Hq, dependence of” obtained at a fixed frequency. ~ FIG. 7. Hqc dependence of’ obtained at a fixed frequencia)
Small mesoscopic samples of size2010\ showing discontinu- ~ and(b) for small samples angt) for large samples. The parameters
ous jumps:(a) wto=0.004 and(b) wt,=0.06. (c) Large samples are the same as used in Fig. 6.

of size 40.X40n showing the usual continuous behavior, ) ) ) ) )
wty=0.06. creases at increasing field. This shows in the low-frequency

ac response of mesoscopic samples as a differential paramag-

" B . . . , netic behavior. Figure (€) shows a continuous macroscopic
showsy”(Hq4.) at w=0.06v, obtained in a “large” sample dependence of'(Hy) in a larger sample of size 40

of 40N X 40\. In this case thgre are no dlscontlnuqus Jumps, 40\ At the frequencies used in Fig(cJ we can see a
and the curve is almost continuous. In macroscopic sample

: ! &amagnetic behavior even in the normal state for fields
Fhe entrance of vortices fddgc>H, Increases the ac losses reater than Rl ,(T). This is simply because at high fre-
In a continuous way. In the macroscopic case vortlce§ play uencies there is magnetic screening in the normal state due
fundamental role in the ac losses, and therefore an increagt i o <kin depth effect
on the number of vortices increases the dissipation. In con- :

) : From Fig. 7 it is possible to obtain thé¢,. dependence of
trast, the results of Figs.(@ and (b) show the opposite be- the penetration depth. This dependence has been a subject of

havior in mesoscopic samples: there is a sudden decreaseiﬂ erest recently because of its relation with the symmetry of

the ac losses at the magnetic fields that correspond to 4He order parameter. In conventiorsalvave superconductors

increase in the number of vortices. ; :
; I he followin ndence is ex :
Figure 7 shows the real part of the ac susceptibility fort e following dependence is expected

increasingHy.. We use the same pargmeters as in .Fig. 6. AN(Hge, T)/NO,T)=B[Hye/Heo(T)T?, (21)

The curves ofy’ (Hq4.) also have a typical mesoscopic be-

havior with discontinuities at each vortex penetration field.where AN(Hgc, T)=N(Hgc, T) —A(0,T). It is assumed that
The increase of frequency from=0.004v, in Fig. 7(a) to  the sample is in the Meissner state and in the linear regime,
w=0.06v, in Fig. 7(b) shows similar differences as observedi.e., |Hqc/>|h, |. Equation(21) was originally obtained by

in x"(Hqo). It can also be noted in Fig.(d that the differ-  Ginzburg and Landat and also by Bardeéfan it has been
ential susceptibility has a paramagnetic behavigt>0)  observed experimentally in typetRefs. 1 and Band con-
near each vortex penetration field. This can be expected froientional type-Il superconductot$.Solving the Ginzburg-
the behavior of the dc magnetization curves of mesoscopitandau equations for a superconductor which has an infinite
samples® In mesoscopic samples, féty. below each vor- plane interface, the valueBg =[3x3(k+2+2)]/[4(x

tex penetration field a magnetization maximum appears and \/2)?] is obtained. On the other hand, the behavior of
therefore a region nea, where the magnetization in- AA(H) in unconventional superconductors is expected to be
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";; 1 j (AN,o) in a mesoscopic samplésquares, 10
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< X 40\) for wty=0.06. The inset shows a fit to a
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. lines) for fields belowH .
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different* In the case of al-wave superconductor Yip and the behavior of the order parameter just before and after the
Sauls®*>* proposed a linear field dependence\(Hg;)  two first values of the penetration fields,,; andH,,. At
«Hy.. Here we use the phenomenological TDGL equationH 4.=0 the order paramet¢¥ | is equal to unity in the entire
in its sswave form. Therefore in the Meissner state we expecsample and the dissipation is small. In the Meissner state but
a result similar to Eq(21) for macroscopic samples. The for Hgc=Hp1, Fig. 9@ shows that the magnitude of the
results are shown in Fig. 8. Both the macroscopic and therder parameter near the boundary, and at the center of the
mesoscopic sample show a quadratic dependence d@dce, has large oscillations around a small value. Figuiog 9
AN(Hg4o) as a function ofHy. in the Meissner state. We shows the time evolution of order parameter just after the
obtain from the macroscopic curye~3.1, which is close to  first vortex entrance eventy.=Hp;. We see that the en-
the expected Ginzburg-Landau vale, =2.48 for k=2. trance of vortices increases the order parameter at the bound-
For larger magnetic fields we observe that the penetration adry, where now/¥| oscillates around a value much higher
vortices produces a sudden decreaseé\dfin mesoscopic than before. One can also see that the positions of the vorti-
samples, whereas at a fixed number of vortit@sincreases ces are fixed inside the sample and do not oscillate in the
continuously for increasingd .. For macroscopic samples presence of the ac signal. Recently, in an extension of the
the entrance of vortices at the first penetration fi¢|ddoes idea of the Bean-Livingston barrier to mesoscopic supercon-
not produce a discontinuity id\(Hy.) but a change of ductors, we have shown that the vortex entrance produces a
slope as can be observed in the plot. Fyy;>H, the de- reinforcement of the surface barrier, due to the interaction
pendence changes from quadratic to approximately linear ibhetween the vortices that are trying to enter the sample and
Hyc- the vortices already inside the sampidhe presence of this
interaction decreases the surface currents. In other words,
V. NASCENT VORTICES EFFECT after the entrance of vor.tices the Meissner screening_ current
decreases and the amplitude of the order parameter increases
From the results of the previous section, it is clear nowat the boundary. Therefore, the dissipation decreases.
that the ac magnetic response of a mesoscopic supercon- Figures 9c) and (d) show similar behavior forHy.
ductor is different from the macroscopic behavior and it can=<H, and Hq;=H,. After increasingHy. at a constant
not be explained with the known models. An interesting re-number of vortices, the order parameter at the boundary has
sult is the significant decrease of dissipation each time thdecreased, as seen in FigcP The decrease of the order
number of vortices increases. To understand this effect wparameter increases the dissipation as was observed before.
have analyzed in detail the time variation of the order paramif new vortices enter again into the sample, the order param-
eter and the magnetization within the sample. eter increases at the boundary, see Fid) 8nd therefore the
Figure 9 shows the time variation of the order parametedissipation decreases again. This process is repeated in the
at different applied magnetic fields in a small sample. Eaclother penetration fieldd ,;. On the contrary, the entrance of
curve represents the amplitude of the order parameter alongrtices in a large sample do not produce an appreciable
the x direction, perpendicular to a face of the square samplegchange in the amplitude of the order parameter at the bound-
obtained at a given time. To simplify the analysis the cut wasary before and after the penetration event, and therefore the
done just at the center of the faceyatL/2 (which is the dissipation shows a continuous behavjas seen in Fig.
preferred point for vortex penetration in a square saimple 6(c)].
The order parameter is obtained at different times within a A careful analysis of the entire profile of the order param-
single period of the ac magnetic field. In particular, we showeter for magnetic fields below but neartig suggest that the
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located in the vacuum, beyond the sample boundary, but near
the surface. Note that sindd’| does not truly have a zero
inside the sample, the topological number of vorticiy,
=(1UD)$(A+I,/|W|?)dl, is N,=0 and thus there is no
fluxoid quantization. Indeed, a nascent vortex state corre-
sponds to the penetration of less than a flux quantum. For
high values ofh,. (beyond linear responseve find that
these nascent vortices oscillate near the suifiaeg that the
profile of the depletion of¥| near the surface oscillates with
H(t)]. Also, from the simulations we obtain that for increas-
ing Hy. the nascent vortices gradually transform into the real
vortices that finally enter the samplend that satisfy fluxoid
quantization. According to this scenario, the length schle
observed in Fig. ®) for low frequencies may correspond to

a characteristic length scale for the nucleation of vortices
from the boundary(For large fieldsB>H, the lengthl,
could be related to the size of the vortex-free regigg of
macroscopic samplésyears ago, Walton and Rosemblin
introduced the idea of nascent vortices and suggested them
as a possible source of the high-frequency losses in super-
conductors. This idea had further support from the analytical
work of Kramer® who found static solutions of the
Ginzburg-Landau equations which corresponded to vortices
nucleated near the sample. The nascent vortices can oscillate
under an ac field. This source of dissipation is not generally
taken into account in macroscopic samples because in this
case it is small compared with the dissipation due to the
motion of vortices inside the sample. However, in a mesos-
copic superconductor, with a few vortices confined inside the
sample, this source of dissipation can be a significant part of
the dissipation observed, as we have found here.

VI. SUMMARY AND CONCLUSION

We have studied the response of mesoscopic supercon-
ductors to an ac magnetic field. In mesoscopic superconduct-
ors vortices are confined inside the sample by the surface
barrier and their dynamics play a secondary role in the dis-
sipation. When increasing 4., discontinuities iny’ and x”
appear at each vortex penetration event. The dissipation is
maximum before the penetration of vortices due to the effect
of nascent vortices, which lead to large oscillations of the
amplitude of the order parameter at the boundary. After the

FIG. 9. Time variation of the order parameter in a sample of sizg?€netration of vortices, the normal currents decrease and

10N X 10N at different applied magnetic fields and fait,= 0.06.

therefore the dissipation decreases, leading to a sudden sup-

The figures show transversal cuts taken at the center of one of tHeression of the ac losses induced by the vortex entrance.

faces for different times(a) Hyc=0.42164(T)<H,,, (b) Hgc
=0.421H(T)>Hpq, (c) Hac=0.568H ,(T) <H,p, (d) Hge

=0.56H ¢(T)>Hpo.
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