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ac magnetic response of mesoscopic type-II superconductors
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The response of mesoscopic superconductors to an ac magnetic field is numerically investigated on the basis
of the time-dependent Ginzburg-Landau equations. We study the dependence with frequencyv and dc mag-
netic fieldHdc of the linear ac susceptibilityx(Hdc ,v) in square samples with dimensions of the order of the
London penetration depth. AtHdc50 the behavior ofx as a function ofv agrees very well with the two-fluid
model, and the imaginary part of the ac susceptibility,x9(v), shows a dissipative maximum at the frequency
no5c2/(4psl2). In the presence of a magnetic field a second dissipation maximum appears at a frequency
vp!n0. The most interesting behavior of mesoscopic superconductors can be observed in thex(Hdc) curves
obtained at a fixed frequency. At a fixed number of vortices,x9(Hdc) continuously increases with increasing
Hdc . We observe that the dissipation reaches a maximum for magnetic fields right below the vortex penetration
fields. Then, after each vortex penetration event, there is a sudden suppression of the ac losses, showing
discontinuities inx9(Hdc) at several values ofHdc . We show that these discontinuities are typical of the
mesoscopic scale and disappear in macroscopic samples, which have a continuous behavior ofx(Hdc). We
argue that these discontinuities inx(Hdc) are due to the effect ofnascent vorticeswhich cause a large variation
of the amplitude of the order parameter near the surface before the entrance of vortices.
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I. INTRODUCTION

The response of superconductors to an ac magnetic
has been of interest for a long time,1–3 and particularly in the
last years.4–14 The microwave surface impedanceZs5Rs

2 iXs and the ac magnetic susceptibilityx̃5x81 ix9 have
been extensively studied.1–14 Interesting behavior has bee
found for different values of the frequency, the magne
field, the pinning force, and the thermal fluctuations,4–7

whereas linear and nonlinear response appear dependin
the strength of the ac signal.7 The main interest so far ha
been on the electrodynamics of macroscopic samples
taining a large number of vortices. In this case, it is poss
to use phenomenological models to describe the macrosc
behavior of the superconducting samples.4–7

Recently there has been an increasing interest in the s
of vortex physics on a mesoscopic scale,15–29 a regime in
which a small number of vortices are confined in a sm
sample. The behavior of mesoscopic superconductors is
ferent from the behavior of bulk samples. In mesoscopic
perconductors surface effects30 are very important since th
interaction of vortices with the surface currents is large29

The magnetic properties strongly depend on the sample s
and geometry.22,23,29The most studied geometries are the t
mesoscopic disk,15,18–26 the mesoscopic slab,16,17 and the
mesoscopic square.27–29 In particular, the mesoscopi
samples can develop Abrikosov multivortex states21 and de-
pending on the size of the sample it is possible to obse
first- or second-order transitions.20 The electric charge o
vortices,25 a paramagnetic effect,18,26 and the surface
barrier29,30 on a mesoscopic scale have also been stud
One interesting characteristic of the magnetic properties
mesoscopic superconductors is the behavior of the dc m
netization curves. In a mesoscopic scale, the vortices tha
inside the sample induce a reinforcement of the surface
rier at fields greater than the first penetration fieldHp .29
0163-1829/2002/66~14!/144505~12!/$20.00 66 1445
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These barriers allow for the existence of metastable state
constant vorticity as a function of magnetic field. Each me
stable state becomes unstable at thei th penetration fieldHpi

in which vortices enter the sample and the magnetization
a discontinuous jump. These jumps have been obse
numerically16,20,29 and experimentally in mesoscopic A
disks.20

In the last years numerical simulations of the tim
dependent Ginzburg Landau~TDGL! equations have been a
important tool in the study of the static and dynamic prop
ties of superconductors.16,31–40The TDGL model has been
used to study the flux growth dynamics,31,32 the magnetic
response,16,33 and the I-V characteristics of superconducti
samples.34 In particular, Enomotoet al.38 using the TDGL
equations studied the temperature dependence of the ac
ceptibility at a fixed frequency in the absence of a dc m
netic field for a large sample. For increasing temperat
they found thatx8 exhibits a steplike change from a negati
value (x8521/4p) to zero, whilex9 initially rises from
zero, goes through a maximum, and then returns to a s
value nearTc , which is qualitatively consistent with the
overall behavior observed in experiments.

In this paper we perform numerical simulations of t
time-dependent Ginzburg-Landau equation to study the
magnetic response of type-II superconductors on a me
copic scale. We study the frequency andHdc dependence of
the linear ac susceptibility x̃(Hdc ,v)5x8(Hdc ,v)
1 ix9(Hdc ,v) of square samples with dimensions of the o
der of the London penetration depthlL . Our results were
obtained in the absence of bulk pinning and in the line
regime.

The paper is organized as follows. In Sec. II we revie
the known results for the ac magnetic response of ma
scopic superconductors, in order to later compare them w
our results in mesoscopic samples. In particular, the tw
©2002 The American Physical Society05-1
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fluid model for the Meissner state and the Coffey and Cl
model for the mixed state are reviewed. In Sec. III we d
scribe the TDGL equations used in the simulations. In S
IV we present our numerical results for the ac magnetic
sponse of mesoscopic square samples. Section IV A is
voted to the study of the frequency dependence ofx8 and
x9. We find that forHdc50 the behavior of the sample i
well described by the two-fluid model. Atv5no

5c2/(4psl2) a maximum in the imaginary part ofx̃(v,0)
appears. In the Meissner state forHdc;Hp , another maxi-
mum appears inx9(v). This behavior, characterized by th
presence of two dissipation maxima is also observed in
mixed state. At the same time, for increasing frequen
x8(v,Hdc) changes from London screening to a perfect d
magnetic state at high frequency. This transition is due t
decrease of the ac penetration length. In Sec. IV B we st
the Hdc dependence ofx8 andx9 at a fixed frequency. De
pending on the sample size, we find well-defined mesosc
and macroscopic behaviors. For mesoscopic samples we
serve that, in the magnetic field ranges in which the num
of vortices is constant,x9(Hdc) continuously increases fo
increasingHdc . At the i th vortex penetration fieldHpi , the
entrance of vortices produces a considerable suppressio
the ac losses andx9(Hdc) decreases with a discontinuou
jump. On the contrary, samples of macroscopic sizes sho
continuous behavior inx̃(Hdc), with x9(Hdc) monotonically
increasing withHdc . In Sec. V we study the time evolutio
of the order parameter in mesoscopic superconductors.
show that at high frequencies and in mesoscopic samples
vortices are fixed and only play a secondary role in the
response of the sample. We show that the main dissipa
mechanism in mesoscopic superconductors is due to the
fect of ‘‘nascent vortices.’’ They cause large variations of t
amplitude of the order parameter at the boundary of
sample before the entrance of vortices. Finally in Sec.VI
give a summary of our results and conclusions.

II. AC RESPONSE OF MACROSCOPIC SAMPLES:
REVIEW OF KNOWN RESULTS

A. Two-fluid model and Coffey and Clem model

When an ac magnetic field is appliedH(t)5Hdc

1haccos(vt), an effective complex penetration depthl̃(v)
can be defined assuming that the fluctuating field insid
semi-infinite sample forx.0 has the form

dH5hace
2x/l̃(v)e2 ivt ~1!

or from a generalization of London’s expression for t
current,

¹3J~v!52
c

4pl̃2~v!
B~v!. ~2!

It can be related to the frequency-dependent conductivity

l̃(v)5Aic2/4pvs̃(v). In the case of a normal metal wit
conductivity sn , the complex penetration depth is direct
related to the skin depthdn5Ac2/2pvsn as l̃n5(1
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1i)dn/2. The complex permeabilitym̃(v), or the complex
susceptibility x̃(v)5x8(v)1 ix9(v)5@m̃(v)21#/4p, de-
pend both onl̃(v) and also on the specific shape of th
sample, since the ac penetration of magnetic fields is a
face phenomenon. In the case of a square sample of siL
3L an approximate expression for the permeability in t
limit l̃!L is

m̃square'
4l̃

L
S 12

l̃

L
D . ~3!

Exact expressions form̃ for squares, cylinders, and slabs c
be found, for example, in Ref. 4. Sometimes the comp
surface impedanceZs is used, it can be defined whenl̃!L

asZs5Rs2 iXs5 iv(4p/c2)l̃(v).
In the Meissner state the ac response has been us

described with the two-fluid model.41,42 In the mixed state,
the magnetic flux enters in the form of quantized vortic
Therefore the dynamics of the vortices has been include
the description of the magnetic ac response of the mi
state.4–7 In particular, Coffey and Clem have extended t
two-fluid model by including the equation of motion of vo
tices for small displacements.4 Similar results were obtained
by Brandt5 and by van der Beeket al.7 All these models
assume that there is a large number of vortices in the sam
and a continuous description of the vortex lattice is us
~valid for B@Hc1).

The two-fluid model consists in writing the total curre
as the sum of the supercurrent and the normal current,

J5Js1Jn , ~4!

with

Jn5snE52
sn

c

]A

]t
, ~5!

and the supercurrent given by the London model,

¹3Js52
c

4plL
2 ~B2bv!. ~6!

HerelL is the static London penetration depth andbv is the
local vortex magnetic field. In the absence of vortices,bv
50, the two-fluid model has the characteristic timet0

54plL
2sn /c2 for the transformation of supercurrents in

normal currents, sinceJn5t0]Js /]t. The Coffey and Clem
model includes the equation of motion of vortices for sm
displacementsu(x,t) from their equilibrium positions,

hvu̇1kpu5
1

c
Js3F0â ~7!

wherehv is the viscous drag coefficient,kp is the restoring
force constant~Labusch parameter! of a pinning potential
well, and â the local vortex direction. Here we have n
glected thermal fluctuation effects. The small vortex d
placements induce perturbations of the local vortex magn
field, bv1dbv , which depend asdbv5¹3(u3B).7
5-2
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In the case of fieldsHihac and parallel to the surface
using Eqs.~2! and~4!–~7! the effective complex penetratio
depth4 can be obtained as

l̃25lL
2

11S lL
2

lC
2

2 ivt f f D 21

12 ivt0
5

lL
21S 1

lC
2

2 i
2

d f f
2 D 21

12 i
2lL

2

dn
2

~8!

with the Campbell penetrationd depthlC
2 5BF0/4pkp , the

flux-flow time scalet f f54plL
2s f f /c2, the flux-flow conduc-

tivity s f f5c2hv /BF0, and the flux-flow skin depthd f f
2

5c2/2pvs f f . Sinces f f;snHc2 /B, we haves f f.sn and
t f f.t0. Therefore the highest characteristic frequency isn0
51/t0, which for conventional superconductors is aboutn0
;10–100 GHz.43

B. Meissner state

In the absence of vortices the complex penetration de
is simply l̃25lL

2/(12 ivt0). This leads to a dissipation pea
in x9 whenvt0'1. For large frequencies,vt0@1 ~i.e., dn
!lL), the system behaves as a normal metal~normal-state
skin depth effect! with

l85l9'lLA 1

2vt0
. ~9!

Therefore dissipation goes asx9}l9/L;v21/2 for largev.
For low frequencies,vt0!1 ~i.e., dn@lL), the system is
dominated by the Meissner effect and

l8'lL , l9'lL

1

2
vt0 , ~10!

and therefore dissipation goes asx9}l9/L;v for low v.

C. Vortices without pinning

In the presence of vortices, the interesting frequen
range isvt0!1 since for frequenciesvt0@1 the system
always behaves as in Eq.~9!, corresponding to the norma
state skin depth effect.

Let us first discuss the case when there is no bulk pinn
kp50 (lC5`). For frequencies such thatvt f f@1, the sys-
tem behaves similarly to the Meissner state, with a diss
tion peak atvt0'1, as described previously. For frequenc
such thatvt f f!1 the system is dominated by the ‘‘flux-flow
skin depth effect’’ due to the flux-flow conductivitys f f . In
this limit l̃2' id f f

2 /25 ilL
2/vt f f , and therefore the suscept

bility for low frequencies should diverge asx̃;v21/2. This
divergence is cut off by the finite system size. At low fr
quencies the real part of the effective penetration depthl8
saturates to the system sizeL. This leads to a dissipation
peak at a frequency6

vL}
c2

L2s f f

}
B

L2
, ~11!
14450
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and for very low frequencies such thatv!vL , dissipation
diminishes linearly as

x9}
s f fL

2

c2
v. ~12!

D. Vortices with pinning

In the presence of bulk pinning,kp5” 0, the relevant time
scale istC5t f flC

2 /lL
25hv /kp . Now instead of the finite-

size peak atvL , there is a vortex dissipation peak whe
vtC'1. It is worth mentioning that this peak frequency,

vC}
kp

hv
, ~13!

is independent of magnetic field. For low frequencies,vtC

!1, the real part of the penetration depth tends tol8'l̃C

5AlC
2 1lL

2, while the imaginary partl9'vtClC
2 /2l̃C .

Thus for low frequencies the dissipation diminishes linea
with v as

x9'
1

2p

lC
2

l̃CL
vtC . ~14!

Therefore in the presence of vortices there is a new diss
tion peak, in addition to the ‘‘two-fluid peak,’’ either atvL or
at vC depending on the importance of pinning. At low fre
quencies the relevant length scale for penetration of the
field is eitherL ~in the absence of pinning! or lC ~if pinning
is important! and the dissipation is linear with frequency
both cases.

E. Surface barrier effects

At the surface of a type-II superconductor there is a p
tential barrier that prevents the entrance~and the exit! of
vortices. This barrier has been calculated by Bean
Livingston.30 The surface barrier inhibits the penetration
flux at Hc1, where penetration is thermodynamically favo
able. Instead ofHc1, vortices start to enter at the first pen
etration fieldHp.Hc1. AboveHp , the Bean-Livingston sur-
face barrier can stabilize metastable states with
nonequilibrium number of vortices.44,45 The interval of ex-
ternal magnetic fields where these metastable states exi
macroscopic superconductors has been obtained in Refs.
46. It has been found that for fieldsH.Hp the vortex array
is separated from the boundary surface by a vortex-free
gion because of the effect of the surface barrier. The len
of this vortex-free region44–46 is dSB5lLcosh21(H/B). The
ac magnetic response has been calculated by Sonin
Traito8 in this case. They assume that the number of vorti
is fixed, and they allow the size of the vortex free regiondSB
to fluctuate with the rf fieldhace

2 ivt. A different dissipation
peak is found at a frequency

vSB'
tanh2~dSB/lL!

t f f
, ~15!
5-3
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which for B!Hp is vSB'1/t f f . For low frequenciesv
!vSB, the effective penetration depth goes as

l8'lLcothS dSB

lL
D , ~16!

l9'
lL

2

sinh2S dSB

lL
DA

2ps f fv

c2
.

Therefore, according to this approach, the dissipation sho
go asx9}l9/L;v1/2 if surface barrier effects are importan
Experimentally, dissipation maxima attributed to surface b
riers have been measured, for example, in Ref. 47. In pla
samples with a perpendicular magnetic field, geometrical
fects enhance the surface barrier, giving place to a ‘‘g
metrical barrier.’’ Morozovet al.48 have measured the effec
of geometrical barriers in the ac response of a superc
ductor. In this case there is a dissipation maximum as a fu
tion of magnetic field forH*Hp , which is independent o
frequency.

III. MODEL AND DYNAMICS

Our numerical simulations are carried out using the tim
dependent Ginzburg-Landau equations complemented
the appropriate Maxwell equations. In the zero-electric
tential gauge we have33,40

]C

]t
5

1

h
@~¹2 iA!2C1~12T!~12uCu2!C#, ~17!

]A

]t
5~12T!Im@C* ~¹2 iA!C#2k2¹3¹3A, ~18!

whereC andA are the order parameter and vector potent
respectively, andT is the temperature. Equations~17! and
~18! are in their dimensionless form. Lengths have be
scaled in units of the coherence lengthj(0), times in units of
t054psnlL

2/c2, A in units of Hc2(0)j(0), and tempera-
tures in units ofTc . h is equal to the ratio of the characte
istic time t0 for the relaxation ofA and the timetGL for the
relaxation of C: h5tGL /t05c2/(4psnk2D), with tGL
5j2/D, wheresn is the quasiparticle conductivity andD is
the electron diffusion constant. For superconductors w
magnetic impurities we haveDimp5c2/(48pk2sn), and
thereforeh512 in this case.

The time-dependent Ginzburg-Landau equations h
been proposed49 as a time-dependent generalization of t
mean-field approach of the Ginzburg-Landau theory. Gor
and Eliasberg50 demonstrated that the TDGL equations c
be obtained from the microscopic BCS theory in the case
gapless superconductors. In general, they are also expe
to be approximately correct close toTc where the supercon
ducting gap is small. Moreover, experimental results f
quently show that the TDGL equations are often valid in
higher range of temperature and magnetic field. In the c
of mesoscopic superconductors, mesoscopic fluctuat
tend to remove the singularities in the density of stat
14450
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Therefore one would expect that the TDGL equations
particularly well suited to study mesoscopic systems, e
not very close toTc .

We solve numerically the TDGL equations following th
same procedure as in our previous work in Ref. 29, usin
standard finite difference discretization scheme.40 We dis-
cretize space in a rectangular mesh with spacingsDx andDy
in each direction. The order parameter and vector poten
are defined at the nodes of the rectangular mesh@rW
5(I ,J)#, and the link variablesU

mI ,J5exp(2ıkhmAmI,J) (m

5x,y) are introduced in order to maintain the gauge inva
ance under discretization. We assume that the sample h
square shape in thex,y direction and it is infinite in the
z direction. We apply the magnetic field parallel to th
z direction, therefore the problem is reduced to two dime
sions neglecting all derivatives alongz. The symmetry of the
problem implies for all mesh pointsAI ,J5(AxI,J ,AyI,J,0)
and BI ,J5(0,0,BzI,J), where BzI,J5(¹3AW )z5(]xAyI,J
2]yAxI,J).

The dynamical equations must be complemented with
appropriate boundary conditions for both the order param
and the vector potential. For the order parameter we h
used the boundary condition

~PC!'5~¹2 iAW !'C50, ~19!

usually known as the superconductor-insulator~S-I! bound-
ary condition because it implies that the perpendicular co
ponent of the superconducting current is equal to zero at
surface (JW s

'50). This boundary condition also minimize
the free energy at the sample surface.

Our numerical approach neglects the three dimensio
magnetic-field distribution, and therefore demagnetizat
effects are not taken into account. This is equivalent to
sume that the sample is infinite in the direction of the ext
nal magnetic field~the ẑ direction!. Therefore, strictly speak
ing, our results describe square samples that are mesos
only in thexy plane~perpendicular to the magnetic field! and
infinite along thez axis. In this approximation, the differenc
in the screening magnetic fields with respect to the tr
two-dimensional square samples will be more important
small fields.

The ac magnetic field is introduced in the simulati
through the boundary condition for the vector potent
AmI ,J . We consider the case where the ac magnetic fieldhac
is parallel to the dc componentHdc , and both fields are in
the z direction:

BzuS5~¹3A!zuS5Hdc1haccos~vt !;

this expression is evaluated at the sample surface. We s
the response of a superconductor in the linear regime,
hac!Hdc . The time dependence of the sample magneti
tion can be obtained from the magnetic induction avera
over the samplêB(t)& through the relation

4pM ~ t !5^B~ t !&2H~ t !.

The ac magnetic susceptibilities are obtained from the F
rier transform ofM (t):
5-4
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x8~Hdc ,v!5
1

phac
E

0

2p

M ~ t !cos~vt !d~vt !,

x9~Hdc ,v!5
1

phac
E

0

2p

M ~ t !sin~vt !d~vt !. ~20!

In what follows, we have solved the TDGL equations n
merically for a type-II superconductor withk52, mean-field
temperatureT50.5, and the parameterh512. We used a
spatial discretization ofDx5Dy50.5j and, in order to make
efficient calculations, we have chosen adequately the t
step with valuesDt<0.015t0.

IV. AC SUSCEPTIBILITY IN MESOSCOPIC
SUPERCONDUCTORS

In a mesoscopic sample the behavior of the ac magn
response in the presence of a dc magnetic field can be
ferent than in the macroscopic case. On one hand, the mo
typically used for macroscopic samples~see Sec. II! assume
a high density of vortices~and therefore an almost uniform
magnetic-field profile inside the sample5!, applied magnetic
fields such thatHc1!H!Hc2, and very large~semi-infinite!
samples. On the other hand, in mesoscopic samples ther
small number of vortices, surface barriers cannot be
glected, and the finite size of the sample is important. H
we perform simulations of squares samples of sizes in
range from 5l35l to 20l320l using the TDGL equations

We start by showing in Fig. 1 a typical high-frequency ac
magnetic response of a small sample. In Fig. 1~a! we plot the
driving field H(t)5Hdc1haccosvt and the corresponding
magnetizationM (t) of the sample. We show the response
the system after a long equilibration time~typically around
100 periods of the external ac field!. It can be observed tha
the magnetization has a sinusoidal behavior, which is a
nal that we are in the linear regime and also that the sam
is following the external perturbation. It can also be observ
that there is a phase shift between the magnetization and
external field due to the presence of dissipation. Figure 1~b!
shows the magnetization loop obtained from the signals
Fig. 1~a!. The area inside the loop is proportional to the tim
average of the energy dissipated in the sample and it is
portional to the imaginary part of the ac susceptibilityx9.
The appearance of dissipation changes the relationship
tweenMac(t) andHac(t) and therefore the real part of the a
susceptibility,x8(Hdc ,v), will depend on the frequency o
the ac signal as well as on the bias fieldHdc .

A. Frequency dependence

In order to understand the different dynamical regimes
the ac response, we study first the dependence ofx̃5x8
1 ix9 with frequencyv for different values of the dc mag
netic fieldHdc . In Figs. 2 and 3 we show the imaginary an
the real part of the susceptibility, respectively. These cur
were obtained for a sample of 20l320l.

Figure 2~a! shows the low-frequency behavior ofx9 for
several values of the magnetic field. Figure 2~b! shows the
14450
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full x9(v) curves obtained for fields such that there are
vortices within the sample, i.e., in the Meissner state. F
fields above the first penetration fieldHp , vortices enter into
the sample. The full frequency dependence ofx9(v) in the
presence of vortices, i.e., for fieldsHdc.Hp , is shown in
Fig. 2~c!.

The simplest case to understand is the behavior w
there is no external field applied,Hdc50. In this case the
complex susceptibility agrees very well, both qualitative
and quantitatively, with the two-fluid model described in Se
II B. For low frequencies,x9 has a linear dependence withv
as given by Eq.~10!. There is a maximum inx9(v,0) at v
5no51/t0. At high frequenciesv@n0 the dissipation is due
to the normal electrons and follows the expected depende
x9;v21/2 as given by Eq.~9!, corresponding to the normal
state skin depth effect.

For small magnetic fields within the Meissner state,
,Hdc!Hp , the behavior is qualitatively similar to theHdc
50 case, with a peak atv5n0. The main difference is tha
the slope of the lowv linear dependence increases wi
magnetic field, as can be seen in Fig. 2~a!. According to Eq.
~10!, the linear slope for low frequencies is proportional

FIG. 1. Response of a superconductor to a high-frequency m
netic field. ~a! Time variation of the driving field and the samp
magnetization, and~b! the magnetization loop that shows the pre
ence of dissipation inside the sample.~Sample size: 20l320l,
Hdc50.38Hc2(T), vt050.028.)
5-5
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lL . This implies that the London penetration depth sho
be dependent on magnetic field:lL(H). Also, Fig. 2~b!
shows that the magnitude ofx9(v) at any givenv increases
for increasingHdc . These two effects are easily understo
since the Meissner screening currents deplete the magn
of the order parameter at the surface, which leads to a la
static penetration depthlL(H) ~see also Sec. IV B! and to an
increase in the normal electron dissipation. The most in
esting result is that forHdc near but stillbelow Hp a second
dissipative maximum appears inx9(v). This second peak is
at a frequencyvp two orders of magnitude belowno .

For Hdc.Hp the vortices enter into the sample. In th
case we still find a low-frequency linear dependencex9
;v, as shown in Fig. 2~a!. Only for large fields close toHc2
a small departure from linear dependence is observedx9
;va, with a'0.8. The behavior for very large frequenci
v@n0 is the same for all magnetic fields, since it corr
sponds to the normal-state skin depth effect withx9

FIG. 2. Frequency dependence of the imaginary componen
the ac susceptibilityx9 at different fieldsHdc , for samples of size
20l320l. ~a! Low-frequency behavior for fields in the Meissn
state@black symbols,Hdc /Hc2(T)50,0.30] and in the mixed stat
@open symbols,Hdc /Hc2(T)50.40,1.0]. The continuous lines co
respond to a linear dependencex9;v. ~b! Frequency dependenc
in the Meissner state~number of vortices:Nv50). The dashed line
corresponds to a dependencex9;v21/2. ~c! Frequency dependenc
in the mixed state (Nv5” 0). The frequency is normalized
by no51/t0.
14450
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;v21/2, as mentioned before. As can be observed in F
2~c!, the main characteristic of the mixed state is that th
are two dissipation maxima as a function of frequency
x9(v). The high-frequency maximum corresponds to t
‘‘two-fluid peak’’ at v'n0. The low-frequency maximum
that appears at a frequencyvp!n0 is a continuation of the
maximum observed whenHdc&Hp . The peak frequencyvp
shows a weak dependence with magnetic field,vp first de-
creases and then increases with increasingHdc . For fields
Hdc>Hc3 the sample is completely in the normal state a
there is a single maximum in thex9 vs v curve. It corre-
sponds to the frequency at which the normal-state skin de
dn equals the system sizeL.

Let us now analyze the frequency dependence of the
part of the susceptibility,x8(v), which is shown in Fig. 3~a!
for some values ofHdc . Fromx8(v) it is possible to extract
the real part of the effective ac penetration depthlac
5l8(v) using Eq.~3!. The lengthlac represents the length
scale for the penetration of the ac component of the magn
field and its frequency dependence is shown in Fig. 3~b!. In
the absence of a bias field (Hdc50), x8(v) is well de-
scribed by the two-fluid model, as given in Eqs.~9! and~10!.
The sample changes from a London screening forv!no ,

of
FIG. 3. ~a! Frequency dependence of the real component of

ac susceptibilityx8 at different values ofHdc ~black symbols:
Meissner state; open symbols: mixed state! and ~b! effective ac
penetration depthlac as a function of frequency.
5-6
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with lac'lL , to a perfect diamagnetic state forv@no ,
with lac'0. At low frequenciesx8 is larger than21/4p
due to the penetration of the field in a region of sizelL near
the sample surface,x8'(21/4p)(124lL /L). At high fre-
quency the ac penetration depth islac!lL and x8(v)'
21/4p. The opposite case is forHdc51.9Hc2(T).Hc3 with
the sample mostly in the normal state~at this field the surface
superconductivity disappears and there is superconduct
only at the corner of the sample38!. As can be expected, in
this case the system behaves as a normal metal and is d
nated by the skin depth effect withlac'dn/2. For low fre-
quencies, the skin depthdn equals the system size and th
x8'0. For magnetic fields within the Meissner state,
,Hdc!Hp , we find that for low frequencies,v!n0, the ac
penetration depth saturates to the field-dependent Lon
penetration depthlL(H), which increases withH. The most
interesting case is forHdc&Hp , which is shown in Fig. 3. In
this situation, one can distinguish three frequency regim
as it was found before in the dissipative part,x9(v). At the
frequencies for which there are maxima in the dissipationn0
andvp , there is a rapid change in the value ofx8(v) @or in
lac(v)]. For v@n0 the normal-fluid behavior of Eq.~9! is
followed, as expected for all values ofHdc . For the fre-
quency rangevp,v,n0, there is a shoulder inx8(v) @and
lac(v)], which basically corresponds to an ac penetrat
depth of the order of the expected value forlL(H) at that
field. At low frequencies,v,vp , the ac penetration dept
saturates to a lengthl p which is smaller than the system siz
and larger thanlL(H).

In summary, the most interesting feature observed
x̃(v) is the appearance of a dissipation maximum at f
quenciesvp(H)!n0 in the presence of a magnetic field.
dissipation maximum in macroscopic samples is expec
whenH5” 0, as we discussed in Sec. II. It can be caused
several reasons:~i! finite size, ~ii ! surface barriers, or~iii !
bulk pinning. However, the behavior predicted in any
these cases is not followed in the mesoscopic samples s
ied. Let us discuss each of the possibilities.~i! Finite size: in
a small sample this is the first effect to analyze. The cha
teristic frequency for finite-size effects,vL , should increase
linearly with B and decrease with system size, as given
Eq. ~11!. However,vp has a weak and nonmonotonous d
pendence with magnetic field, as seen in Fig. 2~c!. In Fig. 4
we showx9(v) in a smaller sample withL55l ~and h
512) for Hdc&Hp . We see that the maximum appears at
same frequencyvp as in theL520l case for the same mag
netic field@Fig. 2~b!#. Thereforevp has no size dependenc
Furthermore, in Fig. 3 we see that whenv→0 the sample is
still diamagnetic andlac,L @a finite-size effect would have
x8(v→0)'0 andlac*L]. ~ii ! Surface barrier: in mesos
copic samples, surface barriers are very important.29 In mac-
roscopic samples, the effect of surface barriers, assumi
large number of vortices, gives a low-frequency depende
for dissipation asx9;va with a51/2; see Eq.~16! and Ref.
8. However, we find a linear frequency dependence in m
cases as shown in the inset of Fig. 2~a!, and even when there
is a departure from linearity, it is with an exponent ofa
'0.8.0.5. Also the characteristic frequencyvSB of Eq. ~15!
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has a strong dependence on magnetic field, which is not
served here.~iii ! Pinning: since there is no disorder in th
model, no bulk pinning is expected. However, in a very sm
sample one may argue that, given the smallness of the
tem, the sample itself acts as a confinement potential
vortices. In this case,kp in Eq. ~7! would represent the vor
tex elastic response for small oscillations within this confin
ment potential. The characteristic frequency for pinning
fects,vC , is independent of magnetic field in macroscop
samples, according to Eq.~13!. The weak-field dependenc
of vp may still be consistent with this result~the effectivekp
may depend on the number and distribution of vortices ins
the sample in this hypothetic case of ‘‘confinement pote
tial’’ !. Also the fact thatlac,L for v!vp in Fig. 3~b! is
consistent with a finite ‘‘Campbell’s penetration depth’’lC
~and thenl p[lC). However, we also have to discard th
possibility, since we find that there is a dissipation maximu
at vp even when there are no vortices in the sample. As
shown in Fig. 2~b! the dissipation peak already appears
magnetic fields just below the penetration fieldHp . To be
more precise, we have explicitly calculated the topologi
number of total vorticity asNv5(1/Fo)r(A1Js /uCu2)dl.
We obtainNv50 at all times for the magnetic fields show
in Fig. 2~b!. Therefore all arguments based on the oscillat
of vortices, as for example the Coffey and Clem model4 of
Eq. ~8!, which work very well for macroscopic samples, a
not enough to explain the dissipation maxima observed
these mesoscopic samples.

In Fig. 4 we show thatvp depends directly on the time
scale for the relaxation of the amplitude of the order para
eter, tGL5ht0. We consider a magnetic fieldHdc&Hp and
we change the value ofh in Eqs.~17! and ~18!. The ‘‘two-
fluid peak’’ is always at the same frequencyn051/t0, since
t0 is fixed. We find that when decreasingh, the frequency
vp shifts to higher values and increases monotonically w
1/tGL , until the rather unphysical case oftGL,t0 (h,1),
when only the two-fluid peak atn0 is observed. The depen
dence ofvp with tGL shows that variations in the amplitud

FIG. 4. Dependence with the TDGL time scaletGL5ht0 . x9 vs
v curves for small mesoscopic samples 5l35l in the Meissner
state (Nv50) near the penetration field,H&Hp , Hdc

50.35Hc2(T). The inset shows the dependence withh
for Hdc50.
5-7
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FIG. 5. History dependence ofx9 vs v curves
for Hdc near the penetration fieldHp @Hdc

50.38Hc2(T)#. Black triangles: decreasing fre
quency from a highv state without vortices
(Nv50); the branch forv above the jump has
Nv50 and below the jumpNv510. White tri-
angles: increasing frequency from a lowv state
with Nv510. Sample size is 20l320l. The in-
set shows the absence of history dependence f
larger magnetic field,Hdc50.6Hc2(T).
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of the order parameter are the main mechanism of this
sipation maximum, as we will see more clearly later in S
V. In the inset of Fig. 4 we verify that forHdc50 the behav-
ior is independent oftGL , since this case can be simp
described with the two-fluid model.

The appearance of the dissipation maximum for a m
netic field belowHp , just before the penetration of vortice
into the sample, leads to history dependent effects.
curves in Fig. 2 were generated increasing the fieldHdc at
low frequency and then measuringx9(v) for increasingv.
In this way, the curves reported in Fig. 2~c! have the same
number of vortices at all frequencies for a givenHdc . If we
follow the opposite procedure, i.e., we increaseHdc at high
frequency and then measurex9(v) for decreasingv, the
curves can show discontinuous jumps at certain frequen
values due to vortex penetration. This occurs because
creasing the field at high frequency can generate a metas
state that can become unstable at low frequencies. In F
we show this case, for a field near the first penetration fi
Hdc'Hp . Depending on the history, the high-frequen
branch can have eitherNv510 vortices orNv50. In the case
when the frequency is decreased from a high-frequency s
there is a large jump inx9(v) at a frequency nearvp , from
a metastable branch withNv50 for v.vp to a branch with
Nv510 for v,vp . In contrast, we see in the inset of Fig.
that for a fieldHdc5” Hp the curves ofx9(v) are independen
of history.

B. Magnetic-field dependence

Experimentally, the ac frequency is fixed and the dc m
netic field or the temperature can be varied. In this sec
we will study the ac magnetic response of mesoscopic su
conductors varying the bias dc magnetic field. We will sh
results at different frequencies and for different sample siz

In the absence of the ac field, the dc magnetic behavio
mesoscopic superconductors is different from the continu
macroscopic behavior.16,29 In mesoscopic samples each vo
tex entrance event produces discontinuous jumps in the m
netization curve at certainHdc values. Each discontinuou
jump in M (H) corresponds to a sudden increase in the nu
14450
s-
.

-

e

es
n-
ble
5

ld

te,

-
n
r-

s.
of
s

g-

-

ber of vortices. These jumps occur at successive magn
fields Hpi5Hp1 ,Hp2 ,Hp3 , . . . .29 In the regions ofHpi

,H,Hp( i 11) the number of vorticesNv is constant. The
only penetration events occur atHpi , when vortices enters
into the sample. In the region of constant vorticity,Hpi,H
,Hp( i 11) , one may think that no vortices enter the samp
because of the effect of the surface barrier.

Figure 6~a! shows the behavior ofx9(Hdc) obtained at a
fixed frequencyv50.004no,vp in a mesoscopic sample o
size 10l310l. At small Hdc , in the Meissner state,x9 in-
creases continuously with increasingHdc . The presence of
the dc magnetic field in the Meissner state induces st
supercurrents which deplete the order parameter at
boundary. As explained before in Sec. IV A, the depletion
the order parameter leads to an increase of dissipation
increasingHdc . When the dc magnetic field is increase
above the first penetration fieldHp[Hp1, the first vortices
enter into the sample. Figure 6~a! shows that there is a dis
continuous jump inx9 with a decrease of dissipation just
Hp . Two states are possible exactly atHp : one state without
vortices and high dissipation, and one state with vortic
inside the sample andlow dissipation. This is in agreemen
with the history dependence observed in Fig. 5. Furt
jumps in the dissipation curvex9(Hdc) are present at the
other magnetic fields for vortex penetration,Hp2 ,Hp3 , . . . .
The jumps are followed by a later continuous increase
x9(Hdc) with increasingHdc while the number of vortices
Nv remains fixed. Figure 6~b! was obtained in a sample o
the same size of Fig. 6~a! but at a higher frequencyv
50.06no.vp . The frequencies used in Figs. 6~a! and ~b!
are at both sides of the dissipation maximum that appear
vp . Both curves are similar in their qualitative features, b
show a few differences. At high magnetic fields there a
fewer jumps inx9(Hdc) in Fig. 6~b! than in Fig. 6~a!. This is
because at high frequencies it is possible to remain in a m
stable state with a fixed number of vortices in a wider ran
of magnetic field. At the same time, the higher frequency
Fig. 6~b! produces a decrease in the amplitude of the jum
The behavior ofx9(Hdc) of Figs. 6~a! and ~b! is different
from the behavior of bulk samples. For example, Fig. 6~c!
5-8
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showsx9(Hdc) at v50.06no obtained in a ‘‘large’’ sample
of 40l340l. In this case there are no discontinuous jum
and the curve is almost continuous. In macroscopic sam
the entrance of vortices forHdc.Hp increases the ac losse
in a continuous way. In the macroscopic case vortices pla
fundamental role in the ac losses, and therefore an incr
on the number of vortices increases the dissipation. In c
trast, the results of Figs. 6~a! and ~b! show the opposite be
havior in mesoscopic samples: there is a sudden decrea
the ac losses at the magnetic fields that correspond to
increase in the number of vortices.

Figure 7 shows the real part of the ac susceptibility
increasingHdc . We use the same parameters as in Fig
The curves ofx8(Hdc) also have a typical mesoscopic b
havior with discontinuities at each vortex penetration fie
The increase of frequency fromv50.004no in Fig. 7~a! to
v50.06no in Fig. 7~b! shows similar differences as observ
in x9(Hdc). It can also be noted in Fig. 7~a! that the differ-
ential susceptibility has a paramagnetic behavior (x8.0)
near each vortex penetration field. This can be expected f
the behavior of the dc magnetization curves of mesosco
samples.16 In mesoscopic samples, forHdc below each vor-
tex penetration field a magnetization maximum appears
therefore a region nearHpi where the magnetization in

FIG. 6. Hdc dependence ofx9 obtained at a fixed frequency
Small mesoscopic samples of size 10l310l showing discontinu-
ous jumps:~a! vt050.004 and~b! vt050.06. ~c! Large samples
of size 40l340l showing the usual continuous behavio
vt050.06.
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creases at increasing field. This shows in the low-freque
ac response of mesoscopic samples as a differential para
netic behavior. Figure 7~c! shows a continuous macroscop
dependence ofx8(Hdc) in a larger sample of size 40l
340l. At the frequencies used in Fig. 7~c! we can see a
diamagnetic behavior even in the normal state for fie
greater than 2Hc2(T). This is simply because at high fre
quencies there is magnetic screening in the normal state
to the skin depth effect.

From Fig. 7 it is possible to obtain theHdc dependence of
the penetration depth. This dependence has been a subje
interest recently because of its relation with the symmetry
the order parameter. In conventionals-wave superconductor
the following dependence is expected:

Dl~Hdc ,T!/l~0,T!5b@Hdc /Hc2~T!#2, ~21!

whereDl(Hdc ,T)5l(Hdc ,T)2l(0,T). It is assumed that
the sample is in the Meissner state and in the linear regi
i.e., uHdcu@uhacu. Equation~21! was originally obtained by
Ginzburg and Landau51 and also by Bardeen52 an it has been
observed experimentally in type-I~Refs. 1 and 3! and con-
ventional type-II superconductors.10 Solving the Ginzburg-
Landau equations for a superconductor which has an infi
plane interface, the valuebGL5@3k3(k12A2)#/@4(k
1A2)2# is obtained. On the other hand, the behavior
Dl(H) in unconventional superconductors is expected to

FIG. 7. Hdc dependence ofx8 obtained at a fixed frequency:~a!
and~b! for small samples and~c! for large samples. The paramete
are the same as used in Fig. 6.
5-9
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FIG. 8. Change in the ac penetration dep
(Dlac) in a mesoscopic sample~squares, 10l
310l) and a macroscopic sample~circles, 40l
340l) for vt050.06. The inset shows a fit to
quadratic dependenceDlac;H2 ~continuous
lines! for fields belowHp .
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different.14 In the case of ad-wave superconductor Yip an
Sauls53,54 proposed a linear field dependenceDl(Hdc)
}Hdc . Here we use the phenomenological TDGL equat
in its s-wave form. Therefore in the Meissner state we exp
a result similar to Eq.~21! for macroscopic samples. Th
results are shown in Fig. 8. Both the macroscopic and
mesoscopic sample show a quadratic dependence
Dl(Hdc) as a function ofHdc in the Meissner state. We
obtain from the macroscopic curveb'3.1, which is close to
the expected Ginzburg-Landau valuebGL52.48 for k52.
For larger magnetic fields we observe that the penetratio
vortices produces a sudden decrease ofDl in mesoscopic
samples, whereas at a fixed number of vorticesDl increases
continuously for increasingHdc . For macroscopic sample
the entrance of vortices at the first penetration fieldHp does
not produce a discontinuity inDl(Hdc) but a change of
slope as can be observed in the plot. ForHdc.Hp the de-
pendence changes from quadratic to approximately linea
Hdc .

V. NASCENT VORTICES EFFECT

From the results of the previous section, it is clear n
that the ac magnetic response of a mesoscopic super
ductor is different from the macroscopic behavior and it c
not be explained with the known models. An interesting
sult is the significant decrease of dissipation each time
number of vortices increases. To understand this effect
have analyzed in detail the time variation of the order para
eter and the magnetization within the sample.

Figure 9 shows the time variation of the order parame
at different applied magnetic fields in a small sample. Ea
curve represents the amplitude of the order parameter a
thex direction, perpendicular to a face of the square sam
obtained at a given time. To simplify the analysis the cut w
done just at the center of the face aty5L/2 ~which is the
preferred point for vortex penetration in a square samp!.
The order parameter is obtained at different times withi
single period of the ac magnetic field. In particular, we sh
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the behavior of the order parameter just before and after
two first values of the penetration fields,Hp1 and Hp2. At
Hdc50 the order parameteruCu is equal to unity in the entire
sample and the dissipation is small. In the Meissner state
for Hdc&Hp1, Fig. 9~a! shows that the magnitude of th
order parameter near the boundary, and at the center o
face, has large oscillations around a small value. Figure 9~b!
shows the time evolution of order parameter just after
first vortex entrance event,Hdc*Hp1. We see that the en
trance of vortices increases the order parameter at the bo
ary, where nowuCu oscillates around a value much high
than before. One can also see that the positions of the v
ces are fixed inside the sample and do not oscillate in
presence of the ac signal. Recently, in an extension of
idea of the Bean-Livingston barrier to mesoscopic superc
ductors, we have shown that the vortex entrance produc
reinforcement of the surface barrier, due to the interact
between the vortices that are trying to enter the sample
the vortices already inside the sample.29 The presence of this
interaction decreases the surface currents. In other wo
after the entrance of vortices the Meissner screening cur
decreases and the amplitude of the order parameter incre
at the boundary. Therefore, the dissipation decreases.

Figures 9~c! and ~d! show similar behavior forHdc
&Hp2 and Hdc*Hp2. After increasingHdc at a constant
number of vortices, the order parameter at the boundary
decreased, as seen in Fig. 9~c!. The decrease of the orde
parameter increases the dissipation as was observed be
If new vortices enter again into the sample, the order para
eter increases at the boundary, see Fig. 9~d! and therefore the
dissipation decreases again. This process is repeated in
other penetration fieldsHpi . On the contrary, the entrance o
vortices in a large sample do not produce an apprecia
change in the amplitude of the order parameter at the bou
ary before and after the penetration event, and therefore
dissipation shows a continuous behavior@as seen in Fig.
6~c!#.

A careful analysis of the entire profile of the order para
eter for magnetic fields below but near toHp suggest that the
5-10
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depletion of the order parameter near the boundary may
attributed to ‘‘vortices’’ that are about to enter into th
sample. This is because the profile of the depletion ofuCu
observed at the boundary can be easily extrapolated to a
value outside of the sample. Therefore these ‘‘nascent vo
ces’’ correspond, in a sense, to the order parameter pr
uC(r )u that one would obtain if hypothetical vortices we

FIG. 9. Time variation of the order parameter in a sample of s
10l310l at different applied magnetic fields and forvt050.06.
The figures show transversal cuts taken at the center of one o
faces for different times.~a! Hdc50.4216Hc2(T),Hp1, ~b! Hdc

50.4217Hc2(T).Hp1, ~c! Hdc50.568Hc2(T),Hp2, ~d! Hdc

50.569Hc2(T).Hp2.
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located in the vacuum, beyond the sample boundary, but
the surface. Note that sinceuCu does not truly have a zero
inside the sample, the topological number of vorticity,Nv
5(1/Fo)r(A1Js /uCu2)dl, is Nv50 and thus there is no
fluxoid quantization. Indeed, a nascent vortex state co
sponds to the penetration of less than a flux quantum.
high values ofhac ~beyond linear response! we find that
these nascent vortices oscillate near the surface@i.e., that the
profile of the depletion ofuCu near the surface oscillates wit
H(t)]. Also, from the simulations we obtain that for increa
ing Hdc the nascent vortices gradually transform into the r
vortices that finally enter the sample~and that satisfy fluxoid
quantization!. According to this scenario, the length scalel p

observed in Fig. 3~b! for low frequencies may correspond t
a characteristic length scale for the nucleation of vortic
from the boundary.~For large fieldsB@Hp , the lengthl p

could be related to the size of the vortex-free regiondSB of
macroscopic samples.! Years ago, Walton and Rosemblum55

introduced the idea of nascent vortices and suggested t
as a possible source of the high-frequency losses in su
conductors. This idea had further support from the analyt
work of Kramer56 who found static solutions of the
Ginzburg-Landau equations which corresponded to vorti
nucleated near the sample. The nascent vortices can osc
under an ac field. This source of dissipation is not gener
taken into account in macroscopic samples because in
case it is small compared with the dissipation due to
motion of vortices inside the sample. However, in a mes
copic superconductor, with a few vortices confined inside
sample, this source of dissipation can be a significant par
the dissipation observed, as we have found here.

VI. SUMMARY AND CONCLUSION

We have studied the response of mesoscopic super
ductors to an ac magnetic field. In mesoscopic supercond
ors vortices are confined inside the sample by the surf
barrier and their dynamics play a secondary role in the d
sipation. When increasingHdc , discontinuities inx8 andx9
appear at each vortex penetration event. The dissipatio
maximum before the penetration of vortices due to the eff
of nascent vortices, which lead to large oscillations of t
amplitude of the order parameter at the boundary. After
penetration of vortices, the normal currents decrease
therefore the dissipation decreases, leading to a sudden
pression of the ac losses induced by the vortex entrance
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13F. Gömöry, Supercond. Sci. Technol.10, 523 ~1997!.
14A. Maeda, inCoherence in High Temperature Superconducto,

edited by G. Deutscher and A. Revcolevschi~World Scientific,
Singapore, 1995!, p. 128; A. Maeda and T. Hanaguri, Supe
cond. Rev.3, 1 ~1998!.

15O. Buisson, P. Gandit, R. Rammal, Y. Y. Wang, and B. Panne
Phys. Lett. A150, 36 ~1990!.

16C. Bolech, G. C. Buscaglia, and A. Lo´pez, Phys. Rev. B52, R15
719 ~1995!.

17C. A. Bolle, V. Aksyuk, F. Pardo, P. L. Gammel, E. Zeldov,
Bucher, R. Boie, D. J. Bishop, and D. R. Nelson, Nature~Lon-
don! 399, 43 ~1999!.

18A. K. Geim et al., Nature~London! 396, 144 ~1998!.
19A. K. Geim, S. V. Dubonos, I. V. Grigorieva, F. M. Peeters, and

A. Shweigert, Nature~London! 407, 55 ~2000!.
20P. Singha Deo, V. A. Shweigert, F. M. Peeters, and A. K. Ge

Phys. Rev. Lett.79, 4653~1997!.
21V. A. Shweigert, F. M. Peeters, and P. Singha Deo, Phys. R

Lett. 81, 2783~1998!.
22V. A. Shweigert and F. M. Peeters, Phys. Rev. B60, 3084~1999!.
23B. J. Baelus, F. M. Peeters, and V. A. Shweigert, Phys. Rev. B61,

9734 ~2000!.
24P. Singha Deo, V. A. Shweigert, and F. M. Peeters, Phys. Re

59, 6039~1999!.
25S. V. Yampolskii, B. J. Baelus, V. A. Shweigert, and J. Kolace

Phys. Rev. B64, 144511~2001!.
26J. J. Palacios, Phys. Rev. Lett.84, 1796~2000!.
27V. Bruyndoncx, J. G. Rodrigo, T. Puig, L. Van Look, and V.

Moshchalkov, Phys. Rev. B60, 4285~1999!.
28L. F. Chibotaru, A. Ceulemans, V. Bruyndoncx, and V. V. Mos

chalkov, Nature~London! 408, 833 ~2000!.
29A. D. Hernández and D. Domı´nguez, Phys. Rev. B65, 144529

~2002!.
30C. P. Bean and J. D. Livingston, Phys. Rev. Lett.12, 14 ~1964!.
14450
.

.

.

-

r,

.

,

v.

B

,

31H. Frah, S. Ulah, and A. T. Dorsey, Phys. Rev. Lett.66, 3067
~1991!.

32F. Liu, M. Mondelo, and N. Goldenfeld, Phys. Rev. Lett.66, 3071
~1991!.

33R. Kato, Y. Enomoto, and S. Maekawa, Phys. Rev. B47, 8016
~1993!.

34M. Machida and H. Kaburaki, Phys. Rev. Lett.71, 3206~1993!;
M. Machida and H. Kaburaki, Phys. Rev. B50, 1286~1994!.

35I. Aranson, M. Gitterman, and B. Ya. Shapiro, Phys. Rev. B51,
3092 ~1995!.

36I. Aranson, B. Ya. Shapiro, and V. Vinokur, Phys. Rev. Lett.76,
142 ~1996!.

37I. Aranson and V. Vinokur, Phys. Rev. Lett.77, 3208~1996!.
38Y. Enomoto and K. Okada, J. Phys.: Condens. Matter8, L445

~1996!; Y. Enomoto, Y. Ishikawa, and S. Maekawa, Physica
263, 21 ~1996!; Y. Enomoto and K. Okada, J. Phys.: Conden
Matter 9, 10 203~1997!.

39J. J. Vicente A´ lvarez, D. Domı´nguez, and C. A. Balseiro, Phys
Rev. Lett.79, 1373~1997!.

40W. D. Groop, H. G. Kaper, G. L. Leaf, D. M. Levine, M
Palumbo, and V. M. Vinokur, J. Comput. Phys.123, 254~1996!.

41D. Schoenberg,Superconductivity~Cambridge University Press
Cambridge, England, 1952!, p. 197.

42J. I. Gittleman and B. Rosenblum, Phys. Rev. Lett.16, 734
~1966!.

43For an estimate of time scales in the TDGL equations see,
example, A. M. Kadin and A. M. Goldman, inNonequilibrium
Superconductivity, edited by D. N. Langenberg and A. I. Larki
~North-Holland, Amsterdam, 1986!, p. 253.

44J. R. Clem, inProceedings of the 13th Conference on Low Te
perature Physics~LT13!, edited by K. D. Timmerhaus, W. J
O’Sullivan, and E. F. Hammel~Plenum, New York, 1974!, Vol.
3, p. 102.

45F. F. Ternovskii and L. N. Shekhata, Zh. E´ksp. Teor. Fiz.62, 2297
~1972! @Sov. Phys. JETP35, 1202~1972!#.

46L. Burlachkov, Phys. Rev. B47, 8056~1993!.
47L. Fabrega, A. Sin, A. Calleja, and J. Fontcuberta, Phys. Rev

61, 9793~2000!.
48N. Morozov, E. Zeldov, D. Majer, and B. Khaykovich, Phys. Re

Lett. 76, 138 ~1996!.
49A. Schmid, Phys. Kondens. Mater.5, 302~1966!; C. R. Hu and R.

S. Thompson, Phys. Rev. B6, 110~1972!; A. T. Dorsey,ibid. 46,
8376 ~1992!.

50L. P. Gorkov and G. M. Eliashberg, Zh. Eksp. Teor. Fiz.54, 612
~1968! @Sov. Phys. JETP27, 328 ~1968!#.

51V. L. Ginzburg and L. D. Landau, J. Exp. Theor. Phys.20, 1064
~1950!.

52J. Bardeen, Phys. Rev.94, 554 ~1954!.
53S. K. Yip and J. A. Sauls, Phys. Rev. Lett.69, 2264~1992!.
54D. Xu, S. K. Yip, and J. A. Sauls, Phys. Rev. B51, 16 233~1995!.
55B. L. Walton and B. Rosemblum,Proceedings of the 13th Inter

national Conference on Low Temperature Physics~Plenum
Press, New York, 1972!, p. 172; B. L. Walton, B. Rosemblum
and F. Bridges, Phys. Lett.43A, 263 ~1973!.

56L. Kramer, Z. Phys.259, 333 ~1973!.
5-12


