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We propose that underdoped high-superconductors are described by an algebraic spin liGABL) at
high energies, which undergoes a spin-charge recombination transition at low energies. The spin correlation in
the ASL is calculated via its effective theory—a system of massless Dirac fermions coupled 1p gauge
field. We find that without fine-tuning any parameters the gauge interaction strongly enhances the staggered
spin correlation even in the presence of a large single-particle pseudogap. This allows us to show that the ASL
plus spin-charge recombination picture can explain many highly unusual properties of underdop&d high-

superconductors.
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. INTRODUCTION approach to thé-J-model, where, however, in contrast to the

above, spin-singlet formatidor, more precisely, the forma-

One of the intriguing questions about the cupratetion of the d-wave/staggered-flux phase—a state with a par-
superconductors—to many possibly the key to understandingicular quantum order U1CnO1(Refs. 3,4] is the driving
superconductivity—is the role played by spin correlations inforce behind all of the strange phenomenology in the under-
these materials. By now it is well established that the insudoped samples.
lating parent compound of the copper oxide superconductors The slave boson approach is strongly tied to the strong
is well described as a two-dimensior@D) Heisenberg an- coupling phenomenology incorporated in the Hubbart-dr
tiferromagnet (AF) in the temperature regime above the model and was guided by Andersohéxciting proposal of a
three-dimensional N& ordering temperatureTg~300 K).  spin liquid as a realization of the strongly correlated Mott
On doping with holes, away from stoichiometry, these insu-insulator in the parent compound of the hi§h-supercon-
lating compounds develop into high:- superconductors ductors. More specifically, Anderson proposed that the cu-
even for very low hole concentrations of the order of 5%.prate physics could be understood in terms of doping holes
The question that needs to be addressed is the peculiar inténto a state which consists of preformed spin-singlet dimers
play of short-range antiferromagnetic correlations as a remen nearest-neighbor bonds whose quantum fluctuations lead
nant of the ordered Neel state at zero doping competing witlio uniform strength AF correlations on all nearest-neighbor
spin-singlet formation present in the superconducting statebonds{termed the resonating valence bdfRVB) statd. The
The underdoped cuprates show this peculiar competition oRVB state has short-range antiferromagnetic spin correla-
antiferromagnetic order and singlet formation in a particu-tions (no true long-range ordedue to the singlet formation
larly striking way as is evidenced by various spin- and hence comprises a spin-liquid phase. An important effect
pseudogaps seen in NMR and neutron scattering. of the preformed spin singlets, present in the RVB picture, is

Let us briefly mention the theoretical approaches to theéhe fact that the spin on the doped holes can become an
spin correlations in the underdoped cuprates which have enexcitation on top of the RVB collective state whereas the
phasized the antiferromagnetic order and the concomitartharge remains tied to the empty site. This led to the notion
spin-wave excitations as the dominant degrees of freedom. lof separate spin and charge carrying excitations called
an extensive study of the 2D antiferromagnetic Heisenbergpinons and holons, respectively. However, due to the suc-
model Chubukov, Sachdev, and*Yeave identified the spin cess of the two-dimensional Heisenberg antiferromagnet in
correlations in the quantum critical regime at the transitiondescribing the insulating parent compound of the cuprates,
from Neel order to paramagnetism. In their paper they alsahis idea of a spin-liquid ground state was partly rejected.
argue for the appearance of quantum critical scaling away Nevertheless, the RVB picture has a lot of appeal. Let us
from zero doping by incorporating the effect of the dopedmention briefly the rationale behind the opinion that the spin-
charge degrees of freedom into a reduction of the spin stiffsinglet formation dominates antiferromagnetic correlations in
ness(finite in the ordered Nel state of the 2D Heisenberg the underdoped cuprates. The slave boson approach treats the
mode) Sokol and Pingshave similarly argued for quantum underdoped cuprates as doped Mott insulators—the key ex-
critical behavior and its crossover to a quantum-disorderegerimental fact of highF. superconductors. It also naturally
regime driven by the frustration of antiferromagnetism viaincorporates the spin-singlet formation and predicted, ahead
hole motion as the physics behind the strange spin correlaf experiments, the pseudogap metallic pRasehe under-
tions in the pseudogap regime. They postulate a susceptibitoped cuprates and the superconductingave order(pre-
ity which is dominated by the effect of a finite coherenceferred overs-wave order by strong Coulomb correlations
length in the quantum-disordered regime and the appearanpeesent in the Mott insulatpf The pseudogap metallic phase
of the correspondindull energy gap for spin excitations. is a new state of matter and it is very rare in the history of

As we shall argue below this phenomenology qualita-condensed matter physics that a new state of matter was
tively agrees with what we obtain within the slave bosonpredictedbeforeits experimental observation.
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A a spin-charge recombinatidi8CR picture at low energies
and temperatures. The ASL plus SCR at low energies allows
us to give a coherent picture of the strange phenomenology
of underdoped cuprates and is the main message of this pa-
per.
. In the remainder of the paper we will support the above
ASL phase diagram by performing calculations of the spin corre-
lations in both the ASL phase and in the spin-charge recom-
RSN bined state.
Aér SCR dSC : The organization of the paper is as follows. In the next
two sectiongSecs. Il and Il] we review the ideas underlying
the ASL and discuss the spin correlations in this phase out-
lining the calculations involveddetails can be found in the
FIG. 1. Proposed phase diagram showing the ASL dominatingAppendixe$. Following this we give a brief discussion on
the underdoped cuprate physics at intermediate energies and temow the recently introduced concept of quantum otlerf-
peratures and renormalizing to an AF long-ranged state at or closgcts the current result€Sec. I\). Section V addresses the
to half filling and crossing over to a spin-charge recombi(®&@R) problem of what happens to the ASL physics at low energies
phasc_e at finite dopingl* denotes the temperature where the cross+,here the interactions between spinons and holons become
over into the sF phashe ASL) occurs. strong. This will be followed up by a discussion of possible
However, underdoped cuprates have a very puzzling prOFj[nplications for the cuprates and a short comparison' with
erty which seems hard to explain using the spin-liquid apOther approaches to the same region of the phase diagram
proach(or other approachisAs the doping is lowered, both (Se_c. V). The fmal_ section(Sec. VI will summarize the
the pseudogap and AF correlation in the normal state inM&in results and discuss open problems for further study.

crease. Naively, one expects the pseudogap and AF correla-
tions to work against each other. That is, the larger the !l. SU(2) SLAVE BOSON APPROACH AND ALGEBRAIC

pseudogap, the stronger the spin-singlet formation, the lower SPIN LIQUID
the single-particle density of states, and the weaker the AF The starting point of the slave boson approach is a micro-

correlations. ; :
. . . scopic lattice model. Among the popular models, @&eJ
In this paper we follow Kim and Léevho considered the (generalizect-J) model seems particularly promising as a

Spin gorrelgtlons n the underdoped cuprates from the perc'iescription for the low doping regime where the competition
spective of incorporating gauge fluctuations on top of a par

ticular spin-liquid state—the staggered flusP) phasé between delocalization energyand the spin fluctuationd

[which in turn is motivated from a mean-field treatment of becomes manifest
thet-J model within the SW2) slave boson approach of Wen [ ( ~
J| S
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and Led?]. As Kim and Lee argued in their paper we will H=P>, S P+..-.
show explicitly how the interplay of the sF fermionic spec- () 1
trum combined with massless(l) gauge fluctuations—the @
effective theory of what we called the algebraic spin lidlid The form of thet-J Hamiltonian can be justified starting
(ASL)—allows us to explain the above puzzle of strong AFfrom the Hubbard model in the limit of strong on-site Cou-
correlations in the presence of a large single-particldomb repulsion energy which in the cuprates leads to an in-
pseudogap. Due to the(l) gauge fluctuations present in the sulating charge transfer gap of 2 eV. As the Coulomb energy
ASL phase, the AF spin fluctuations in the ASL are as strongs the largest energy scale in the problem it is natural to treat
as those of a nested Fermi surface, despite the pseudogaphe kinetic energy as a perturbation which to lowest order in
The main results of this paper are summarized in thé? leads to thet-J Hamiltonian with the single-site Hilbert
phase diagram Fig. 1. At or very close to half filling, due tospace restricted to the three states spin up and down and
the enhanced AF spin fluctuations, the ASL at intermediatempty (indicated by the projection operatér- - - P above.
energies and temperatures will reorganize into a broken synfor zero doping thé-J Hamiltonian reduces to the Heisen-
metry (long-range AF orderground state. We show that this berg model with antiferromagnetic exchange couplinig-
can happen without the need for fine-tuning a large couplindgual hopping on top of strong on-site Coulomb repulsion
constant[this should be contrasted with random-phase-naturally leads to antiferromagnetic exchange
approximation (RPA) like approaches where such a fine- The question of spin correlations in the cuprates ties into
tuning is necessatyIn the AF state, the (1) gauge field the question of how to reconcile local moment magnetism
binds the spinons of the ASL into spin-1 spin-wave excita-with itinerant electron spin density fluctuations which is a
tions. long-standing problem in condensed matter physics. There
At finite doping, the spin-charge separation physias seems to be consensus in the community on how best to
embodied in the AS]L still dominates at intermediate ener- describe the two extreme limits of the cuprate phase
gies and temperatures. However, in the presence of dopetilagram—the Mott insulator at zero doping as a Heisenberg
holes, the W1) gauge fluctuations bind spinons and holonsantiferromagnet and the heavily doped regime in terms of
into electrons at low energies and temperatures. This leads ttnerant electron magnetism. Of course as always the most
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interesting regime is the one lying in between the two limits by
which shows the antiferromagnetic-singlet dichotomy de- hI:(bZi)
scribed above. For the lightly doped regime one could argue
that clearly a perturbation about the dl@rdered state with the doublet of bosonic fields keeping track of the doped
frustration due to holes, in the manner of Sokol and P?nes,hdes_
makes the most sense. However, this approach does not The slave boson approach to thd Hamiltonian then is
specify the nature of the quantum spin liquid in the disor-tg yse this decoupling and perform a mean-field
dered phase. Understanding the properties of the quantughalysis’-'21°This has led to a mean-field phase diagram as
spin liquid is very important since it is the quantum spin g function of hole doping and temperaturd which is in
liquid that controls the_z pseudogap metallic state in the Underqualitative agreement with the phase diagram of the cuprates.
doped cuprate@see Fig. 1 Within the mean-field description, however, the gauge free-
The (generalizegit-J-model can be shown to be an excel- dom is treated only on the average—i.e., replaced by a static
lent description of the low-energy physics embodied in thegonfiguration of phases which in turn determine the band
Hubbard model under the condition that the single-site Hil-strycture of the spinons and holons. However, as is usually
bert space be constrained such that double occupation is fofhe case with the identification of phases via a mean field
bidden. On an operative level this problem can be attackedecoupling we need to consider fluctuations about the mean-
by introducing slave particles that change the constrainfields to determine their stability. In particular the gauge
chc,(i)=<1 [wherec, (i) is the physical electron destruction field—unconstrained by any dynamics—uwill affect the
operator of spina on sitei] into 3, f,(i)+b'b(i)=1  physical properties in each phase drastically.
where theb(i) is a bosonic operator—the holon—that keeps  In the present paper we are concerned with the pseudogap
track of the empty sites and carries the charge of the physicaégime of the cuprates which—within the (1)
hole, whereas the spin of the hole is carriedfgy—the fer-  formulation—was identified as thé-wave paired state for
mionic spinon. This is achieved by writing,=f,b" and  the spinons. Within the SI2) approach this phase can also
should be read as an equality in the constrained Hilberbe described as the so-called sF phase without explicit fer-
space. With the introduction of the slave bosons we havemion pairing. As it turns outsee Ref. 14 for more detajls
however, introduced a redundancy in the description of outhe SU2) formulation allows for a more straightforward
physical problem which is a (@) phase rotation of andb identification of low-lying (massless gauge modes and it
that leaves the physical electron operator invariant. As thevas shown that the sF phase breaks thé2gldauge struc-
system evolves under thie] Hamiltonian(1) this phase will  ture down to W1). This massless (1) mode was missed in
strongly fluctuate as a function of space and time. It is thighe early discussiorsvithin the U(1) slave boson approath
phase degree of freedom that corresponds () dauge on the pseudogap phase and plays a crucial role in the
fluctuations and makes the description of the constrainegseudogap phase of the underdoped cuprates. It is respon-
problem of spin+ hopping in terms of fermionic and sible for the emergence of the ASL. In the next section we
bosonic operators possible. The above program can be surghall discuss the physical spin correlations in the ASL.
marized under the name of(1) slave boson theory and was  Before closing this section, we would like to remark that
implemented widely in the early days of high-research?  the ASL (the sF phaseis only one of many possible sym-
Early on it was also realizédithat the Heisenberg model in metric spin liquids. All symmetric spin liquids have the same
the fermionic representation has an extra(@Unvariance symmetry, and hence we cannot distinguish different sym-

organizing the spinons into doublets: metric spin liquids by their symmetries. The concept of
quantum order was introducgtito distinguish the different
fii fli internal structures present in the symmetric spin liquids. For
Y= = , ) the symmetric spin liquids constructed wit.hin_the 8y
fIi _f{i slave boson approach, one can use the projective symmetry

group (PSQG to characterize their different quantum orders.
In the usual W1) slave boson approach this invariance wasOne finds that the sF phase is described by the particular
lost on introducing holes. More recently Wen and Lee intro-PSG with the name U1Cn01ln and it is one of an infinite
duced a slave boson formulatidrt* which maintains this number of possible symmetric(I) spin liquids. Thus the sF
SU(2) structure away from half filling. This was achieved via phase can be more accurately called U1Cn01n phase. Quan-
the introduction of slave boson doublets and representing thieim order and its PSG characterization are very important

physical electron operator as concepts for our discussiqsee Sec. IV.
14 Lo P et lll. SPIN SUSCEPTIBILITY
CTi:Ehi wTi:E(blifTi—'—bz'fli)

Our starting point is the sFor U1Cn01n state in the
3 SU(2) mean-field phase diagram where the effective degrees
c -=ihT¢ :i of freedom are spinons and holons coupled to a massless
4 2 Py 2 U(1) gauge field. In order to analyze this problem we have
mapped the lattice effective theory for the sF sti@ezero
with doping onto a continuum theory of massless Dirac spinors

(infLi_bgif%ri)’
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coupled to a gauge fieftwhose Euclidean action reads @ @ @
S= f a2 E Vv, u(0,-12,)7, Y, (4
uoo=1 A B C
wherev, o=1 andN=2, but in the following we will treat FIG. 2. Nonzero leading I¥ corrections to the staggered spin

N as an _a_rbitrary i_nteger. In genera), 17 v, 5. Howgvgr, correlation function. Thex denotes the vertex which is thex4
for simplicity we will assumev, ;=1 here. The Fermi field ynit matrix in the case of interest.

V¥, is a 4<x1 spinor which describes lattice spinons with
momenta near< 7/2,* /2). The 4<4 vy, matrices form a  Fisher, and Wu in the context of the fractional quantum Hall
representation of the Dirac algeb{a,,y,}=26,, (#.v  (FQH) effect'® Contrasting to this as was suggested by Kim

=0,1,2) and are taken to be and Le& we would expect the gauge fluctuations to strongly
affect the staggered spin correlations which are not protected
_|93 0 _ |72 0 (5) by current conservation and restore antiferromagnetic
Y= o —o3)’ 17 o -0y’ correlation$® which have been largely lost in the mean-field
singlet state as we shall see next.
01 0
72—( 0o - 01) © B. Staggered correlations

In the following we will present fluctuation corrections to
the antiferromagnetic spin-spin correlations at ordex.1/
he expression for the staggered correlation is obtained in
he form (see Appendix A

with o, the Pauli matrices. Finally note thair ‘I'ﬂo
The dynamlcs for the (1) gauge field arises solely due to
the screening by bosons and fermions, both of which carr
gauge charge. In the low doping limit, however, we will only
include the screening by the fermion fieftighich yields

ey 1 dp NP
1( dd (S (S (—a)=—5 T1G(p)IG(p—a)].
Z= JDa ex% f (2 (13 M(q)HMVaV( Q)) 4J’ (277-)3 (9)
At the mean-field level this is simply
11,,= 5 Ve ( ng ) ™ )

s (—ane= = 2P SVIGA(D—a
By simple power counting we can see that the above polar—<SS (A)Ss (—a))o= 4f (ZW)STr[}lGO(p)}lGO(p D1
ization makes the gauge field a marginal perturbation at the
free spinon fixed point. Importantly, however, we ShOUIdwhereGo(ﬁ)z—i/pﬂyﬂ and the vertices are thex# unit

note that since the conserved_ curre@ﬂltat c.ou.ples ta.iﬂ) . _matrices denotedl Decoupling the denominator in the usual
cannot have any anomalous dimension, this interaction is a\Pvay via Feynman parameters we obtain

exact marginal perturbation protected by current conserva-

tion.
.- Va5+a?

<S;r(q)ss(Q)>o:_l—6. (10

Note thatq is measured with respect ter() in units of
the lattice spacing. From expressi¢h0), we see that the
antiferromagnetic correlations have been largely lost. The
reason for this can be traced back to the spin-singlet forma-
tion in the mean-field sfkU1Cn01n phase. This motivates
. ei‘i'i<S*(ﬁ)SJ( -q)), the inclusion of gauge fluctuations. At ordeNlWwe have the
three nonvanishing diagrams depicted in Fig. 2. In order to
calculate the contribution of these diagrams we note that un-
R 1 df) . . like the single-spinon spectral function the density-density
(Sy (@S, (—q))=- Zf —— T 7G(P) y0G(p—a)], correlation is gauge invariant and hence we can choose to
(27) work in the Landau gauge where the gauge propagator reads

A. Uniform correlations

Let us now discuss how the gauge fluctuations affect spin
correlations near momentum transfgr (0,0). The expres-
sion for the uniform spin correlation rea¢see Appendix A

(sl o=

()
where (- --) denotes the expectation value with respect to ) 8 9,9
theory(4). From this expression we see that the uniform spin - (11
correlation is proportional tdl,,, the polarization operator N\/? q°

of the spinons. Hence it cannot be strongly affected by the
massless gauge field as we argued above via current conseand we have the following expressions for the diagrams
vation. This was shown in an explicit calculation by Chen,shown:
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Im x (Q) [arbitrary]
1N
-3
N

10 20 30 40 50 60
Energy [meV]

FIG. 3. Imaginary part of the spin susceptibility @x-. Note
the divergence at smadb.

ddk J— dY

1
[2(A)]+[2(B)]=— Ef (ZT)" m

1 1 .
X Tr| 1- 1- ivy*D,,(q)
{ i(p+k) oy iksy? — F

11
X: iy”-
i(k+a)gy? " ikyy”

1[0 d% d9q
[2(01=- Zf (2w)df (2m)8

: 12

1
: Pk p
i(ptk)eye  i(ptk+a)sy
1 1

X 1 iy D,.(q)]. 13
(k7P ik “”(Q)l "

X Tr| 1

After performing the trace and integrating overin d
=3, where the integrals are convergéste Appendix B
we arrive at

[2(A)]+[2(B)]

1( dig
_NJ (2m)d

2p-q+p®>  pg _lﬁy
lal®lp+al [pla?p+al al®)

(14
1( diq |2 |p| p?+2pq
[2(C)]=Nf —d*_2+"_3_?
(2m)a* [a° [al*lp+q
Al gpte2p "
9’lp+ql p-ag?/pllp+a
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In order to proceed we need to regularize the above integrals.
Because of the dot product appearing in the denominator of
the last term in Eq(15), it is hard to use dimensional regu-
larization. Hence we have sdt=3 and introduced an upper
momentum cutoffA. Thus performing the final integrals

overﬁ we can extract the log-divergent term in the form

8 o A2
n —-=z|.
122N " p
After combining this with the mean-field resyt0) and
continuing to real frequencigsee Appendix Bwe obtain

[2(A)]+[2(B)]+[2(C)]=—

Imx(w,q)=x"(w,q)
=IM(S; (@,0)S; (— w,~0))

1
:CSESin(ZVW)F(ZV—Z)
X@(wZ_qZ)(wZ_qZ)UZ—V'

32
v= ,
374N

(16)

whereC; is a constant depending on the physics at the lattice
scale. In the limitN— o this reduces to the mean-field result
(10).

From Eqs.(16) it is clear that the gauge fluctuations have
reduced the mean-field exponent. If we boldly $ét2,
which is the physically relevant case, we findk 1/2, signal-
ing an antiferromagnetic instability. This value ofis con-
sistent with an earlier numerical result obtained in Ref. 16.
Ivanov et al. employing a Gutzwiller projection found that
for the case of small hole doping of order 5% the staggered
spin correlation decays in real spacerag* which corre-
sponds to a change from the mean-field exponrent? by
+1.6. Our calculation in turn yields an increase in the real
space exponent from 4 to —2.92 a change by 1.08. Fur-
thermore, our result agrees with the first-order term in the
1/N expansion of the nonperturbative result obtained in the
context of spontaneous chiral symmetry breaking in Ref. 17.
Expanding their result to W? allows us to at least estimate
the sign and order of magnitude that higher-order corrections
will play and shows in effect that W7 corrections have the
appropriate sign to increase the real space exponent even
further, bringing the analytic result closer in line with the
exact numerical data. In Fig. 3 we plot the imaginary part of
the spin susceptibility aj=0=Qur= (7, 7). Let us also
remark that although we do not know the exact value of
many results discussed in this paper remain valid since they
are not sensitive to the value of Those results mainly
depend on two thinggA) v is close to or bigger than 1/2, a
large change from the mean-field exponent, &Bdl v is
irrational. Condition(B) ensures a branch cut in the spin-spin
correlation function, which is needed to explain experimental
data.

This result is quite natural in the light of what has been
said so far. The gauge fluctuations arise from the constraint
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of no double occupancy. The dynamics for the gauge k
field—in the very low doping limit assumed here—is solely
due to virtual spinons. It is the low energy spinon-antispinon
pairs having a nesting condition for scattering between the k+1
nodes(separated b@,r) in the sF(UL1Cn01n phase mean-
field spectrum which are responsible for the antiferromag-
netic enhancement in the ASL phase. Let us emphasize again 1 I
that this enhancement of spin correlations-= (7, ) |
over the uniform component is protected, just like the gap-
less U1) gauge fluctuations and the gapless spinons, by the
U1Cn01ln quantum order

We have thus established algebraic behavior for the stag-
gered spin correlations. It is such an algebraic correlation P
that leads to the name ASL that we assigned to the phase.

FIG. 4. Fermion-fermion vertex.
C. Correlations near (,0)

For this momentum transfer the spinons get scattered bdvhich reads
tween the two different types of nodes in the sF spectrum

which yields the following expression for the corresponding a3l iyA(— iy ) (k+D) T (=iy?) (I +p)s ¥'D (1)
correlations (2m)3 (k+|)2(p+l)2 ,
e =
(S(7.0(D Sz o —aA)) whereT is the relevant vertex andl,, is given by Eq.(11).
e Since the vertex correction diverges only logarithmically, we
-— _f Tr can simply evaluate the divergent part by setting all the in-
4) (2m)3 op 0 coming momenta equal to 0. Hence the above simplifies to
[0 o S g d P
xGp)| G| 17 8 J dl | 1y T 0l 7°7 0,
1 —
NJ (2m)d 5
Having worked hard to obtain the anomalous dimension
of the staggered spin operator by brute force we will here y“leyfl“(mo)lgy‘sy”lﬂlv
resort to standard field theory renormalization apparatus - |7 '

which allows for a more economical derivation of the
anomalous dimensions of composite operators. In order tQare we now concentrate on the,0) vertex.
obtain the anomalous dimension of the spin operator which  This can be easily evaluated with the help of
is a fermion bilinear we need to obtain its wave function

renormalization in the form

125 J'ddll_lz
Zs=ZyZr, (18 Yl (7= ( 2l (70)7e (270 |3|div_4ﬂ_2 3-d
wherel is the relevant vertex and as we have seen above )
depends on the momentum transfer, that is, and results in
0 o r 3—-d
I'=1y0.1, o1 0 i 4 1 - 0

[ NS IVENC YL

near (0,0),@, ), and (7,0), respectively. (m0 N 372 (M?)E-d72

The spinon wave function renormalization is obtained . )
from the self-energy in the usual way and evaluates in th&hich together with Eqs(18) and (19) gives
Landau gauge to
3 ZS(W,O): 1. (21
4 1 r( 2 )

Hence the spin operator atr(0) does not pick up any
-
N 372 (Mz)(a—d)/z

anomalous dimension from the gauge field interactions. It is
not hard to check within the above-outlined calculation that
whereM is the renormalization scale and we have used difor the other two vertices corresponding to the uniform and
mensional regularization. staggered spin operators, we recover the results discussed in

To obtain the vertex renormalization we need to evaluatehe previous sections which gives a nice check on the brute
the divergent part of the one-loop diagram depicted in Fig. 4orce calculation.

Zy=1 (19
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IV. PERTURBATIVE STABILITY In summary, the perturbative fluctuations around the
OF THE sF (U1Cn01n) PHASE mean-field sHU1Cn01n state cannot change the quantum

. . . . . order and cannot generate energy gaps for ti® dauge

An important technical detail was hidden in the abovefioiy and the spinonsThus the gapless (@) gauge fluctua-

calculation. In this section, we will expose this issue. tions and the gapless spinons are protected by the U1Cn01n

The sF p.hase contains two families of four—component(:lu(,mtum order present in the §81Cn01n phase. They re-
massless Dirac fermions, which couple to massles$) U majn gapless even when the interaction is finite all the way
gauge fluctuations. At the perturbative level, the interactioryown to zero energy. The interacting gapless excitations lead
can generate many possible countertefinsthis case the to many unusual properties of underdoped cuprates, such as
self-energy termswhich can(A) generate a mass for the the non-Fermi liquid behavior of the normal metallic state,
Dirac fermions,(B) generate a finite chemical potential for the broad electron spectral functfdnand the diverging AF
the Dirac fermions and change the Fermi points into Fermipin fluctuations in the presence of the pseudogap. The
pockets, andC) shift the crystal momenta of the Dirac fer- ULCn01n quantum order in the sF phase not only protects
mions from (= 7/2,+ 7/2) to some other values. In our per- the gapless excitations; it also protects the momentum of the
turbative calculation in the last section, we have assumegapless excitations. For example, the spin-1 gapless excita-
that none of the above counterterms are generated by ti®ns can only appear ne&=(0,0), (7, ), (0,m), and
interaction. (,0).

In a generic interacting theory, we used to believe that all We would like to point out that although the ASL can be
the counterterms that are consistent with symmetries will b@ Stable quantum phase in the lafgdimit, ™" for the real
generated. All of the above three types of counterterms arl =2 case, nonperturbative instanton effects cause an insta-
consistent with the underlying lattice symmetries and ardility. Thus at low energies the ASL will change into some
hence allowed by the symmetries. In fact they do appear i9ther state, such as tidewave superconducting state, the AF
our calculation of the continuum theory as cutoff-dependengtate, stripe states, or everza spin-liquid state. Since the
terms. It appears that the results in the last section are incol1Cn01n quantum order in the sF phase requires the spin-1

rect since the important counterterms are ignored. Thos@apless excitations to  appear at k
counter terms, if present, will drastically alter our previous=(0.0),(m, m),(m,0),(0m), the shift of the low-frequency
results. neutron scattering peak observed in experiménts indi-

phase, as a quantum spin liquid, is not only characterized b{gmperatures. Studying how the momentum of spin-1 gapless
its symmetry but also by its quantum order. The quantun£Xcitations shifts away from#, ), (7,0), and (Or) will
order in the sF phase is characterized by a particular PS@low us to experimentally identify the low-temperature
U1Cn01n. The mean-field ansatz of the sF phase is invariafhase. In the last section, we have studied the spin fluctua-
under the transformations of the U1Cn01n PSG. As pointedons in the ASL. In the following section, we will study the
out in Refs. 3 and 4, the perturbative fluctuations around théPin fluctuations in the low-temperature phase.

mean-field ground state may deform the mean-field ansatz.
Those deformations correspond to the counterterms. How-
ever, in our case, it is incorrect to use symmetries to deter-
mine which counterterms are allowed. One should use the In Sec. Ill, we showed how the ASL physics reconciles
PSG to determine the allowed counterterms. This is becausbe pseudogap formatidne., the condensation into spin sin-
perturbative fluctuations can only deform the ansatz in such glets within the RVB picturgwith enhanced dynamical an-
way that the deformed ansatz remains invariant under th&ferromagnetic fluctuations. At lower energies the ASL is
same PSG. It was showithat the above three counterterms unstable—and an important question is how the ASL evolves
are forbidden by the U1Cn01n PSG. This is why we can dropn the underdoped regime into the superconducting state as
them in our calculation. we reduce temperature.

When we calculate the effects of interactions in a con- In the following we are going to address this question via
tinuum theory, we introduce a high-energy short-distancdirst analyzing the effect of the opening of a gap in the gauge
cutoff. This cutoff destroys the structure of the underlyingfluctuations on the staggered spin correlations. Intuitively we
guantum order. Thus it is not surprising that the countertermshould expect that for energies below the mass gap the spin
forbidden by the quantum order show up in continuumcorrelations should be given by mean-field correlations—
theory as cutoff-dependent terms. To restore the quanturwhich is indeed the case. Having established the profound
order that existed in the underlying lattice theory, we careffects of this gap formation we take a more careful look at
simply drop all the forbidden counterterms in our calculationthe change of the mean-field correlations on going from the
within the continuum theory. We see that the PSG and theF (ULCn01n phase into the fermion pairing state which
concept of quantum order play an important role even inwill allow us to address the question of incommensurate spin
calculations within continuum theories. It is the understand{luctuations seen at low frequencies and temperatures in the
ing of the PSG and quantum order that makes sensible catuprates. Let us now proceed to consider the effect of giving
culations in the continuum limit possible. In fact, the theorya mass to the gauge fluctuations. In the context of the spin
of quantum order is partly motivated by the above issue otorrelations considered here, we would thus expect the de-
the counterterms. struction of the antiferromagnetic enhancement below the

V. THE FATE OF THE ASL
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FIG. 6. Imaginary part of the spin susceptibility @, where
m=20 meV notice the recovery of the linear mean-field result be-
low the mass gap.

0 20 Energy [meV]

FIG. 5. Scan of the imaginary part of the spin susceptibility in

arbitrary units forq=— 7/10-7/10 andw=0-60 meV. We have _ ) ) ) )
chosenm=20 meV in this plot. underlying mean-field correlations in tact at low energies. On

a more profound level, however, the massless nature of the
mass gap and a resurfacing of the singlet character of thd(1) gauge structure in the sF state is a manifestation of the

correlations in the mean-field E91Cn01n phase. U1Cn01n quantum ordépresent in this statésee the Intro-
To implement the mass gap formation we take the follow-duction and Sec. I}/ Thus it is not possible to simply break
ing phenomenological form for the gauge propagator: the gauge structure without affecting the underlying mean-
field ansatz as we have assumed above. If we reverse the
_ 8 a,d, above logic, this implies that the low-frequency spin corre-
D,.(q)= | ™ lations which refle'ct the underlylng mean-field ansatz can be
NVg2+m? q used as an experimental probe into the corresponding quan-

] ) tum order and gauge structure accompanying the mean-field
The calculation then goes through as abowéth one  grrelations.

subtlety in the analytic continuation discussed in the Appen- The ASL described by the sFU1CnO1n state may
dix B) resulting in the following expression for the staggeredchange into several different states at low temperatures. The

correlation low energy spin correlation can have different behaviors in
" _ those low-temperature states. In the following, we will dis-

IM(S; (0,0)Ss (@,q)) cuss one particular low-temperature state to gain some intu-
\/52—_(12 ition on the behavior of the low-energy spin correlation in

=0(w?2-q?)O[m?+q>—wd)]Cp——m the low temperature phases.

m?” Within the SU?2) slave boson theory, the mean-field phase
Ol w?— P T which is energetically favored over the 8#1C01n phase at
[0"=q"=m7] low temperatures is the so-calledwave pairing staté? In
02— P order to keep this section reasonably self-contained we
XCn o e T (220 would like to outline some of the steps leading to the mean-
(Vo= g*+ Vo’ —g*—m’) field correlations discussed in the following. As was men-
where tioned above within the S@2) slave boson formulation the
physical electron operator is represented as
32
V= : 1 1
3m*N CTi:Ehr‘ﬁIi:E(infTi'Fb;ifIi),
In Fig. 5 we plot a momentum scan of the resulting spec- (23
tra with m=20 meV. Figure 6 depicts the spectrum at the
antiferromagnetic ordering wavevec@Qpg . As expected the c _:ih_’rw -=i(bT-f —bh )
opening of the mass gap in the gauge fluctuations has re- N RSN R
stored the mean-field result and consequently suppressed the
antiferromagnetic enhancement seen in Fig. 3. where the following S(P) doublets were introduced:

From this analysis we see that the spin correlations at low
frequencies are described by the underlying mean field. In

the above calculation we have assumed that the only effect of Fri fi by
the destruction of the masslesslYgauge structure in the sF b= Nk b= N h;=
phase is the formation of the(l) mass gap which leaves the fi —f5i by
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The #;; and ¢|; are the two fermion fields representing contains the Hubbard-Stratonovich fields which classify the
the destruction of a spin up and spin down on siteespec- part of the phase diagram we are looking at. The mean-field
tively, andh; is the doublet of bosonic fields keeping track of phase diagram is found by minimizing the free energy for a
the doped holes. Putting this representation into the  given number of particles with respect to the bond variables

Hamiltonian Ui .
The d-wave pairing state can be represented as

H=P > |J §i~§-—ln-n- —t(chic,i+H.c)|P

@) boatd arel Ujiix=—7Tx+14,
yields on performing a Hubbard-Stratonovich transformation U oe — 3y A 26)
to the appropriate bosonic bond variables the following par- Lty TXTT S
tition function* .

ag7#0.
- B
_ .t _
Z_f DhDh'Dy DyDabu ex% fo L)’ (24 The key difference to the sfJ1Cn01n phase is the ap-

pearance of a finitag which acts as a chemical potential for
_ the spinons. Without this term the above ansatz 25U
> Yh(0,8,+3U5) ¢ gauge equivalent to the g/1Cn01n ansatZ?* It is shown
Llo in Ref. 4 that the appearance of such a chemical potential
term is not consistent with the quantum order of the sF
+ 2 hiT[(aT—,u)aij (U1Cn01n phase and hence signals the presence of a differ-
1 ent quantum order accompanying tth@vave pairing state. It
is precisely a nonzerag which gives rise to an anomalous
fermion-fermion pairing which when combined with holon

Thea, fluctuations incorporate the projection to the Spacecondensatlon leads to tliewave superconducting state. As

. . 3 . .
of SU(2) singlets within the above representation for theWe Shall see in the followinga; is also responsible for the

electron operator&3). Furthermore, note &= 30/8, T incommensurate spin response at the lowest frequencies
=t/2 and the matriXJ;; in the form

1

N| -

J
L=5 2 TUjU;]+
(1)

1
§¢Zi7|¢ai+h;r7|hi

+; ay,

+1U;1h; . (25)

shifting the peak away fro@ag= (7, 7).

Taking the above ansatz equati@6) we can calculate
the spin-spin correlations at mean-field leyste Appendix
E) to obtain for the imaginary part of the spin correlation
nearQug=(m,m):

*
—Xij  Ajj

A Xij

IM(S™ (0,Qar+K)S™ (—w,~ Qur—k))

= 64UfU2{0[w2—(vfkl+ 2a3)?—v3k3]\ w? — (v1k, +285)? —v5k5+ 6] 0 — (v 1k, — 285) %~ v3K5]

X Jw?— (viky—2a3)2—v3k3+ 0] w?— (viko+ 2a3)?— v3K3]Jw?— (viky+ 2a3) 2 —v3k]

+ 6 w?— (viko— 283)2— v3K3]Vw?— (v ik, — 2a3)2— v 3K},

ket ky _ —ketky

k= kp=
w2t 2

vi=2\2aly v,=2y2aJA. (27)

In Fig. 7 we plot the resulting spectrum for a frequencyexpected, for in this regime the response is dominated by
w<wcz(4/\/§)(l}2/l}f)ag where the intensity is peaked creation of particle-hole pairs connecting the Fermi points.
around four points shifted diagonally away fro@ug. In Interestingly for intermediate energies the peak intensity in
contrast to this in Fig. 8 we depict a scan fet>w, the the spectrum is shiftedhorizontally away from Qar even
spectrum is peaked at four points shifted horizontatty ( Without one-dimensional phenomenology.
+6,7),(m, 7+ 5) where the ridges—growing out perpen-
dicular to the diagonals—overlap. is related toa3 via éa
=ag/J with a the lattice spacing. It should be noted that in  Before launching into a discussion of how the above-
the w— 0 the peaks are always located along the diagonal, amentioned physics embodied in the ASL might shed some

VI. APPLICATION TO HIGH- T,
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Over the years NMR and inelastic neutron scattering
(INS) have painted a very interesting picture for the spin
correlations in the cuprates starting with the discovery of the

= 15+
E by now famous 41 meV ‘“resonance” peak by Rossat-
£ 0l Mignod etal® in the superconducting state of near-
Q optimally doped YBaCu;O,. In addition to this resonance
g mode which appears exclusively in the superconducting state
;- 5y there is now evidence for a precursory piling up of spectral
5 weight in the energy region of the “resonance” even in the
f& 0 normal state of underdoped cuprates. The energy at which
=1 this enhancement occurs in the normal state is sometimes

1 referred to as the “spin-pseudogap” energy by INS
workers? (hence our conventionFrom the perspective of

spin fluctuations INS is clearly the most powerful probe,
giving both dynamical and wave-vector-dependent informa-

FIG. 7. Wave vector scan of”(ky,ky,0=0.1J). Notice the tion about the spectrum.

incommensurate pattern at low energy with amplitude peaks shited MR, on the other hand, probes particular regions in
along the diagonaléRef. 27. (0,0) corresponds t@r andk, ,k, ~ Wave vector space with Knight shift probing the uniform

are measured in units ofdvith a the lattice spacing. susceptibility—= x(q= 0,0~ 0)—and spin-lattice relaxation

liah h in phvsi 4 1o briefly di rate probing~Imx(dc, 0, ®)/®|,_o Whereqc =Qar and

ight on the cuprate spin sics we need to brie igres - -

a%d establish IZome rﬁ)om%n)élature. As we shall s):ae ?n th O.:O are the cha_ractensnc wave vectors qletermmmg the
following each experimental community has their own set Ofspln—latnce relaxation at the plan, and O sites, respec-

seudo aans and spin pseudoaans and it is easy to et Iostt}vely. In addition to the above-mentioned “spin pseudogap,”
P gap >pin p gap ylog NMR has identified two characteristic temperatures. One is
the confusing terminology. Here we adopt the following con-

. the reduction of the Knight shift below a temperature which
vention.

Pseudooamhase denotes the part in the cuorate phasi€ will denote byTy which indicates the loss of spectrum
gam b P Phaser x(q=0,0~0) below this characteristic temperature. Fur-

diagram where angle-resolved photoemission experimentt . . .
: . . ermore, there is a secomawer scale which shows up in
observe a large gap in the single-particle spectrummad). the spin-lattice relaxation rate fd, as a peak in (1,T)
4 . : - . . - " 1
The termspin pseudogapill be used in conjunction with which we shall Ca”TTl- Notice thatTT1<TN but both of

the spectrum at the antiferromagnetic wave ved@y: _ .
— (7, 7) to denote the frequency range of reduced spectratlhese temperatures are above the superconducting transition

weight below the peak above, (which on cooling belowT . temperaturd ; in underdoped samples. From the perspective

shifts to higher frequencies and becomes the “resonance’—0f mean-ield theory it is impossible to explain these
see discussion belgw observations2 Within the mean-field picture the reduction of

the Knight shift belowTy can be related to the reduction of
spin fluctuations on condensing into the spin-singlet sector
identified as the sRU1Cn01n phase above. However, there

O
i

1 ‘ﬂﬁ' A
gl

';'a

/

i

\\“
h“ﬁ‘
: tions wherea€D-NMR derives its main contributions from
-1 4 0.5 kx g~ 0 which is protected from gauge fluctuations by current
) conservation. We have shown above that this enhancement
FIG. 8. Wave vector scan of"(kiky,w=0.1)), kcky are jndeed takes place with Igy, ., .o (see Fig. 3 being
measured in units of & With a; chosen to givesa = 0.1 r.l.u. . . : .
strongly increased over the mean-field behavior which deter-

(27=1 rlu) (Refs. 28 and 2Pthe value ofw, is set by w. . ) . a . .
=(4/\/3)(v,/v;) sad. To compare with experiments we have cho- mines the spin fluctuatlons .at—O. G"’?” the differentr
sen the values, /v, = 1/7 (Ref. 30, which givesw,=0.2]. Notice dependence for the spin-lattice relaxation rates for tempera-

how the overlapping ridges lead to the horizontal incommensuralu®s Tn>T>Tr it is thus natural to identify this regime
tion. with the ASL physics.

inclusion of the gauge fluctuations. The rational for this sug-
gestion arises from the fact th&t,-NMR probesq~ Qag
1 fluctuations which are strongly affected by the gauge fluctua-

\

80

S is then no way to explain the difference in the spin-lattice
geo relaxation rates observed for plan&;, and O. Whereas
:§ (T 1T)Cu increases with decreasing temperature between
§4O i Tn>T>Tr, (1/T,T)o reduces monotonically beloWy .
;- i Let us now discuss these interesting phenomena from the
5 20 . {)‘ \\, ““/"“ point of view of the ASL physics described in the previous
= Jm‘ W'",'.';‘,‘.’,’;’,"""Wo‘{’,"ﬁ/m \g\ part. As has been suggested by Kim and®#w enhance-
" '/‘H\“w""m" i “3‘ i ment of C,, over O relaxations is expected to depend on the

i

|

;1“ l”
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50 Y . - -
&) ¢ 16 meV
= * 12 meV
> 40 ¢ -
© o 8meV
% 2 3 <>° + 5 meV
E 30_ ¢*¢0 | FIG. 9. Imaginary part of the spin susceptibil-
: % ity at Qe taken from Sternlietet al. Note the
3 temperature dependence of thexrfor a fixed
L 20r X . o converges to a universal function 3w at
m m]
< (=] (=] I
o L] argeT.
o W e
= o o
E 100 + ++1¥f T
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Sternliebet al3* have performed temperature-dependentsistent with the temperature dependence seen by Sternlieb
neutron scattering experiments on VYBa;05¢ (T,  etal, Fig. 9, at largeT/ w.
=53 K) and found a universal dependence of The ASL gets destroyed below the mass gap energy scale
which we associate with a temperatdrg. Below this tem-
perature scale both th@, and O spin-lattice relaxation rates
fall monotonically following the sF-singlet correlations as
is reduced. This is seen in experimefgse Fig. 10

Thus we associate the temperatljh‘el~ 150 K where

|mX(w)=J' Imx (g, w)dg=Imy(Qar, ) (28

on the ratiow/T above a temperatufB~ 100 K. Their data
(see Fig. 9 suggest that the temperature at which this uni- .
versal scaling appears increases with decreasing energy. {&/T1T)c, shows the peak witfl, the temperature below
particular for o=5 meV the onset temperature i§ which the massless(ll) gauge structuréand thus the under-
~100 K. Below this characteristic temperatvehich again  lying quantum order becomes unstable and undergoes a
is well aboveT,) their data show a decrease in spectrum‘transition” (see the discussion at the end of this segtion
which they associate with the opening of a spin pseudogap To summarize the above comparison between the ASL
below wy~10 meV. They also point out that their data andand NMR experiments, we present the phase diagram, Fig.
the fact that the onset temperature of scaling increases withl. Below the pseudogap scdlg,, which we associate with
decreasing probe frequency are consistent with the anomd-, the oxygen IF; T starts to decrease due to the opening
lous behavior of (I7;T)c, which probesw~0 and in- of the pseudogap associated with the spin-singlet formation.

creases down td =Tr,~150 K. 8 ' ' ' ' . 03
As we argued above it is exactly the regime orm at
T~0 or T>T,, at o~0 that we associate with the ASL 0‘9,‘9—9‘9
physics. Under the assumption of perfect scaling we can thue= 6 ) 000p 8,8‘0’ —
account for the difference in (L{T) betweenC, and O ¢ o ¢ ~©Oo loa 'y
quite naturally. From - & & %060 ¥
7)) o @ !
= 4l N o 2,
Sy el o 3 & & | o M| 5
T e =S o T o,
where, forC,, =,~Qae due to the form factor wherea3 F_ 2 oj 1 =
probes the uniform spin fluctuations. In the ASL we can for o
C, approximateX 4imx(q,w)/ |, .o~ IMx(Qar,w)/wl|, .o
which via scaling results in 0 . . . . . o

0 50 100 1_?_0 K 200 250 300
1 1 32 [K]
==(Cy =, =—, (30
T,T T2V 372 FIG. 10. Temperature dependence of I/(C,) and 1T,T(O)

in YBa,C,30563. The dot-dashed line shows the temperature de-
whereas (I, T)o falls monotonically asT is reduced fol-  pendence of the static susceptibility. The data are taken from Ref.
lowing the uniform susceptibilitysee Fig. 10 This is con- 35, which quotes Takigawa's results.
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The ASL (the U1Cn01n state)
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However, the copper T4 T keeps increasing as temperature

decreases, despite the small single-particle density of states fjg 13, The energy of the peak in the superconducting state—
in the pseudogap regime. This strange behavior can be eXtso called theesonanceenergyE, oconance@s a function ofl, in
plained very well by the ASL due to the diverging AF spin underdoped YBCO. Data taken from Dei al. (Ref. 36. By ex-
fluctuations at low energies even in the presence of th@apolating the linear relationship downTe=0 (dashed line added
pseudogap. Below the temperatdrig, the U1) gauge field as a guide we extract an estimate for the mass scale related to
starts to gain a gap and the enhancement in the AF spitopological gauge fluctuations.

fluctuations ceases to exist. This causes the copfeil 1o ) . . .

decrease with decreasing temperature following the expectéd” €00ling belowT, this gap increases in size and the cor-
mean-field behavior. Thus the ASL described by the sF statiSPonding peak shifts to higher energies as depicted in Fig.
(or the U1CnO01n stajeppears betweeh, (associated with 12 where we havezgldded .the two dashe:d lines to the data
the experimental temperature scdlg) and T (associated taken by Fonget al™ to guide the reader's eye. From the

. . . perspective of the ASL liquid the “normal state” abovg
with the experimental scal@y). Below T, the ASL wil cprresponds to the phase where the gauge field is in the mas-

g::pge into another state whose nature will be discusse ve phase due to topological fluctuations. From the data by
Lét us now discuss the INS results which in their own Dai et al*® see Fig. 13 we estimate the mass sdate, the
energy gap scaledue to instantons to be of the order of

right paint a very interesting picture of the spin fluctuationslo_15 meV which ties in nicely with the spin-pseudogap

in the cuprates. First we consider the spectra at the antifef ., .~ 15 mev estimated by Sternliet al

romagnetic ordering wave vector as a function of tempera- The shift of this peak to higher energies on cooling below

ture and energy. Already well above the superconductin o o
transition in thgynormal gtate INS data showpa marked inJ ¢ can be qualitatively understood as the contribution to the

: ; S L mass scale by condensed bosons via the Anderson-Higgs
crease in spectral weight at a finite characteristic frequen%echalnism This also explains the linear relationship be-
Espg @nd a reduced spectral weight far<Eg,4 (the spin '

) : . tweenE,qsonance(WhereE, qsonancedenotes the energy of the
pseudogap; see Fig. 12 bottom curve, and compare Fig. 6peak intensity in the superconducting stated T. (both

being proportional tax, the hole doping concentratipras

Peak Susceptibility at (0.5,0.5) observed by Daket al. in Fig. 13 for underdoped YBCO.

800 Q o YBa.CU0 1200 Furthermore, we can account for the very different doping
600} 1B 27387 14000 dependence of the normal-state maximyeetermined by
3 10 ! 0dd channel the instanton scale with weak doping dependgreesus the
e 4001 ' ! 1800 doping dependence &, qsonance (determined by the con-
= ool 1] 600 densed bosongx) as was stressed in a recent article by
2 Bourges®’
“o’f or 400 From this understanding of the ASL, we can conclude
= g immediately thafl,,, the temperature of the spin-pseudogap
[ g é: s i.m 200 formation (and henceTy ), should be rather insensitive to
o‘ : 3‘0 6-01 90o changes in doping. Contrast this with the doping dependence

of Tpg, the formation of the pseudogap in the single-particle
spectrum which ag—0 will get as large as the spin-wave

FIG. 12. Energy dependence of peak intensit@ﬂ* as a func- bandWldth, since in that limit the ASL will be described by
tion of temperature taken from Forg al. (Ref. 22. Note the shift ~ the 7-flux phase.

E (meV)

in the peak position on decreasing the temperature belgw Another interesting point to discuss about the INS data is
=67 K (the dashed lines were added by the current authors as #neir momentum dependence. In Fig. 14 we show the data by
guide to the eye—see main text Bourges taken on YB&,3045(T.=52) which shows the
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H(r.L.u.) n
ermj arc
0.3 0.4 0.5 0.6 0.7 C Py
LR RER R R AAER RARES LR LD LA RAR R b o 0 T pseudo-gap
: ] A sCspin
150 [ k] .
: ] 0 9 90° 0 9 90°
E ".‘ kY E pseudo—gap metal d-wave superconductor
2 100 1 . = E FIG. 16. Minimal quasiparticle enerdyp,;, along the line in the
§, : 3 0 direction. The left panel depicts the pseudogap metallic state and
= - O ' ] shows a finite Fermi arc. The right panel is for the superconducting
o ox = fg state. In the superconducting state, the quasiparticle may have four
.f, o e A bands(instead of the usual two for the BCS supercondyctbor
50 [ = = ] .
: B s 3 details, see Ref. 43.
E ‘.‘E-': E . . . .
. — — ] In the first picture the mass of the(l) gauge field is
o Mt T L 1 generated via confinement due to instantons. After the open-
-0.4 0.2 0 0.2 0.4 ing of the energy gap, there is no residual unbroken gauge
. structure left at low energies. Thus the confinement can also
qA ) be referred to as (1) gauge structure breaking down Zg.

. . (Z4 gauge structure means no gauge structurethe con-
FIG. 14. Spin excitation spectrum for oddpen symbolsand g0 ot hhaski e, after the 1) gauge field is gappdgthe
even(solid circles excitations at 5 K. The open square indicates the . R !

. - .__“spinons and holons recombine into electrons which appear as
energy of the maximum of the odd susceptibility. The dotted lines h | td f freed . . Th
correspond to the spin-wave dispersion relation in the insulatin Igor(zaellvflhne fires%rei‘(a:fu?e Sreiﬁ-(?hn;rae r(z}v(\:lofnn;:]g;zih Tflljlz \i?l]e
antiferiomagnetic state Wit =120 meV. This figure Is taken articular would slz est tr?e existegnce of well-defined quasi-
from Bourgeset al. (Ref. 23. p . 99 X q
particles at low energieas probed by angle-resolved pho-

, o , , toemission spectroscopfARPES] even above the super-
spin-excitation spectrum for odcousti¢ and even(opti-  ,nqucting transition temperatuf®, (this should also be

cal) excitations at high energies. The dotted lines CO”eSpongccompanied byr2 resistance in dc conductivityFurther-

to the spin-wave dispersion relation in the insulating antifer-more, the binding of spinons and holons will gives rise to

romagnetic state. The dispersive behavior compares nicelyormi aregl®
with Fig. 15 the correlations in the ASL liquid above the |, ihe second picture, the(l) gauge structure also breaks

mass scalen~20 meV. down to theZ; gauge structure, but now via holon conden-

So far we have argued for the strange phenomenology Qlytion | this casel,, =T, and the ASL directly transforms
the pseudogap phase to be tied to the physics embodied j, ihe g-wave superconducting state. There are no well-
the ASL. It is, however, clear that the ASL physics has 04efined quasiparticles above .

give way to the superconducting state at low temperatures. A third scenario might be the breaking of thé1) gauge

An impgrtant quegtion is how thi; transition happens. Let Urycture down to &, gauge structure via the condensation
then briefly mention three plausible scenarios for how theof spinon bilinear terms which do not break any

ASL goes over to the superconducting state. In other Wordssymmetrieés (A Z, gauge structure was also found in a

we would like to.understand how the(1) gauge field gains slave fermion description of spin systems via the condensa-
a mass term which leads to the destruction of the ASL stat€; 1\ of boson bilinear terms which break 90° rotation

symmetry*® The Z, gauge structure can also be obtained via
the condensation of bound states of double vortf@e3he
breaking from U1) to Z, also results in a mass for the(l)
gauge field and leads to a ne&y spin liquid. The transition
0.1 to this new topological and quantum ortfet implies the
- appearance dfue spin-charge separation since thegauge
interaction is only short rang&t*° (Senthil experimefit#3

To determine which scenario actually applies to real high-
T. samples, we need to rely on experiments. In the following

0.3

0.2

—
o
= 0
(=2

-0.2 we would like to argue that experiments suggest the first
scenario as most plausible in the high-samples. The ap-
0 20 40 60 pearance of Fermi arcs in the first scenario implies a small
Energy [meV]

energy scaleé scpinfor the spin excitations associated with
FIG. 15. Contour plot of Ig—notice the “spin pseudogap” at the superconducting statsee Fig. 1& Such a small energy
(q)=0=Qur=(w/a,w/a) for energies belown=20 meV and the scale was observed in the experiment of Ref.(dde Fig.
dispersion aboven. 17), where it was found that the spin susceptibiliyw)
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80 80
o =45meV
® =3 meV 6o o FIG. 17. Temperature evolution gf(g,w) at
% o T | 000® o the incommensurate peak position for energies of
= o op = |o 00% © o/ 3 meV and 4.5 meV. Data are taken from Yamada
o (-3}

£ o o E etal. (Ref. 44 whose sample was

o ° Lay g551h.16C,04(T,=37.3 K). Notice that the
o © spectrum develops a gap for the 3 meV case on

cooling belowT..

100 0 100

50 50
Temperatur (K) Temperatur (K)

decreases below, only when w<4 meV. This indicates Symmetryand no order parametetsience the ASL associ-
that Agcepinis as small as a few meV. Direct evidence for ated with the transition between quantum orders can show
Fermi arcs comes from their observation in a recent photoSc@ling properties divorced from any critical point studied

emission experimerf The expected well-defined electron- SO far.

like quasiparticles near the Fermi arcs were also observed. From this perspective the ASL is just one of a whole slew
of possible quantum orders characterized by a masslégs U

gauge field coupled to massless Dirac fermions. It is also
clear that the destruction of the ASL via the transition into a
In this paper we have given an account of the spin correphase with a massive(l) gauge field(jphenomenologically
lations in the ASL phase through the calculation@(f1/N) described above via the introduction of the mass sogle
contributions depicted in Fig. 2. It was shown how the gaugelemands a much more careful analysis and highlights the
fluctuations strongly enhance the staggered spin correlationg)ain difficulty with the slave boson approach to thd
leaving the uniform spin correlation unaffected. This result ismodel. Within this scheme it currently seems to be impos-
very natural within our effective gauge theory of underdopedsible or at least very challenging to describe this energy-
samples where the uniform spin correlation is protected byemperature regime around/T,, theoretically. The reason
current conservation and cannot have any anomalous dimefer that is related to the need of introducing a scale which is
sion. From this perspective it is also easy to account for théaot tied to boson condensation and hence divorced from
qualitative different behaviors of plana, and O spin- the mean-field energies and the corresponding degrees of
lattice relaxation rates seen in NMR experiments wiege freedom.
probes the enhanced staggered correlations of the ASL down Through our examination of the experimental data, we
to a temperature scal@,~Tr, where theC, 1/(T,T) find that the ASL, plus spin-charge recombination at lower
peaks, which we associate with the appearance of an ener@)'€rgies, provides a consistent and natvéth no fine-
gap in the gauge spectrum. What is really remarkable in th mng) dESCI’Ip'tIOH of underdoped cuprqte supe'rconductors.
ASL picture is that enhanced staggered spin correlations arBis iS the main result and the bottom line of this paper.
obtained while at the same time having a small single-
particle density of states within the pseudogap pheiigout ACKNOWLEDGMENTS
any fine-tuning As the dopingx decreases, the pseudogap ,
increases and, surprisingly, the staggered spin correlations W& would like to thank P. A. Lee and M. Kastner for

also increase. This strange experimental behavior is ex1@ny helpful discussions. W.R. would particularly like to
plained naturally by the ASL picture. thank A. Seidel for his mathematical insights and M. Reend-

It should be noted here that our ASL shows qualitative®'s for pointing out Ref. 17. This work is supported by NSF
similarities with the quantum-critical-point scenario of Refs. Grant No. DMR-01-3156 and by NSF-MRSEC Grant No.
1 and 46. However, as was stressed in the pipere ap- DMR-98-08941.
pearance of the pseudogap which they associate with the
suppression of the spectral weight of spin waves character- APPENDIX A:
istic of the quantum-disordere@@D) regime should affect SPIN OPERATORS IN THE CONTINUUM LIMIT
the low-frequency dynamics fdvoth g=0 andq=(m,). ) ) , ) )
Within this framework it then seems hard to account for the N this appendix we derive the expression for the spin
qualitative different behaviors seen at g andO sites in ~ OPerators neaq=(0,0),(w,m), and (7,0) in terms of the
NMR experiments. As we have stressed many times, withisPinon field defined near the four nodes in momentum
the ASL, this difference is protected by thél)gauge struc- SPace: o ,
ture. Also, in our ASL approach, we do not assume, in con- Let us look at the staggered correlation in detail:
trast to the quantum-critical-point approach, any nearby sym- 1
metry breaking phase and we do not require any strongly 2 _* too N2
fluctuating order parameters to give us critical behavior. The S(QJFQ)_Z % Flp=a)rf(p+Q), (AD)
ASL can by itself appear as a stable quantum phase or as a
phase transition point between two states with new kinds oWhereQ= (m/a,m/a) and we have suppressed the frequency
order—quantum order. The two states can have shme index. After introducing

VII. CONCLUSION AND OPEN QUESTIONS
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1 where W (k—q)=(fi(k—q+Q),— fl(k—q+Q)) andk is
fe=ﬁ[f(Q)+f(Q+Q)], measured away from the node of type Q= = (7/2,7/2).
(A2) The remaining contribution arises from the other two nodes
1 in the spectrum at- (7/2,— 7/2).
fo=—[f(q)—f(q+Q)], Following the same calculation for the uniform correla-
\/5 tion function

the expression for the staggered spin operator can be rewrit-

ten N 1 N
S@)=5 2 f'(p—a)f(p), (A6)
. 1 ; ; - [fep) P
SQ+a=g 2 [fe(p=a).fo(p-q)Ir(os=ioa)| ¢ .
(A3) we find
Spliting  the ~ sum 3,=35,,+35, where Q L
= (7/2,712) andQ=(— w/2,~ wI2) yields S(a)=5 ; Wy (k—q)oar¥4(K), (A7)

. g
S@+a)=7 2 [fatk=a+Q).fo(k—a+Q)] with ¥, (k—q)=(Fi(k—q+0),~ fi(k—q+Q)) and k is

~ measured away from the node of type @ = = (7/2,7/2).
- ) fo(k+Q) As before the remaining contribution arises from the other
X1(o3=ioy) f(k+0) two nodes.

The correlation neag=(,0) is obtained in a similar

1 ~ ~ fashion the only difference here is that for this momentum
+7 > k' —q+Q),fl(k'—q+ Q)] transfer the two types of nodes get mixed and hence when
k' we split up the sum over momentum space we need to con-
[k sider all four nodes simultaneously. Under this proviso the
N /+ . .
y T((Tg_i(fz)( el S)) _ (Ad) calculation goes through as above and we end up with
fo(k'+Q)
L= . . 1o — 0 oq).
Noting Q=Q+Q and usingf.(p+Q)="f.(p) and f,(p S(QX+Q)=—E q/(k_q)< l)T\y(k)' (A8)
+Q)=—f,(p) we arrive at 2% op 0
- 1 ~ ~
S(Q+a)=7 2 [fak=a+Q).fo(k-a+Q)] where
- [fe(k+Q) W(k—q)=[fl(k=q+Qy),~fi(k—q+Qy),~fl(k—q
"tk + Q) |
° +Q2),fe(k—=g+Qy)],
! > W (k—q)lrWy(k (A5)
=7 4 Vilk=airtad, with Q= (7/2,7/2) andQ,= (=/2,— m/2).

APPENDIX B: TWO-LOOP CALCULATION OF THE SPIN CORRELATION

We employ a four-dimensional representation of the Dirac algéray,}=24,, («,»=0,1,2) in the main body of the
paper, i.e., Tr=4. To perform the Tr over the spinor indices we need the following identity:

Ty Y2y Py v 1= 8 Ty Y2y ¥P1= S PTiy y 2y y' 1+ 8Ly y°yP " 1= 8Ly v* P "1+ 8* T v* v ¥'],
which can be simply derived from the Dirac algebra by commutingatrices through and using the cyclic property of the
trace Tr. Using the above identity we can simplify

d9% qd 8 +Kk),. vk Sk aB(K+ yK (S V"2_ ,
[z(A)]:f j 9 . 8 (PHK) ¥ ksy v v (k+a) gy v Ka( 6,0~ 0,0,)
(2m9) (2m)°

N (p+K)2K3(k+q)%k?|ql®

(B1)

to
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64 d% [ d'q [K*(p+k)-q(k+q)-g—2(p+K)-K(k+q)-gk-q]
[Z(A)]:_J df d 2B o243 (B2)
NJ (2m) (2m) (p+k)“(k+aq)k'q
and for diagraniFig. 2(C)] we obtain
di [ dd 8 (p+k) v y“(p+k+q)sy°(k+a) vy K, v*(8,,9%—d,4,
[2(C)]=f f a8 Py (ptk- q)fyf QQ)B] Y Kay"(9,,0"~ G, 90) (B3
(2m®) (2m [N (p+K)2(p+k+a)*(k+a)*k?ql®
64( d% [ di F(q.k.p)
= J =, o S (B4)
(2m*) 2m? (p+k)A(p+k+a)’(k+a)*k?ql®
where
Sk "2"2"21 2 ~4 1')"2 20t n2k. .
F(a.k.p)=| K q?k®— Sk-qp*+2k-qg?+k-pg- p——q p*+q*+(q-p)? |+ 5 (k+a)?| 29°%k-p+p’k-q—2K-pq-p
_5*2*2 +(|Z+ *)2 52~ "+ "ZR" ~_ E"Z"Z + E"A 2_R~232° "+£"2"4
>dp P)* A"P-a+aK-p—507p 29 P4 q-p+59°p
|
In both expression&B2) and (B3) the integration ovek As noted previously, because of tpeq term in the de-

is convergent ird=3 and can be performed noting that nominator of the last term above, we wont use dimensional
regularization. Therefore we seét 3 and introduce an upper

f d3k 1 1 (5 cutoff A to regularize the above integrals. Also note that we
s, s = R B5)  will neglect the first term in Eq(B9) which is linearly di-
3 2 2
(2m)° K¥(k +p)%(k+a)*  8lpllalla— p| vergent whose appearance is tight to the regularization via a
momentum cutoff(such divergences do not appear in Lor-
f d3k 1 entz invariant regularization schemes
213 R2(k+ B)2(k+ 0 2(k+ B+ Q)2 Under this proviso we obtain the following result for the
(2m)” K(k+p)*(k+q)*(k+p+a) last three terms in EqB9):
1 1 1
=== (B6) - - ) - -
8lallpla-pllp—al [a+pl 4| _8lpl _4pl, A" 2pl [pl A"
- . . N| 47 47% p? 3672 127 p?
Thus after thek integration we arrive at
| Ipl
2 diq [2p-q+p? 0-q 0 +——(C1+Cr)+—In=|, (B10)
[20A)=2 f q apsq* p°_ Sq ] _M?'l 872 g2 pz
2m?[allp+al Ipla®p+al Il
(B7)  where the last terniB9) is given by
_p*+2p-q  4lp
aw
Tl 16T 6 (2m)® p-qa?(p||p+d
p2+2p*
——qz p+ . (B8) _Iel Jld 24y | Vlty—\y
p-qd’lpllp+al “ a2l Jo leT Ty 4y
Adding the contributions f’\zlﬁ 0y 24y . \/m_ o1
2 4|p| 1 y\/1+ Vity+1
2X[2(A)]+[2(C)] =—f T
2mil@® lp+al A
SAa 202 o4 — [Pl A?
p-q q°p°+2p =g Ci+Cot2In=; (B12)
- = > > T S 555, 5 5 S |- T P
pla’lp+dl  p-ag?lpl[p+dl

(B9) and
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1 2+y /1+ / APPENDIX D: TWO-LOOP CALCULATION IN THE
C,= dy =7.748128723 MASSIVE PHASE OF THE U (1) GAUGE FIELD
1 1
0 y\/1+ \/1+ +\y

This appendix gives some details of the calculation lead-
ing to theO(1/N) corrections to the staggered spin correla-

— 2
Co=4 In(\/i— 1)+4+In(3—2\/§) —2 In(3—2\/§) tion in the case when the gauge field is in the massive phase
+21In(3—242)\2=2.121475665. with propagator
Finally extracting the logarithmically divergent terms we D, (G)= 8 ( B q#qy>
i t th It stated in the body of the text. AT = nv >
arrive at the result stated in the body of the tex NW q
APPENDIX C: ANALYTIC CONTINUATION OF 1 /N We can use the results derived in Appendix A for the inte-
CORRECTION grals overk, Eq. (B9), since they are unaffected by the

Having obtained the N correction we would now like to change in the gauge propagator:

reexponentiate our result in the form

d’q { 4)p|

4
2[2(A)]+[2(O)]=— = T
\/— \/—In(Az) j 2m)* (g Va?+m?|p+q|

SI(0)S:(9))g=
(Ss (S5 ()0 6 127N

-

A?Y - 32
~— o= (@) = : Ipllql\/q +m?p+q|

16 372N
1) 5252+254
p-glalg®+m?|p|[p+d|
where we have neglected the linearly divergent term as dis-
dﬁ;_ussed above. After integration O\érin d=3 we arrive at

, (DY)

This however immediately confronts us with the problem
that after analytically continuing EqC1) the susceptibility
has the wrong sign fori2>1. It is, however, hard to under-
stand why the spin operator cannot have an anomalous
mension bigger thag. In order to analyze this issue it is
helpful to look at the corresponding Euclidean real space 4 2 — 2|5| 2A
correlations. Let us take the case of a general staggered splﬁ- - —[Vp*+m?—m]— In

correlation of the form ? 7 |p|+ Vp2+m?
(SI(x)S5(0))= - (=1~ - (C2 = 5
X - e ->
16772 |X|472V p2+m2 1 -2 2\3/2__ 3
e e [(pP M) ¥
where the spin operator has anomalous dimensioWe 6m 9m?p?
now Fourier transform this to obtain |5| oA
—In
- du +\Vp2+m?
e s (o) PP
! | 3 2+y | Vity—y
For 0<|Re(2v—2)|<1 this can be evaluatétito give 82Jo y )2 : Mry+riy
L \/§ y+ | | Vit+y
Er(zv—z)sin[(u—1)w]|&|HV. (C4) P
|p| 2/p -
This leads after analytic continuation to the result, Eq. 8'n' 1+y+1
(16). From here it is easy to see how thefunction and the \/‘ y+ /1+
sine function which are missed in the naive exponentiation of |p

the Euclidean momentum space result conspire to give the

correct sign for the spin correlation no matter what the size (D2

of the anomalous dimension. In particular we can continue It is not hard to check that in the Iim|i5|/m—>0 the terms
the above for the case—0 to give the correct mean-field proportional tom cancel. In extracting the logarithmic term
result. we have to take a closer look at the last term which cannot be
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1000/ ;
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FIG. 18. Comparison betweefl = —2|p|In[A%(p?+nP)], f2 FIG. 19. Comparison between the analytically continued forms

:—4|§|In[2A/(|§|+ /52+m2)], and the numeric evaluation of Eq. of f.l’ f2. and the numeric evaluation of E¢D3) after analytic
(D3) before analytic continuatiom{= 30). continuation (n=230).

evaluated in a closed form. In Fig. 18 we compare two dif- Analytically continuing and combining with the mean-

ferent functional forms with the numeric evaluation of field result(10) gives EQq.(22).
. (AZ/p2 2+y 1+y—-1
|p|J dy In . APPENDIX E: LOW-ENERGY EFFECTIVE THEORY
1 +y+1 FOR THE SUPERCONDUCTING STATE

2
1
m
+| =] Vi+
\/;/ y ( |5|> y Starting from the mean-field Hamiltonian for the spinons,
(D3)

Note that there is virtually no difference between
f1=—2|p|In[A%(p*+n?)] and  f2=—4|p|In[2A/(p|
+\/52+ m?)]. However, this comparison has to be taken
with a grain of salt as we are still in Euclidean space but argy the d-wave paired state

interested in the analytically continued forms. In Fig. 19 we

plot the analytically continuedifo— w+ie) forms of the

above functions. From this comparison it is now obvious that Uii+x=— Px+ A,
f1 which has developed a pole &t is unsuitable as an
approximation and we také2 which fits the numerically
integrated form quite well. Collecting the logarithmic-terms
in Eqg. (D2) we obtain

N =

H=> > lﬁ:rfijUij%j“‘Z aloa%lﬂ:rrﬂ'%i, (ED)
ij.o i

Uiisy=—mx— A,

3
2X[2(A) ]t [2(C) = — In .
3mN g+ Vg2 +m? we obtain after Fourier transformation the following
(D4) Lagrangian:
|
~iw+e(q)+ag —7(q) f.(q,w)
L=2 [f{(q,0),f (0~ w) . ! ) (E3)
q%[ Q@) fy (=6, w)] — () —io—e(q)—ay) | f(—0~ )
€(q)=—2Jx[cogq,a)+codaya)], 7(q)=—2JA[cogqya)—cogq,a)], (E4
which results, with
1 T
SY(q,)=5 X fl(kwdf (k+0,w0t wg),
2 k,wk
(E9

— 1 T
S (qw)=3 kZ f(k,w) f1(k+0, 0+ o),
y WK
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. o1 [—iw— e(k)—ad][iwx—iwg+ e(k—q)+ad]— n(k) n(k—q)
(§a0)S (a0 =g k% {wi+[e(k)+a3]2+ n(K)2H{(wx— wg)?+[ e(k—q) +ad]?+ n(k—q)?2}

(E®)

Next, we splitZ, = 2q+p whereQ; withi=1, ... ,4corresponds to#/2,7/2),(— w/2,— wl2),(7/2,— wl2),(— 7/2,7/2) in
this order. To extract the correlations n&-= (7, 7) we write q=Qar+ kK.

Concentrating on one of the terms in the sum—e.g., alut (7/2,7/2) we can expand
Bx"'By —Pxt py

\/E v Po= T (E7)

E(Q1+5)~Ufp1. 7I(Q1+5)”—Uzp2, UfEZ\/EXJ, UZEZ\/E&J, pi=
to obtain
(S"(Qartk,0)S (—Qar—k,—w))

21 (_iwp_Ufpl_ag)(iwp_iwk_Uf(pl_k1)+ag)+vzp202(p2_k2) 1
4 Qrop [+ (vips+ag)?+vipil{(wp— o)+ [—vi(pr—k) +ag)?+vi(pa—k)? 4 Quepi=2,...4

Note thatk,= (k,+k,)/+2 andk,=(—k,+k,)/v2. Now we approximate the sums by integrals and define
P1=viP1+ag, Pr=v,Py,

ki=viki+2a3,  ko=v2k,,
which allows us to rewrite the first term in E¢ES)

1 J #*p p(p-K +ipiw—iwpk
: .

4

(E9)
2m)%v v, [P2(p—K)2]

Using the Feynman trick or otherwise it is not hard to convince oneself that the last two terms cancel each other and the final
result is

w2+ K3+ K>, (E10

B 64Ufl)2

Combining all four contributions from the four nodes in this way and translating?shdaack to thek’s which measure
momentum along thab axis away fromQ,r we obtain after analytic continuation

IM(S* (0,Qar+K)S™ (— ,~ Qar—K)) {6[ 0~ (viky+2a8)*~v5k5]Vw? — (vky +2a5) ~v3k5

" 64vv,

+ 6L 0®— (vky —285)*~ v3K5]Vw? — (viky — 2a5) 2~ v3K5

+ 0l 02— (viky+2a3)2— v3k2]w?— (vik,+2a3)2—v3k2

+ 0l ?~ (vky— 2a8)*~ v3kE ] w? — (viky— 2a5)*~ v 3K3},

Ktk

k= Y k= . vi=2y2ady, v,=242adA, (E11)
V2 V2
the result stated in the main body of the paper.
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