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Spin correlations in the algebraic spin liquid: Implications for high-Tc superconductors
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We propose that underdoped high-Tc superconductors are described by an algebraic spin liquid~ASL! at
high energies, which undergoes a spin-charge recombination transition at low energies. The spin correlation in
the ASL is calculated via its effective theory—a system of massless Dirac fermions coupled to a U~1! gauge
field. We find that without fine-tuning any parameters the gauge interaction strongly enhances the staggered
spin correlation even in the presence of a large single-particle pseudogap. This allows us to show that the ASL
plus spin-charge recombination picture can explain many highly unusual properties of underdoped high-Tc

superconductors.
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I. INTRODUCTION

One of the intriguing questions about the cupra
superconductors—to many possibly the key to understan
superconductivity—is the role played by spin correlations
these materials. By now it is well established that the in
lating parent compound of the copper oxide superconduc
is well described as a two-dimensional~2D! Heisenberg an-
tiferromagnet ~AF! in the temperature regime above th
three-dimensional Ne´el ordering temperature (TN;300 K).
On doping with holes, away from stoichiometry, these in
lating compounds develop into high-Tc superconductors
even for very low hole concentrations of the order of 5
The question that needs to be addressed is the peculiar i
play of short-range antiferromagnetic correlations as a r
nant of the ordered Neel state at zero doping competing w
spin-singlet formation present in the superconducting st
The underdoped cuprates show this peculiar competition
antiferromagnetic order and singlet formation in a partic
larly striking way as is evidenced by various spi
pseudogaps seen in NMR and neutron scattering.

Let us briefly mention the theoretical approaches to
spin correlations in the underdoped cuprates which have
phasized the antiferromagnetic order and the concomi
spin-wave excitations as the dominant degrees of freedom
an extensive study of the 2D antiferromagnetic Heisenb
model Chubukov, Sachdev, and Ye1 have identified the spin
correlations in the quantum critical regime at the transit
from Néel order to paramagnetism. In their paper they a
argue for the appearance of quantum critical scaling aw
from zero doping by incorporating the effect of the dop
charge degrees of freedom into a reduction of the spin s
ness~finite in the ordered Ne´el state of the 2D Heisenber
model! Sokol and Pines2 have similarly argued for quantum
critical behavior and its crossover to a quantum-disorde
regime driven by the frustration of antiferromagnetism v
hole motion as the physics behind the strange spin corr
tions in the pseudogap regime. They postulate a suscep
ity which is dominated by the effect of a finite coheren
length in the quantum-disordered regime and the appear
of the correspondingfull energy gap for spin excitations.

As we shall argue below this phenomenology quali
tively agrees with what we obtain within the slave bos
0163-1829/2002/66~14!/144501~20!/$20.00 66 1445
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approach to thet-J-model, where, however, in contrast to th
above, spin-singlet formation@or, more precisely, the forma
tion of thed-wave/staggered-flux phase—a state with a p
ticular quantum order U1Cn01n~Refs. 3,4!# is the driving
force behind all of the strange phenomenology in the und
doped samples.

The slave boson approach is strongly tied to the stro
coupling phenomenology incorporated in the Hubbard ort-J
model and was guided by Anderson’s5 exciting proposal of a
spin liquid as a realization of the strongly correlated M
insulator in the parent compound of the high-Tc supercon-
ductors. More specifically, Anderson proposed that the
prate physics could be understood in terms of doping ho
into a state which consists of preformed spin-singlet dim
on nearest-neighbor bonds whose quantum fluctuations
to uniform strength AF correlations on all nearest-neighb
bonds@termed the resonating valence bond~RVB! state#. The
RVB state has short-range antiferromagnetic spin corr
tions ~no true long-range order! due to the singlet formation
and hence comprises a spin-liquid phase. An important ef
of the preformed spin singlets, present in the RVB picture
the fact that the spin on the doped holes can become
excitation on top of the RVB collective state whereas t
charge remains tied to the empty site. This led to the not
of separate spin and charge carrying excitations calle
spinons and holons, respectively. However, due to the s
cess of the two-dimensional Heisenberg antiferromagne
describing the insulating parent compound of the cupra
this idea of a spin-liquid ground state was partly rejected

Nevertheless, the RVB picture has a lot of appeal. Let
mention briefly the rationale behind the opinion that the sp
singlet formation dominates antiferromagnetic correlations
the underdoped cuprates. The slave boson approach trea
underdoped cuprates as doped Mott insulators—the key
perimental fact of high-Tc superconductors. It also naturall
incorporates the spin-singlet formation and predicted, ah
of experiments, the pseudogap metallic phase6 in the under-
doped cuprates and the superconductingd-wave order~pre-
ferred overs-wave order by strong Coulomb correlation
present in the Mott insulator!.7 The pseudogap metallic phas
is a new state of matter and it is very rare in the history
condensed matter physics that a new state of matter
predictedbeforeits experimental observation.
©2002 The American Physical Society01-1
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However, underdoped cuprates have a very puzzling p
erty which seems hard to explain using the spin-liquid
proach~or other approaches!. As the doping is lowered, both
the pseudogap and AF correlation in the normal state
crease. Naively, one expects the pseudogap and AF cor
tions to work against each other. That is, the larger
pseudogap, the stronger the spin-singlet formation, the lo
the single-particle density of states, and the weaker the
correlations.

In this paper we follow Kim and Lee8 who considered the
spin correlations in the underdoped cuprates from the
spective of incorporating gauge fluctuations on top of a p
ticular spin-liquid state—the staggered flux~sF! phase9

@which in turn is motivated from a mean-field treatment
the t-J model within the SU~2! slave boson approach of We
and Lee10#. As Kim and Lee argued in their paper we w
show explicitly how the interplay of the sF fermionic spe
trum combined with massless U~1! gauge fluctuations—the
effective theory of what we called the algebraic spin liquid11

~ASL!—allows us to explain the above puzzle of strong A
correlations in the presence of a large single-part
pseudogap. Due to the U~1! gauge fluctuations present in th
ASL phase, the AF spin fluctuations in the ASL are as stro
as those of a nested Fermi surface, despite the pseudog

The main results of this paper are summarized in
phase diagram Fig. 1. At or very close to half filling, due
the enhanced AF spin fluctuations, the ASL at intermed
energies and temperatures will reorganize into a broken s
metry ~long-range AF order! ground state. We show that th
can happen without the need for fine-tuning a large coup
constant @this should be contrasted with random-pha
approximation~RPA! like approaches where such a fin
tuning is necessary#. In the AF state, the U~1! gauge field
binds the spinons of the ASL into spin-1 spin-wave exci
tions.

At finite doping, the spin-charge separation physics~as
embodied in the ASL! still dominates at intermediate ene
gies and temperatures. However, in the presence of do
holes, the U~1! gauge fluctuations bind spinons and holo
into electrons at low energies and temperatures. This lead

FIG. 1. Proposed phase diagram showing the ASL domina
the underdoped cuprate physics at intermediate energies and
peratures and renormalizing to an AF long-ranged state at or c
to half filling and crossing over to a spin-charge recombined~SCR!
phase at finite doping.T* denotes the temperature where the cro
over into the sF phase~the ASL! occurs.
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a spin-charge recombination~SCR! picture at low energies
and temperatures. The ASL plus SCR at low energies allo
us to give a coherent picture of the strange phenomeno
of underdoped cuprates and is the main message of this
per.

In the remainder of the paper we will support the abo
phase diagram by performing calculations of the spin co
lations in both the ASL phase and in the spin-charge reco
bined state.

The organization of the paper is as follows. In the ne
two sections~Secs. II and III! we review the ideas underlying
the ASL and discuss the spin correlations in this phase
lining the calculations involved~details can be found in the
Appendixes!. Following this we give a brief discussion o
how the recently introduced concept of quantum order3,4 af-
fects the current results~Sec. IV!. Section V addresses th
problem of what happens to the ASL physics at low energ
where the interactions between spinons and holons bec
strong. This will be followed up by a discussion of possib
implications for the cuprates and a short comparison w
other approaches to the same region of the phase diag
~Sec. VI!. The final section~Sec. VII! will summarize the
main results and discuss open problems for further study

II. SU„2… SLAVE BOSON APPROACH AND ALGEBRAIC
SPIN LIQUID

The starting point of the slave boson approach is a mic
scopic lattice model. Among the popular models, theGt-J
~generalizedt-J) model seems particularly promising as
description for the low doping regime where the competiti
between delocalization energyt and the spin fluctuationsJ
becomes manifest:

H5P(
( i j )

FJS SW i•SW j2
1

4
ninj D2t~ca i

† ca j1H.c.!GP1•••.

~1!

The form of thet-J Hamiltonian can be justified startin
from the Hubbard model in the limit of strong on-site Co
lomb repulsion energy which in the cuprates leads to an
sulating charge transfer gap of 2 eV. As the Coulomb ene
is the largest energy scale in the problem it is natural to tr
the kinetic energy as a perturbation which to lowest orde
t2 leads to thet-J Hamiltonian with the single-site Hilber
space restricted to the three states spin up and down
empty ~indicated by the projection operatorP•••P above!.
For zero doping thet-J Hamiltonian reduces to the Heisen
berg model with antiferromagnetic exchange coupling~vir-
tual hopping on top of strong on-site Coulomb repulsi
naturally leads to antiferromagnetic exchange!.

The question of spin correlations in the cuprates ties i
the question of how to reconcile local moment magneti
with itinerant electron spin density fluctuations which is
long-standing problem in condensed matter physics. Th
seems to be consensus in the community on how bes
describe the two extreme limits of the cuprate pha
diagram—the Mott insulator at zero doping as a Heisenb
antiferromagnet and the heavily doped regime in terms
itinerant electron magnetism. Of course as always the m
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SPIN CORRELATIONS IN THE ALGEBRAIC SPIN . . . PHYSICAL REVIEW B66, 144501 ~2002!
interesting regime is the one lying in between the two lim
which shows the antiferromagnetic-singlet dichotomy d
scribed above. For the lightly doped regime one could ar
that clearly a perturbation about the Ne´el-ordered state with
frustration due to holes, in the manner of Sokol and Pin2

makes the most sense. However, this approach does
specify the nature of the quantum spin liquid in the dis
dered phase. Understanding the properties of the quan
spin liquid is very important since it is the quantum sp
liquid that controls the pseudogap metallic state in the und
doped cuprates~see Fig. 1!.

The ~generalized! t-J-model can be shown to be an exce
lent description of the low-energy physics embodied in
Hubbard model under the condition that the single-site H
bert space be constrained such that double occupation is
bidden. On an operative level this problem can be attac
by introducing slave particles that change the constr
cs

†cs( i )<1 @wherecs( i ) is the physical electron destructio
operator of spins on site i ] into Ss f s

† f s( i )1b†b( i )51
where theb( i ) is a bosonic operator—the holon—that kee
track of the empty sites and carries the charge of the phys
hole, whereas the spin of the hole is carried byf s—the fer-
mionic spinon. This is achieved by writingcs5 f sb† and
should be read as an equality in the constrained Hilb
space. With the introduction of the slave bosons we ha
however, introduced a redundancy in the description of
physical problem which is a U~1! phase rotation off and b
that leaves the physical electron operator invariant. As
system evolves under thet-J Hamiltonian~1! this phase will
strongly fluctuate as a function of space and time. It is t
phase degree of freedom that corresponds to U~1! gauge
fluctuations and makes the description of the constrai
problem of spin 1 hopping in terms of fermionic and
bosonic operators possible. The above program can be s
marized under the name of U~1! slave boson theory and wa
implemented widely in the early days of high-Tc research.12

Early on it was also realized13 that the Heisenberg model i
the fermionic representation has an extra SU~2! invariance
organizing the spinons into doublets:

c↑ i5S f ↑ i

f ↓ i
†
D , c↓ i5S f ↓ i

2 f ↑ i
†
D , ~2!

In the usual U~1! slave boson approach this invariance w
lost on introducing holes. More recently Wen and Lee int
duced a slave boson formulation10,14 which maintains this
SU~2! structure away from half filling. This was achieved v
the introduction of slave boson doublets and representing
physical electron operator as

c↑ i5
1

A2
hi

†c↑ i5
1

A2
~b1i

† f ↑ i1b2i
† f ↓ i

† !,

~3!

c↓ i5
1

A2
hi

†c↓ i5
1

A2
~b1i

† f ↓ i2b2i
† f ↑ i

† !,

with
14450
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the doublet of bosonic fields keeping track of the dop
holes.

The slave boson approach to thet-J Hamiltonian then is
to use this decoupling and perform a mean-fie
analysis.7,12,10This has led to a mean-field phase diagram
a function of hole dopingx and temperatureT which is in
qualitative agreement with the phase diagram of the cupra
Within the mean-field description, however, the gauge fr
dom is treated only on the average—i.e., replaced by a s
configuration of phases which in turn determine the ba
structure of the spinons and holons. However, as is usu
the case with the identification of phases via a mean fi
decoupling we need to consider fluctuations about the me
fields to determine their stability. In particular the gau
field—unconstrained by any dynamics—will affect th
physical properties in each phase drastically.

In the present paper we are concerned with the pseudo
regime of the cuprates which—within the U~1!
formulation—was identified as thed-wave paired state for
the spinons. Within the SU~2! approach this phase can als
be described as the so-called sF phase without explicit
mion pairing. As it turns out~see Ref. 14 for more details!
the SU~2! formulation allows for a more straightforwar
identification of low-lying ~massless! gauge modes and i
was shown that the sF phase breaks the SU~2! gauge struc-
ture down to U~1!. This massless U~1! mode was missed in
the early discussions@within the U~1! slave boson approach#
on the pseudogap phase and plays a crucial role in
pseudogap phase of the underdoped cuprates. It is res
sible for the emergence of the ASL. In the next section
shall discuss the physical spin correlations in the ASL.

Before closing this section, we would like to remark th
the ASL ~the sF phase! is only one of many possible sym
metric spin liquids. All symmetric spin liquids have the sam
symmetry, and hence we cannot distinguish different sy
metric spin liquids by their symmetries. The concept
quantum order was introduced3,4 to distinguish the different
internal structures present in the symmetric spin liquids.
the symmetric spin liquids constructed within the SU~2!
slave boson approach, one can use the projective symm
group ~PSG! to characterize their different quantum orde
One finds that the sF phase is described by the partic
PSG with the name U1Cn01n and it is one of an infin
number of possible symmetric U~1! spin liquids. Thus the sF
phase can be more accurately called U1Cn01n phase. Q
tum order and its PSG characterization are very import
concepts for our discussion~see Sec. IV!.

III. SPIN SUSCEPTIBILITY

Our starting point is the sF~or U1Cn01n! state in the
SU~2! mean-field phase diagram where the effective degr
of freedom are spinons and holons coupled to a mass
U~1! gauge field. In order to analyze this problem we ha
mapped the lattice effective theory for the sF state~at zero
doping! onto a continuum theory of massless Dirac spin
1-3
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WALTER RANTNER AND XIAO-GANG WEN PHYSICAL REVIEW B 66, 144501 ~2002!
coupled to a gauge field,9 whose Euclidean action reads

S5E d3x(
m

(
s51

N

C̄svs,m~]m2 iam!gmCs , ~4!

wherevs,051 andN52, but in the following we will treat
N as an arbitrary integer. In generalvs,1Þvs,2 . However,
for simplicity we will assumevs,i51 here. The Fermi field
Cs is a 431 spinor which describes lattice spinons wi
momenta near (6p/2,6p/2). The 434 gm matrices form a
representation of the Dirac algebra$gm ,gn%52dmn (m,n
50,1,2) and are taken to be

g05S s3 0

0 2s3
D , g15S s2 0

0 2s2
D , ~5!

g25S s1 0

0 2s1
D ~6!

with sm the Pauli matrices. Finally note thatC̄s[Cs
†g0.

The dynamics for the U~1! gauge field arises solely due t
the screening by bosons and fermions, both of which ca
gauge charge. In the low doping limit, however, we will on
include the screening by the fermion fields,8 which yields

Z5E DamexpS 2
1

2E d3q

~2p!3
am~qW !Pmnan~2qW !D ,

Pmn5
N

8
AqW 2S dmn2

qmqn

qW 2 D . ~7!

By simple power counting we can see that the above po
ization makes the gauge field a marginal perturbation at
free spinon fixed point. Importantly, however, we shou
note that since the conserved current~that couples toam)
cannot have any anomalous dimension, this interaction i
exact marginal perturbation protected by current conser
tion.

A. Uniform correlations

Let us now discuss how the gauge fluctuations affect s
correlations near momentum transferq5(0,0). The expres-
sion for the uniform spin correlation reads~see Appendix A!

^Su
1~x!Su

2~0!&5E dqW

~2p!3
eiqW •xW^Su

1~qW !Su
2~2qW !&,

^Su
1~qW !Su

2~2qW !&52
1

4E dpW

~2p!3
Tr@g0G~pW !g0G~pW 2qW !#,

~8!

where ^•••& denotes the expectation value with respect
theory~4!. From this expression we see that the uniform s
correlation is proportional toP00, the polarization operato
of the spinons. Hence it cannot be strongly affected by
massless gauge field as we argued above via current co
vation. This was shown in an explicit calculation by Che
14450
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Fisher, and Wu in the context of the fractional quantum H
~FQH! effect.15 Contrasting to this as was suggested by K
and Lee8 we would expect the gauge fluctuations to strong
affect the staggered spin correlations which are not prote
by current conservation and restore antiferromagn
correlations16 which have been largely lost in the mean-fie
singlet state as we shall see next.

B. Staggered correlations

In the following we will present fluctuation corrections t
the antiferromagnetic spin-spin correlations at order 1N.
The expression for the staggered correlation is obtained
the form ~see Appendix A!

^Ss
1~qW !Ss

2~2qW !&52
1

4E dpW

~2p!3
Tr@1G~pW !1G~pW 2qW !#.

~9!

At the mean-field level this is simply

^Ss
1~qW !Ss

2~2qW !&052
1

4E dpW

~2p!3
Tr@1G0~pW !1G0~pW 2qW !#,

whereG0(pW )52 i /pmgm and the vertices are the 434 unit
matrices denoted1. Decoupling the denominator in the usu
way via Feynman parameters we obtain

^Ss
1~qW !Ss

2~qW !&052
Aq0

21q2

16
. ~10!

Note thatq is measured with respect to (p,p) in units of
the lattice spacing. From expression~10!, we see that the
antiferromagnetic correlations have been largely lost. T
reason for this can be traced back to the spin-singlet for
tion in the mean-field sF~U1Cn01n! phase. This motivates
the inclusion of gauge fluctuations. At order 1/N we have the
three nonvanishing diagrams depicted in Fig. 2. In order
calculate the contribution of these diagrams we note that
like the single-spinon spectral function the density-dens
correlation is gauge invariant and hence we can choos
work in the Landau gauge where the gauge propagator re

Dmn~qW !5
8

NAqW 2
S dmn2

qmqn

qW 2 D ~11!

and we have the following expressions for the diagra
shown:

FIG. 2. Nonzero leading 1/N corrections to the staggered sp
correlation function. The3 denotes the vertex which is the 434
unit matrix in the case of interest.
1-4
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@2~A!#1@2~B!#52
1

2E ddk

~2p!dE ddq

~2p!d

3TrF 1 1

i ~p1k!eg
e
1

1

ikdgd
igmDmn~qW !

3
1

i ~k1q!bgb
ign

1

ikagaG , ~12!

@2~C!#52
1

4E ddk

~2p!dE ddq

~2p!d

3TrF 1 1

i ~p1k!eg
e
igm

1

i ~p1k1q!dgd

31
1

i ~k1q!bgb
ign

1

ikaga
Dmn~qW !G . ~13!

After performing the trace and integrating overk in d
53, where the integrals are convergent~see Appendix B!,
we arrive at

@2~A!#1@2~B!#

5
1

NE ddq

~2p!d F 2pW •qW 1pW 2

uqW u3upW 1qW u
2

pW •qW

upW uqW 2upW 1qW u
2

upW u

uqW u3
G ,

~14!

@2~C!#5
1

NE ddq

~2p!d F 2

qW 2
1

upW u

uqW u3
2

pW 212pW •qW

uqW u3upW 1qW u

2
4upW u

qW 2upW 1qW u
2

qW 2pW 212pW 4

pW •qW qW 2upW uupW 1qW u
G . ~15!

FIG. 3. Imaginary part of the spin susceptibility atQAF . Note
the divergence at smallv.
14450
In order to proceed we need to regularize the above integ
Because of the dot product appearing in the denominato
the last term in Eq.~15!, it is hard to use dimensional regu
larization. Hence we have setd53 and introduced an uppe
momentum cutoffL. Thus performing the final integral
over qW we can extract the log-divergent term in the form

@2~A!#1@2~B!#1@2~C!#52
8

12p2N
upW u lnS L2

pW 2 D .

After combining this with the mean-field result~10! and
continuing to real frequencies~see Appendix B! we obtain

Imx~v,q![x9~v,q!

[Im^Ss
1~v,q!Ss

2~2v,2q!&

5Cs

1

2
sin~2np!G~2n22!

3Q~v22q2!~v22q2!1/22n,

n5
32

3p2N
, ~16!

whereCs is a constant depending on the physics at the lat
scale. In the limitN→` this reduces to the mean-field resu
~10!.

From Eqs.~16! it is clear that the gauge fluctuations ha
reduced the mean-field exponent. If we boldly setN52,
which is the physically relevant case, we findn.1/2, signal-
ing an antiferromagnetic instability. This value ofn is con-
sistent with an earlier numerical result obtained in Ref.
Ivanov et al. employing a Gutzwiller projection found tha
for the case of small hole doping of order 5% the stagge
spin correlation decays in real space asr 22.4 which corre-
sponds to a change from the mean-field exponent}r 24 by
11.6. Our calculation in turn yields an increase in the r
space exponent from24 to 22.92 a change by11.08. Fur-
thermore, our result agrees with the first-order term in
1/N expansion of the nonperturbative result obtained in
context of spontaneous chiral symmetry breaking in Ref.
Expanding their result to 1/N2 allows us to at least estimat
the sign and order of magnitude that higher-order correcti
will play and shows in effect that 1/N2 corrections have the
appropriate sign to increase the real space exponent
further, bringing the analytic result closer in line with th
exact numerical data. In Fig. 3 we plot the imaginary part
the spin susceptibility atq50[QAF5(p,p). Let us also
remark that although we do not know the exact value ofn,
many results discussed in this paper remain valid since t
are not sensitive to the value ofn. Those results mainly
depend on two things:~A! n is close to or bigger than 1/2,
large change from the mean-field exponent, and~B! n is
irrational. Condition~B! ensures a branch cut in the spin-sp
correlation function, which is needed to explain experimen
data.

This result is quite natural in the light of what has be
said so far. The gauge fluctuations arise from the constr
1-5
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WALTER RANTNER AND XIAO-GANG WEN PHYSICAL REVIEW B 66, 144501 ~2002!
of no double occupancy. The dynamics for the gau
field—in the very low doping limit assumed here—is sole
due to virtual spinons. It is the low energy spinon-antispin
pairs having a nesting condition for scattering between
nodes~separated byQAF) in the sF~U1Cn01n! phase mean-
field spectrum which are responsible for the antiferrom
netic enhancement in the ASL phase. Let us emphasize a
that this enhancement of spin correlations atQAF5(p,p)
over the uniform component is protected, just like the g
less U~1! gauge fluctuations and the gapless spinons, by
U1Cn01n quantum order

We have thus established algebraic behavior for the s
gered spin correlations. It is such an algebraic correla
that leads to the name ASL that we assigned to the phas

C. Correlations near „p,0…

For this momentum transfer the spinons get scattered
tween the two different types of nodes in the sF spectr
which yields the following expression for the correspondi
correlations

^S(p,0)
1 ~qW !S(p,0)

2 ~2qW !&

52
1

4E dpW

~2p!3
TrF S 0 s1

s1 0 D
3G~pW !S 0 s1

s1 0 DG~pW 2qW !G . ~17!

Having worked hard to obtain the anomalous dimens
of the staggered spin operator by brute force we will h
resort to standard field theory renormalization appara
which allows for a more economical derivation of th
anomalous dimensions of composite operators. In orde
obtain the anomalous dimension of the spin operator wh
is a fermion bilinear we need to obtain its wave functi
renormalization in the form

ZS5ZCZG , ~18!

whereG is the relevant vertex and as we have seen ab
depends on the momentum transfer, that is,

G5g0 ,1,S 0 s1

s1 0 D
near (0,0),(p,p), and (p,0), respectively.

The spinon wave function renormalization is obtain
from the self-energy in the usual way and evaluates in
Landau gauge to

ZC511
4

N

1

3p2

GS 32d

2 D
~M2!(32d)/2

, ~19!

whereM is the renormalization scale and we have used
mensional regularization.

To obtain the vertex renormalization we need to evalu
the divergent part of the one-loop diagram depicted in Fig
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which reads

E d3l

~2p!3

igm~2 ige!~k1 l !eG~2 igd!~ l 1p!dignDmn~ l !

~k1 l !2~p1 l !2
,

whereG is the relevant vertex andDmn is given by Eq.~11!.
Since the vertex correction diverges only logarithmically, w
can simply evaluate the divergent part by setting all the
coming momenta equal to 0. Hence the above simplifies

8

NE ddl

~2p!d Fgml eg
eG (p,0)l dgdgndmn

l 5

2
gml eg

eG (p,0)l dgdgnl ml n

l 7 G ,

where we now concentrate on the (p,0) vertex.
This can be easily evaluated with the help of

geG (p,0)5~122de2!G (p,0)geE ddl

~2p!d

1

l 3
udiv5

1

4p2

2

32d

and results in

ZG(p,0)
512

4

N

1

3p2

GS 32d

2 D
~M2!(32d)/2

, ~20!

which together with Eqs.~18! and ~19! gives

ZS(p,0)
51. ~21!

Hence the spin operator at (p,0) does not pick up any
anomalous dimension from the gauge field interactions. I
not hard to check within the above-outlined calculation th
for the other two vertices corresponding to the uniform a
staggered spin operators, we recover the results discuss
the previous sections which gives a nice check on the b
force calculation.

FIG. 4. Fermion-fermion vertex.
1-6
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IV. PERTURBATIVE STABILITY
OF THE sF „U1Cn01n… PHASE

An important technical detail was hidden in the abo
calculation. In this section, we will expose this issue.

The sF phase contains two families of four-compon
massless Dirac fermions, which couple to massless U~1!
gauge fluctuations. At the perturbative level, the interact
can generate many possible counterterms~in this case the
self-energy terms! which can ~A! generate a mass for th
Dirac fermions,~B! generate a finite chemical potential fo
the Dirac fermions and change the Fermi points into Fe
pockets, and~C! shift the crystal momenta of the Dirac fe
mions from (6p/2,6p/2) to some other values. In our pe
turbative calculation in the last section, we have assum
that none of the above counterterms are generated by
interaction.

In a generic interacting theory, we used to believe that
the counterterms that are consistent with symmetries wil
generated. All of the above three types of counterterms
consistent with the underlying lattice symmetries and
hence allowed by the symmetries. In fact they do appea
our calculation of the continuum theory as cutoff-depend
terms. It appears that the results in the last section are in
rect since the important counterterms are ignored. Th
counter terms, if present, will drastically alter our previo
results.

As was stressed in this paper and in Refs. 3 and 4, th
phase, as a quantum spin liquid, is not only characterized
its symmetry but also by its quantum order. The quant
order in the sF phase is characterized by a particular P
U1Cn01n. The mean-field ansatz of the sF phase is invar
under the transformations of the U1Cn01n PSG. As poin
out in Refs. 3 and 4, the perturbative fluctuations around
mean-field ground state may deform the mean-field ans
Those deformations correspond to the counterterms. H
ever, in our case, it is incorrect to use symmetries to de
mine which counterterms are allowed. One should use
PSG to determine the allowed counterterms. This is beca
perturbative fluctuations can only deform the ansatz in suc
way that the deformed ansatz remains invariant under
same PSG. It was shown4 that the above three counterterm
are forbidden by the U1Cn01n PSG. This is why we can d
them in our calculation.

When we calculate the effects of interactions in a co
tinuum theory, we introduce a high-energy short-distan
cutoff. This cutoff destroys the structure of the underlyi
quantum order. Thus it is not surprising that the counterte
forbidden by the quantum order show up in continuu
theory as cutoff-dependent terms. To restore the quan
order that existed in the underlying lattice theory, we c
simply drop all the forbidden counterterms in our calculati
within the continuum theory. We see that the PSG and
concept of quantum order play an important role even
calculations within continuum theories. It is the understa
ing of the PSG and quantum order that makes sensible
culations in the continuum limit possible. In fact, the theo
of quantum order is partly motivated by the above issue
the counterterms.
14450
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In summary, the perturbative fluctuations around t
mean-field sF~U1Cn01n! state cannot change the quantu
order and cannot generate energy gaps for the U~1! gauge
field and the spinons.4 Thus the gapless U~1! gauge fluctua-
tions and the gapless spinons are protected by the U1Cn
quantum order present in the sF~U1Cn01n! phase. They re-
main gapless even when the interaction is finite all the w
down to zero energy. The interacting gapless excitations l
to many unusual properties of underdoped cuprates, suc
the non-Fermi liquid behavior of the normal metallic sta
the broad electron spectral function11, and the diverging AF
spin fluctuations in the presence of the pseudogap.
U1Cn01n quantum order in the sF phase not only prote
the gapless excitations; it also protects the momentum of
gapless excitations. For example, the spin-1 gapless ex
tions can only appear neark5(0,0), (p,p), (0,p), and
(p,0).

We would like to point out that although the ASL can b
a stable quantum phase in the largeN limit,18,4 for the real
N52 case, nonperturbative instanton effects cause an in
bility. Thus at low energies the ASL will change into som
other state, such as thed-wave superconducting state, the A
state, stripe states, or even aZ2 spin-liquid state. Since the
U1Cn01n quantum order in the sF phase requires the sp
gapless excitations to appear at k
5(0,0),(p,p),(p,0),(0,p), the shift of the low-frequency
neutron scattering peak observed in experiments19–25 indi-
cates a transition from the ASL to some other state at
temperatures. Studying how the momentum of spin-1 gap
excitations shifts away from (p,p), (p,0), and (0,p) will
allow us to experimentally identify the low-temperatu
phase. In the last section, we have studied the spin fluc
tions in the ASL. In the following section, we will study th
spin fluctuations in the low-temperature phase.

V. THE FATE OF THE ASL

In Sec. III, we showed how the ASL physics reconcil
the pseudogap formation~i.e., the condensation into spin sin
glets within the RVB picture! with enhanced dynamical an
tiferromagnetic fluctuations. At lower energies the ASL
unstable—and an important question is how the ASL evol
in the underdoped regime into the superconducting stat
we reduce temperature.

In the following we are going to address this question
first analyzing the effect of the opening of a gap in the gau
fluctuations on the staggered spin correlations. Intuitively
should expect that for energies below the mass gap the
correlations should be given by mean-field correlations
which is indeed the case. Having established the profo
effects of this gap formation we take a more careful look
the change of the mean-field correlations on going from
sF ~U1Cn01n! phase into the fermion pairing state whic
will allow us to address the question of incommensurate s
fluctuations seen at low frequencies and temperatures in
cuprates. Let us now proceed to consider the effect of giv
a mass to the gauge fluctuations. In the context of the s
correlations considered here, we would thus expect the
struction of the antiferromagnetic enhancement below
1-7
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WALTER RANTNER AND XIAO-GANG WEN PHYSICAL REVIEW B 66, 144501 ~2002!
mass gap and a resurfacing of the singlet character of
correlations in the mean-field sF~U1Cn01n! phase.

To implement the mass gap formation we take the follo
ing phenomenological form for the gauge propagator:11

Dmn~qW !5
8

NAqW 21m2
S dmn2

qmqn

qW 2 D .

The calculation then goes through as above~with one
subtlety in the analytic continuation discussed in the App
dix B! resulting in the following expression for the stagger
correlation

Im^Ss
1~v,q!Ss

2~v,q!&

5Q~v22q2!Q@m21q22v2!]Cm

Av22q2

m2n

1Q@v22q22m2#

3Cm

Av22q2

~Av22q21Av22q22m2!2n
, ~22!

where

n5
32

3p2N
.

In Fig. 5 we plot a momentum scan of the resulting sp
tra with m520 meV. Figure 6 depicts the spectrum at t
antiferromagnetic ordering wavevectorQAF . As expected the
opening of the mass gap in the gauge fluctuations has
stored the mean-field result and consequently suppresse
antiferromagnetic enhancement seen in Fig. 3.

From this analysis we see that the spin correlations at
frequencies are described by the underlying mean field
the above calculation we have assumed that the only effe
the destruction of the massless U~1! gauge structure in the s
phase is the formation of the U~1! mass gap which leaves th

FIG. 5. Scan of the imaginary part of the spin susceptibility
arbitrary units forq52p/10–p/10 andv50 –60 meV. We have
chosenm520 meV in this plot.
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underlying mean-field correlations in tact at low energies.
a more profound level, however, the massless nature of
U~1! gauge structure in the sF state is a manifestation of
U1Cn01n quantum order4 present in this state~see the Intro-
duction and Sec. IV!. Thus it is not possible to simply brea
the gauge structure without affecting the underlying me
field ansatz as we have assumed above. If we reverse
above logic, this implies that the low-frequency spin cor
lations which reflect the underlying mean-field ansatz can
used as an experimental probe into the corresponding q
tum order and gauge structure accompanying the mean-
correlations.

The ASL described by the sF~U1Cn01n! state may
change into several different states at low temperatures.
low energy spin correlation can have different behaviors
those low-temperature states. In the following, we will d
cuss one particular low-temperature state to gain some i
ition on the behavior of the low-energy spin correlation
the low temperature phases.

Within the SU~2! slave boson theory, the mean-field pha
which is energetically favored over the sF~U1C01n! phase at
low temperatures is the so-calledd-wave pairing state.14 In
order to keep this section reasonably self-contained
would like to outline some of the steps leading to the me
field correlations discussed in the following. As was me
tioned above within the SU~2! slave boson formulation the
physical electron operator is represented as

c↑ i5
1

A2
hi

†c↑ i5
1

A2
~b1i

† f ↑ i1b2i
† f ↓ i

† !,

~23!

c↓ i5
1

A2
hi

†c↓ i5
1

A2
~b1i

† f ↓ i2b2i
† f ↑ i

† !,

where the following SU~2! doublets were introduced:

c↑ i5S f ↑ i

f ↓ i
†
D , c↓ i5S f ↓ i

2 f ↑ i
†
D , hi5S b1i

b2i

D .

FIG. 6. Imaginary part of the spin susceptibility atQAF where
m520 meV notice the recovery of the linear mean-field result
low the mass gap.
1-8
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SPIN CORRELATIONS IN THE ALGEBRAIC SPIN . . . PHYSICAL REVIEW B66, 144501 ~2002!
The c↑ i and c↓ i are the two fermion fields representin
the destruction of a spin up and spin down on sitei, respec-
tively, andhi is the doublet of bosonic fields keeping track
the doped holes. Putting this representation into thet-J
Hamiltonian

H5P (
( i j )

FJS SW i•SW j2
1

4
ninj D2t~cs i

† cs j1H.c.!GP

yields on performing a Hubbard-Stratonovich transformat
to the appropriate bosonic bond variables the following p
tition function:14

Z5E DhDh†Dc†DcDaW 0DU expS 2E
0

b

L D , ~24!

L5
J̃

2 (̂
i j &

Tr@Ui j
† Ui j #1

1

2 (
i , j ,s

cs i
† ~]td i j 1 J̃Ui j !cs j

1(
i l

a0i
l S 1

2
cs i

† t lcs i1hi
†t lhi D1(

i j
hi

†@~]t2m!d i j

1 t̃ Ui j #hj . ~25!

TheaW 0 fluctuations incorporate the projection to the spa
of SU~2! singlets within the above representation for t
electron operators~23!. Furthermore, note that26 J̃53J/8, t̃
5t/2 and the matrixUi j in the form

Ui j 5S 2x i j* D i j

D i j* x i j
D

cy
d

(
n-

in
l,

14450
n
r-

e

contains the Hubbard-Stratonovich fields which classify
part of the phase diagram we are looking at. The mean-fi
phase diagram is found by minimizing the free energy fo
given number of particles with respect to the bond variab
Ui j .

The d-wave pairing state can be represented as

Ui ,i 1 x̂52t3x1t1D,

Ui ,i 1 ŷ52t3x2t1D, ~26!

a0
3Þ0.

The key difference to the sF~U1Cn01n! phase is the ap-
pearance of a finitea0

3 which acts as a chemical potential fo
the spinons. Without this term the above ansatz is SU~2!-
gauge equivalent to the sF~U1Cn01n! ansatz.14 It is shown
in Ref. 4 that the appearance of such a chemical poten
term is not consistent with the quantum order of the
~U1Cn01n! phase and hence signals the presence of a di
ent quantum order accompanying thed-wave pairing state. It
is precisely a nonzeroa0

3 which gives rise to an anomalou
fermion-fermion pairing which when combined with holo
condensation leads to thed-wave superconducting state. A
we shall see in the following,a0

3 is also responsible for the
incommensurate spin response at the lowest frequen
shifting the peak away fromQAF5(p,p).

Taking the above ansatz equation~26! we can calculate
the spin-spin correlations at mean-field level~see Appendix
E! to obtain for the imaginary part of the spin correlatio
nearQAF5(p,p):
Im^S1~v,QAF1k!S2~2v,2QAF2k!&

5
1

64v fv2
$u@v22~v fk112a0

3!22v2
2k2

2#Av22~v fk112a0
3!22v2

2k2
21u@v22~v fk122a0

3!22v2
2k2

2#

3Av22~v fk122a0
3!22v2

2k2
21u@v22~v fk212a0

3!22v2
2k1

2#Av22~v fk212a0
3!22v2

2k1
2

1u@v22~v fk222a0
3!22v2

2k1
2#Av22~v fk222a0

3!22v2
2k1

2%,

k1[
kx1ky

A2
k2[

2kx1ky

A2
v f[2A2aJx v2[2A2aJD. ~27!
by
ts.
in

e-
me
In Fig. 7 we plot the resulting spectrum for a frequen
v,vc[(4/A3)(v2 /v f)a0

3 where the intensity is peake
around four points shifted diagonally away fromQAF . In
contrast to this in Fig. 8 we depict a scan forv.vc the
spectrum is peaked at four points shifted horizontallyp
6d,p),(p,p6d) where the ridges—growing out perpe
dicular to the diagonals—overlap.d is related toa0

3 via da
5a0

3/J with a the lattice spacing. It should be noted that
thev→0 the peaks are always located along the diagona
 as

expected, for in this regime the response is dominated
creation of particle-hole pairs connecting the Fermi poin
Interestingly for intermediate energies the peak intensity
the spectrum is shiftedhorizontally away from QAF even
without one-dimensional phenomenology.

VI. APPLICATION TO HIGH- Tc

Before launching into a discussion of how the abov
mentioned physics embodied in the ASL might shed so
1-9
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WALTER RANTNER AND XIAO-GANG WEN PHYSICAL REVIEW B 66, 144501 ~2002!
light on the cuprate spin physics we need to briefly digr
and establish some nomenclature. As we shall see in
following each experimental community has their own set
pseudo gaps and spin pseudogaps and it is easy to get lo
the confusing terminology. Here we adopt the following co
vention.

Pseudogapphase denotes the part in the cuprate ph
diagram where angle-resolved photoemission experim
observe a large gap in the single-particle spectrum at (p,0).

The termspin pseudogapwill be used in conjunction with
the spectrum at the antiferromagnetic wave vectorQAF
5(p,p) to denote the frequency range of reduced spec
weight below the peak aboveTc ~which on cooling belowTc
shifts to higher frequencies and becomes the ‘‘resonance
see discussion below!.

FIG. 7. Wave vector scan ofx9(kx ,ky ,v50.1J). Notice the
incommensurate pattern at low energy with amplitude peaks sh
along the diagonals~Ref. 27!. (0,0) corresponds toQAF andkx ,ky

are measured in units of 1/a with a the lattice spacing.

FIG. 8. Wave vector scan ofx9(kx ,ky ,v50.1J), kx ,ky are
measured in units of 1/a. With a0

3 chosen to giveda 5 0.1 r.l.u.
(2p51 r.l.u.! ~Refs. 28 and 29! the value ofvc is set by vc

5(4/A3)(v2 /v f)daJ. To compare with experiments we have ch
sen the valuesv2 /v f51/7 ~Ref. 30!, which givesvc50.2J. Notice
how the overlapping ridges lead to the horizontal incommens
tion.
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Over the years NMR and inelastic neutron scatter
~INS! have painted a very interesting picture for the sp
correlations in the cuprates starting with the discovery of
by now famous 41 meV ‘‘resonance’’ peak by Ross
Mignod et al.31 in the superconducting state of nea
optimally doped YBa2Cu3O7. In addition to this resonance
mode which appears exclusively in the superconducting s
there is now evidence for a precursory piling up of spec
weight in the energy region of the ‘‘resonance’’ even in t
normal state of underdoped cuprates. The energy at w
this enhancement occurs in the normal state is someti
referred to as the ‘‘spin-pseudogap’’ energy by IN
workers32 ~hence our convention!. From the perspective o
spin fluctuations INS is clearly the most powerful prob
giving both dynamical and wave-vector-dependent inform
tion about the spectrum.

NMR, on the other hand, probes particular regions
wave vector space with Knight shift probing the unifor
susceptibility—}x(q50,v;0)—and spin-lattice relaxation
rate probing;Imx(qCu ,O ,v)/vuv→0 whereqCu

5QAF and

qO50 are the characteristic wave vectors determining
spin-lattice relaxation at the planarCu and O sites, respec-
tively. In addition to the above-mentioned ‘‘spin pseudogap
NMR has identified two characteristic temperatures. One
the reduction of the Knight shift below a temperature whi
we will denote byTN which indicates the loss of spectrum
for x(q50,v;0) below this characteristic temperature. Fu
thermore, there is a secondlower scale which shows up in
the spin-lattice relaxation rate forCu as a peak in (1/T1T)
which we shall callTT1

. Notice thatTT1
,TN but both of

these temperatures are above the superconducting trans
temperatureTc in underdoped samples. From the perspect
of mean-field theory it is impossible to explain the
observations.33 Within the mean-field picture the reduction o
the Knight shift belowTN can be related to the reduction o
spin fluctuations on condensing into the spin-singlet sec
identified as the sF~U1Cn01n! phase above. However, ther
is then no way to explain the difference in the spin-latti
relaxation rates observed for planarCu and O. Whereas
(1/T1T)Cu

increases with decreasing temperature betw

TN.T.TT1
, (1/T1T)O reduces monotonically belowTN .

Let us now discuss these interesting phenomena from
point of view of the ASL physics described in the previo
part. As has been suggested by Kim and Lee8 the enhance-
ment ofCu over O relaxations is expected to depend on t
inclusion of the gauge fluctuations. The rational for this su
gestion arises from the fact thatCu-NMR probesq;QAF
fluctuations which are strongly affected by the gauge fluct
tions whereasO-NMR derives its main contributions from
q;0 which is protected from gauge fluctuations by curre
conservation. We have shown above that this enhancem
indeed takes place with ImxQAF ,v→0 ~see Fig. 3! being
strongly increased over the mean-field behavior which de
mines the spin fluctuations atq50. Given the differentT
dependence for the spin-lattice relaxation rates for temp
tures TN.T.TT1

it is thus natural to identify this regime
with the ASL physics.

d

a-
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FIG. 9. Imaginary part of the spin susceptibi
ity at QAF taken from Sternliebet al. Note the
temperature dependence of the Imx for a fixed
v converges to a universal function ofT/v at
largeT.
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Sternliebet al.34 have performed temperature-depend
neutron scattering experiments on YBa2Cu3O6.6 (Tc
553 K) and found a universal dependence of

Imx~v!5E Imx~q,v!dq}Imx~QAF ,v! ~28!

on the ratiov/T above a temperatureT;100 K. Their data
~see Fig. 9! suggest that the temperature at which this u
versal scaling appears increases with decreasing energ
particular for v55 meV the onset temperature isT
;100 K. Below this characteristic temperature~which again
is well aboveTc) their data show a decrease in spectru
which they associate with the opening of a spin pseudo
below vg;10 meV. They also point out that their data a
the fact that the onset temperature of scaling increases
decreasing probe frequency are consistent with the ano
lous behavior of (1/T1T)Cu

which probesv;0 and in-

creases down toT5TT1
;150 K.

As we argued above it is exactly the regime forv.m at
T;0 or T.Tm at v;0 that we associate with the AS
physics. Under the assumption of perfect scaling we can
account for the difference in (1/T1T) betweenCu and O
quite naturally. From

1

T1T
}(

q

Imx~q,v!

v U
v→0

, ~29!

where, forCu , (q;QAF due to the form factor whereasO
probes the uniform spin fluctuations. In the ASL we can
Cu approximate(qImx(q,v)/vuv→0;Imx(QAF ,v)/vuv→0
which via scaling results in

1

T1T
~Cu!}

1

T2n
, 2n5

32

3p2
, ~30!

whereas (1/T1T)O falls monotonically asT is reduced fol-
lowing the uniform susceptibility~see Fig. 10!. This is con-
14450
t

-
In

p

ith
a-

us

r

sistent with the temperature dependence seen by Ster
et al., Fig. 9, at largeT/v.

The ASL gets destroyed below the mass gap energy s
which we associate with a temperatureTm . Below this tem-
perature scale both theCu andO spin-lattice relaxation rates
fall monotonically following the sF-singlet correlations asT
is reduced. This is seen in experiments~see Fig. 10!.

Thus we associate the temperatureTT1
;150 K where

(1/T1T)Cu
shows the peak withTm the temperature below

which the massless U~1! gauge structure~and thus the under
lying quantum order! becomes unstable and undergoes
‘‘transition’’ ~see the discussion at the end of this section!

To summarize the above comparison between the A
and NMR experiments, we present the phase diagram,
11. Below the pseudogap scaleTpg , which we associate with
TN , the oxygen 1/T1T starts to decrease due to the openi
of the pseudogap associated with the spin-singlet format

FIG. 10. Temperature dependence of 1/T1T(Cu) and 1/T1T(O)
in YBa2Cu3O6.63. The dot-dashed line shows the temperature
pendence of the static susceptibility. The data are taken from
35, which quotes Takigawa’s results.
1-11
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WALTER RANTNER AND XIAO-GANG WEN PHYSICAL REVIEW B 66, 144501 ~2002!
However, the copper 1/T1T keeps increasing as temperatu
decreases, despite the small single-particle density of s
in the pseudogap regime. This strange behavior can be
plained very well by the ASL due to the diverging AF sp
fluctuations at low energies even in the presence of
pseudogap. Below the temperatureTm , the U~1! gauge field
starts to gain a gap and the enhancement in the AF
fluctuations ceases to exist. This causes the copper 1/T1T to
decrease with decreasing temperature following the expe
mean-field behavior. Thus the ASL described by the sF s
~or the U1Cn01n state! appears betweenTm ~associated with
the experimental temperature scaleTT1

) andTpg ~associated

with the experimental scaleTN). Below Tm , the ASL will
change into another state whose nature will be discus
later.

Let us now discuss the INS results which in their ow
right paint a very interesting picture of the spin fluctuatio
in the cuprates. First we consider the spectra at the ant
romagnetic ordering wave vector as a function of tempe
ture and energy. Already well above the superconduc
transition in the normal state, INS data show a marked
crease in spectral weight at a finite characteristic freque
Espg and a reduced spectral weight forv,Espg ~the spin
pseudogap; see Fig. 12 bottom curve, and compare Fig!.

FIG. 11. Phase diagram implied by NMR experiments.

FIG. 12. Energy dependence of peak intensity atQAF as a func-
tion of temperature taken from Fonget al. ~Ref. 22!. Note the shift
in the peak position on decreasing the temperature belowTc

567 K ~the dashed lines were added by the current authors
guide to the eye—see main text!.
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On cooling belowTc this gap increases in size and the co
responding peak shifts to higher energies as depicted in
12 where we have added the two dashed lines to the
taken by Fonget al.22 to guide the reader’s eye. From th
perspective of the ASL liquid the ‘‘normal state’’ aboveTc
corresponds to the phase where the gauge field is in the m
sive phase due to topological fluctuations. From the data
Dai et al.36 see Fig. 13 we estimate the mass scale~i.e., the
energy gap scale! due to instantons to be of the order
10–15 meV which ties in nicely with the spin-pseudog
scale;10 meV estimated by Sternliebet al.

The shift of this peak to higher energies on cooling bel
Tc can be qualitatively understood as the contribution to
mass scale by condensed bosons via the Anderson-H
mechanism. This also explains the linear relationship
tweenEresonance~whereEresonancedenotes the energy of th
peak intensity in the superconducting state! and Tc ~both
being proportional tox, the hole doping concentration! as
observed by Daiet al. in Fig. 13 for underdoped YBCO
Furthermore, we can account for the very different dop
dependence of the normal-state maximum~determined by
the instanton scale with weak doping dependence! versus the
doping dependence ofEresonance ~determined by the con
densed bosons}x) as was stressed in a recent article
Bourges.37

From this understanding of the ASL, we can conclu
immediately thatTm , the temperature of the spin-pseudog
formation ~and henceTT1

), should be rather insensitive t
changes in doping. Contrast this with the doping depende
of Tpg , the formation of the pseudogap in the single-parti
spectrum which asx→0 will get as large as the spin-wav
bandwidth, since in that limit the ASL will be described b
the p-flux phase.

Another interesting point to discuss about the INS data
their momentum dependence. In Fig. 14 we show the data
Bourges taken on YBa2Cu3O6.5(Tc552) which shows the
a

FIG. 13. The energy of the peak in the superconducting stat
also called theresonanceenergyEresonanceas a function ofTc in
underdoped YBCO. Data taken from Daiet al. ~Ref. 36!. By ex-
trapolating the linear relationship down toTc50 ~dashed line added
as a guide! we extract an estimate for the mass scale related
topological gauge fluctuations.
1-12
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SPIN CORRELATIONS IN THE ALGEBRAIC SPIN . . . PHYSICAL REVIEW B66, 144501 ~2002!
spin-excitation spectrum for odd~acoustic! and even~opti-
cal! excitations at high energies. The dotted lines corresp
to the spin-wave dispersion relation in the insulating antif
romagnetic state. The dispersive behavior compares ni
with Fig. 15 the correlations in the ASL liquid above th
mass scalem;20 meV.

So far we have argued for the strange phenomenolog
the pseudogap phase to be tied to the physics embodie
the ASL. It is, however, clear that the ASL physics has
give way to the superconducting state at low temperatu
An important question is how this transition happens. Let
then briefly mention three plausible scenarios for how
ASL goes over to the superconducting state. In other wo
we would like to understand how the U~1! gauge field gains
a mass term which leads to the destruction of the ASL st

FIG. 14. Spin excitation spectrum for odd~open symbols! and
even~solid circles! excitations at 5 K. The open square indicates
energy of the maximum of the odd susceptibility. The dotted lin
correspond to the spin-wave dispersion relation in the insula
antiferromagnetic state withJi5120 meV. This figure is taken
from Bourgeset al. ~Ref. 23!.

FIG. 15. Contour plot of Imx—notice the ‘‘spin pseudogap’’ a
(q)50[QAF5(p/a,p/a) for energies belowm520 meV and the
dispersion abovem.
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In the first picture the mass of the U~1! gauge field is
generated via confinement due to instantons. After the op
ing of the energy gap, there is no residual unbroken ga
structure left at low energies. Thus the confinement can a
be referred to as U~1! gauge structure breaking down toZ1.
(Z1 gauge structure means no gauge structure.! In the con-
finement phase@i.e., after the U~1! gauge field is gapped#, the
spinons and holons recombine into electrons which appea
the relevant degrees of freedom at low energies. Thus
also call the first picture spin-charge recombination. This
particular would suggest the existence of well-defined qu
particles at low energies@as probed by angle-resolved ph
toemission spectroscopy~ARPES!# even above the super
conducting transition temperatureTc ~this should also be
accompanied byT2 resistance in dc conductivity!. Further-
more, the binding of spinons and holons will gives rise
Fermi arcs.10

In the second picture, the U~1! gauge structure also break
down to theZ1 gauge structure, but now via holon conde
sation. In this case,Tm5Tc and the ASL directly transforms
into the d-wave superconducting state. There are no w
defined quasiparticles aboveTc .

A third scenario might be the breaking of the U~1! gauge
structure down to aZ2 gauge structure via the condensati
of spinon bilinear terms which do not break an
symmetries.38 ~A Z2 gauge structure was also found in
slave fermion description of spin systems via the conden
tion of boson bilinear terms which break 90° rotatio
symmetry.39 TheZ2 gauge structure can also be obtained
the condensation of bound states of double vortices.40! The
breaking from U~1! to Z2 also results in a mass for the U~1!
gauge field and leads to a newZ2 spin liquid. The transition
to this new topological and quantum order38,4 implies the
appearance oftrue spin-charge separation since theZ2 gauge
interaction is only short ranged38–40~Senthil experiment41,42!

To determine which scenario actually applies to real hig
Tc samples, we need to rely on experiments. In the follow
we would like to argue that experiments suggest the fi
scenario as most plausible in the high-Tc samples. The ap-
pearance of Fermi arcs in the first scenario implies a sm
energy scaleDSCspin for the spin excitations associated wi
the superconducting state~see Fig. 16!. Such a small energy
scale was observed in the experiment of Ref. 44~see Fig.
17!, where it was found that the spin susceptibilityx(v)

s
g

FIG. 16. Minimal quasiparticle energyEmin along the line in the
u direction. The left panel depicts the pseudogap metallic state
shows a finite Fermi arc. The right panel is for the superconduc
state. In the superconducting state, the quasiparticle may have
bands~instead of the usual two for the BCS superconductor!. For
details, see Ref. 43.
1-13
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FIG. 17. Temperature evolution ofx(q,v) at
the incommensurate peak position for energies
3 meV and 4.5 meV. Data are taken from Yama
et al. ~Ref. 44! whose sample was
La1.85Sr0.15CuO4(Tc537.3 K). Notice that the
spectrum develops a gap for the 3 meV case
cooling belowTc .
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decreases belowTc only when v,4 meV. This indicates
that DSCspin is as small as a few meV. Direct evidence f
Fermi arcs comes from their observation in a recent pho
emission experiment.45 The expected well-defined electron
like quasiparticles near the Fermi arcs were also observ

VII. CONCLUSION AND OPEN QUESTIONS

In this paper we have given an account of the spin co
lations in the ASL phase through the calculation ofO(1/N)
contributions depicted in Fig. 2. It was shown how the gau
fluctuations strongly enhance the staggered spin correlati
leaving the uniform spin correlation unaffected. This resul
very natural within our effective gauge theory of underdop
samples where the uniform spin correlation is protected
current conservation and cannot have any anomalous dim
sion. From this perspective it is also easy to account for
qualitative different behaviors of planarCu and O spin-
lattice relaxation rates seen in NMR experiments whereCu
probes the enhanced staggered correlations of the ASL d
to a temperature scaleTm;TT1

, where theCu 1/(T1T)
peaks, which we associate with the appearance of an en
gap in the gauge spectrum. What is really remarkable in
ASL picture is that enhanced staggered spin correlations
obtained while at the same time having a small sing
particle density of states within the pseudogap phasewithout
any fine-tuning. As the dopingx decreases, the pseudog
increases and, surprisingly, the staggered spin correlat
also increase. This strange experimental behavior is
plained naturally by the ASL picture.

It should be noted here that our ASL shows qualitat
similarities with the quantum-critical-point scenario of Re
1 and 46. However, as was stressed in the paper,46 the ap-
pearance of the pseudogap which they associate with
suppression of the spectral weight of spin waves charac
istic of the quantum-disordered~QD! regime should affect
the low-frequency dynamics forboth q50 andq5(p,p).
Within this framework it then seems hard to account for
qualitative different behaviors seen at theCu andO sites in
NMR experiments. As we have stressed many times, wi
the ASL, this difference is protected by the U~1! gauge struc-
ture. Also, in our ASL approach, we do not assume, in c
trast to the quantum-critical-point approach, any nearby s
metry breaking phase and we do not require any stron
fluctuating order parameters to give us critical behavior. T
ASL can by itself appear as a stable quantum phase or
phase transition point between two states with new kinds
order—quantum order. The two states can have thesame
14450
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symmetryand no order parameters.4 Hence the ASL associ
ated with the transition between quantum orders can sh
scaling properties divorced from any critical point studi
so far.

From this perspective the ASL is just one of a whole sl
of possible quantum orders characterized by a massless~1!
gauge field coupled to massless Dirac fermions. It is a
clear that the destruction of the ASL via the transition into
phase with a massive U~1! gauge field~phenomenologically
described above via the introduction of the mass scalem)
demands a much more careful analysis and highlights
main difficulty with the slave boson approach to thet-J
model. Within this scheme it currently seems to be imp
sible or at least very challenging to describe this ener
temperature regime aroundm/Tm theoretically. The reason
for that is related to the need of introducing a scale which
not tied to boson condensation and hence divorced fr
the mean-field energies and the corresponding degree
freedom.

Through our examination of the experimental data,
find that the ASL, plus spin-charge recombination at low
energies, provides a consistent and natural~with no fine-
tuning! description of underdoped cuprate superconduct
This is the main result and the bottom line of this paper.
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APPENDIX A:
SPIN OPERATORS IN THE CONTINUUM LIMIT

In this appendix we derive the expression for the s
operators nearq5(0,0),(p,p), and (p,0) in terms of the
spinon fieldC defined near the four nodes in momentu
space:

Let us look at the staggered correlation in detail:

SW ~Q1q!5
1

2 (
p

f †~p2q!tW f ~p1Q!, ~A1!

whereQ5(p/a,p/a) and we have suppressed the frequen
index. After introducing
1-14
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f e[
1

A2
@ f ~q!1 f ~q¿Q!#,

~A2!

f o[
1

A2
@ f ~q!2 f ~q¿Q!#,

the expression for the staggered spin operator can be re
ten

SW ~Q1q!5
1

4 (
p

@ f e
†~p2q!, f o

†~p2q!#tW~s32 is2!S f e~p!

f o~p! D .

~A3!

Splitting the sum (p5(Q̃1k1(
Q̃
˜ 1k8 where Q̃

5(p/2,p/2) andQ̃̃5(2p/2,2p/2) yields

SW ~Q1q!5
1

4 (
k

@ f e
†~k2q1Q̃!, f o

†~k2q1Q̃!#

3tW~s32 is2!S f e~k1Q̃!

f o~k1Q̃!D
1

1

4 (
k8

@ f e
†~k82q1 Q̃̃!, f o

†~k82q1 Q̃̃!#

3tW~s32 is2!S f e~k81 Q̃̃!

f o~k81 Q̃̃!
D . ~A4!

Noting Q̃̃5Q̃1Q and using f e(p1Q)5 f e(p) and f o(p
1Q)52 f o(p) we arrive at

SW ~Q1q!5
1

2 (
k

@ f e
†~k2q1Q̃!, f o

†~k2q1Q̃!#

3tWs3S f e~k1Q̃!

f o~k1Q̃!
D

5
1

2 (
k

C̄1~k2q!1tWC1~k!, ~A5!
14450
rit-

whereC̄1(k2q)5„f e
†(k2q1Q̃),2 f o

†(k2q1Q̃)… and k is

measured away from the node of type 1[Q̃56(p/2,p/2).
The remaining contribution arises from the other two nod
in the spectrum at6(p/2,2p/2).

Following the same calculation for the uniform correl
tion function

SW ~q!5
1

2 (
p

f †~p2q!tW f ~p!, ~A6!

we find

SW ~q!5
1

2 (
k

C̄1~k2q!s3tWC1~k!, ~A7!

with C̄1(k2q)5„f e
†(k2q1Q̃),2 f o

†(k2q1Q̃)… and k is

measured away from the node of type 1[Q̃56(p/2,p/2).
As before the remaining contribution arises from the oth
two nodes.

The correlation nearq5(p,0) is obtained in a similar
fashion the only difference here is that for this momentu
transfer the two types of nodes get mixed and hence w
we split up the sum over momentum space we need to c
sider all four nodes simultaneously. Under this proviso
calculation goes through as above and we end up with

SW ~Qx1q!5
1

2 (
k

C̄~k2q!S 0 s1

s1 0 D tWC~k!, ~A8!

where

C̄~k2q!5@ f e
†~k2q1Q1!,2 f o

†~k2q1Q1!,2 f o
†~k2q

1Q2!, f e
†~k2q1Q2!#,

with Q15(p/2,p/2) andQ25(p/2,2p/2).
he
APPENDIX B: TWO-LOOP CALCULATION OF THE SPIN CORRELATION

We employ a four-dimensional representation of the Dirac algebra$gm ,gn%52dmn (m,n50,1,2) in the main body of the
paper, i.e., Tr154. To perform the Tr over the spinor indices we need the following identity:

Tr@gegdgmgbgnga#5danTr@gegdgmgb#2dabTr@gegdgmgn#1dam@gegdgbgn#2dad@gegmgbgn#1dae@gdgmgbgn#,

which can be simply derived from the Dirac algebra by commutingg matrices through and using the cyclic property of t
trace Tr. Using the above identity we can simplify

@2~A!#5E ddk

~2p!dE ddq

~2p!d
TrF 8

N

~p1k!eg
ekdgdgmgb~k1q!bgngaka~dmnqW 22qmqn!

~pW 1kW !2kW2~kW1qW !2kW2uqW u3 G ~B1!

to
1-15
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@2~A!#5
64

N E ddk

~2p!dE ddq

~2p!d

@kW2~pW 1kW !•qW ~kW1qW !•qW 22~pW 1kW !•kW~kW1qW !•qW kW•qW #

~pW 1kW !2~kW1qW !2kW4qW 3
~B2!

and for diagram@Fig. 2~C!# we obtain

@2~C!#5E ddk

~2p!dE ddq

~2p!d
TrF 8

N

~p1k!eg
egm~p1k1q!dgd~k1q!bgbgnkaga~dmnqW 22qmqn!

~pW 1kW !2~pW 1kW1qW !2~kW1qW !2kW2uqW u3
G ~B3!

5
64

N E ddk

~2p!dE ddq

~2p!d

F~qW ,kW ,pW !

~pW 1kW !2~pW 1kW1qW !2~kW1qW !2kW2uqW u3
, ~B4!

where

F~qW ,kW ,pW !5FkW2S qW 2kW22
1

2
kW•qW pW 212kW•qW qW 21kW•pW qW •pW 2

1

4
qW 2pW 21qW 41~qW •pW !2D1

1

2
~kW1qW !2S 2qW 2kW•pW 1pW 2kW•qW 22kW•pW qW •pW

2
1

2
qW 2pW 2D1~kW1pW !2S qW 2pW •qW 1qW 2kW•pW 2

1

2
qW 2pW 2D1

1

4
qW 4pW 22pW 2qW 2qW •pW 1

1

2
qW 2pW 4G .
nal
r
we

ia a
r-

e

In both expressions~B2! and ~B3! the integration overkW
is convergent ind53 and can be performed noting that

E d3k

~2p!3

1

kW2~kW1pW !2~kW1qW !2
5

1

8upW uuqW uuqW 2pW u
, ~B5!

E d3k

~2p!3

1

kW2~kW1pW !2~kW1qW !2~kW1pW 1qW !2

5
1

8uqW uupW uqW •pW
F 1

upW 2qW u
2

1

uqW 1pW u
G . ~B6!

Thus after thekW integration we arrive at

@2~A!#5
2

NE ddq

~2p!d F 2pW •qW 1pW 2

uqW u3upW 1qW u
2

pW •qW

upW uqW 2upW 1qW u
2

upW u

uqW u3G ,

~B7!

@2~C!#5
4

NE ddq

~2p!d F 2

qW 2
1

upW u

uqW u3
2

pW 212pW •qW

uqW u3upW 1qW u
2

4upW u

qW 2upW 1qW u

2
qW 2pW 212pW 4

pW •qW qW 2upW uupW 1qW u
G . ~B8!

Adding the contributions

23@2~A!#1@2~C!#5
4

NE ddq

~2p!d F 2

qW 2
2

4upW u

qW 2upW 1qW u

2
pW •qW

upW uqW 2upW 1qW u
2

qW 2pW 212pW 4

pW •qW qW 2upW uupW 1qW u
G .

~B9!
14450
As noted previously, because of thepW •qW term in the de-
nominator of the last term above, we wont use dimensio
regularization. Therefore we setd53 and introduce an uppe
cutoff L to regularize the above integrals. Also note that
will neglect the first term in Eq.~B9! which is linearly di-
vergent whose appearance is tight to the regularization v
momentum cutoff~such divergences do not appear in Lo
entz invariant regularization schemes!.

Under this proviso we obtain the following result for th
last three terms in Eq.~B9!:

4

N F2
8upW u

4p2
2

4upW u

4p2
ln

L2

pW 2
1

2upW u

36p2
1

upW u

12p2
ln

L2

pW 2

1
upW u

8p2
~C11C2!1

2upW u

8p2
ln

L2

pW 2 G , ~B10!

where the last term~B9! is given by

E d3q

~2p!3

qW 2pW 212pW 4

pW •qW qW 2upW uupW 1qW u

5
upW u

8p2 F E0

1

dy
21y

yA11y
ln

A11y2Ay

A11y1Ay

1E
1

L2/pW 2

dy
21y

yA11y
ln

A11y21

A11y11
G ~B11!

52
upW u

8p2 S C11C212 ln
L2

pW 2 D ~B12!

and
1-16
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C152E
0

1

dy
21y

yA11y
ln

A11y2Ay

A11y1Ay
57.748128723,

C254 ln~A221!141 ln~322A2!222 ln~322A2!

12 ln~322A2!A252.121475665.

Finally extracting the logarithmically divergent terms w
arrive at the result stated in the body of the text.

APPENDIX C: ANALYTIC CONTINUATION OF 1 ÕN
CORRECTION

Having obtained the 1/N correction we would now like to
reexponentiate our result in the form

^Ss
1~qW !Ss

2~qW !&052
AqW 2

16
2

8

12p2N
AqW 2lnS L2

qW 2 D
;2

L2n

16
~q2!1/22n, n5

32

3p2N
.

~C1!

This however immediately confronts us with the proble
that after analytically continuing Eq.~C1! the susceptibility
has the wrong sign for 2n.1. It is, however, hard to under
stand why the spin operator cannot have an anomalous
mension bigger than12 . In order to analyze this issue it i
helpful to look at the corresponding Euclidean real sp
correlations. Let us take the case of a general staggered
correlation of the form

^Ss
1~xW !Ss

2~0!&5
1

16p2
~21!x

C

uxW u422n
, ~C2!

where the spin operator has anomalous dimensionn. We
now Fourier transform this to obtain

1

4p
uqW u122nE

0

` du

u322n
sin~u!. ~C3!

For 0,uRe(2n22)u,1 this can be evaluated47 to give

1

4p
G~2n22!sin@~n21!p#uqW u122n. ~C4!

This leads after analytic continuation to the result, E
~16!. From here it is easy to see how theG function and the
sine function which are missed in the naive exponentiation
the Euclidean momentum space result conspire to give
correct sign for the spin correlation no matter what the s
of the anomalous dimension. In particular we can contin
the above for the casen→0 to give the correct mean-fiel
result.
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APPENDIX D: TWO-LOOP CALCULATION IN THE
MASSIVE PHASE OF THE U „1… GAUGE FIELD

This appendix gives some details of the calculation le
ing to theO(1/N) corrections to the staggered spin corre
tion in the case when the gauge field is in the massive ph
with propagator

Dmn~qW !5
8

NAqW 21m2
S dmn2

qmqn

qW 2 D .

We can use the results derived in Appendix A for the in
grals overkW , Eq. ~B9!, since they are unaffected by th
change in the gauge propagator:

2@2~A!#1@2~C!#5
4

N
E ddq

~2p!d F2
4upW u

uqW uAqW 21m2upW 1qW u

2
pW •qW

upW uuqW uAqW 21m2upW 1qW u

2
qW 2pW 212pW 4

pW •qW uqW uAqW 21m2upW uupW 1qW u
G , ~D1!

where we have neglected the linearly divergent term as
cussed above. After integration overqW in d53 we arrive at

4

NF 2
2

p2
@ApW 21m22m#2

2upW u

p2
ln

2L

upW u1ApW 21m2

1
ApW 21m2

6p2
2

1

9p2pW 2
@~pW 21m2!3/22m3#

1
upW u

6p2
ln

2L

upW u1ApW 21m2

2
upW u

8p2
E

0

1

dy
21y

AyAy1S m

upW u
D 2

A11y

ln
A11y2Ay

A11y1Ay

2
upW u

8p2
E

1

L2/pW 2

dy
21y

AyAy1S m

upW u
D 2

A11y

ln
A11y21

A11y11G
~D2!

It is not hard to check that in the limitupW u/m→0 the terms
proportional tom cancel. In extracting the logarithmic term
we have to take a closer look at the last term which canno
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evaluated in a closed form. In Fig. 18 we compare two d
ferent functional forms with the numeric evaluation of

upW u E
1

L2/pW 2

dy
21y

AyAy1S m

upW u
D 2

A11y

ln
A11y21

A11y11
.

~D3!

Note that there is virtually no difference betwee
f 1522upW u ln@L2/(pW21m2)# and f 2524upW u ln@2L/(upWu
1ApW 21m2)#. However, this comparison has to be tak
with a grain of salt as we are still in Euclidean space but
interested in the analytically continued forms. In Fig. 19
plot the analytically continued (ip0→v1 i e) forms of the
above functions. From this comparison it is now obvious t
f 1 which has developed a pole atm is unsuitable as an
approximation and we takef 2 which fits the numerically
integrated form quite well. Collecting the logarithmic-term
in Eq. ~D2! we obtain

23@2~A!#m1@2~C!#m52
16uqW u

3p2N
ln

2L

uqW u1AqW 21m2
.

~D4!

FIG. 18. Comparison betweenf 1522upW u ln@L2/(pW21m2)#, f 2

524upW u ln@2L/(upWu1ApW 21m2)#, and the numeric evaluation of Eq
~D3! before analytic continuation (m530).
14450
-

e

t

Analytically continuing and combining with the mean
field result~10! gives Eq.~22!.

APPENDIX E: LOW-ENERGY EFFECTIVE THEORY
FOR THE SUPERCONDUCTING STATE

Starting from the mean-field Hamiltonian for the spinon

H5
1

2 (
i , j ,s

cs i
† J̃Ui j cs j1(

i l
a0i

l 1

2
cs i

† t lcs i , ~E1!

in the d-wave paired state

Ui ,i 1 x̂52t3x1t1D,

Ui ,i 1 ŷ52t3x2t1D,

a0
3Þ0, ~E2!

we obtain after Fourier transformation the followin
Lagrangian:

FIG. 19. Comparison between the analytically continued for
of f 1, f 2 and the numeric evaluation of Eq.~D3! after analytic
continuation (m530).
L5(
q,v

@ f ↑
†~q,v!, f ↓~2q,2v!#S 2 iv1e~q!1a0

3 2h~q!

2h~q! 2 iv2e~q!2a0
3D S f ↑~q,v!

f ↓
†~2q,2v! D , ~E3!

e~q!522J̃x@cos~qxa!1cos~qya!#, h~q!522J̃D@cos~qxa!2cos~qya!#, ~E4!

which results, with

S1~q,v!5
1

2 (
k,vk

f ↑
†~k,vk! f ↓~k1q,vk1vq!,

~E5!

S2~q,v!5
1

2 (
k,vk

f ↓
†~k,vk! f ↑~k1q,vk1vq!,

in
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^S1~q,v!S2~2q,2v!&5
1

4 (
k,vk

@2 ivk2e~k!2a0
3#@ ivk2 ivq1e~kÀq!1a0

3#2h~k!h~kÀq!

$vk
21@e~k!1a0

3#21h~k!2%$~vk2vq!21@e~kÀq!1a0
3#21h~kÀq!2%

. ~E6!

Next, we split(k5(Qi1 p̃ whereQi with i 51, . . . ,4corresponds to (p/2,p/2),(2p/2,2p/2),(p/2,2p/2),(2p/2,p/2) in

this order. To extract the correlations nearQAF5(p,p) we write q5QAF1 k̃.
Concentrating on one of the terms in the sum—e.g., aboutQ15(p/2,p/2) we can expand

e~Q11 p̃!;v f p1 , h~Q11 p̃!;2v2p2 , v f[2A2xJ, v2[2A2dJ, p1[
p̃x1 p̃y

A2
, p2[

2 p̃x1 p̃y

A2
~E7!

to obtain

^S1~QAF1 k̃,v!S2~2QAF2 k̃,2v!&

5
1

4 (
Q1 ,vp

~2 ivp2v f p12a0
3!~ ivp2 ivk2v f~p12k1!1a0

3!1v2p2v2~p22k2!

@vp
21~v f p11a0

3!21v2
2p2

2#$~vp2vk!
21@2v f~p12k1!1a0

3#21v2
2~p22k2!2%

1
1

4 (
Qi ,vp ,i 52, . . . ,4

•••.

~E8!

Note thatk1[( k̃x1 k̃y)/A2 andk2[(2 k̃x1 k̃y)/A2. Now we approximate the sums by integrals and define

p̄1[v f p11a0
3 , p̄2[v2p2 ,

k̄1[v fk112a0
3 , k̄2[v2k2 ,

which allows us to rewrite the first term in Eq.~E8!

1

4E d3p̄

~2p!3v fv2

p̄W •~ p̄W 2 k̄W !1 i p̄1v k̄2 iv p̄k̄1

@ p̄W 2~ p̄W 2 k̄W !2#
. ~E9!

Using the Feynman trick or otherwise it is not hard to convince oneself that the last two terms cancel each other and
result is

2
1

64v fv2
Avk

21 k̄1
21 k̄2

2. ~E10!

Combining all four contributions from the four nodes in this way and translating thek̄’s back to thek̃’s which measure
momentum along theab axis away fromQAF we obtain after analytic continuation

Im^S1~v,QAF1 k̃!S2~2v,2QAF2 k̃!&5
1

64v fv2
$u@v22~v fk112a0

3!22v2
2k2

2#Av22~v fk112a0
3!22v2

2k2
2

1u@v22~v fk122a0
3!22v2

2k2
2#Av22~v fk122a0

3!22v2
2k2

2

1u@v22~v fk212a0
3!22v2

2k1
2#Av22~v fk212a0

3!22v2
2k1

2

1u@v22~v fk222a0
3!22v2

2k1
2#Av22~v fk222a0

3!22v2
2k1

2%,

k1[
k̃x1 k̃y

A2
, k2[

2 k̃x1 k̃y

A2
, v f[2A2aJx, v2[2A2aJD, ~E11!

the result stated in the main body of the paper.
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