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Haldane-gapped spin chains as Luttinger liquids: Correlation functions at finite field
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Department of Physics, University of Virginia, Charlottesville, Virginia 22904-4714
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We study the behavior of Heisenberg, antiferromagnetic, integer-spin chains in the presence of a magnetic
field exceeding the attendant spin gap. For temperatures much smaller than the gap, the spin chains exhibit
Luttinger liquid behavior. We compute exactly both the corresponding Luttinger parameter and the Fermi
velocity as a function of magnetic field. This enables the computation of a number of correlators from which
we derive the spin conductance, the expected form of the dynamic structure factor relevant to inelastic neutron-
scattering experiments, and NMR relaxation rates. We also comment upon the robustness of the magnetically
induced gapless phase both to finite temperature and finite couplings between neighboring chains.
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I. INTRODUCTION

The existence of a gap in one-dimensional, integer-s
Heisenberg antiferromagnets was first predicted by Halda1

He found that such spin chains can be mapped onto a ga
field theory in the large-spin, continuum limit. A variety o
checks imply that this behavior persists down to spins51. A

spin-1 chain with a specific (SW •SW )2 coupling has been rigor
ously shown to exhibit a spin gap.2 While at a differing value

of the (SW •SW )2 coupling, the spin chain is gapless,3 this criti-
cal point is believed to be unstable in the two-parame
space of couplings. Gapless behavior thus only arises
product of fine tuning. Numerous numerical studies carr
out on spin-1 chains observe a gap.4 Experimentally, inelas-
tic neutron-scattering studies on a number of quasi-o
dimensional spin-1-chain materials are consistent with a
nite spin gap.5–7

The physics underlying the gap is particularly robust:
lated systems such as two-leg spin-1

2 or Hubbard ladders also
exhibit a gap to spin excitations.8 Roughly speaking, integer
spin composites form across the rungs of the ladder ma
it into an effective integer-spin chain. Both the ability
fabricate these materials and their relationship to highTc
cuprate superconductors have made them the focus o
tense theoretical and experimental studies.9,10

The centrality of the gap is no less when these mater
are subjected to an applied Zeeman field,H. In a field ex-
ceeding some critical value,Hc;D, the excitation spectrum
of integer-spin chains changes dramatically and the
vanishes.11,12 At H50 the ground state is a singlet. The e
ementary excitations above the ground state are three
sive spin-1 bosonic magnon modes. In contrast, whenH ex-
ceedsHc , the gap of one of the magnons closes and
ground state of the spin chain begins to fill in with gaple
excitations. If interactions between the gapless magn
were completely absent, the excitations would collapse in
condensate of free bosons. On the other hand, if interact
were perfectly repulsive at any energy scale, the bos
could be thought to possess a hard core and so form a g
free fermions with some Fermi surface. But in fact the int
actions are expected to lie midway between these extre
and what one ends up with is equivalent to an interacting
0163-1829/2002/66~14!/144416~17!/$20.00 66 1444
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of fermions. This, of course, is nothing more than a Lutting
liquid. The purpose of this paper is to study its properties

The field theory describing the continuum limit of intege
spin chains is the O~3! nonlinear sigma model~NLSM! with-
out a topological term.1,13 The O~3! NLSM also describes
half-integer-spin chains but in this case the topological te
is present with couplingu5p. The presence of the topolog
cal term leads to gapless behavior. Indeed at low energies
O~3! NLSM with u5p flows to the critical theory, SU(2)1
~for a review see Ref. 13!.

Unlike its ancestral theory, the Heisenberg spin-1 cha
the O~3! sigma model has the virtue of being integrable.14,15

While the aspects of the physics of integer-spin chains h
been studied using the integrability of the O~3!
NLSM,12,16–18spin chains remain incompletely understoo
While thermodynamic properties of an integrable model
generically accessible, correlation functions are not. Th
do exist a variety of techniques to compute correlators.
zero temperature, truncated ‘‘form-factor’’ computations a
able to access exact information of the low-energy proper
of the spectral functions.10,16These techniques have recent
been extended to compute exactlow-temperatureexpansions
of these same quantities.19 There also exists an elegant sem
classical approach20,21 predicated upon combining ultra-low
energy information from the quantum theory with older a
proaches of computing correlators in classical system22

However, all these techniques require the energy scales in
problem ~in particular, the temperatureT and the applied
field H) to be much smaller than the gap,D.

Fortuitously there exists an alternate approach that allo
the computation of correlation functions whenH.Hc . The
control over the thermodynamic properties of the model t
integrability affords allows the computation of the Lutting
parameter. While the Luttinger parameter characterizes
strength of the interactions between excitations, it is a
more central quantity, in that it provides a near compl
description of the low-energy structure of the theory. T
gether with the knowledge of the Fermi velocity, a quant
also easily accessible with integrability, a host of informati
can be determined, including the computation of specific c
relators and their scaling exponents. Such techniques h
been used to study the sine-Gordon model in the presenc
a chemical potential exceeding the gap~i.e., the mass of the
©2002 The American Physical Society16-1
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sine-Gordon solitons!.23,24Similarly the low-energy structure
of doped generic Hubbard ladders~or armchair carbon nano
tubes! has been studied in Ref. 10 utilizing this formalism
The particular derivation of the Luttinger parameter in th
paper is based upon the treatment in Ref. 25.

The ability to compute the Luttinger parameter togeth
with the Fermi velocity is predicated upon some gene
properties of integrable models. Most importantly, the ex
eigenfunctions of the model’s fully interacting Hamiltonia
are known. With this knowledge comes a well-defined not
of ‘‘particles’’ or elementary excitations in the system. Ult
mately this feature is a consequence of the infinite numbe
conservation laws possessed by the integrable model. In
ticular, particle number is conserved in any collision a
multiparticle S-matrix elements factorize into products
two-particle ones. An integrable model is a superior vers
of a Fermi liquid: a particle’s lifetime is infinite regardless
the distance from the Fermi surface.

In order to appreciate these features of the O~3! NLSM,
we provide an overview of the model. The model is d
scribed by the action

S5
1

2gE dxdt~]mn]mn!, ~1!

wheren5(nx ,ny ,nz) is a bosonic vector field constrained
live on the unit sphere,n•n51. This action is arrived a
from the Hamiltonian of the spin chain,

H5J(
i

SiSi 11 . ~2!

In the continuum, large-s, limit, the spin operatorSi is re-
lated to the fieldn via

Si5~21! isni1Mi . ~3!

n(x,t) is the sublattice or Ne´el order parameter whileM
describes the uniform~i.e., wave vectork;0) magnetiza-
tion. M is related ton via

M5
1

g
n3] tn, ~4!

and so is given in terms of the momentum conjugate ton.
The triplet of bosons that form the low-energy excitatio

of the O~3! NLSM have a relativistic dispersion relatio
given by

E~p!5~p21D2!1/2. ~5!

HereD is the energy gap or mass of the bosons and is rel
to the bare couplingg via D;Je2p/g. We have set the bar
spin-wave velocity,vs52Js ~the speed of light in this rela
tivistic system! to be 1. The dispersion relation of all thre
bosons is identical as the model has a global O~3! symmetry.
We stress that this relativistic invariance is a natural feat
of the low-energy structure of the spin chain.

Our approach to the Luttinger liquid phase of the Heis
berg spin-1 chain shares some similarities with others ta
in the literature. The NLSM has been used previously
study the field-induced gapless phase of spin-1 chains, a
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in the context of large-N techniques,26 where theO(3)
NLSM is replaced with its O(N) counterpart.~Parenthetically
we point out that the large-N approximation of the O~3!
NLSM has been criticized by authors of Ref. 27. In this wo
the authors note that the ultra-low-energy limit of the sc
tering in the O~3! NLSM differs from that predicted by a
large-N expansion of the exactO(N) S matrix.!

Beyond largeN, the Luttinger liquid phase of the spin-
chain has also been studied in the guise of analyzing sp1

2

ladders. Bosonization techniques have been used to stud
ladder system in a regime where the legs of the ladders
weakly coupled.28 In the opposite limit, in a regime wher
there are strongantiferromagneticcorrelations across the
ladder’s rungs, the gapless Luttinger liquid behavior h
been explored through mapping the system onto an effec
XXZ spin-12 chain.29 In this latter case, the underlying inte
grability of theXXZ spin chain can be brought to bear upo
the problem.30 Given the simplicity of the map onto the spin
1
2 chain, we adapt the map to the case where there areferro-
magneticinteractions across the rungs of the ladder~appro-
priate for describing a spin-1 chain!. Our primary purpose in
doing so is to come up with a more precise identificati
between the relevant fields in the theory and the boso
degrees of freedom of the Luttinger liquid. Although w
could exploit the integrability of the spin-1

2 chain to compute
the Luttinger parameter, we do not do so. Given that the m
to the effective spin-12 chain is done through a perturbativ
expansion where the importance of the higher-order term
the series is uncertain, we view extracting the Luttinger
rameter directly from the O~3! NLSM as more reliable.

Haldane-gap spin chains in a magnetic field have a
been studied through a mapping onto an interacting, spin
Bose gas.31 This map provides a reliable description of th
spin chain at small magnetizations. At small magnetizatio
the low density of excitations forming the ground state int
act only weakly. The scaling exponents and thermodyna
properties of the system are then independent of the e
nature of these interactions. Although not done by the
thors of Ref. 31, the integrability of the Bose gas, like t
integrability of the O~3! NLSM, could be used to determin
the various properties of the Luttinger liquid phase. Howe
beyond the low magnetization regime, the results would d
fer. It is interesting to note, however, that by fine tuning t
strength of the interactions of the Bose gas, the analysi
the O~3! NLSM, in particular the computation of the Lut
tinger parameter, can be reproduced in large degree.
comment upon this further in Sec. III.

In this paper we take the Hamiltonian of the spin chain
be in its minimal Heisenberg form and so ignore~for the
most part! the effects of anisotropies upon the physics. The
can take~at least! two forms. Easy-axis anisotropies,

DH5Dx(
i

~Sxi!
21Dy(

i
~Syi!

21Dz(
i

~Szi!
2, ~6!

of varying strengths are often found in spin-1 chain mate
als. Additionally, actual spin-chain materials never take
form of an isolated chain. Rather the chains exist in thr
dimensional arrays with weak but nonzero interchain c
6-2
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HALDANE-GAPPED SPIN CHAINS AS LUTTINGER . . . PHYSICAL REVIEW B 66, 144416 ~2002!
plings,J8. Thus the chains are at best quasi-one-dimensio
~1D!. With a finite J8, there will be some correspondingl
finite Néel temperatureTN . Below TN the physics will be
dramatically different than described in this paper.

CsNiCl3 was the first material for which evidence of
Haldane gap was found.6 This material suffers from the sec
ond aforementioned anisotropy with a relatively large int
chain coupling,J8/J;0.017. Consequently Ne´el order was
observed to set in atT;5 K. A more promising material for
the observation of a Haldane gap was found
Ni(C2H8N2)2NO2ClO4 ~NENP!. For NENP, the ratioJ8/J
;631024 is sufficiently small that a 3D Ne´el order has not
been observed down to temperatures;1.2 K.7 However this
material is characterized by a large easy-axis anisotr
Dz /J;0.25; Dz /D;5/8 (Dx;Dy;0). Related materials
Ni(C5H14N2)3(PF6) ~NDMAP! and Ni(C5H14N2)2N3(ClO4)
~NDMAZ ! share similar easy-axis anisotropies. In terms
our analysis, these latter compounds share the additiona
wanted feature of field-induced antiferromagnetism.32 The
Luttinger liquid that results from magnetic fields larg
enough to extinguish the Haldane gap leads to quasi-lo
range antiferromagnetic correlations. With a small finiteJ8,
these quasi-long-range correlations are promoted to
fledged long-range order. The corresponding Ne´el tempera-
ture increases with applied magnetic fields. In a mean-fi
framework, we compute this ordering temperature in Sec.
Thus at fixed temperature we expect only a finite window
the applied magnetic field in which the Luttinger liquid b
havior will persist.

Perhaps the material best suited to the analysis prese
in this paper is AgVP2S6. It has an extremely small inter
chain coupling,J8/J;1025 and a similarly small easy-axi
anisotropy,Dz /D;1022. However it possesses a compar
tively large gap,D;320 K. As such, high-field measure
ments (H.D) have yet to be done on this material~and are
unlikely to be done soon!, contrary to the case of NENP,33

with a much smaller average gap,D;20 K.
The paper is organized as follows. In Sec. II we develo

Landau-Ginzburg description of the low-energy effecti
theory of the integer-spin chain in a magnetic field exceed
the spin gap. This effective theory reduces to a Luttin
liquid and so has two controlling parameters: the Lutting
parameterK and the Fermi velocityvF . In Sec. III we show
how these parameters can be determined as a function o
applied fieldH through consistency with the O~3! NLSM.

With this description of the low-energy theory in hand, w
analyze the behavior of a number of correlators in Sec.
Using a Kubo formula together with our knowledge of t
current-current correlators, we compute the spin conducta
and the static susceptibility. With this latter quantity we ha
thus come full circle. We computedK and vF based upon
thermodynamic considerations and then, in turn, compu
correlators. From these correlators we then~re!compute
~consistently! thermodynamic quantities. We also study t
staggered spin-spin correlators, quantities that would
probed both in inelastic neutron-scattering experiments n
wave vectork5p and NMR relaxation rate measurement

While we have already raised the issue of the effects
interchain couplings upon the stability of the Luttinger liqu
14441
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phase, we also consider in Sec. IV the robustness of
phase to finite temperature. Although our derivation of t
effective low-energy theory is done at zero temperature,
conformal~or scale-invariant! nature of the theory allows u
to easily determine quantities atT.0. To explore how large
the temperature relative to the gap may become before
Luttinger picture breaks down, we study the susceptibility
finite T andH. We do so using a more sophisticated descr
tion of the system, the exact equations~good for arbitraryT
andH) giving the system’s free energy.

II. LOW-ENERGY EFFECTIVE THEORY FOR HÌD

In this section we describe the emergent Luttinger liqu
behavior of a spin chain arising in magnetic fields larger th
the gap and temperatures satisfyingT!D. Following Ref.
34, we provide a corresponding Landau-Ginzburg desc
tion. Although we work with an effective theory, we will b
able to compute the various phenomenological parame
appearing in it by insisting on consistency with the O~3!
NLSM. This will form the topic of Sec. III.

The Landau-Ginzburg description is an approximate fi
theory of the magnons and their interactions. We repres
the magnon field asm. It is a vector under the O~3! symme-
try akin to original field n and shares all ofn’s original
discrete symmetries. Howeverm is not constrained to live on
the unit sphere. The magnons have a gap and a relativ
dispersion relation. The simplest effective Hamiltonian w
these characteristics is34

H5
1

2
@P21~]xm!2#1

D2

2
umu21lumu42H~m3P!,

~7!

whereP is the momenta conjugate tom. We have added a
umu4 term to ensure overall stability. The corresponding L
grangian~with H in the z direction! is

L5
1

2
@~] tm!22~]xm!2#1H~mx] tmy2my] tmx!

1
H2

2
~mx

21my
2!2

D2

2
umu22lumu4. ~8!

The last three terms form the effective potential for t
model.

When H,D, the minimum of the Landau-Ginzburg po
tential occurs form50. But whenH.D the minima of the
potential now occur for field configurations of the form

mx
21my

25
H22D2

4l
, mz50. ~9!

As we are interested in the low-energy behavior of t
theory, we focus upon the low-energy fluctuations ab
these field configurations. Introducing the new fieldsm and
F via

~m1mo!e6 iF5
mx6 imy

A2
, ~10!
6-3
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with mo
25(H22D2)/(8l), the effective Lagrangian can b

rewritten ~to quadratic order in the fields!

L5
1

2
@~] tmz!

22~]xmz!
2#1@~] tm!21mo

2~] tF!2#

2@~]xm!21mo
2~]xF!2#1 2H~mo

212mom!] tF

22~H22D2!m22
H2

2
mz

2 . ~11!

The low-energy physics inL is governed solely by the field
F. Them andmz modes are massive and may be integra
out. Doing so results in a Lagrangian of the form

L5
vFK

2p F ~]xF!22
1

vF
2 ~] tF!2G , ~12!

the bosonic form of the Luttinger model. HereK andvF are
the effective Luttinger parameter and Fermi velocity. The
parameters can be related to the various parameters ap
ing in the original Landau-Ginzburg Hamiltonian. Howev
this can be done only at the mean-field level; quantum fl
tuations strongly renormalize their values. The approach
thus take is to accessK andvF directly from the integrability
of the O~3! NLSM. This, as has been indicated, is done
Sec. III.

To complete this section we identify the fields of the O~3!
NLSM in terms ofF. We can factorize the bosonF into
right- and left-moving pieces each describing the excitati
at the two Fermi points,F5fR1fL . The ~Euclidean!
propagators offL/R are given in terms ofK. We have

^fL~z!fL~w!&52
1

4K
ln~z2w!,

^fR~ z̄!fR~w̄!&52
1

4K
ln~ z̄2w̄!, ~13!

wherez/ z̄5vFt6 ix. The fieldsn6(x,t) creatingSz51 ex-
citations are given in terms of the bosonF by

n65e6 iF, ~14!

and so are governed by the propagator of the form

^n1~z!n2~w!&5~x21vF
2t2!21/4K. ~15!

We thus understand the spectral functions of low-energy
citations in terms ofK when H.D. Moreover, we can ex-
press thez component of the magnetization operators
terms of the U~1! boson currents~in Euclidean space!. Fluc-
tuations in the magnetization density are given by

M0
3[Mz52

K

vFp
]tF5

K

p
~] z̄fR1]zfL![

1

2p
~ j R1 j L!,

~16!

while the corresponding spin currentj S equals
14441
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M1
3[

j S

vF
52

K

p
]xF52

iK

p
~] z̄fR2]zfL![

i

2p
~ j R2 j L!.

~17!

Current-current correlators then can be deduced from

^ j L~z! j L~w!&52
K

~z2w!2 , ~18!

an immediate consequence of Eq.~13!.
The above identification of the fields is minimal in natur

It is based upon both the Landau-Ginsburg analysis toge
with the simplest association of the fields in the NLSM wi
those of the Luttinger liquid~12!. However it misses sub
leading terms. To identify such terms directly from th
Landau-Ginsburg analysis would seem difficult. To circu
vent this difficulty, we analyze a spin-1

2 ladder system. With
ferromagnetic interactions across an individual rung of
ladder we obtain an effective spin 1. And with antiferroma
netic interactions along the length of the ladder, we obtain
effective antiferromagnetic Heisenberg spin-1 chain. In
magnetic field, the ladder system can be reduced to
equivalent spin-12 chain. Bosonizing such a chain in the sta
dard fashion yields a Luttinger liquid, precisely as in E
~12!. Proceeding in this way offers us the advantage tha
allows a more complete identification of the fields as well
subleading terms. We so find

Mz~x,t!52
K

vFp
]tF~x,t!1c cos$2p@Q~x,t!2Mx#%,

n2~x,t!5e2 iF(x,t)11c1cos$2p@Q~x,t!2Mx#%.
~19!

Here Q(x,t) is the boson dual to that ofF and may be
written as

Q~x,t!5
K

p
@fL~z!2fR~ z̄!#,

while c andc1 are some numerical constants. We see that
leading terms agree with that of the Landau-Ginsburg an
sis. The subleading terms are interesting, in that they dep
upon the magnetizationM of the system, and so lead to in
commensurate behavior. This incommensurate behavior
been argued to occur28 in the context of spin-12 ladders with
ferromagnetic rungs.

The map from spin-12 ladders to effective spin-1
2 chains

has been studied extensively. Two general approaches
been employed. In the case where the spin-1

2 ladder is
strongly antiferromagnetically coupled across the rung~we
are however interested in ferromagnetic couplings!, a
straightforward map takes the ladder in a magnetic field t
spin-12 chain.29,30 In the case where the spin-1

2 ladder is
weakly coupled across the rungs~either ferromagnetically or
antiferromagnetically! more detailed studies have bee
carried out, using successive bosonizations~or
fermionizations!.28 Due to the simplicity of the former, we
adapt this method to ferromagnetic rung couplings, as
cussed in Appendix C.
6-4
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FIG. 1. A sketch of the ground
state of the O~3! nonlinear sigma
model in the presence of a mag
netic field that exceeds the gapD.
The Sz51 band is now partially
filled with excitations; theSz50
band is unchanged as it does n
couple to the magnetic field; an
the Sz521 band is shifted up-
wards in energy.
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The need to adapt the map is predicated upon two asp
of the physics. The Luttinger parameter of the magnetica
induced gapless phase of spin-1

2 ladders with ferromagnetic
antiferromagnetic rungs satisfiesK.1/K,1. However a
naı̈ve application of the map yieldsK,1 regardless of the
type of rung coupling. Additionally, the map, as it stand
does not take into account the different types of gapless
havior. The perpendicular susceptibility of ladders with an
ferromagnetic rungs, for example, sees power-law-like de
at k5(p,p) and exponential decay atk5(p,0). But the
situation is reversed for ladders with ferromagnetic rungs

III. COMPUTING K AND vF FROM THE INTEGRABILITY
OF THE O „3… NLSM

In this section we present exact results for theH.Hc
phase of the O~3! NLSM. They confirm the Luttinger behav
ior implied by the Landau-Ginzburg description discussed
the preceding section. In particular, we show how to extr
the phenomenological parametersK andvF appearing in this
description from the integrability of the O~3! NLSM.

We begin by describing how the ground state of the O~3!
NLSM is altered in the presence of a magnetic field. Negle
ing interactions, the energy of an excitation with bare ene
E in a finite magnetic fieldH along thez axis is

E2SzH.

This leads to a splitting of the spin-1 triplet of magnons. In
mean-field ‘‘semiconductor’’ picture, this splitting i
sketched in Fig. 1. As the magnetic field,H, is increased
beyond the critical value ofH5Hc5D, the ground state o
the spin chain changes dramatically. The ground state
begins to fill in with a finite density of magnons~and so is
akin to a doped semiconductor!. If the Sz51 magnons were
noninteracting, they would condense in the lowest poss
energy level. But the magnons interact repulsively, and
they fill the ground state as if they were fermions or ha
core bosons. The technical manifestation of this behavio
the minus sign in theS matrix at zero momentum transfe
@u50 in Eq. ~20!#. With H larger thanD, the energy of an
excitation is potentially negative and excitations carryi
Sz51 appear in the ground state. We illustrate this in Fig
schematically by plotting the dispersion relations for t
three types of excitations in the system:Sz521, 0, 1.

The ground state of the system forH.Hc is therefore a
sea of magnons. The low-energy spin excitations consis
14441
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slight deformations of the filled sea in theSz51 band. These
low-lying excitations can be of arbitrarily small energy an
so are gapless. If we linearize such excitations above
Fermi energy of this band, we obtain a Luttinger liquid ch
acterized by a Luttinger parameterK and a Fermi velocity
vF .

To describe the ground state exactly, we need to take
account interactions of the particles. These interactions
parametrized by their scattering. As the O~3! sigma model is
integrable, the scattering matrix is known exactly. Exploiti
the theory’s relativistic invariance, we can parametrize a p
ticle’s energy and momentum in terms of its rapidityu, de-
fined as

E5D cosh~u!, P5D sinh~u!.

In this parametrization, Lorentz boosts sendu→u1a. Lor-
entz invariant quantities such asS-matrix elements therefore
depend only on differences of rapidities. TheS matrix for
scattering the two-particle stateua1(u1)a2(u2)& (a1 ,a2
51, 2, 3) into the final stateua4(u2)a3(u1)& is14

Sa1a2

a3a4~u12!5da1a2
da3a4

s1~u12!1da1a3
da2a4

s2~u12!

1da1a4
da2a3

s3~u12!, ~20!

whereu5u12u2 and

s1~u!5
2p iu

~u1 ip!~u2 i2p!
,

s2~u!5
u~u2 ip!

~u1 ip!~u2 i2p!
,

s3~u!5
2p i ~ ip2u!

~u1 ip!~u2 i2p!
.

Since the ground state is filled solely withSz51 particles,
we need theS-matrix element,S11 , for scattering of two
such particles,

S11~u!5
u2 ip

u1 ip
. ~21!

This is found from the change of basis,A651/A2(A1
1 iA2), whereAi is an operator creating an excitation carr
ing quantum numberi.
6-5
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Knowing S allows us to determine the density of stat
per unit length,r(u), of the sea of particles atH.Hc . The
derivation is standard and can be found for the case at h
in Ref. 35. For completeness we repeat these argumen
Appendix A. At zero temperature, the repulsive nature of
particles leads them to fill the sea up to some Fermi mom
tum, so that the density satisfiesr(u)50 for uuu.uF . For
uuu,uF , we have

r~u!5
D

2p
cosh~u!1E

2uF

uF
du8r~u8!G11~u2u8!,

~22!

where

G11~u![
1

2p i
]uln S11~u!5

1

u21p2 . ~23!

The first term on the right-hand side of Eq.~22! is the free
term, while the kernelG11 appearing in the second term
measures the strength of the interactions. AsG11.0, the
interactions lead to a density of states greater than the
value of (D/2p)cosh(u) associated with purely free ferm
ons. The strength of the magnetic fieldH determines the
Fermi rapidityuF . To find it, it is first convenient to intro-
duce the dressed energye(u) of the magnons. This is the
amount of energy the system loses when a particle of rapi
u is removed from the sea. It is given by

e~u!5D cosh~u!2H1E
2uF

uF
du8e~u8!G11~u2u8!.

~24!

At zero temperature, the particles fill all allowed levels up
u5uF . Therefore the Fermi rapidity is determined by so
ing Eq. ~24! subject to the boundary condition,

e~uF!50.

Thus for uuu,uF , e(u),0. The energy of the system pe
unit length at zero temperature is given by

E~H !5E
2uF

uF
r~u!@D cosh~u!2H#

5DE
2uF

uF du

2p
e~u!cosh~u!. ~25!

The zero-temperature magnetization follows immediat
from the above equation,

M ~H !52]HE~H !, ~26!

with the corresponding susceptibility given byx(H)
5]HM (H).

We now are able to compute the Luttinger parameterK
and vF appearing in the effective theory as functions
H/D. The key is to study this system in terms of its gaple
quasiparticle excitations present whenH.D. These excita-
tions are not the original magnons, but rather the excitati
above the magnon sea. Since they are gapless, they m
14441
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either to the right or to left at the Fermi velocityvF. To
computevF for the gapless excitations above the magn
sea, we first note that

vF5
]e

]p U
e5eF

5
]u

]p

]e

]uU
u5uF

. ~27!

Here p is the dressed momentum of the excitations and
given by an equation similar to the one governing the ene

p~u!5D sinh~u!1E
2uF

uF
du8r~u8!f~u2u8!, ~28!

wheref(u)5 ln S11(u)/2p i is the unrenormalized scatterin
phase. By comparing Eq.~28! with Eq. ~22! we see]up
52pr. The Fermi velocity is then given by

vF5
1

2pr~u!

]e

]uU
u5uF

. ~29!

While the integral equations~22! and ~24! cannot be solved
in closed form, it is easy to solve them numerically. Th
yields the curve plotted in Fig. 2. Its most notable feature
the vanishing ofvF for H near D. Below we will give a
power-series expansion forvF , valid whenH is nearD.

The couplingK is similarly straightforward to find. As we
now show, it is related to the renormalized spin,SR , of ex-
citations near the Fermi surface.SR measures how interac
tions change the response of a spinSz51 excitation near the
Fermi surface to a change in the magnetic field. It is rela
to the dressed energy by

SR52]He~u!uu5uF
, ~30!

and so obeys the integral equation

SR511E
2uF

uF
SR~u8!G11~uF2u8!. ~31!

The H dependence ofSR arises from the dependence ofuF
on H.

FIG. 2. A plot of the Fermi velocity of the low-energy excita
tions present in theSz51 band whenH.D.
6-6
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The basic idea behind the relationship ofK andSR is that
the low-energy excitations nearu5uF are free fermionic.
That is, their dressedSmatrices are21.25 In contrast to Ref.
25, here it is relatively easy to demonstrate this and we do
in Appendix B. As a consequence of the free-fermionic b
havior, the only nonvanishing matrix elements of the curr
operator, j L522K(vF

21]t2 i ]x)fL , involve a single
particle-hole pair. Lorentz invariance requires that these
trix elements be given by

^ũh ũpu j L~0!u0&5mce2( ũh1 ũp)/2, ~32!

where ũh and ũp are the rapidities of the particle and th
hole, respectively. Here we have defined the rapiditiesũh and
ũp via the dispersion relatione( ũ)52vFp( ũ)5me2u,
where the mass scalem is arbitarary and can be redefined b
a shift in ũ. The constantc is simply related to bothK and
SR . In a Luttinger liquid,K appears in the current-curren
correlator~18!. To relate this toc, we insert a complete set o
states and use the matrix element~32!, giving

^ j L~x,t ! j L~0!&

5E dũp

2p

dũh

2p
^ j L~x,t !uũhũp&^ũpũhu j L~0!&2

K

~ ix1vFt!2

5
c2m2

4p2 E dũhdũpe2m( ix1vFt)(eũh1eũp)eũh1 ũp

5
c2

4p2~ ix1vFt!2 . ~33!

On the other hand,c is related toSR , as integrating the
above matrix element gives the value ofSR on the one-
particle states,

2pSRd~ũ12 ũ2!5E dx^ũ1uM0
3~x!uũ2&

5E dxK ũ1U j L~x!

2p Uũ2L
52 i E dx

2p
mce( ũ21 ũ1)/2eimx(eũ22eũ1)

52 icd~ũ12 ũ2!.

Thusc5 i2pSR and so

K5SR
2 . ~34!

Given SR is described by the integral equation~31!, K fol-
lows immediately. The results are plotted in Fig. 3.

It is straightforward to find explicit power-series expa
sions forK and vF valid for H nearD. We begin by com-
puting e(u). For H slightly larger thanD, we can expand
e(u) aroundu50,

e~u!5d01d2u21O~u4!. ~35!

Plugging this into Eq.~24! demandsd0 andd2 satisfy
14441
so
-
t

a-

d05~D2H !@112G11~0!uF#1D
G11~0!

3
uF

31O~uF
4 !;

d25
D

2
22uFG11

2 ~0!~D2H !1O~uF
4 !, ~36!

whereG11(0)51/p2. To determineuF we apply the condi-
tion e(uF)50, resulting in

uF5A2S H

D
21D1

4

3
G11~0!S H

D
21D1OS FH

D
21G3/2D .

~37!

Similarly we can showr(u) to be

r~u!5r01r2u2, ~38!

where

2pr05D@112G11~0!uF14uF
2G11

2 ~0!#1O~uF
3 !,

2pr25
D

2
22uFG11

2 ~0!D1O~uF
2 !. ~39!

We can find the renormalized spin similarly.
These expansions give the power-series expansions fK

andvF to be

K511
25/2

p2 S H

D
21D 1/2

1
88

3p4 S H

D
21D1OS H

D
21D 3/2

,

vF5vF0FA2S H

D
21D 1/2

2
8

3p2 S H

D
21D1OS H

D
21D 3/2G .

~40!

We have restored the bare spin-wave velocityvF0
~earlier set

to 1!.
We see that as a function of the magnetic field, the L

tinger parameterK is 1 at thresholdH5D, and then in-
creases with increasing field strength.K51 at H5D is a
universal result already obtained by Refs. 34 and 36. I
independent of the exact nature of the excitations that fill
ground state at finite magnetization. In the low magnetizat
regime, the excitations of the ground state interact o
weakly due to their low density. Thus to a zeroth-order a
proximation, they can be treated as free fermions with a c

FIG. 3. A plot of the Luttinger parameter describing the low
energy excitations present in theSz51 band whenH.D.
6-7
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ROBERT M. KONIK AND PAUL FENDLEY PHYSICAL REVIEW B66, 144416 ~2002!
responding Luttinger parameter ofK51. Thus in the analy-
sis of antiferromagnetic spin ladders,30 K51 at H5D is
again found even thoughK decreases~opposite to the behav
ior of the spin-1 chains! with subsequent increases inH.
Similarly in mapping the spin chain onto an interacting Bo
gas,31 one arrives atK51 for H;D. Here, however,K at
least increases with increasing field. By fine tuning t
strength of the interactions in the gas, one could in princi
come close to reproducing the behavior as predicted by
O~3! NLSM.

We illustrate this in more detail. The equations govern
the energy and renormalized spin of the Bose gas are37 ~in
the case of the Bose gas the quantity equivalent toSR is the
renormalized charge!

e~u!5u22H1E
2uF

uF
du8e~u8!G11~u2u8!,

SR511E
2uF

uF
SR~u8!G11~uF2u8!,

G11~u!5
c

p

1

c21u2 . ~41!

Herec is the strength of the interactions in the Bose gas
c5p, we see that the equations of the Bose gas are ne
identical to those of the O~3! NLSM. The sole difference
~apart from some trivial shifts and rescalings! lies in the de-
pendence of the bare energy uponu, i.e., e0

Bose(u)5u22H
while e0

NLSM(u)5D cosh(u)2H. At low energies the two are
identical, but diverge at higher scales.

IV. SCALING BEHAVIOR AT HÌD

Using the results forK and vF derived in the preceding
section, we describe the scaling behavior present in the m
netized phase of the spin chain.

A. Susceptibility and Spin Conductance

We first consider the computation of the magnetic susc
tibility. To take into account the effects of a magnetic fie
we add a term to the Lagrangian of the form

dL5HE dxdtMz5HE dxdt
K

pvF
] tF. ~42!

Here we have used the fact that the oscillating term ofMz
vanishes with the integration overx. Doing so the relevan
correlator in computing the susceptibility is then

^Mz] tF&.

This correlator can be evaluated in the bosonic formulat
of the Luttinger liquid giving
14441
e

e
e
e

g

If
rly

g-

p-
,

n

K Mz~x,t!
K

pvF
] tF~0!L 5

KT2

4vF
2 F 1

sinh2S ipT

vF
zD

1
1

sinh2S ipT

vF
z̄D G . ~43!

Here we have evaluated it at finite temperature. By taking
appropriate analytical continuations, we can arrive at the
tarded correlator necessary to compute the susceptib
x(H). We so find

x~H.Hc!5 K Mz

K

pvF
] tF L

retardeduv50,k50

5
K~H !

pvF~H !
.

~44!

We point out that the static susceptibility is independent
temperature.

As we are able to compute the susceptibility of the s
chain directly from the thermodynamics of the O~3! NLSM,
we are able to perform a nontrivial check on the correctn
of this calculation. The susceptibilityx at T50 is given by
taking two derivatives of the energy, as displayed in E
~25! and~26!. Expanding this in a power series as explain
at the end of the preceding section gives the energy per
length to be

E~H !52
D2

2p F25/2

3 S H

D
21D 3/2

1
16

3p2 S H

D
21D 2

1OS H

D
21D 5/2G , ~45!

so that the susceptibility is

x~H !52]H
2 E~H !

5A 2

2pS H

D
21D 21/2

1
16

3p31OS H

D
21D 1/2

5
K~H !

pvF~H !
. ~46!

We see that we recover the susceptibility as derived from
above Kubo formula.

We can also compute the spin conductivity. The spin c
ductivity measures the resulting spin current arising from
spatially varying magnetic field and is defined via

j s5ss“H.

The spin current operator has the general form

j s52vF

K

p
]xF1~ term dependent uponM !.

However the latter term inj s involving M will not couple to
dL in Eq. ~42!. As such the spin conductance is given simp
from a Kubo formula,
6-8
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HALDANE-GAPPED SPIN CHAINS AS LUTTINGER . . . PHYSICAL REVIEW B 66, 144416 ~2002!
Ress~v,H !5 lim
k→0

1

k
ImK j sS 2

K

vFp
] tF D L

ret

~v,k!

5 lim
k→0

K2

p2

1

k
Im^]xF] tF& ret~v,k!

5vFK~H !d~v!. ~47!

This result is valid at any temperature within the Lutting
liquid framework.

B. Inelastic Neutron Scattering

We can make a series of predictions relevant for inela
neutron-scattering experiments withH.Hc . For scattering
near wave vectork5p, the experiments probe the singl
particle spectral weight of the field,na(x,t). The scattering
cross section is given in terms of the correlation function

s~v,k!}E dvdke2 ivt1 ikx(
a

^na~x,t !na~0,0!&. ~48!

Becausen3 is massive, its spectral weight is exponentia
suppressed at low energies and temperatures, and for
cases we need only consider the contribution of the c
relator ^n1n2&,

s~v,k!}E dxdte2 ivt1 ikx^n1~x,t !n2~0,0!&. ~49!

We first examine theT50 behavior of this correlator.
From the relation~19!, the correlator̂ n1n2& equals

^n1~x,t!n2~0,0!&5
1

~x21vF
2t2!1/4K

12c1
2cos~2pMx!

3
1

~x21vF
2t2!K11/4K

. ~50!

The exponenth51/2K governing the leading piece of th
transverse spin-spin correlator is plotted in the top pane
Fig. 4 as a function of magnetic field. We see that itsH
5D1 value is h51/2, equal to that of free fermions. Fo
values ofH slightly larger thanD, h51/2K takes the form

h5
1

2K
5

1

2 F12
25/2

p2 S H

D
21D 1/2

1
8

3p4 S H

D
21D

1OS H

D
21D 3/2G . ~51!

In the bottom panel of Fig. 4 we ploth versus the magneti
zation of the ground state. We also compare our computa
to that of numerical simulations of a lattice integer-sp
chain, H5J( iSiSi 11 done by Campos Venutiet al.4 The
agreement between the two is reasonable but not overwh
ing. At larger values of the magnetizationM, this is to be
expected. For a lattice spin chain the magnetization m
saturate at some critical value of the applied magnetic fi
14441
r

ic

ch
r-

f

n

m-

st
d,

Hc;J. In contrast the magnetization of the O~3! sigma
model has no such upper bound. Thus we must work at
ues of the applied field where the magnetization of the s
tem is small or alternativelyH!J. Given thatD;0.4J in a
spin-1 chain, this limit can only be ambiguously met at be
At smaller values of the magnetization, the disagreem
may arise from differences between the lattice theory and
continuum version. Nonetheless, we find reasonable ag
ment.

At finite temperature we can easily determine the form
^n1n2&. Via a conformal transformation we have

^n1~x,t!n2~0,0!&5S p2

vF
2b2D 1/4K 1

usinhTp~x/vF1 i t!u1/2K

12c1
2cos~2pMx!S p2

vF
2b2D K11/4K

3
1

usinhTp~x/vF1 i t!u2K11/2K
. ~52!

Analytically continuing and then Fourier transforming th
gives us an expression for the cross section at finiteT,

s~v,k!5
1

2vF
S p

bvF
D 2211/2K

f 1/4KS b

p
v,

bvF

p
kD1c1

2 1

2vF

3S p

bvF
D 221K11/4KH f K11/4KS b

p
v,

bvF

p
~k

12pM ! D1 f K11/4KS b

p
v,

bvF

p
~k22pM ! D J ,

~53!

with f g(x,y) equal to38

FIG. 4. Plots of the scaling exponenth for the transverse spin
spin correlator,̂ Sx(x)Sx(0)&;uxu2h. In the top panelh is plotted
versus the applied magnetic field while in the bottom panelh is
plotted versus the magnetization of the ground state. In this la
graph we also plot the values~squares! of h found in Campos
Venuti et al. through a density-matrix renormalization-group ana
sis.
6-9
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f g~x,y!5hgS 1

2
~y2x! DhgS 1

2
~y1x! D ,

hg~x!5ReF ~2i !gBS g2 ix

2
,12g D G , ~54!

whereB is the beta function,B(x,y)5G(x)G(y)/G(x1y).
So we obtain a scaling form fors(v,k) with f (x,y) a uni-
versal function. The scaling form comprises two parts: o
relevant for wave vectorsk near 0 and one yielding a contr
bution for k near the incommensurate wave vector 2pM
~understanding that all wave vectors involvingn6 have been
shifted byp).

We can analyze the above expression fors(v,k) in the
small- and large-T limits. In the caseT!M and v, k!M ,
we can safely ignore the contribution of the second term
Eq. ~53!. We then find

s~v,k!;
2p2

vFG2~1/4K !
Q~2v2vFk!Q~vFk2v!

3S v2/vF
22k2

16 D 2111/4K

, T!v,k;

s~v,k!5
2

vF
S 2p

bvF
D 2211/2K

cos2S p

8K DB2S 1

8K
,12

1

4K D ,

;T2211/2K, T@v,k. ~55!

In the first case,T!v, k, the leading term is temperatur
independent. For the behavior in the second case to be
served, we needD@T. Otherwise thermal excitations in
volving the other two bands (Sz50,21) would alter the Lut-
tinger liquid behavior of the ground state. For wave vect
neark62pM , the second term in Eq.~53! dominates, and
we find instead

s~v,k62pM !;c1
2 2p2

vFG2~1/4K1K !
Q~2v2vFk!

3Q~vFk1v!S v2/vF
22k2

16 D 211K11/4K

, T!v,k;

s~v,k62pM !5c1
2 2

vF
S 2p

bvF
D 2212K11/2K

3cos2FpS 1

8K
1

K

2 D GB2S 1

8K
1

K

2
,12K2

1

4K D ,

;T2212K11/2K, T@v,k. ~56!

We thus see that the power-law dependences ofs(v,k) near
k;2pM differ from those neark;0.

For scattering near the wave vector,k50, the spectral
weight of the magnetization operator is probed. It is t
operator that creates~or destroys! excitations neark50. At
low energies and temperatures the cross sections is given
by
14441
e

n

b-

s

s

s~v,k!}E dtdxe2 ivt1 ikx^Mz~x,t !Mz~0,0!&. ~57!

The other two spin components of the magnetization
massive and do not contribute at low energies. By
fluctuation-dissipation theorem, we can recasts in terms of
the imaginary piece of the corresponding retarded correla

s~v,k!}2
2

12e2bv
Im^MzMz& ret.~v,k!. ~58!

In the case thatv, k!M , we obtain

s~v,k!}
K

vF

v

12e2bv
@d~v1vFk!1d~v2vFk!#.

~59!

For wave vectors near 2pM we find instead

s~v,k62pM !;2
c2

12e2bv
G2~12K !sin„p~K21!…

3
sin~pK !

vF
S v22k2

4 D K21

@sgn~w1k!1sgn~w2k!#,

T!v,k;

s~v,k62pM !;2
2c2v

12e2bv S 2p

bvF
D 2K23 sin~pK !

vF

3B2S K

2
,12K Dc~K/2!, T@v,k;

~60!

wherec(x)5]xln„G(x)….

C. NMR Relaxation Rates

As with the inelastic neutron-scattering cross section,
can make a series of predictions for NMR relaxation rat
The NMR relaxation rate is given in terms of the spin-sp
correlation function,18

1

T1
5 (

a51,2
b51,2,3

E dk

2p
Aab~k!Aag~2k!^nbng&~k,vN!,

~61!

wherevN5gNH is the nuclear Larmor frequency withgN
the nuclear gyromagnetic ratio and theAab are the hyperfine
coupling constants. In the above we have assumedH is
aligned in the 3(z) direction. We assume that the hyperfin
couplings are independent of the wave vectork. Hence
6-10
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1

T1
}AabAag^nbng&~x50,vN;0!. ~62!

We now consider the correlator^nn& in more detail. Specifi-
cally we will compute the contributions toT1

21 coming from
the different branches of low-energy excitations.

If the hyperfine couplings are such that the transve
fields are dominant, we obtain for 1/T1,

1

T1
; lim

v→0
E dteivt^n1~ t,x50!n2~0!&

5 lim
v→0

F 1

2vF
S p

bvF
D 2111/2K

h1/2K~bv/p!

1
c1

2

vF
S p

bvF
D 2112K11/2K

h1/2K12K~bv/p!G , ~63!

whereh1/2K is as defined in Eq.~54!. In the low-temperature
limit the second term is subdominant and we have

1

T1
}

1

2vF
S p

bvF
D 2111/2K

h1/2K~0!. ~64!

In the low-density limit ~i.e., H;D1), we have 1/T1
;T21/2. In this limit 1/T1 has a dependence uponT identical
to that of antiferromagnetic ladders.30,39 However asH is
increased, the power-law dependences of the two case
verge.

If on the other hand the hyperfine couplings are such
the contribution from̂ MzMz& is important we find,

1

T1
; lim

v→0
E dteivt^Mz~ t,x50!Mz~0!&,

5
2KT

vF
2 1c2S p

bvF
D 2K21

h2K~0!. ~65!

As K.1 for any finiteH in excess ofD, the first of the two
terms dominates.

D. Validity of Luttinger Liquid Picture

The Luttinger liquid picture we have developed is prec
only at zero temperature. Nonetheless we have argued
this behavior will persist to some degree at finite tempe
ture. We are in a position to analyze qualitatively at le
whether this is indeed true. To this end, we compute
susceptibility at finite temperature and finite magnetic fie
We do so using a more sophisticated formalism than p
sented previously: the thermodynamic Bethe ansatz. For
O~3! sigma model, the appropriate equations were origina
given in Ref. 40 but can also be found in Refs. 19 and
@Apropos of nothing, we have also computed the suscept
ity at large temperatures but zero field. In the zero-fi
large-T limit, Damle and Sachdev21 provide a high-
temperature computation of the susceptibility predicated
integrating out higher Matsubara frequencies. To sublead
order it is given by
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x~T!5
1

3p
lnS 32pe222gT

D D1 lnF lnS 8T

eD D G1OS ln@ ln~T!#

ln~T! D .

~66!

From a numerical analysis of the TBA equations at tempe
tures in the range,T;103D –107D, we find agreement with
this analytical form at the 1% level. To obtain this agreem
it was important to include the subleading term in the a
lytical expression.#

Plots of the exact susceptibility for various temperatu
derived from these equations are given in Fig. 5. Note,
particular, how the peak atH5D appears as the temperatu
is lowered. AtT50, we see from Eq.~46! that this turns into
a square-root singularity. The divergence of the susceptib
from its T50 value is a reasonable indication of the pers
tence of the Luttinger-liquid picture at finite temperature asx
can be given directly in terms ofK and vF @see Eq.~24!#.
Thus we expect finite temperatures to be destructive of L
tinger liquids associated with fieldsH only slightly in excess
of the gap where a finite temperature drastically rounds
the square-root singularity appearing inx. However at
higher fields where the density of magnons in the grou
state is larger and so presumably more robust against s
temperature perturbations, the susceptibility is equal to
zero-temperature value. In this case we expect theT50 Lut-
tinger liquid picture to remain valid.

We note as an aside the square-root singularity inx ap-
pearing in Fig. 5 atT50 is a generic feature. It appears
any model~not only spin chains! with a gap and a low-
energy quadratic dispersion relation. Its appearance is
related in any way to the O~3! NLSM being integrable~al-
though the integrability allows us to compute exactly t
coefficient of the divergence!. We thus expect this square
root divergence to appear also in spin chains with large ea
axis anisotropies. Indeed the rounded finite-tempera
counterpart of this divergence has already been seen
NENP.33

Beyond the effects of finite temperature, the Luttinger l

FIG. 5. Plots of the susceptibility as a function of applied fie
for a variety of temperatures.
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uid phase can be destroyed by the presence of intrac
couplings. In mean-field theory, a three-dimensional or
due to such couplings develops at a transition temperaturTc
given by

15uaJ8x'~q50,v50,T5Tc!u, ~67!

wherex' is the staggered susceptibility of a single chain
e
y

a

th
ur

g
ri

on
nt
n

a
ak

14441
in
r x'5E dxdteivt2 ikx^n1~x,t !n2~0!& retarded, ~68!

andJ8 is the intrachain coupling. Here we explicitly includ
the lattice cutoff,a21;J. q is the deviation from the wave
vectorp. From the expressions forn6 given in Eq.~19!, we
obtain, similar to Ref. 42,
x'~q,w!52S 2pa

bvF
D [ 2211/(2K)] sinS p

4K D
vF

FBS 1

8K
2 i

vFv2

4pT
,12

1

4K DBS 1

8K
2 i

vFv1

4pT
,12

1

4K D G

2c1
2S 2pa

bvF
D [ 2212K11/2K)] sinFpS K1

1

4K D G
vF

FBS K

2
1

1

8K
2 i

vF~v222pM !

4pT
,12K2

1

4K D
3BS K

2
1

1

8K
2 i

vF~v112pM !

4pT
,12K2

1

4K D1~M→2M !G , ~69!
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wherev65(v/vF6k). Combining this expression with th
mean condition leads to a transition temperature given b43

Tc

J
5

1

p

vF

vF0
S 1

2

J8

J

vF0

vF
d D 2K/(4K21)

,

d[sinS p

4K DB2S 1

8K
,12

1

4K D , ~70!

In deriving this expression we have ignored the term inx'

appearing in Eq.~69! dependent uponM as its contribution is
negligible for smallT.

Plotted in Fig. 6 is the dependence ofTc uponH for the
spin-chain compounds CsNiCl3 and AgVP2S6. We see that
as H is increased there is a corresponding increase inTc .
Thus at a fixed temperature and sufficiently large interch
couplingJ8, we expect that asH is increased there will be a
transition to a state with long-range order. We thus see
the Luttinger liquid phase is stable at a given temperat
only for smaller fields.

As discussed in the Introduction, a field-induced lon
range order has been observed in the spin-chain mate
NDMAP.32 Although this compound has a large single-i
anisotropy, we make an attempt to compare experime
observations with our analysis. From inelastic neutro
scattering experiments, the spin couplingJ of NDMAP is J
526.5 K.44 For a field applied along the chain~perpendicu-
lar to the easy plane defined by the anisotropy!, the corre-
sponding gapD is given in terms ofJ and D50.3J, the
strength of the single ion anisotropy, by Ref. 45,

D;0.4J20.66D55.3 K53.75 T,

with the Lande´ g factor equal to 2.1. In order to obtain
reasonable fit with the experimental observations we t
in

at
e

-
al,

al
-

e

J8/J5231024. The results are plotted in Fig. 7. The valu
used forJ8/J is considerably smaller~by a factor of 6! than
the value employed in Ref. 32. These authors, however, w
able to match the experimental data by assumingx' took the
form x';AT2211/2K with A some field-independent con
stant. We however find thatA is both field dependent an
generally larger in magnitude than the value ofA used in
Ref. 32. To compensate in matching the data, we need to
J8/J to be smaller in magnitude.

At fields not far in excess of the gap, we find reasona
agreement between the data and the theoretical computa

FIG. 6. A plot of the dependence of the 3D ordering temperat
Tc /J as a function of applied fieldH for two different spin-chain
compounds. The relevant values ofJ for two materials areJCsNiCl3
;16 K andJAgVP2S6

;320 K. The corresponding values of inter t
intrachain anisotropies areJ8/J;0.017 (CsNiCl3) and J8/J
;1025 (AgVP2S6). The left ordinate scale corresponds
AgVP2S6 while the right scale corresponds to CsNiCl3.
6-12
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At larger values of the field,H, the computedTc exceeded
the observed value. This is not surprising. As we saw in
computation of the exponenth, the assumptions underlyin
our computation fail to accurately describe the physics
large fields. WithH/D.2, we enter a region where the ma
netization per site of the system is some significant fract
of its maximal value of 1, a regime that our method, whi
puts no bound upon the magnetization, is unable to han
properly.

The destruction of the Luttinger liquid phase due to
applied magnetic field occurs not only for spin-1 chains
also for antiferromagnetic spin-1

2 ladders.30 Unlike the result
found in the case of two antiferromagnetically coupled sp
1
2 chains,30 we find howeverTc is strictly monotonic as a
function of applied field. The difference in the two cases
again that we haveK.1 and increasing with field while in
the case of antiferromagnetic spin ladders, we haveK,1
and decreasing with field. There is an additional instabi
that affects antiferromagnetic spin ladders, an instability
the formation of a spin-Peierls state due to coupling to
lattice.46 However spin-1 chains are thought to be rob
against this perturbation.46

APPENDIX A: ANALYSIS OF THE GROUND STATE
AT TÄ0

In this section we determine the characteristics of
zero-temperature ground-state in a magnetic fieldH exceed-
ing the gap. At the heart of this analysis lies the insiste
that the ground-state wave function be compatible with
scattering amplitude,S11 , as defined in Eq.~21!. This am-
plitude characterizes the wave function,c(u1 , . . . ,uN), of a
ground state withN particles through the application of pe
riodic boundary conditions. In allowing thei th particleu i to
traverse the entire lengthL of the system and so commu
with the otherN21 particles, the wave function picks up
phase

FIG. 7. A plot of the dependence of the 3D ordering temperat
Tc /J as a function of applied fieldH for the spin-chain compound
NDMAP.
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c~u1 , . . . ,uN!→f~u i !c~u1 , . . . ,uN!,

f~u i !5)
j Þ i

N

S11~u i2u j !e
iLD sinh(u i ). ~A1!

The first term is a product of scattering amplitudes aris
from thei th particle scattering with the remainingN21 par-
ticles. The second term comes from the bare momentum
ried by thei th particle. With periodic boundary conditions
we must have

f~u i !51.

Taking logarithms of this constraint leads to the quantizat
condition

Ni5
LD

2p
sinh~u i !1(

j Þ i

1

2p i
ln S11~u i j !, ~A2!

whereNi is the quantum number characterizing the rapid
u i , @i.e., ln(1)5i2pNi]. As we approach the continuum limit
we can then write a difference equation between succes
integers,Ni andNi 115Ni11,

15
LD

2p
cosh~u i !du i1(

j Þ i

1

2p i
~]uln S11!~u i j !du i ,

du i5u i 112u i . ~A3!

The density of states per unit length atu i is defined as
n(u i)[1/Ldu i . With this we can rewrite the above in th
continuum limit as

r~u!1 r̃~u!5
D

2p
cosh~u!1E du8r~u8!G11~u2u8!,

~A4!

wherer is the density of occupied states andr̃ is the density
of unoccupied states, so thatr1 r̃5n. Here G11(u)
51/2p i ]ulnS11(u).

At zero temperature, the equation forr can be simplified.
With T50, the ground state has a Fermi surface atuF .
Excitations with rapidities,uuu.uF , do not appear in the
ground state. Thus

r~u!5 Hn~u!, uuu,uF

0, uuu.uF
,

r̃~u!5 H 0, uuu,uF

n~u!, uuu.uF
, ~A5!

and we obtain Eq.~22! for r at zero temperature.
We have computed the interacting density of states.

can also compute the interacting energy of theSz51 excita-
tions in the ground state. The total energy of the syst
equals

E5E du~D cosh~u!2H !r~u!. ~A6!

If we vary the density of occupied particles and holes,r

→r1dr andr̃→ r̃1dr̃, the total energy varies accordingl

e
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dE5E du„D cosh~u!2H…dr~u!.

But we can also express this variation in energy in terms
the interacting or dressed energies of the excitations,

dE5E du„dr~u!e1~u!2dr̃~u!e2~u!….

e1(u)/e2(u) mark the energies needed to excite a parti
~or hole! above the ground state. At zero temperature th
are defined such that

e1~u!5 H .0, uuu.uF

50, uuu,uF
,

e2~u!5 H 50, uuu.uF

,0, uuu,uF
, ~A7!

Togethere6 make up a monotonic, smooth function viae
5e11e2. Comparing the two expressions fordE and using
the constraint on the variation inr and r̃ coming from Eq.
~A4!,

dr1dr̃5E du8dr~u8!G11~u2u8!,

we arrive at Eq.~24!.

APPENDIX B: DETERMINATION OF DRESSED
SCATTERING PHASE

In this appendix we compute the dressed two-body s
tering phase of a particle-hole excitation. To compute t
phase we examine how the momentum of one of the ad
excitations is altered by the addition of both excitations
the system.

The two-body scattering phase of the particle-hole exc
tion is defined by

dph~up ,uh!5L„pp~up!2pp0~up!…, ~B1!

wherepp(u) is the momentum of the particle when the pa
ticle hole pair is present; whilepp0(u) is what the momen-
tum of the particle would be without the hole and without t
effect of the particle’s presence on the sea of excitati
already present in theT50 ground state.

Let up , uh be the rapidities of the particle and the ho
that we intend to add to the system. Without having add
either excitation, the dressed momentum of the particle
given by

pp0~up!5D sinh~up!12pE
2uF

uF
dun0~u!f~up2u!,

f~u!5
1

2p i
ln S11~u!, ~B2!

wheren0[r1 r̃ is the density of states given in Eq.~22!.
This is the density of stateswithout either the particle or the
hole being present. Once the particle and the hole are ad
14441
f

e
y

t-
s
ed

-

s

d
is

ed,

the density of the ground-state sea is altered. Rather
being given by Eq.~22!, it is governed by

n~u!5
D

2p
cosh~u!1

1

L
@G11~u2up!2d~u2uh!#

1E
2uF

uF
du8n~u8!G11~u2u8!. ~B3!

The 1/L term @G(u2up)2d(u2uh)# represents the distur
bance the particle-hole excitation produces in the density
states. Thed(u2uh) arises from removing the particle t
create the hole, whileG(u2up) arises from including the
particle in the integral*du r G11 : the presence of this par
ticle alters the density of states in the same way as does
continuum of particles in the ground state.

Taking into account the alteration the addition t
particle-hole excitation has upon the density of states,
momentum of the added particle becomes

pp~up!5D sinh~up!12pE
2uF

uF
dun~u!f~up2u!.

~B4!

As uF is unshifted by the addition of the particle-hole pa
we are able to writen(u) as

n~u!5n0~u!1
1

L
n1~u!2

1

L
d~u2uh!. ~B5!

Substitution of Eq.~B5! into Eq. ~B3! then allows the scat-
tering phase to be reduced to

dph~up ,uh!522pf~up2uh!

12pE
2uF

uF
dun1~u!f~up2u!,

n1~u!5G11~u2up!2G11~u2uh!

1E
2uF

uF
du8n1~u8!G11~u2u8!. ~B6!

We are interested in computing the scattering phase righ
the Fermi surface, i.e.,dph(up5uF ,uh5uF). But we then
immediately see

dph~uF ,uF!522pf~0!52p. ~B7!

Hence the low-energy particle-holeS matrix is S
5eidph(uF ,uF)521, as we claimed. Here we have focus
upon the changes in the momentum of the particle. If we h
examined the momentum of the hole instead we would h
arrived at an identical conclusion.

APPENDIX C: REDUCTION OF A FERROMAGNETIC
SPIN-1

2 LADDER TO AN EFFECTIVE SPIN- 1
2 CHAIN

In this section we consider a map reducing a spin-1
2 ladder

with ferromagnetic rung interactions in a magnetic field to
effective spin-12 chain. The essential idea behind the map
already discussed in a number of papers.29,30 However there
6-14
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the treatment considered a ladder with antiferromagn
rung interactions. Here we adapt the map to ladders w
ferromagnetic rungs.

For the sake of simplicity we consider a two-rung ladd
as shown in Fig. 8. The Hamiltonian of the ladder is given

H5HJ1HJ'

5J~Sa1Sa21Sb1Sb2!1J''/2~Sa1
1 Sb1

2 1Sa2
1 Sb2

2 1H.c.!

1J'z~Sa1
z Sb1

z 1Sa2
z Sb2

z !1H~Sa1
z 1Sb1

z 1Sa2
z 1Sb2

z !.

~C1!

We will suppose thatJ.0 while J'',J'z,0.
We first treat the limitJ50 where the rungs decouple

The eigenstates on each rung with their corresponding e
gies are then

u1&5u↑↑&,
J'z

4
2H;

u0&5
1

A2
~ u↑↓&1u↓↑&),

J''

2
2

J'z

4
;

u2&5u↓↓&,
J'z

4
1H;

us&5
1

A2
~ u↑↓&2u↓↑&), 2

J''

2
2

J'z

4
; ~C2!

where the first three states are that of the triplet while
remaining state correspond to the singlet. The two sta
u1& and u0& are of lowest energy. It is these two states th
we will use in constructing the effective spin-1

2 chain.
To take into accountHJ we perform second-order pertu

bation theory. We find that the energies of the four ba
states describing the low-energy Hilbert space of both run
u11&, 1/A2(u10&6u01&), and u00&, are shifted as fol-
lows:

FIG. 8. A two-rung spin ladder.
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u11&:
J

2
,

1/A2~ u10&6u01&): 6
J

2
,

u00&: a[
J2

2~J''2J'z!
1

J2

8J''

. ~C3!

We can write down an effective system of interacting sp
-1

2 ’s u↑̃& and u↓̃& by identifying u1&5u↑& and u2&5u↓̃&. The
corresponding Hamiltonian is

He f f5
J'

e

2
~s1

1s2
21s2

1s1
2!1

Jz
e

4
s1

zs2
z2He~s1

z1s2
z!1c,

~C4!

where the various effective couplings are given in terms
the original couplings by

J'
e 5J,

Jz
e5J/21a,

He5
H

2
1

a

4
1

1

4S J''2J'z2
J

2D ,

c5
J''

2
2H1

J

8
1

a

4
. ~C5!

We point out that asa can be negative, so canJz
e . Negative

Jz
e is essential to describe correctly the physics of the spi

chain.
Having reduced the spin ladder with ferromagnetic ru

couplings to a spin-12 chain we now bosonize. Applying th
standard results~see Ref. 13! we find that the associate
Lagrangian is

L5
K

2p
]mF]mF,

K5
1

S 11
2Jz

e

pJeD , ~C6!

while the fields are given by
6-15
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n2~x!5
1

A2
@Sa

2~x!1Sb
2~x!#

5s2~x!

5e2 iF(x)
„11c1cos$2p@Q~x!2Mx#%…,

Mz~x!5Sa
z~x!1Sb

z~x!

5sz~x!11/2

52
K

vFp
]tF~x!1c cos$2p@Q~x!2Mx#%.

~C7!
h.

t.

i,

t,

P.

, J

,

.

s

v.
,

s.

14441
Here M is the magnetization density of the spin-1
2 ladder

~and so the corresponding spin-1 chain!. In terms of the mag-
netization,Me, of the effective spin-12 chain,M5Me11/2.
We seen2 is defined in terms of theky50 component of the
ladder spin operators. Here we thus expectn2 to encode
power-law correlations for wave vectors neark5(p,0). In a
ladder with antiferromagnetic rungs, power-law correlatio
would be seen instead fork5(p,p).

With Jz
e,0 ~provideda is sufficiently large! we see that

K.1, in correspondence with both our analysis and the
sults of Ref. 33. This marks out the main difference betwe
ladders with ferromagnetic rungs and ladders with antifer
magnetic rungs. With antiferromagnetic rungs, a simi
analysis leads toJz

e.0 and soK,1.29,30
B

hi,

-
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