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Haldane-gapped spin chains as Luttinger liquids: Correlation functions at finite field
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We study the behavior of Heisenberg, antiferromagnetic, integer-spin chains in the presence of a magnetic
field exceeding the attendant spin gap. For temperatures much smaller than the gap, the spin chains exhibit
Luttinger liquid behavior. We compute exactly both the corresponding Luttinger parameter and the Fermi
velocity as a function of magnetic field. This enables the computation of a number of correlators from which
we derive the spin conductance, the expected form of the dynamic structure factor relevant to inelastic neutron-
scattering experiments, and NMR relaxation rates. We also comment upon the robustness of the magnetically
induced gapless phase both to finite temperature and finite couplings between neighboring chains.
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[. INTRODUCTION of fermions. This, of course, is nothing more than a Luttinger
liquid. The purpose of this paper is to study its properties.
The existence of a gap in one-dimensional, integer-spin, The field theory describing the continuum limit of integer-
Heisenberg antiferromagnets was first predicted by Haldanespin chains is the 3) nonlinear sigma modé¢NLSM) with-
He found that such spin chains can be mapped onto a gappetit a topological termi** The Q3) NLSM also describes
field theory in the large-spin, continuum limit. A variety of half-integer-spin chains but in this case the topological term
checks imply that this behavior persists down to spirL.. A is present with coupling= 7. The presence of the topologi-
spin-1 chain with a specific@{‘ §)2 coupling has been rigor- cal term leads to gapless behavior. Indeed at low energies the

g ) - e 0O(3) NLSM with 8= 7 flows to the critical theory, SU(3)
ously shown to exhibit a spin g&pi/hile at a differing value (for a review see Ref. 13

of the (S'S)Z coupling, the spin chain is gaplethis criti- Unlike its ancestral theory, the Heisenberg spin-1 chain,
cal point is believed to be unstable in the two-parameteg,q Q3) sigma model has the virtue of being integrafé®
space of couplings. Gapless behavior thus only arises as\ghile the aspects of the physics of integer-spin chains have
prOdUCt of fine tUning. Numerous numerical studies Carrie(been studied using the |ntegrab|||ty of the (3))
out on spin-1 chains observe a dafixperimentally, inelas-  NLSM,*216-28spin chains remain incompletely understood.
tic neutron-scattering studies on a number of quasi-onewhile thermodynamic properties of an integrable model are
dimensional spin-1-chain materials are consistent with a figenerically accessible, correlation functions are not. There
nite spin gap.~’ do exist a variety of techniques to compute correlators. At
The physics underlying the gap is particularly robust: re-zero temperature, truncated “form-factor” computations are
lated systems such as two-leg sgier Hubbard ladders also able to access exact information of the low-energy properties
exhibit a gap to spin excitatiofisRoughly speaking, integer- of the spectral function¥:1® These techniques have recently
spin composites form across the rungs of the ladder makingeen extended to compute examt/-temperatureexpansions
it into an effective integer-spin chain. Both the ability to of these same quantitié®There also exists an elegant semi-
fabricate these materials and their relationship to High- classical approaéh?!predicated upon combining ultra-low-
cuprate superconductors have made them the focus of irenergy information from the quantum theory with older ap-
tense theoretical and experimental studits. proaches of computing correlators in classical syst&ms.
The centrality of the gap is no less when these materialslowever, all these techniques require the energy scales in the
are subjected to an applied Zeeman fidid,In a field ex- problem (in particular, the temperaturé and the applied
ceeding some critical valuél.~A, the excitation spectrum field H) to be much smaller than the gap,
of integer-spin chains changes dramatically and the gap Fortuitously there exists an alternate approach that allows
vanishes'? At H=0 the ground state is a singlet. The el- the computation of correlation functions wher>H_. The
ementary excitations above the ground state are three masentrol over the thermodynamic properties of the model that
sive spin-1 bosonic magnon modes. In contrast, wHeex-  integrability affords allows the computation of the Luttinger
ceedsH., the gap of one of the magnons closes and thgarameter. While the Luttinger parameter characterizes the
ground state of the spin chain begins to fill in with gaplessstrength of the interactions between excitations, it is a far
excitations. If interactions between the gapless magnonsiore central quantity, in that it provides a near complete
were completely absent, the excitations would collapse into description of the low-energy structure of the theory. To-
condensate of free bosons. On the other hand, if interactiorgether with the knowledge of the Fermi velocity, a quantity
were perfectly repulsive at any energy scale, the bosonalso easily accessible with integrability, a host of information
could be thought to possess a hard core and so form a gas ©dn be determined, including the computation of specific cor-
free fermions with some Fermi surface. But in fact the inter-relators and their scaling exponents. Such techniques have
actions are expected to lie midway between these extremdsmeen used to study the sine-Gordon model in the presence of
and what one ends up with is equivalent to an interacting sea chemical potential exceeding the gap., the mass of the
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sine-Gordon solitons’>2*Similarly the low-energy structure in the context of largeN techniqueg® where the O(3)
of doped generic Hubbard laddds armchair carbon nano- NLSM is replaced with its QYl) counterpart(Parenthetically
tubeg has been studied in Ref. 10 utilizing this formalism. we point out that the larght approximation of the (B)
The particular derivation of the Luttinger parameter in thisSNLSM has been criticized by authors of Ref. 27. In this work
paper is based upon the treatment in Ref. 25. the authors note that the ultra-low-energy limit of the scat-
The ability to compute the Luttinger parameter togethenering in the @3) NLSM differs from that predicted by a
with the Fermi velocity is predicated upon some genericargeN expansion of the exa€®(N) S matrix.)
properties of integrable models. Most importantly, the exact Beyond largeN, the Luttinger liquid phase of the spin-1
eigenfunctions of the model’s fully interacting Hamiltonian chain has also been studied in the guise of analyzing Spin-
are known. With this knowledge comes a well-defined notionladders. Bosonization techniques have been used to study the
of “particles” or elementary excitations in the system. Ulti- ladder system in a regime where the legs of the ladders are
mately this feature is a consequence of the infinite number ofveakly coupled® In the opposite limit, in a regime where
conservation laws possessed by the integrable model. In pathere are strongantiferromagneticcorrelations across the
ticular, particle number is conserved in any collision andladder’s rungs, the gapless Luttinger liquid behavior has
multiparticle Smatrix elements factorize into products of been explored through mapping the system onto an effective
two-particle ones. An integrable model is a superior versionXXZ spin-4 chain?® In this latter case, the underlying inte-
of a Fermi liquid: a particle’s lifetime is infinite regardless of grability of the XXZ spin chain can be brought to bear upon
the distance from the Fermi surface. the problent® Given the simplicity of the map onto the spin-

In order to appreciate these features of th@NLSM, 1 chain, we adapt the map to the case where theréeare-
we provide an overview of the model. The model is de-magneticinteractions across the rungs of the lad@awpro-

scribed by the action priate for describing a spin-1 chairOur primary purpose in
1 doing so is to come up with a more precise identification
_ between the relevant fields in the theory and the bosonic
S——ded a*na,n), 1 , o
29 t wn) @) degrees of freedom of the Luttinger liquid. Although we

could exploit the integrability of the spifi-chain to compute
the Luttinger parameter, we do not do so. Given that the map
to the effective spirk chain is done through a perturbative
expansion where the importance of the higher-order terms in
the series is uncertain, we view extracting the Luttinger pa-

H=J> SSi1. (20 rameter directly from the @) NLSM as more reliable.

' Haldane-gap spin chains in a magnetic field have also

In the continuum, largs; limit, the spin operato is re-  been studied through a mapping onto an interacting, spinless

wheren=(n,,ny,n,) is a bosonic vector field constrained to
live on the unit spheren-n=1. This action is arrived at
from the Hamiltonian of the spin chain,

lated to the fieldh via Bose gas® This map provides a reliable description of the
: spin chain at small magnetizations. At small magnetizations,
S=(-1)'sn+M;. (3 the low density of excitations forming the ground state inter-

act only weakly. The scaling exponents and thermodynamic
properties of the system are then independent of the exact
nature of these interactions. Although not done by the au-
thors of Ref. 31, the integrability of the Bose gas, like the
integrability of the @3) NLSM, could be used to determine
M= anx o, (4)  the various properties of the Luttinger liquid phase. However
beyond the low magnetization regime, the results would dif-
and so is given in terms of the momentum conjugate.to  fer. It is interesting to note, however, that by fine tuning the

The triplet of bosons that form the low-energy excitationsstrength of the interactions of the Bose gas, the analysis of
of the O3) NLSM have a relativistic dispersion relation the Q3) NLSM, in particular the computation of the Lut-
given by tinger parameter, can be reproduced in large degree. We

o A comment upon this further in Sec. Ill.

E(p)=(p°+Aa%)™~ ) In this paper we take the Hamiltonian of the spin chain to
HereA is the energy gap or mass of the bosons and is relate@e in its minimal Heisenberg form and so igndfer the
to the bare coupling via A~Je™™9. We have set the bare Mmost par} the effects of anisotropies upon the physics. These
spin-wave velocityp ;= 2Js (the speed of light in this rela- can take(at least two forms. Easy-axis anisotropies,
tivistic system to be 1. The dispersion relation of all three
bosons is identical as the model has a glob@)@ymmetry.
We stress that this relativistic invariance is a natural feature
of the low-energy structure of the spin chain.

Our approach to the Luttinger liquid phase of the Heisen-of varying strengths are often found in spin-1 chain materi-
berg spin-1 chain shares some similarities with others takeals. Additionally, actual spin-chain materials never take the
in the literature. The NLSM has been used previously toform of an isolated chain. Rather the chains exist in three-
study the field-induced gapless phase of spin-1 chains, albeiimensional arrays with weak but nonzero interchain cou-

n(x,t) is the sublattice or Nal order parameter whilé
describes the unifornti.e., wave vectok~0) magnetiza-
tion. M is related ton via

AH=DXEi (sxi>2+Dy2i (syi>2+DzZ (S,)%, (8
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plings,J’. Thus the chains are at best quasi-one-dimensionglhase, we also consider in Sec. IV the robustness of this
(1D). With a finite J’, there will be some correspondingly phase to finite temperature. Although our derivation of the
finite Neel temperatureT,,. Below Ty the physics will be effective low-energy theory is done at zero temperature, the
dramatically different than described in this paper. conformal(or scale-invariantnature of the theory allows us
CsNiCl was the first material for which evidence of a to easily determine quantities &t>0. To explore how large
Haldane gap was fourfdThis material suffers from the sec- the temperature relative to the gap may become before the
ond aforementioned anisotropy with a relatively large inter-Luttinger picture breaks down, we study the susceptibility at
chain coupling,J’/J~0.017. Consequently ¢ order was finite T andH. We do so using a more sophisticated descrip-
observed to set in &~5 K. A more promising material for tion of the system, the exact equatidigeod for arbitraryT
the observation of a Haldane gap was found inandH) giving the system’s free energy.
Ni(C,HgN,),NO,CIO, (NENP). For NENP, the ratial’/J
~6x10*is sufficiently small that a 3D Na order has not Il. LOW-ENERGY EFFECTIVE THEORY FOR H>A
been observed down to temperature$.2 K.” However this . . . . o
material is characterized by a large easy-axis anisotrop)g In this section we describe the emergent Luttinger liquid
D,/J~0.25; D,/A~5/8 (D,~D,~0). Related materials ehavior of a spin chain arising in magnetic f|eld§ larger than
Ni(CsHN,)s(PFs) (NDMAP) and Ni(GH;4N5) ,N5(CIO,) the gap andl temperatures sa_t|sfyﬁﬁ§A. Fo_IIowmg Ref. .
(NDMAZ) share similar easy-axis anisotropies. In terms 0f3.4’ we provide a correspondlng Landau-Glnzburg dgscnp-
our analysis, these latter compounds share the additional ufjoN- Although we work with an effective theory, we will be
wanted feature of field-induced antiferromagnetfénthe 2Ple to compute the various phenomenological parameters
Luttinger liquid that results from magnetic fields large @PP€aring in it by insisting on consistency with th¢3D

enough to extinguish the Haldane gap leads to quasi—londw‘sr']v" Thizwill f(_)rmbthe éopic .of.Sec_. . . field
range antiferromagnetic correlations. With a small fidite The Landau-Ginzburg description is an approximate fie

these quasi-long-range correlations are promoted to fuﬁheory of the magnons and their interactions. We represent

fledged long-range order. The correspondingeNempera- the magnon f'?"_’ as. Itis a vector under the (‘,3) Symme-

ture increases with applied magnetic fields. In a mean-fieldy @kin to original fieldn and shares all ofr's original
framework, we compute this ordering temperature in Sec. [VJISCréte symmetries. However'is not constrained to live on
Thus at fixed temperature we expect only a finite window inth€ Unit sphere. The magnons have a gap and a relativistic

the applied magnetic field in which the Luttinger liquid be- dispersion relation. The simplest effective Hamiltonian with
havior will persist. these characteristics®fs

Perhaps the material best suited to the analysis presented 1 A2
in this paper is AgVPS;. It has an extremely small inter- H= <[>+ (3,m)?]+ —|m|?+ \|m|*—H(mXII),
chain coupling,J’'/J~10"° and a similarly small easy-axis 2 2
anisotropy,D,/A~10"2. However it possesses a compara- @)
tively large gap,A~320 K. As such, high-field measure- \herell is the momenta conjugate to. We have added a
ments H>A) have yet to be done on this materiahd are | m|* term to ensure overall stability. The corresponding La-
unlikely to be done sogncontrary to the case of NENP, grangian(with H in the z direction is
with a much smaller average gap~20 K.

The paper is organized as follows. In Sec. Il we develop a 1 5 5
Landau-Ginzburg description of the low-energy effective L= 7 [(am)7 = (axm) "]+ H(mydmy,—myamy)
theory of the integer-spin chain in a magnetic field exceeding
the spin gap. This effective theory reduces to a Luttinger
liquid and so has two controlling parameters: the Luttinger
parameteK and the Fermi velocity . In Sec. Ill we show
how these parameters can be determined as a function of tHde last three terms form the effective potential for the
applied fieldH through consistency with the(@ NLSM. model.

With this description of the low-energy theory in hand, we ~ WhenH<A, the minimum of the Landau-Ginzburg po-
analyze the behavior of a number of correlators in Sec. Ivtential occurs fom=0. But whenH>A the minima of the
Using a Kubo formula together with our know|edge of the potential now occur for field Configurations of the form
current-current correlators, we compute the spin conductance 5 A2
and the static susceptibility. With this latter quantity we have H—A
thus come full circle. We computeld and v based upon 4N
thermodynamic considerations and then, in turn, compute
correlators. From these correlators we th@e)compute
(consistently thermodynamic quantities. We also study the
staggered spin-spin correlators, quantities that would b

H?2 A2
+7(m§+m§)—7|m|2—)\|m|4. (8

mZ+mi= m,=0. 9)
g\s we are interested in the low-energy behavior of the
theory, we focus upon the low-energy fluctuations about
these field configurations. Introducing the new fieldsand

probed both in inelastic neutron-scattering experiments nea via
wave vectork=m and NMR relaxation rate measurements. M= im

While we have already raised the issue of the effects of (m+my)esi®=—2"—"Y (10)
interchain couplings upon the stability of the Luttinger liquid V2
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with m2=(H?—A?)/(8\), the effective Lagrangian can be s s K iK i
rewritten (to quadratic order in the fieldls Mi= ve P == —(pr= P )=5_(Ir]0)-
1 17
L= 5[(5tmz)2—(0xmz)2]+[(t9tm)2+ m5(9,®)?] Current-current correlators then can be deduced from
—[(3ym)2+m3(9,®)?]+ 2H(m2+2m,m)a,d o K
oMM+ M5B )1+ ZH (Mo + 2mom)ay (L @iw) =~ o 19
H2
2
—2(H?=AH)m*— - M- (1D an immediate consequence of E3).

The above identification of the fields is minimal in nature.
The low-energy physics i is governed solely by the field It is based upon both the Landau-Ginsburg analysis together
®. Them andm, modes are massive and may be integratedvith the simplest association of the fields in the NLSM with
out. Doing so results in a Lagrangian of the form those of the Luttinger liquid12). However it misses sub-
leading terms. To identify such terms directly from the
Landau-Ginsburg analysis would seem difficult. To circum-
vent this difficulty, we analyze a spihdadder system. With
ferromagnetic interactions across an individual rung of the
the bosonic form of the Luttinger model. Helkeandv ¢ are ladder we obtain an effective spin 1. And with antiferromag-
the effective Luttinger parameter and Fermi velocity. These€tic interactions along the length of the ladder, we obtain an
parameters can be related to the various parameters appegffective antiferromagnetic Heisenberg spin-1 chain. In a
ing in the original Landau-Ginzburg Hamiltonian. However Mmagnetic field, the ladder system can be reduced to an
this can be done only at the mean-field level: quantum flucequivalent spirg chain. Bosonizing such a chain in the stan-
tuations strongly renormalize their values. The approach wéard fashion yields a Luttinger liquid, precisely as in Eq.
thus take is to acceséandu ¢ directly from the integrability ~ (12. Proceeding in this way offers us the advantage that it
of the O3) NLSM. This, as has been indicated, is done inallows a more complete identification of the fields as well as
Sec. Il subleading terms. We so find

To complete this section we identify the fields of thé8D

=2 o oy2m L a2 12
_Z((yx )—U—zF'(ﬂt )|, (12

NLSM in terms of®. We can factorize the boso® into

right- and left-moving pieces each describing the excitations

at the two Fermi points® = ¢g+ ¢, . The (Euclidean
propagators ofp ;g are given in terms oK. We have

1
(LD pL(W))=— - In(z=w),

— — 1 _
(bR r(W) =~ gz In(z-w), 13

wherez/z=vgr*ix. The fieldsn. (x,7) creatingS,=1 ex-
citations are given in terms of the bosdnby

n“=e*'?®, (14)
and so are governed by the propagator of the form

(N (2)N_(W))=(x2+v27%) "V, (15)

K
M (X, 7)=— UF—W(?TCD(X, 7)+ccof2m[O(x,7)— Mx]},

n~(x,7)=e ' *®71+c cod 27 O(x,7) — Mx]}.
19

Here ®(x,7) is the boson dual to that ob and may be
written as

K —
O(x,7)= ~Ld(2) =~ ¢r(2)],

while c andc; are some numerical constants. We see that the
leading terms agree with that of the Landau-Ginsburg analy-
sis. The subleading terms are interesting, in that they depend
upon the magnetizatiokl of the system, and so lead to in-
commensurate behavior. This incommensurate behavior has
been argued to occtirin the context of spirs ladders with
ferromagnetic rungs.

The map from spirg ladders to effective spig-chains
has been studied extensively. Two general approaches have

We thus understand the spectral functions of low-energy expeen employed. In the case where the spitadder is

citations in terms oK whenH>A. Moreover, we can ex-

strongly antiferromagnetically coupled across the rgwg

press thez component of the magnetization operators inare however interested in ferromagnetic couplinga

terms of the W1) boson currentéin Euclidean spage Fluc-
tuations in the magnetization density are given by

5 K K 1.
Mo=M_=— 1),:_77077(1): ~(TprTdp)=5—(Jrt]0L),
(16)

while the corresponding spin currepy equals

straightforward map takes the ladder in a magnetic field to a
spin+ chain?>® In the case where the spin-ladder is
weakly coupled across the run@sther ferromagnetically or
antiferromagnetically more detailed studies have been
carried out, using successive bosonizationgor
fermionization$.?® Due to the simplicity of the former, we
adapt this method to ferromagnetic rung couplings, as dis-
cussed in Appendix C.
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E E E
FIG. 1. A sketch of the ground
state of the @) nonlinear sigma
A+H model in the presence of a mag-
netic field that exceeds the gap
A The S,=1 band is now partially

gapless

excitations \

' K Kk K filled with excitations; theS,=0
A-H band is unchanged as it does not
couple to the magnetic field; and
the S,=—1 band is shifted up-
wards in energy.

S=1 S=0 S=-1
z z z

The need to adapt the map is predicated upon two aspecstight deformations of the filled sea in tis=1 band. These
of the physics. The Luttinger parameter of the magneticallyow-lying excitations can be of arbitrarily small energy and
induced gapless phase of sgifadders with ferromagnetic/ so are gapless. If we linearize such excitations above the
antiferromagnetic rungs satisfigé>1/K<<1. However a Fermi energy of this band, we obtain a Luttinger liquid char-
nave application of the map yield€ <1 regardless of the acterized by a Luttinger paramet&rand a Fermi velocity
type of rung coupling. Additionally, the map, as it stands,vg .
does not take into account the different types of gapless be- To describe the ground state exactly, we need to take into
havior. The perpendicular susceptibility of ladders with anti-account interactions of the particles. These interactions are
ferromagnetic rungs, for example, sees power-law-like decaparametrized by their scattering. As thé3Dsigma model is
at k=(m,7) and exponential decay &= (,0). But the integrable, the scattering matrix is known exactly. Exploiting
situation is reversed for ladders with ferromagnetic rungs. the theory’s relativistic invariance, we can parametrize a par-

ticle’s energy and momentum in terms of its rapidéty de-

. COMPUTING K AND v FROM THE INTEGRABILITY fined as
OF THE O(3) NLSM E=A cosh6), P=Asinh ).

In this section we present exact results for #e-H, In this parametrization, Lorentz boosts sethe 6+ «. Lor
hase of the NLSM. They confirm the Luttinger behav- ; . o . ' -
P @ y g entz invariant quantities such &matrix elements therefore

ior implied by the Landau-Ginzburg description discussed in : S )
the preceding section. In particular, we show how to extracfjept?nqI onl¥hon td|fferent(_:e|s oftra;g;dltfs. T[i;enatrlx for
the phenomenological parametérsandu ¢ appearing in this  Scarerng he two-partice  sta 1( 1)6.121(4 2)) (a1,
L - o =1,2,3) into the final statga,(6,)as(6,)) is

description from the integrability of the (@) NLSM. 1 A T2/98 71

We begin by describing how the ground state of tH8)O a.a B
NLSM is altered in the presence of a magnetic field. Neglect- Saiag( 012) = 8a,a,%52,01(012) + 92,0, 0,2,02( 612)
ing interactions, the energy of an excitation with bare energy

E in a finite magnetic fieldH along thez axis is 02,8, 0a,2,73( 012), (20
E—SH. where =6, — 6, and

This leads to a splitting of the spin-1 triplet of magnons. In a o1(0)= : 2mi 6 i ,

mean-field “semiconductor” picture, this splitting is (0+im)(6—i2m)

sketched in Fig. 1. As the magnetic field, is increased

beyond the critical value dfi=H.=A, the ground state of o 6(o—im)

the spin chain changes dramatically. The ground state now o2(0)= (6+im)(0—i2m)’

begins to fill in with a finite density of magnorfand so is

akin to a doped semiconducjoif the S,=1 magnons were 2mi(im—6)

noninteracting, they would condense in the lowest possible o3(0)= (G+im(6—i2m)

energy level. But the magnons interact repulsively, and so

they fill the ground state as if they were fermions or hard-Since the ground state is filled solely wiy=1 particles,
core bosons. The technical manifestation of this behavior isve need theS-matrix elementS, ., , for scattering of two
the minus sign in thes matrix at zero momentum transfer such particles,

[6=0 in Eq.(20)]. With H larger thanA, the energy of an

excitation is potentially negative and excitations carrying 0—im

S,=1 appear in the ground state. We illustrate this in Fig. 1 S+ (0)= o+im (21)
schematically by plotting the dispersion relations for the

three types of excitations in the syste§)=—1,0, 1. This is found from the change of basif.=1/\2(A,;

The ground state of the system fidr>H, is therefore a  +iA,), whereA, is an operator creating an excitation carry-
sea of magnons. The low-energy spin excitations consist ahg quantum number.
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Knowing S allows us to determine the density of states 1
per unit lengthp(6), of the sea of particles &1 >H_.. The
derivation is standard and can be found for the case at hand 0.8 |
in Ref. 35. For completeness we repeat these arguments in
Appendix A. At zero temperature, the repulsive nature of the 06 |
particles leads them to fill the sea up to some Fermi momen- o ’
tum, so that the density satisfipgd) =0 for |6]> 6. For Z
|6]< 6, we have e 0.4
A OF 0.2
p(0)=2—COSH0)+f do'p(0")I',  (6-6"), ’
T -0
(22 0
h 1 1.5 2 25 3
where H/A
1 1 FIG. 2. A plot of the Fermi velocity of the low-energy excita-
I (0)= ﬁa‘gln S++(0)= 0%+ 72" (23 tions present ‘i)n th&,=1 band wherHlA. ¥

The first term on the right-hand side of EQ?2) is the free

term, while the kernel, . appearing in the second term .,mntey . for the gapless excitations above the magnon
measures the strength of the interactions.IAs, >0, the  go5 e first note that

interactions lead to a density of states greater than the bare

either to the right or to left at the Fermi velocity:. To

value of (A/2m)cosh@) associated with purely free fermi- Je 90 de
ons. The strength of the magnetic fiettl determines the VE= o =578 . (27)
Fermi rapidity 6 . To find it, it is first convenient to intro- Ple- € P 0= 6

duce the dressed energy6) of the magnons. This is the . i .
@40) 9 Here p is the dressed momentum of the excitations and is

amount of energy the system loses when a particle of rapidité. b " imilar to th ina th
6 is removed from the sea. It is given by iven by an equation similar to the one governing the energy,

4 1 HF ’ ! !
e(6)=A cosrw)—H+f " do'e(0)T L (0-0'). p(e):AS'”W)*f ,40'p(0)$(6=07), (28
_0': “YF
(24 where@(0)=InS,  (6)/2mi is the unrenormalized scattering
At zero temperature, the particles fill all allowed levels up tophase. By comparing Eq28) with Eq. (22) we seedyp
6= 6 . Therefore the Fermi rapidity is determined by solv- =2mp. The Fermi velocity is then given by
ing Eq. (24) subject to the boundary condition, L
Jde
€(0F)=0. vF:ZTrp(H) ET)

Thus for|6|< 6, €(8)<0. The energy of the system per
unit length at zero temperature is given by

(29

0=0¢

While the integral equation&2) and(24) cannot be solved
in closed form, it is easy to solve them numerically. This

Or yields the curve plotted in Fig. 2. Its most notable feature is
E(H)=f p(6O)[A cosi{9)—H] the vanishing ofvg for H nearA. Below we will give a
~oF power-series expansion foi, valid whenH is nearA.
o d6 The couplingK is similarly straightforward to find. As we
= f o e(0)cosh 9). (25 now show, it is related to the renormalized s, of ex-
—UF

citations near the Fermi surfacBg measures how interac-
The zero-temperature magnetization follows immediatelytions change the response of a s§jr= 1 excitation near the
from the above equation, Fermi surface to a change in the magnetic field. It is related
to the dressed energy by
M(H)=—dyE(H), (26)
: . - . Sr=—3ne(0)]p=0,. (30)
with the corresponding susceptibility given by(H)
=dyM(H). and so obeys the integral equation
We now are able to compute the Luttinger paramekers
and v appearing in the effective theory as functions of OF . ,
H/A. The key is to study this system in terms of its gapless Sr=1+ ff(, SR04+ (0= 0'). (31)
guasiparticle excitations present whiei>A. These excita- F
tions are not the original magnons, but rather the excitation¥he H dependence o8 arises from the dependence &f
above the magnon sea. Since they are gapless, they mowa H.
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The basic idea behind the relationshipkofind Sy, is that 27
the low-energy excitations neat= 6 are free fermionic.
That is, their dresse8 matrices are- 1.2° In contrast to Ref. 1.8 |
25, here it is relatively easy to demonstrate this and we do so
in Appendix B. As a consequence of the free-fermionic be- 1.6 |
havior, the only nonvanishing matrix elements of the current i
operator, j, =—2K(vg'd,—id) ., involve a single 1.4
particle-hole pair. Lorentz invariance requires that these ma-
trix elements be given by 12 |

(6 65|jL(0)]0) = pce (n* )72, (32) 1
~ ~ _ _ 1 L5 2 2.5 3

where ¢, and 6, are the rapidities of the particle and the HA

hole, respectwely Here we have defined the rapiditieand
0 via the dispersion relatlone(a)— —vep(f)=pne ", FIG. 3. A plot of the Luttinger parameter describing the low-

Where the mass scajeis arbitarary and can be redefined by energy excitations present in te=1 band wherH>A.
a shift in 4. The constant is simply related to bothK and (0)
++

Sr. In a Luttinger liquid,K appears in the current-current  qo=(A—H)[1+2I", ,(0) gF]+A—9§+O(6é);
correlator(18). To relate this tac, we insert a complete set of

states and use the matrix elem¢B®), giving

A
dy==—26:T2 (0)(A—H)+0(67), 36
<iL<x,t>jL<0>> 2=7 ~ 2015 (0)(A—H)+O(6f) (36)

K wherel ', , (0)=1/72. To determinedr we apply the condi-
f 5 o (JL(X t)|9h p><9 9h|JL(0)> (IX+—vT)2 tion e(6g)=0, resulting in
F

H H H %2
4 3
c2 Similarly we can showp(6) to be
=, 33
Am°(ix+vgT)? 33 p(0)=po+pr02, (39)

On the other handg is related toSg, as integrating the Wwhere

above matrix element gives the value 8§ on the one- 2122
particle states, 2mpo=A[1+2I, ,(0)0+462T2 ,(0)]+0(62),

A
2 2
~ o~ ~ ~ =—— + .
2ot~ | ax(@rIM30[52) 2mp2=5 ~ 206l (O)ATOL) 39
We can find the renormalized spin similarly.
I JLX) |~ These expansions give the power-series expansiorts for
B Yo |72 andv to be
dX - - . 0 % 25/2 H 1/2 88 [H H 3/2
=i | == celttt)i2ginx(e’2—e") =14 —— | __
|f2wuce e K1+772A1 +3774A1+OA1 ,
__icé(El—Ez). J—(H )1/2 8 (H H )3/2}
VE=U 2l ——1| - ——=1/+0|—-1 .
Thusc=i27Sg and so FoR A 377\ A A
(40)
K= ng- (34 We have restored the bare spin-wave velociﬁg (earlier set

to 1).

We see that as a function of the magnetic field, the Lut-
tinger parameteK is 1 at thresholdH=A, and then in-
creases with increasing field strength=1 atH=A is a
universal result already obtained by Refs. 34 and 36. It is

Given Sy is described by the integral equati¢ddl), K fol-
lows immediately. The results are plotted in Fig. 3.

It is straightforward to find explicit power-series expan-
sions forK andvg valid for H nearA. We begin by com-
puting €(#). For H slightly larger thanA, we can expand

€(6) around6=0, independent of the exact nature of the excitations that fill the
ground state at finite magnetization. In the low magnetization

€(0)=dg+d,6%+0(6). (35) regime, the excitations of the ground state interact only

weakly due to their low density. Thus to a zeroth-order ap-

Plugging this into Eq(24) demands, andd, satisfy proximation, they can be treated as free fermions with a cor-
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responding Luttinger parameter kKif=1. Thus in the analy- K KT2 1

sis of antiferromagnetic spin laddéfsK=1 at H=A is <Mz(x,r)—at<D(0)> =— -
again found even thougk decreaseéopposite to the behav- TUF 4vg sinf‘?(ﬂz)
ior of the spin-1 chainswith subsequent increases k. UE
Similarly in mapping the spin chain onto an interacting Bose 1

gas:! one arrives ak=1 for H~A. Here, howeverK at n

least increases with increasing field. By fine tuning the ) i7mT

strength of the interactions in the gas, one could in principle smhz(?f)

come close to reproducing the behavior as predicted by the

O(3) NLSM. Here we have evaluated it at finite temperature. By taking the
We illustrate this in more detail. The equations governingaPpropriate analytical continuations, we can arrive at the re-

the energy and renormalized spin of the Bose ga¥ & tarded correlator necessary to compute the susceptibility,

the case of the Bose gas the quantity equivaler8tés the ~ x(H). We so find

renormalized charge

(43

(H>H,) <M < aq>> KH)
X = —_— t = .
5 O ‘ Zﬂ-v’: retardedl, _ oy —o mog(H)
e(0)=0 —H+f do'e(6')I 4 (6—06"), ' (44)
We point out that the static susceptibility is independent of
p temperature.
F i e .
SR=1+f SR(ONHT L (6—0"), As we are able to compute the susceptibility of the spin
— Ok chain directly from the thermodynamics of th€¢3DNLSM,

we are able to perform a nontrivial check on the correctness

of this calculation. The susceptibility at T=0 is given by
(41)  taking two derivatives of the energy, as displayed in Egs.

(25 and(26). Expanding this in a power series as explained

) , i , at the end of the preceding section gives the energy per unit
Herec is the strength of the interactions in the Bose gas. 'flength to be

c=1, we see that the equations of the Bose gas are nearly

C
(0=~ 2

identical to those of the (3) NLSM. The sole difference A2[252H 32 16 /H 2
(apart from some trivial shifts and rescalindies in the de- E(H)=- > ?(K_ ) + ﬁ(g— )
; Bos — 2 ™ ™
pendence of the bare energy upéni.e., eg°°(6) = 6°—H
while €)-M(9)=A cosh@)—H. At low energies the two are H 512
identical, but diverge at higher scales. +0 K_l ' (45)

so that the susceptibility is
IV. SCALING BEHAVIOR AT H>A

__ 12
Using the results foK andvg derived in the preceding X(H)=—dhEH)

section, we describe the scaling behavior present in the mag- [2[H -2 4146 H 172
netized phase of the spin chain. = E(K_ ) + ﬁJrO A 1)
A. Susceptibility and Spin Conductance _ K(H) (46)
mue(H)

We first consider the computation of the magnetic suscep-
tibility. To take into account the effects of a magnetic field, We see that we recover the susceptibility as derived from the
we add a term to the Lagrangian of the form above Kubo formula.

We can also compute the spin conductivity. The spin con-
K ductivity measures the resulting spin current arising from a
5£=Hf dxdthsz dxdtw—l)FﬁtCD. (42 spatially varying magnetic field and is defined via

js=0osVH.
Here we have used the fact that the oscillating ternMaof _
vanishes with the integration over Doing so the relevant The spin current operator has the general form
correlator in computing the susceptibility is then K
js= —vg—3d,P + (term dependent upoiM).
(M,d,D). 7
However the latter term i involving M will not couple to

This correlator can be evaluated in the bosonic formulationSZ in Eq.(42). As such the spin conductance is given simply
of the Luttinger liquid giving from a Kubo formula,
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1 K 0.5
Reo (w,H)=Iim—Im<j (——(%CI)) (w,k)
s kHOk ° UVpT ret 04
2 1=y
K1 03
=lim— = IM(3,P P} o w,k)
koo™ K
2, 15 2 25 3
=veK(H) 8(w). (47) | H/A ’
This result is valid at any temperature within the Luttinger 0.5
liquid framework. u
04 |
]
B. Inelastic Neutron Scattering i 03 | - "
We can make a series of predictions relevant for inelastic
neutron-scattering experiments with>H_. For scattering 0.2 0 02 o 05 o8
near wave vectok=, the experiments probe the single- ) M/A ’ ’

particle spectral weight of the fielsh?(x,t). The scattering

cross section is given in terms of the correlation function FIG. 4. Plots of the scaling exponentfor the transverse spin-

spin correlator{S,(x)S,(0))~|x|~ 7. In the top panel; is plotted
versus the applied magnetic field while in the bottom panes
cr(w,k)OCJ dwdke otriky (n?(x,t)n?(0,0)). (48)  plotted versus the magnetization of the ground state. In this latter
a graph we also plot the valugsquares of » found in Campos

Becausen; is massive, its spectral weight is exponentially Venuti et al. through a density-matrix renormalization-group analy-

suppressed at low energies and temperatures, and for sutk
cases we need only consider the contribution of the cor:

relator(n*n-), H.~J. In contrast the magnetization of the(3D sigma

model has no such upper bound. Thus we must work at val-
o ues of the applied field where the magnetization of the sys-

(T(w,k)%f dxdte ' knt(x,t)n"(0,0). (49  tem is small or alternativelyd<J. Given thatA~0.4J in a
spin-1 chain, this limit can only be ambiguously met at best.

We first examine th@ =0 behavior of this correlator. At smaller values of the magnetization, the disagreement
From the relation(19), the correlatokn*n~) equals may arise from differences between the lattice theory and its
continuum version. Nonetheless, we find reasonable agree-
ment.
(n"(x,7)n"(0,0))= Pt 22 UK +2cfcog2mMx) At finite temperature we can easily determine the form of
(X*+vEr) (n"n~). Via a conformal transformation we have
1 2\ 14K
X (50) N - 1
2 _2\K+1/4K " n"(x,7)n (0,0)= - -
(X+vE™) { ) vEp® |sinhTar(x/ve+i7)| Y

The exponenty=1/2K governing the leading piece of the 72\ KUK
transverse spin-spin correlator is plotted in the top panel of +2¢lcog(27-,|v| x)( )
Fig. 4 as a function of magnetic field. We see thathts Fﬁ

=A™ value is »=1/2, equal to that of free fermions. For 1
values ofH slightly larger tharmA, »=1/2K takes the form % . (52
|sinhTar(x/vg+ir)| 2KV

1 1 252 H 2 g (H : o : :
7==—==1 _(__ ) =— __1) Analytically continuing and then Fourier transforming thus
2K 2 w2 \ A 3 A gives us an expression for the cross section at fihjte
H 3/2 1 T —2+1/K ,8 BUF 1
+0 A 1) 5)  o(wk)= 207 (,BUF) f1,4K( - k) +C1E
In the bottom panel of Fig. 4 we ploj versus the magneti- % T T f B BUF
zation of the ground state. We also compare our computation Buk K+1/4K T — (K
to that of numerical simulations of a lattice integer-spin
chain, H=J3,SS,,, done by Campos Venugt al* The oM |+ f :3 B F(k 27M)
agreement between the two is reasonable but not overwhelm- m K+1/4K
ing. At larger values of the magnetizatio, this is to be (53

expected. For a lattice spin chain the magnetization must
saturate at some critical value of the applied magnetic fieldwith f.(x,y) equal td°
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fy<x.y>=hy(%<y—x> hy(%<y+x> : a(a»k)ocfdtdxe“‘“‘+‘kX<Mz(x,t>Mz<0,0>>. (57)

) y—ix The other two spin components of the magnetization are
hy(X)=RE{(2|)yB(T,1— 7” (549 massive and do not contribute at low energies. By the
fluctuation-dissipation theorem, we can recash terms of
whereB is the beta functionB(x,y)=T'(X)I'(y)/T'(x+Y). the imaginary piece of the corresponding retarded correlator,
So we obtain a scaling form far(w,k) with f(x,y) a uni-
versal function. The scaling form comprises two parts: one 5
relevant for wave vectoris near O and one yielding a contri- o(@,K) % — ————IM(M,M ) e @,K). (58)
bution for k near the incommensurate wave vectorN2 ~Be '
(understanding that all wave vectors involving have been
shifted by ). In the case thai», k<M, we obtain
We can analyze the above expression d¢giw,k) in the
small- and largéeF limits. In the caseT<M and w, k<M,

we can safely ignore the contribution of the second term in K w
Eq. (53). We then find (@ K)o =TT rpel ot uek) + dlw—vek)].
2 (59
o(w,k)~ O(—w—vek)O(vek—w
(k) vel%(1/4K) ( Fk)O(vr ) For wave vectors near2Vl we find instead
w2/v,2:—k2 —1+1/4K
1—6 , T<0),k; C2
cr(w,kiZﬂ-M)~—ﬁfz(l—K)simW(K—l))
—e w
2 (27| 2rUx ( 77) 1 1
o(w,k)=—|—-— co| = Bz(—,l— —) sin(7K) [ w?—k?\ K1
(en.k) UF(ﬁUF) 8K 8K™ 4K X r‘f}rr )(w 7 ) [sgnw+k)+sgnw—Kk)],
F
~T2PUX T k. (55)
T<w,k;
In the first caseJT<w, k, the leading term is temperature
independent. For the behavior in the second case to be ob- ) K3
served, we need>T. Otherwise thermal excitations in- (ke 2mM)~ — 2w [ 2m sin(K)
volving the other two bands,=0,— 1) would alter the Lut- T 1—e 8o\ Bug Vg
tinger liquid behavior of the ground state. For wave vectors
neark=2mwM, the second term in Eqd53) dominates, and LS )
we find instead xB7 51K Y(Ki2), T>ok
P TRV S —y ) *
o(w,KEZZT ~Cy 5 O(—w—Uvg
vl (14K +K) where ¢/(x) = dyIn(I'(x)).
w2/v,2:—k2 —1+K+1/4K
X O(vekt o) 16 ) Tk C. NMR Relaxation Rates

As with the inelastic neutron-scattering cross section, we

2 2 —2+2K+1/2K . .. .
2 can make a series of predictions for NMR relaxation rates.
O'(co,ktZﬂ'M)—Cl—( ) b

Vg m The NMR relaxation rate is given in terms of the spin-spin
correlation functiont®
g 1+K B2 1+K1 K !
oo Tk T2) [P lek T2t T ak) . ”
NT*2+2K+1/2K, T>w,k. (56) T_]_: 2212 jEAaB(k)Aay(_k)<nﬂny>(k,wN)a
=123
We thus see that the power-law dependences(ef,k) near (61)

k~2mM differ from those neak~0.

For scattering near the wave vectér=0, the spectral where wy=y\H is the nuclear Larmor frequency withy
weight of the magnetization operator is probed. It is thisthe nuclear gyromagnetic ratio and thg, are the hyperfine
operator that creatg®r destroy$ excitations neak=0. At coupling constants. In the above we have assufdets
low energies and temperatures the cross sectios given  aligned in the 3%) direction. We assume that the hyperfine
by couplings are independent of the wave vedtoHence
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1
T—locAaBAm/(an)(x:O,wN~0). (62) 14 ¢
We now consider the correlat¢nn) in more detail. Specifi- L2 T
cally we will compute the contributions ﬂf‘){l coming from
the different branches of low-energy excitations.
If the hyperfine couplings are such that the transverse 65 L
fields are dominant, we obtain forTl, "
1 . 0.6 |
T—~IimJdte""‘(n+(t,x=0)n,(0)> !
1 w—0 04 | _,IL:/'
1 S aa ;’:
=lm|—— h wlT 02 ¢ '
im ZUF(ﬁUF) vx(Bolm) // |
S \ . .
C% o\ Clr2KeuX 4 0 1 2 3 4 5 6
+— _) Ny ok (Bolm) |, (63 H/A
v\ BUE

FIG. 5. Plots of the susceptibility as a function of applied field

whereh,, is as defined in Eq54). In the low-temperature for a variety of temperatures.

limit the second term is subdominant and we have

1 1
( i h1/(0). 64 x(M=3z_In A

_ — | —
B

— 14 12K 1 (327Te27T
Tl 2U|: )
In the low-density limit (i.e., H~A"), we have 1T,

8T In[In(T)]
n{zs] ol

(66)

o

~T~Y2|n this limit 1/T, has a dependence up®ridentical
to that of antiferromagnetic laddet$*® However asH is

From a numerical analysis of the TBA equations at tempera-
tures in the rangeT ~10°A-10'A, we find agreement with

verge.

it was important to include the subleading term in the ana-

If on the other hand the hyperfine couplings are such thalytical expressior. o _
the contribution from(M,M,) is important we find, Plots of the exact susceptibility for various temperatures
derived from these equations are given in Fig. 5. Note, in

1 , particular, how the peak &t=A appears as the temperature
7.~ lim f dte“'(M,(t,x=0)M(0)), is lowered. AtT=0, we see from Eq46) that this turns into
1 w0 a square-root singularity. The divergence of the susceptibility
2KT o\ 2K-1 from its T=0 value is a reasonable indication of the persis-
= v|2: +c? E) hok (0). (65  tence of the Luttinger-liquid picture at finite temperatureyas

can be given directly in terms & andvg [see Eq.(24)].
Thus we expect finite temperatures to be destructive of Lut-
tinger liquids associated with field$ only slightly in excess
of the gap where a finite temperature drastically rounds off
the square-root singularity appearing jp However at
higher fields where the density of magnons in the ground
The Luttinger liquid picture we have developed is precisestate is larger and so presumably more robust against small
only at zero temperature. Nonetheless we have argued themperature perturbations, the susceptibility is equal to its
this behavior will persist to some degree at finite temperazero-temperature value. In this case we expectth® Lut-
ture. We are in a position to analyze qualitatively at leastinger liquid picture to remain valid.
whether this is indeed true. To this end, we compute the We note as an aside the square-root singularity iap-
susceptibility at finite temperature and finite magnetic field.pearing in Fig. 5 all =0 is a generic feature. It appears in
We do so using a more sophisticated formalism than preany model(not only spin chainswith a gap and a low-
sented previously: the thermodynamic Bethe ansatz. For thenergy quadratic dispersion relation. Its appearance is not
0O(3) sigma model, the appropriate equations were originallyrelated in any way to the () NLSM being integrablgal-
given in Ref. 40 but can also be found in Refs. 19 and 41though the integrability allows us to compute exactly the
[Apropos of nothing, we have also computed the susceptibileoefficient of the divergengeWe thus expect this square-
ity at large temperatures but zero field. In the zero-fieldroot divergence to appear also in spin chains with large easy-
largeT limit, Damle and SachdéV provide a high- axis anisotropies. Indeed the rounded finite-temperature
temperature computation of the susceptibility predicated ormounterpart of this divergence has already been seen in
integrating out higher Matsubara frequencies. To subleadinglENP3®
order it is given by Beyond the effects of finite temperature, the Luttinger lig-

As K>1 for any finiteH in excess ofA, the first of the two
terms dominates.

D. Validity of Luttinger Liquid Picture
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uid phase can be destroyed by the presence of intrachain ot -

couplings. In mean-field theory, a three-dimensional order XL:J dxdte” " *(n"(x,t)n"(0)) retardes (68
due to such couplings develops at a transition temperdiure

given by andJ’ is the intrachain coupling. Here we explicitly include

the lattice cutoffa™*~J. q is the deviation from the wave

1=[adx.(a=00=0T=To)], 67 vector 7. From the expressions for" given in Eq.(19), we
wherey, is the staggered susceptibility of a single chain, obtain, similar to Ref. 42,

3 o
[—2+1/(2K)] SIN 2K

_ [2ma B 1 'UF(LLl 1 B 1 _U,:erl 1
xuaw=={g- e |BleK  amm k) Blak T aar 3k
. 1
227 l2+2K+1/2K)JS'r{” “taK } oK, 1 velw —2aM) 1
N Bue UE 2 8K 47T ’ 4K
wp| Ry L queloctanM) L) v 69
278k T aar 2k T M==M)}, (69)

wherew. = (w/ve*k). Combining this expression with the J'/J=2x10"%. The results are plotted in Fig. 7. The value
mean condition leads to a transition temperature givéli by used ford’/J is considerably smallefby a factor of 6 than
the value employed in Ref. 32. These authors, however, were
Te 1 ve (10 vgy |2EK-D able to match the experimental data by assumingook the
I 70\ 27T 0o ' form y, ~AT 2"V with A some field-independent con-
stant. We however find tha is both field dependent and
1 1 generally larger in magnitude than the valueffused in
( ) (70 Ref. 32. To compensate in matching the data, we need to take
J’/J to be smaller in magnitude.
In deriving this expression we have ignored the termyin At fields not far in excess of the gap, we find reasonable
appearing in Eq(eg) dependent upoM as its contribution is agreement between the data and the theoretical Computation.
negligible for smallT.

Plotted in Fig. 6 is the dependence Tof uponH for the £ 08
spin-qhgin compounds C_sNi\;:hnd AgVF5_56. We see that 4 CsNiCl,
as H is increased there is a corresponding increaséin 006 | >—>AgVPS, 0.6
Thus at a fixed temperature and sufficiently large interchain ) P
couplingJ’, we expect that akl is increased there will be a
transition to a state with long-range order. We thus see tham
the Luttinger liquid phase is stable at a given temperaturece %04 | 104
only for smaller fields.

As discussed in the Introduction, a field-induced long-
range order has been observed in the spin-chain materia 0.02 10.2
NDMAP.3? Although this compound has a large single-ion
anisotropy, we make an attempt to compare experimenta
observations with our analysis. From inelastic neutron- 0k 0
scattering experiments, the spin couplihgf NDMAP is J 1 | 2 2.5 3
=26.5 K.* For a field applied along the chaiperpendicu- H/A
lar to the easy plane defined by the anisotyppkie corre-
sponding gapA is given in terms of) and D=0.3J, the FIG. 6. ApIoF of the dep'ende.znce of the 3D'0rdering t.emper.ature
strength of the single ion anisotropy, by Ref. 45, T./J as a function of applied fieltd for two d|ffer_ent spin-chain

compounds. The relevant values Dbfor two materials aredcenicl,
A~0.41-0.6D=5.3 K=3.75 T, ~16 K andJagyp,s,~320 K. The corresponding values of inter to

. . intrachain anisotropies arel’/J~0.017 (CsNiC}) and J'/J
with the Landeg factor equal to 2.1. In order to obtain a ~10°5 (AgVP,Ss). The left ordinate scale corresponds to
reasonable fit with the experimental observations we takegVP,S; while the right scale corresponds to CsNiCl
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006 ‘ ‘ ‘ (01, .. .ON)—P(0)P( 61, ... .0N),

0.05 - A Honda et al. i N -
— NDMAP B(6)= ,1;[. Sy 4 (6;— 6;)€'LA sinn@), (A1)

0.04 |
The first term is a product of scattering amplitudes arising
- from theith particle scattering with the remainimMg— 1 par-
~  0.03 .
[ ticles. The second term comes from the bare momentum car-
0.02 ried by theith particle. With periodic boundary conditions,

. . we must have
region with LRO

0.01 d(6)=1.
Taking logarithms of this constraint leads to the quantization
0 ‘ ‘ ‘ condition
1 1.5 2 2.5 3
H/A I )
N; 2Wsmf‘(0,)+§i 5 INS, 4 (6)), (A2)

FIG. 7. Aplot of the dependence of the 3D ordering temperature
T./J as a function of applied fielth for the spin-chain compound whereN; is the quantum number characterizing the rapidity,
NDMAP. 0;, [i.e., In(L)=i27N;]. As we approach the continuum limit,
we can then write a difference equation between successive

At larger values of the fieldH, the computedr, exceeded M€9ersN; andNi.;=N;+1,

the observed value. This is not surprising. As we saw in our LA 1
computation of the exponent, the assumptions underlying 1=-—cosh 6;)86,+ >, 5—(d4n S, 1)(6;)6;,
our computation fail to accurately describe the physics at 27 71 2m
large fields. WithtH/A>2, we enter a region where the mag- 56.= 0. — 6 (A3)
netization per site of the system is some significant fraction R
of its maximal value of 1, a regime that our method, whichThe density of states per unit length éf is defined as
puts no bound upon the magnetization, is unable to handlg(8;)=1/LJ6;. With this we can rewrite the above in the
properly. continuum limit as

The destruction of the Luttinger liquid phase due to an A
applied magnetic field occurs not only for spin-1 chains but ~N— o Y _
also for antiferromagnetic spihdadders®® Unlike the result p(0)Fp(6) chosf( 6)+f do"p(69T + (6 67),
found in the case of two antiferromagnetically coupled spin- (A4)

1 chains®® we find howeverT, is strictly monotonic as a

function of applied field. The difference in the two cases iswherep 'S thg density of occupied states gt the density
again that we hav&>1 and increasing with field while in ©Of unoccupied states, so thai+p=n. Here I', . (6)
the case of antiferromagnetic spin ladders, we hivel =1/2mid4InS, .(6). . o
and decreasing with field. There is an additional instability At Zero temperature, the equation fercan be simplified.
that affects antiferromagnetic spin ladders, an instability toVith T=0, the ground state has a Fermi surfacedat
the formation of a spin-Peierls state due to coupling to thé=xCitations with rapidities|¢|> 6, do not appear in the
lattice®® However spin-1 chains are thought to be robustdround state. Thus

against this perturbatioff. n(e). |6|<6;

p(0)=[ 0, |0|>0F ,

APPENDIX A: ANALYSIS OF THE GROUND STATE
~ 0, |6<6¢
AT T=0 p(6)=

(o), |[6>6¢
In this section we determine the characteristics of the

zero-temperature ground-state in a magnetic fi¢lexceed- and we obtain Eq22) for p at zero temperature.
: . . S We have computed the interacting density of states. We
ing the gap. At the heart of this analysis lies the insistence

: : : can also compute the interacting energy of e 1 excita-
that the ground-state wave function be compatible with thetions in the gpround State. Thegtotal gﬁerg?/g of the system

scattering amplitudeS, , , as defined in Eq21). This am- equals
plitude characterizes the wave functiaf(,6,, . . . ,6y), of a q
ground state wittN particles through the application of pe-
riodic boundary conditions. In allowing thi¢h particle6; to EZJ d6(A cost{ ) —H)p(6). (AB)
traverse the entire length of the system and so commute

with the otherN—1 particles, the wave function picks up a If we vary the density of occupied particles and holgs,
phase —p+ 8p andp— p+ 8p, the total energy varies accordingly,

(A5)

144416-13
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5E=J’ d6(A cosi 6)—H)Sp(0).

But we can also express this variation in energy in terms of

the interacting or dressed energies of the excitations,

SE= f dé(Sp(0)et (6)— Sp(6)e ().

PHYSICAL REVIEW B 66, 144416 (2002

the density of the ground-state sea is altered. Rather than
being given by Eq(22), it is governed by

A 1
N(6)= 5—-Cosh )+ [T, (9= 65)= (6 6y)]

0,
+ | denenT,  (6-6).

(B3)

e"(0)/e (6) mark the energies needed to excite a particleThe 14 term [T'(6— 6,)— 8(6— 6,)] represents the distur-
(or holg above the ground state. At zero temperature theyyance the particle-hole excitation produces in the density of

are defined such that

>0, |6]> 6
+ —
€ (‘9)_{=0, 16]< 6
- (6)= =0, |0]>6F (A7)
€ =<0, |6/<6

Togethere™ make up a monotonic, smooth function wa
=¢e"+€ . Comparing the two expressions f6E and using

the constraint on the variation jm andp coming from Eq.
(A4),

5p+57>=f 6’ sp(0")T . (6—0'),
we arrive at Eq(24).

APPENDIX B: DETERMINATION OF DRESSED
SCATTERING PHASE

states. Thed(6— 6,) arises from removing the particle to
create the hole, whild'(6—6,) arises from including the
particle in the integraJdé p I', . : the presence of this par-
ticle alters the density of states in the same way as does the
continuum of particles in the ground state.
Taking into account the alteration the addition the

particle-hole excitation has upon the density of states, the
momentum of the added particle becomes

pp(8,) = A sinh( 9p)+2wﬁ; d6n(6) b(6,— 6).
F (B4)

As 6 is unshifted by the addition of the particle-hole pair
we are able to write(6) as

1 1
N(6)=no(6)+ TNe(6)= -8(6=6y).  (BS)

L

Substitution of Eq(B5) into Eqg. (B3) then allows the scat-
tering phase to be reduced to

In this appendix we compute the dressed two-body scat-

tering phase of a particle-hole excitation. To compute this

5ph( ap ,On) = —2me( ap_ Oh)

phase we examine how the momentum of one of the added

excitations is altered by the addition of both excitations to

the system.

Or
+27Tf , don,(6) d(6,—0),
F

The two-body scattering phase of the particle-hole excita-

tion is defined by

5ph( epyah)zl—(pp( ep)_ppo( 0p))y (B1)

wherep,(6) is the momentum of the particle when the par-
ticle hole pair is present; whilp,o(6) is what the momen-

n(e)=I,,.(0=60p) =T, . (0—06p)
O
-I—J de'ny(0)I', ,(6—86"). (B6)

We are interested in computing the scattering phase right at

tum of the particle would be without the hole and without thethe Fermi surface, i.e8pn(0p=0r ,0h=0F). But we then
effect of the particle’s presence on the sea of excitationsmmediately see

already present in th€=0 ground state.

Let 6,, 60y be the rapidities of the particle and the hole
that we intend to add to the system. Without having addec'i_|
. o . .Hence the
either excitation, the dressed momentum of the particle is o pn( . OF) —

given by

0,
Pool B,) = A sinh( 0p)+2wfiz dOno(6) (6, 0),

1
¢(9)=2_|n5++(9)1 (B2)

i

whereny,=p+p is the density of states given in E(2).

5ph(0F,0F):_27T¢(O):_7T. (B?)

low-energy particle-holes matrix is S

—1, as we claimed. Here we have focused
upon the changes in the momentum of the particle. If we had
examined the momentum of the hole instead we would have
arrived at an identical conclusion.

APPENDIX C: REDUCTION OF A FERROMAGNETIC
SPIN-3 LADDER TO AN EFFECTIVE SPIN- 3 CHAIN

In this section we consider a map reducing a spladder
with ferromagnetic rung interactions in a magnetic field to an

This is the density of statesithout either the particle or the effective spins chain. The essential idea behind the map is
hole being present. Once the particle and the hole are addealready discussed in a number of pap@r€® However there

144416-14
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J
b .2
[+ +): 5
Jy ]
1IN2(]+0)=]0+)): =3
a
1 J 2 JZ JZ

FIG. 8. A two-rung spin ladder. 00 a 23,3, " 8J,,° €3

the treatment considered a ladder with antiferromagnetig\le can write down an effective system of interacting spin
rung interactions. Here we adapt the map to ladders W|th%,3 m and m by identifying |+)=|1) and|—>=|]). The

ferromagnetic rungs. _ corresponding Hamiltonian is
For the sake of simplicity we consider a two-rung ladder,

as shown in Fig. 8. The Hamiltonian of the ladder is given by
e e

1 + - + - z
Heff:7(01 o, toy00)

40'§_0'§—He(0'§_+ a%)+c,

H:HJ‘FHJL (C4)

=J(Sa1Saz+ Sp1Se2) +3.1/2(S21Sp1+ SazSp2 T H-C)
+3, (S51Sp1 1 S22Sh2) T H(Sh+ Spat+ Sho+ S52)-
(Cy

where the various effective couplings are given in terms of
the original couplings by

We will suppose thaf>0 whileJ, |, <J,,<0.
We first treat the limitJ=0 where the rungs decouple.

The eigenstates on each rung with their corresponding ener- J5=0/2+ a,
gies are then

He H+a+1J J )
J, = T AT YL Yz 5
[+)=[11) 5 —H: 2 4 4 2
J . J «a
1 N le_ C—T—H+§+Z. (C5)

J
0)= ST+, S5 -5

We point out that asr can be negative, so calj. Negative
J: is essential to describe correctly the physics of the spin-1
|=)=|11) 2+H' chain. _ _ _

T4 ’ Having reduced the spin ladder with ferromagnetic rung
couplings to a spif- chain we now bosonize. Applying the
standard result¢see Ref. 18 we find that the associated

1 J, I, Lagrangian is

9=FTh=-I1. - =% (©2

. ) ) L=5=d"Dj,D,
where the first three states are that of the triplet while the ™
remaining state correspond to the singlet. The two states
|+) and|0) are of lowest energy. It is these two states that
we will use in constructing the effective spjnehain. B 1
To take into account{; we perform second-order pertur- K= 238\’ (C6)
bation theory. We find that the energies of the four basis (1 ?)
states describing the low-energy Hilbert space of both rungs, &
|++), 1\2(|+0)=|0+)), and |00), are shifted as fol-
lows: while the fields are given by

144416-15
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n=(x)= %[Sa(XHSn(X)]
=0 (X)
=e '™ (1+c cod2m O(x) - Mx]}),
M () = S&(X) + S5(X)

=0%(x)+1/2

=K 5 (%) +ccod 24 O(x)— Mx]}.
(=1}

(C7)
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Here M is the magnetization density of the spintadder
(and so the corresponding spin-1 chain terms of the mag-
netization,M®, of the effective spiry chain,M =M°®+1/2.

We seen” is defined in terms of thk,=0 component of the
ladder spin operators. Here we thus expect to encode
power-law correlations for wave vectors néeas (77,0). In a
ladder with antiferromagnetic rungs, power-law correlations
would be seen instead fér= (7, ).

With J5<0 (provided« is sufficiently large we see that
K>1, in correspondence with both our analysis and the re-
sults of Ref. 33. This marks out the main difference between
ladders with ferromagnetic rungs and ladders with antiferro-
magnetic rungs. With antiferromagnetic rungs, a similar
analysis leads td®>0 and soK <1.29%
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