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Percolation in three-dimensional random field Ising magnets
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The structure of the three-dimensiorfdD) random field Ising magnet is studied by ground-state calcula-
tions. We investigate the percolation of the minority-spin orientation in the paramagnetic phase above the bulk
phase transition, located pA/J].=2.27, whereA is the standard deviation of the Gaussian random fields
(J=1). With an external fieldH there is a disorder-strength-dependent critical field.(A) for the down(or
up) spin spanning. The percolation transition is in the standard percolation universality digsgA
—Ap)‘5, whereA,=2.43+0.01 andé=1.31=0.03, implying a critical line fod . <A<A,. When, with zero
external field A is decreased from a large value there is a transition from the simultaneous up- and down-spin
spanning, with probabilityll; =1.00 toIl, =0. This is located at\=2.32+0.01, i.e., aboved.. The
spanning cluster has the fractal dimension of standard percol@ien2.53 atH=H.(A). We provide evi-
dence that this is asymptotically true evertat 0 for Ac<A<A, beyond a crossover scale that diverges as
A. is approached from above. Percolation implies extra finite-size effects in the ground states of the 3D
random field Ising model.
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[. INTRODUCTION work is an extension to our studies of percolation in the
two-dimensional RFIM? In the traditional 3D Ising model,

The random field Ising modéRFIM) is one of the most Without disorder, the percolation behavior in an applied field

basic models for random systemg.Its beauty is that the @nd its consequences, as whether the phase transition critical

mixture of random fields and the standard Ising model cre€XPonents would be affected by the percolation criticality,
ave been known for a long time as the “trouble with

ates rich physics and leaves many still unanswered problems="> ~57, 5> =
By now it is known that three dimensiof3D) is the corner- . ertesz. This problem was solved by Wa’rYg)y study-

N e ing Fortuin-Kasteleyn or Coniglio-Kle#i"® clusters using
stone of the model, since it presents a phase transition Wheg%—called ghost spins. In the RFIM the situation is different

the randomness proves to be a relevant pe_rturba'uon to.ﬂ]ﬁ that at small temperatures one has@zerospin-spin
pure 3D Ising model. For the last 15 years, since the semin verlap g with the ground state: thus the existence of a
paper by Ogielskf,the studies of the transition have Ce”temdground-state percolation transitiéeven without an external
around zero-temperature ground-state computations becauggq) implies measurable consequences even at finite tem-
the temperature is due to renormalization group argumentseratures. It also complicates the phase diagram by its exis-
believed to be ariperhaps dangerously sarelevant vari-  tence.
able. There is one fundamental difference between two and
Many such works exist so far, the most recent and comthree dimensionébesides the fact that there is no phase tran-
prehensive being due to Middleton and Fisher.spite of all  sition in two dimensions, and hence there systems are always
the effort many uncertainties remain concerning the nature gbaramagnetic In two-dimensional square lattices the critical
the phase transition. The question is if the transition is of thgpercolation site-occupation probability is 0.592 746, i.e.,
second order, of traditional first-order type, or finally someabove one-half, and in three-dimensional cubic lattices well
other kind of discontinuous transition. The order-parametebelow one-half, 0.3116. Therefore in three dimensions, deep
exponent@ may have a finite value or it can be equal to in the paramagnetic phase, both the spin orientations should
zero® 2 Its very small value makes it unlikely that insight Span the systertthis has been noted by Essaral. to be true
will be obtained in the near future, in spite of the fact that thefor the RFIM; see Ref. 20 Thus introducing an external
optimization algorithms used can at best scale almost linfi€ld in paramagnetic systems leads in two dimensions to the
early with the number of spins in the system. Moreover, geercolation of the spin direction parallel with the external

controversy exists with regards to the role of disorder: thdi€!d- In three dimensions, on the other hand, the external
available simulations are not able to settle the questiorﬁIeld destroys the spanning property of the spin orientation

whether the critical exponents depend on the particuIaPp%OOSr']tseetoug;]iee;ﬁr?hael fl(ealr(i.olation tvpe of order at the para-
choice of the distribution for the random fields, analogously, <d h pf Id. Th yp . "p
to the mean-field theory of the RFIM where binary: If) magnetic phase are manytold. There are experimenta’ly ac-

: ) ) . . cessible random field magnets, so-called diluted antiferro-
disorder results in a first-order transition and Gaus$sae magnets in an external fieldDAFF)2! in which the

below) in a second-order oné. percolation order could be seen, should it exist for zero ex-
In this paper we focus on a novel aspect of the threegerng fields. It is already known that the percolation of the

dimensional RFIM: namely, percolatidfiThe goal is to ex-  diluted atoms has a strong contribution to the behavior of the
plore percolation critical phenomenona in the 3D RFIM. Thestrycture factor line shapes of the 3D DAEF?* Near the
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thermodynamical phase transition point the universality classletail of the RFIM is that foH =0 it has an experimental
of the transition is determined by several exponents, amonggalization as a diluted antiferromagnet in a field. By gauge-
them the correlation length exponédiftthe transition is con- transforming the Hamiltonian of DAFF,

tinuous. The critical percolation phenomenon near the ther-

modynamical phase transition point may contribute there and

introduce extra corrections, which have to be taken into ac- H= _J% SiSj€i€j— BEi &S, ©)
count when the thermodynamical correlation length expo-
nent is determined. where the coupling constants<0, ¢, is the occupation

This paper is organized so that it starts with an introducprobability of a spinS;, and B is now a uniform external
tion of the random field Ising model in the next section. Alsofield, one gets the Hamiltonian of RFIM(1) with
the numerical method solving exactly the ground states i${=0.2"2821 The ferromagnetic order in the RFIM corre-
introduced. In Sec. Il the percolation phenomenon is studiedponds to antiferromagnetic order in the DAFF, naturally.
with a nonzero external field. The universality class of the For the numerical calculations a graph_theoretica| combi-
percolation behavior is determined and the dependence @fatorial optimization algorithm has been used. The Hamil-
the critical external field on the random field Strength is in-tonian (1) is transformed into a random flow graph W|de|y
vestigated. Section IV concentrates on the percolation phejsed in computer science with two extra sites: the source and
nomenon without an external field and compares it with thqhe sink. The positive field Va|ué'5 Correspond flow Capaci-
cases when an external field is applied. The properties of thgesc,, connected to the sink) from a spinS;, similarly the
spanning cluster are studied in Sec. V. Implications of theyegative fields wittt;, are connected to the sourcs) ( and
percolation to the phase diagram are discussed, together withe coupling constants 2 =c;; between the spins corre-

the conclusions in Sec. V. spond to flow capacities;;=c;; from a siteS to its neigh-
boring ones; .29In the case the external field is applied, only
Il. RANDOM FIELD ISING MODEL AND NUMERICAL the local sum of fieldsiH + h;, is added to a spin toward the
METHOD direction it is positive. The algorithms—namely, maximum-

flow minimum-cut algorithms—enable us to find the bottle-
neck, which restricts the amount of the flow which is pos-
sible to get from the source to the sink through the

The random field Ising model is defined by its energy
Hamiltonian

capacities, of such a random graph. This bottleneck, Path
H=—-3 SS- > (h+H)S, (1) which divides the system in two parts—sites connected to
{n ' the sink and sites connected to the source—is the global
where J>0 (throughout this paper we sét=1, since the minimum cut of the graph and the sum of the capacities
relevant value is its ratio with the random field strenggh  belonging to the cukpc;; equals the maximum flow and is
the coupling constant between nearest-neighbor spiasd  smaller than of any other path cutting the system. The value
S;. We use here cubic latticell.is a constant external field, of the maximum flow gives the total minimum energy of the
which if nonzero is assigned to all of the spins, dnds the  system and the minimum cut defines the ground-state struc-
random field, acting on each spB. We concentrate only on ture of the system, so that all spins in the source side of the
a Gaussian distribution for the random field values, cut are the spins pointing down, and the spins in the sink side
of the cut point up. The maximum-flow algorithms can be
1 1/h\? proved to give the exact minimum cut of all the random
P(h)= ﬁex;{ - E(K) ' ) graphs, in which the capacities are positive and with a single
. source and sin®® We have used a sophisticated method for
with the disorder strength given hy (in this paperA actu-  solving the maximum-flow—minimum-cut problem called
ally denotes the ratio between disorder strength and the copush-and-relabel by Goldberg and Tarfarwhich we have
pling constant the standard deviation of the distribution. optimized for our purposes. It scales almost linearly,
The arguments presented in this paper could be extended €@(n'?, with the number of spins and gives the ground state
other lattices and other distributions, e.g., uniform and bimoin about minute for 19 spins in a workstation.
dal, too. However, discrete distributions, such as the bimodal We have used periodic boundary conditions in all of the
one, suffer from degeneracies, and when calculating thermasases. Also the percolation is tested in the periodical or cy-
dynamical quantities extra averaging, over the degeneracidimdrical way; i.e., a cluster has to meet itself when crossing
has to be done when using discrete distributios. a boundary in order to span a system. Finding the spanning
To find the ground-state structure of the RFIM means thatluster has been done using the usual Hoshen-Kopelman
the Hamiltonian(1) is minimized, in which case the positive algorithm??
ferromagnetic coupling constants prefer to have all the spins
ghgned |n'the'san'1e direction. On t'he other hand, the random Ill. PERCOLATION WITH AN EXTERNAL FIELD
field contribution is to have the spins to be parallel with the
local field and thus has a paramagnetic effect. This competi- As a start of the percolation studies of the 3D RFIM we
tion of ferromagnetic and paramagnetic effects leads to araw in Fig. 1a) the spanning probabilities of down spins
complicated energy landscape and the finding the groundll; with respect to the uniform external field pointing up
state becomes a global optimization problem. An interestindor several system sizes and for a fixed random field
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FIG. 1. (@) The spanning probabilities of minority down spins
IT, as a function of upward external field for A=3.5 with L3
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strengthA =3.5. The curves look rather similar to standard
percolation, except that in site percolation the systems span
at the high occupation probability limit, and here the down
spins do not span, when the external positive field has a large
value, and thus the step in the spanning probability is inverse
compared to the one in the occupation percolation. It is in-
teresting to note, also, that since we are using periodic
boundary conditions in all of the directions, also for span-
ning, thell | (L) lines for various system sizes cross at rather
low II, values. This is the case for the oth®y too. Similar
boundary-condition-dependent behavior has been seen in the
standard percolation, t05-3° When we take the crossing
pointsH (L) of the spanning probability curves with fixed
spanning probability valueH | =0.4, 0.5, 0.6, 0.7, and 0.8,
for each systems sizke, we get an estimate for the critical
external fieldH. using finite-size scaling; see Fig(hlL
There we have attempted with success to find the value for
H. using the standard short-range-correlated 3D percolation
correlation length exponent=0.881* Using the estimated
H.=0.461*+0.001 forA = 3.5 we show a data collapse Hf|
versus H—H.)/L ™ in Fig. 1(c), which confirms the esti-
mates ofH, and »=0.88. We get similar data collapses for
various other random field strength valuksas well.

Considering the percolation and critical external field with
respect to the random field strength, there is an obvious con-
straint on the phase diagrarhvs. A. Below the phase tran-
sition critical point,A,=2.27>"® only one of the spin ori-
entations may span a system, since in a ferromagnetic system
the magnetization has a finite, positive or negative, value and
thus there cannot be a massive percolation cluster of the
opposite spin direction. Since the earlier studies of the phase
transition at the 30/Refs. 69,11, and 1Z4have shown that
the order parameter exponefthas a value close to zero, if
not zero, the transition is sharp and therefore the simulta-
neous percolation of botlup and down) spin directions
should vanish or have vanished At when approaching
from above. The question now remains whether this takes
place exactly at the phase transition point, so that the critical
points would coincide, or for & ;>A. In the latter case it
is also of interest what happens tér=0 between the critical
points, on the lineA;<A<A,. We now propose a phase
diagram, Fig. 2, for the percolation phenomenon, and ask at
which value do the dashed lines in the diagram meet. Above
we showed that in the direction of the vertical arrowkat
>0 the universal standard percolation correlation length ex-
ponent is valid. What about at the vertical arrow, what are
the critical exponents there?

To answer the question how the percolation critical exter-
nal fieldH; behaves with respect to the random field strength
A, we have attempted a critical type of scaling using the
calculatedH.(A) for variousA=2.5, 2.6, 2.75, 3.0, 3.25,

c[8%-90%]. The number of realizations varies between 5000 real-3-2: 4.0, and 4.5. We have been able to use the ansatz

izations forL=_8 and 200 forlL. =90. (b) The finite-size scaling of
the fieldsH.(L), which are from the crossing points of the span-
ning probability curves with the horizontal lines {g), leading to
the estimate of the criticaH,=0.461+0.001 usingL™Y", »
=0.88. The error bars in the labels of the figure for differdptare
the errors of the least-squares fits. The data collapse of different

system sizes with the corresponding critieh/=0.4608.

He~(A=4p)°, 4

where 5=1.31+0.03 by assuming\,=2.43; see Fig. @&.
In Fig. 3(b), on the other hand, we have plotted the calcu-
lated A values versus the scaled critical external field
[He(A)]Y31and it gives an estimate fak,=2.43+0.01.
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and down spins to lose their spanning property, below and above Random field strength (A-A), A =2.43
which the minority spins do not percolate anymore. The phase tran- 7

sition point for the ferro- and paramagnetic phased at2.27, H
=0 is shown as a circle.

This indicates that the percolation probability lines for up
and down spins to lose their spanning property meek at
=2.43+0.01. Note that our studies in the two-dimensional
RFIM gave the valued\ ;=1.65+0.05 and6=2.05-0.10
for systemsto span not to lose, the spanning propergs

here®® We also tested various exponential scaling assump:

tions for theH (A) scaling, but none of them worked. How-
ever, here we know thdi . has to vanish at some finitg,
value, which is greater than or equal4qQ.

We have also calculated the order parameter of the perco§
lation, the probability that a down spin belongs to the down-®& 2.5 + .

spin spanning clusteP., . Using the scaling for the correla-
tion length

gpercN|H_Hc|_V )
and for the order parameter, Wher< £,
P.(H)~(Hc.—H)?, (6)
we get the limiting behaviors
(Hc_H)'By L<§per(:a

POC(H,L)N[L—B/V7 L>§perc’ (7)
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FIG. 3. (a) For each calculated the critical positiveH(A) for
down-spin spanning versus—A,, whereA is estimated to be
2.43. The power-law behavior suggests a scqug(Apr)‘s,
where §=1.31+0.03. The error bar fob is the error of the least-
squares fit(b) The same data but plotted as edchs [H (A)]*°,
where §=1.31, which estimates that, at,=2.43+0.01, H.=0.
Again the error bar fod is the error of the least-squares fit. The
other details are as in Fig. 1.

and thus the scaling behavior for the order parameter be-

comes

P.(H,L)~L F"F

M}NL—MW(;
L L*llv

8

Note that here and later in this artick denotes the perco-

scaling function is shown, sinde,.(H,L) is limited between
[0,1]. When one divides it by ~#'” the part where nonscaled
P..(H,L) had a value of unity the scale@..(H,L)/L#""
saturates at different values dependingLor©One can easily

see that the smallest system siz&=8% does not scaléthe

rest are scattered around each other and do not have any
trend. We believe that this is due to an intrinsic length scale

lation order parameter exponent as opposed to the bulk phas&er which the spins are correlated and which depends on the

transition order parameter exponent discussed earlier in th

imndom field strength value. This will be discussed in more

paper. We have done a successful data collapses, i.e., plottédtail in Sec. V, when the scaling of the spanning cluster is

the scaling functiorf, for variousA using the standard 3D
short-range-correlated percolation exponedits0.41 andv
=0.88, of which the casaA=4.5 withH;=1.0441 is shown
in Fig. 4. Note that only the left partelow zerg of the

studied.

Hence, we conclude that the percolation transition for a
fixed A versus the external fielth is in the standard 3D
short-range-correlated percolation universality cf4sshis
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value to a large value whef is increased. By estimating
that theA, ,,—( at the thermodynamic limit has a value of
2.32 using fixedIl;;=0.2, 0.4, 0.6, and 0.8 for the
Apn=o(L) we find that the effectiver gets a value of 0.97
+0.05 when approaching the critical point in this direction;
see Fig. ). On the other hand, assuming that 1.0, the
Ap =0 becomes 2.320.01; see Fig. &). These plots show
that the estimates should be correct. However, the data col-
lapse, Fig. &), using the estimates above could be better.
Obviously the smallest system sizé=82 does not scale.
There are a couple of points one should note from the
scaling. First, the estimate for th&,,_,=2.32+0.01 is
still above the phase transition poidt,=2.27. Another
. . . . . . point is thatA, ,;_ is reasonably far away from ,=2.43
00 60 0 20 30 20 -0 o0 i0.0%[notfe r:hallt the error bafr in thz t1:i;;1ite(;jfi(;eld case is the
. —1pv error bar of the least-squares fit in FigbBand does not take
Scaled external field (HC H)/L into account other sources for the error, e.g., the erra#, of
FIG. 4. The scaled order parameter probability that a down spinc’tat'St'CS' etc., and thus is a lower lithiThe third point is
belongs to the down-spin spanning clus®y,/L 4", B=0.41,,»  thatll; =0.0 atA,,_o and II;=0.25 atH(A) [for A
=0.88 vs the scaled external fielli{—H)/L~ ", for A=4.5with ~ =3.5; see Fig. (c)]. Our take on the two different estimates
L36[203_9§], The data points are disorder averages over 2004s that they are compatible with the fO”OWiﬂg scenario. For
5000 realizations. The corresponding criticaH,(A=4.5) A values that are slightly below 2.43 one can hamyy one
=1.0441. critical spanning cluster, and the probability for this is then
IT,, about 0.25. Both orientations do span simultaneously, as
is confirmed by the fractal dimension of the spanning clusterthey can do for alA values above\., but they should not
too, as discussed below. The fact that the critical behavior dfe both critical, unless one decreases the disorder strength
the percolation with respect to the external field belongs tdurther.
the standard short-range-correlated percolation universality For the estimate of the correlation length exponent, devia-
class is not surprising, since the strong-disorder limit can béions from normal percolation are seen since1.00+0.05
seen to be related with the site percolation problem and thainstead ofvy=0.88. In our opinion this reflects the fact that
e.g., the positive external field decreases the number of thier H+# 0 the correlations from the proximity df, are neg-
occupied down spins. Also other exponents could be medigible, whereas here the spin-spin correlations change with
sured, such ay for the average sizés) of the clusters and system size. The correlation length exponent is higher than
o and r for the cluster size distribution as well as the fractalthat for percolation, so clear-cut percolation scaling cannot
dimension of the backbone of the spanning cluster, the fradse expected. Differences between Hhe0 andH+#0 cases
tal dimension of the chemical distance, the hull exponentwere found also in the two-dimensional casdlote that in
etc. two dimensions, the exponent wdependent on the span-
ning probabilityand the standard correlation length exponent
IV. PERCOLATION AT H=0 was fqund_ where the spanning probability for either of the
spin directions to spahl;,; had a nonzero valugemember
In the previous section we learned that the dashed lines ithat in two-dimensional square lattices without an external
the phase diagram, Fig. 2, meet at the valug=2.43 field at largeA neither of the spin directions span and with
+0.01, which is well above the phase transition critical pointsmall A either of them start to span
A.=2.27. This raises the question how this is seen when the Here we tried, as in two dimensions, to do fits using sev-
external fieldH=0 and what happens betwedn andA,. eral criteria forll; =[0.05, 0.15,0.20..., 0.95] and let-
Thus we study the phase diagram in the direction of thding both A, and » vary depending orll; . Indeed, we
horizontal arrow in Fig. 2. There are two strategies for thisobtained monotonous behaviors dependinglbn for both
that we employ separately to evaluate their advantages and and A,. However, this may just reflect how finite-size
disadvantages. That is, one can takeAheo bea priori the  effects depend on the criterion. It is anyhow worth noting
same for allll, |, the probability for simultaneous spanning that forll, approaching zera), gets also closer and closer
of up and down spins. Or then this can be let to vary with to 2.27, i.e., the accepted value for the phase transition point
IT;,, as in two dimension¥. A.. Moreover the correlation length exponent moves to-
In Fig. 5@ we have plotted the probability for simulta- wardsy=1.3+0.1, in the neighborhood of the phase transi-
neous spanning of uand down spinsll;, as a function of tion correlation length exponents reported in the
the Gaussian random field strength for various system literature>®** Similarly, if II; is let to approach unityA,,
sizesL®=8%, 15°, 30°, 50°, 90°, and 126. This case now closes on the valud,=2.43 obtained above, in the finite-
resembles the standard occupation percolation in the senfield case. This behavior may be just coincidence or related
that the step in the percolation probability is from a low to the (A-dependentcorrelations in the system to how they
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FIG. 5. (a) The spanning probabilities for system sizes=[8°-12F] of simultaneous up- and down-spin spannlihg as a function
of A for H=0. The data points are disorder averages over 200-5000 realizgbipBsich system size vs Ap(L)— A, whereA(L)'s are
the corresponding crossing points of the spanning probability curves with the horizontal lifgs-eD.2, 0.4, 0.6, and 0.8 ife) andA
is estimated to be 2.32. The power-law behavior suggests a statifd —Ay) ", wherev=0.97+0.05. The error bars in the labels of the
figure for differenty’s are the errors of the least-squares fit3. The same data as i), but now plotted as random field strength values
Ap(L) vs the scaled system site Y, wherery=1.0, leading to a same estimate &of=2.32+0.01. The error bars in the labels of the

figure for differentA, are the errors of the least-squares fit3. The data collapse ofa) with the corresponding critical ,=2.32 andv
=1.0.

change the universality class of percolation in the vicinity ofthe eye the fractal dimensidd;=2.53 of the standard per-
the phase transition. We return to this in the conclusions irtolation is drawn in the figure and the systems can be seen
Sec. VI. asymptotically approaching the same scaling. However, there
Hence we have shown that at lar§eboth spin directions are obvious finite-size effects, which dependfonWe have
span simultaneously, and by decreasing random field strengtistimated roughly the crossover system sizes for the systems
we find a criticalA , -, which is above the phase transition to reach the correct scaling,,=30, 20, 10, and 5 forA
pointA. and below which there is no simultaneous spanning=2.75, 3.0, 3.5, and 4.0, respectively. This hints at an expo-
Therefore we conclude that in the whole regimg<A  nential scaling with a slope of 1.42+0.03 for the crossover
<A, 1-o there is geometrical criticality in 3D RFIM, since length scale; see solid diamonds in the inset of Fig).@he
always only either of the spin directions spans the systemabove scaling predicts, fak=4.5, L,=3, smaller thanL
However, the spanning cluster cannot be massive there, i.e58 (in Fig. 4, this size does not scalebut note that the
scale with Euclidean dimensionl € 3), the system still be- prefactors of the scaling behaviors need not to be the same.
ing paramagnetic, but has to be a fractal. The scaling of thén Fig. 6b) we have drawn for threeA<A,, ie., A
spanning cluster is studied in the next section and the impli=2.35, 2.38, and 2.46vhich is so close td , that itsH, is

cations of the critical region in Sec. VI. practically zero with respect to the numerical precision,
103, at H=0, the scaling of the mass of the spanning
V. SPANNING CLUSTER cluster of either of the spin orientations up to system size

L3=120°. There one can see that the fractal dimendign
In Fig. 6@ we have plotted the mass of the spanning=2.53 of the standard percolation is asymptotically met, too,
cluster of down spins with respect to the system size abut at much larger system sizes. Here we have estimated the
H.(A)>0 for four random field strength values=2.75, crossover system sizds,=80, 60, and 50, forA=2.35,
3.0, 3.5, and 4.0 up to system sizé=12C. As a guide to  2.38, and 2.45, respectively. They are plotted as open circles
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spins in A>A, and H,(A)>0 the crossover is from a
‘ smaller slope to the asymptot@;=2.53 one. In the case
A A=A, the crossover is from the Euclidian dimensistope

—
=]
()
T

N

o)

=

2

Z 00275 of 3, i.e., effective ferromagnetignto the asymptoticD;

© 10° L gg:gg =2.53. Therg it is vaiously affected by the vicinity of the

%D 0HO14.00 phase transition point.

g — slope=2.53

al(f L - . ' VI. DISCUSSION AND CONCLUSIONS

3 g 10 | *\‘\ | In this paper we have studied the character of the ground

k= , 2 e state of the three-dimensional random field Ising magnet in,

B0 8 ==~ exp(-1.424) mostly, the paramagnetic phase. A geometrical critical phe-

2 10’ 5 2'5 3 3-5 A't 2ls nomenon exists in these systems: for cubic lattices in ordi-

< NS nary percolation both occupied and unoccupied sites span the

= - random field strength (4) systems when the occupation probability is one-half. In the
10 . 10 RFIM this corresponds to the case with a high random field

System size (L) strength value, without an external field. When an external

field is applied and the random field strength decreased, a
percolation transition, for the other spin orientation to lose
the spanning property, can be seen. The transition is shown
to be in the standard 3D short-range-correlated percolation
5 universality class when studied as a function of the external
field. Hence, the correlations in the three-dimensional ran-
dom field Ising magnets are only of finite extent as could be
. expected in this region of the bulk phase diagram. Based on
our numerical results both critical pointsH (A) approach
whenA is decreased and finally meet ahg=2.43>A., at

<

—
<

(b)

G

—
<

(3

—_
[=]

'S

Mass of the spanning cluster (%)

10 ’// . which H,=0. When the percolation transition is studied
// 2,35, slope=2.60+0.24 V\{ithout an exFernaI field a_nd tuning the random field s'tren'gth
A 02:38’ do e=2:51;():11 similar behavior is found, i.e., signatures of a percolation line
3 e » S10p! . . .
10 P +2.45, slope=2.5120.07 (@aAp,>Ac). This might cause puzzling consequences when
- slope=2.53 studying the character of the ground states, because the per-
® —- slope=3.00 colation correlations may influence the magnetization corre-
10° = . lation length.
10 ) 10 The major theoretical implications have to do with the
System S1ze (L) phase transition. Note that earlier ground-state studies of the

. ~ domain structure implied that there is only a “one-domain
FIG. 6. (8 The average mass of spanning cluster of down spinsstate” below the critical field and a “two-domain state” in
fo_r_random_ _fleld strength values=2.75, 3.0, 3.5, and 4.0 at t_he the paramagnetic phasextending down from high disorder
critical positive externa_l field valuld(_:(A) [s_ee the valqes_ frqm Fig. value3.20 If the transition is first order, then one expects the
3(b)]. The 3D percolation fractal dimensidh;=2.53 is indicated percolation properties of the paramagnetic phase to be dis-

l’;'rt: Z?z“: llr:fsésmrrtnhToltri]sett)eah;(/?:f?:e:nlstn?;? Z‘;i'ﬁ ?;r‘]'ggfnh fsié';pontinuous in the thermodynamic limit. If the transition is
. ympltotic De ... second order, then one may ask what is the correct way to
strength is plotted as solid diamonds. The least-squares fit estimat

an exponential behavior with a slope f1.42+0.03. (b) The av- fiRk the presence of the percolation transition to the critical
erage mass of spanning clusters of either spin orientation for ran[-)hase' AtAc, one expepts that the spin-spin corrglatlons
dom field strength values =2.35, 2.38, and 2.45 whén=0. The show power-law correlations. For a normal percolation tran-

solid lines are the least-squares fits to the data with the slopes ing?ltion, these areas in the disordered phase in genpref
cated in the labels. The dotted line with a slopdgf=2.53 and the ~ Short-range character. There is a divergent length scale as the
dashed line with a slope af=3 are guides to the eye. The esti- transition is approached from the paramagnetic phase, below

mated crossover length scales are plotted in the inset of Figaé ~ Which the spin-spin correlations matter and the scaling of the
open circles. spanning clusters is volume like.

Assume that the properties of the largest cluster are gov-
in the inset of Fig. 6) and are obviously diverging from the erned by the power-law correlations. An old result by Wein-
exponential behavior mentioned above when approachingb gives a Harris criterion for this approach to check how
phase transitiol\.. These large values fdr, do not leave this would change its structure from ordinary percolafibn.
much room for the asymptotic scaling, since it is difficult to If the site occupation probability correlations decayras,
go above_3=120. However, the crossover is visible. There one has that the decay is relevantaif,q—2<0— vpew
is one other thing one notices from Figgagand &b). Inthe  =2/a, where nowv,4=0.88 for 3D site percolation. One
case we plot the mass of the spanning cluster of the dowgets a critical decay exponeat=2.27, much larger than
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that found by Middelton and Fishewvhich is very close to  tion of this paper is that the influence of percolation is even
zero. An application of the theory of correlated percolationmore rich. Lately there has been interest in studying domain
would thus imply that the spin-spin correlations &t are  walls and excitations in RFIM. In both cases the underlying
relevant for percolation. They would change the universalitypercolation criticality should affect the structure of the clus-
class, of percolation, in a way that would reflect such correters that result from varying the boundary conditions.
lations. This reasoning would need further consideration.
One should note also that although this study was done
using cubic lattices, it can be extended to other lattices, too,
since all common three-dimensional lattices haye<0.5. This work has been supported by the Academy of Finland
Thus the transition from both spin orientations spanningCenter of Excellence Program. It was also performed under
phase to only one spin orientation spanning phase shoulithe auspices of the U.S. Department of Energy at the Uni-
exist. In the case of diluted antiferromagnets the percolationersity of California/Lawrence Livermore National Labora-
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