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Percolation in three-dimensional random field Ising magnets
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The structure of the three-dimensional~3D! random field Ising magnet is studied by ground-state calcula-
tions. We investigate the percolation of the minority-spin orientation in the paramagnetic phase above the bulk
phase transition, located at@D/J#c.2.27, whereD is the standard deviation of the Gaussian random fields
(J51). With an external fieldH there is a disorder-strength-dependent critical field6Hc(D) for the down~or
up! spin spanning. The percolation transition is in the standard percolation universality class.Hc;(D
2Dp)d, whereDp52.4360.01 andd51.3160.03, implying a critical line forDc,D<Dp . When, with zero
external field,D is decreased from a large value there is a transition from the simultaneous up- and down-spin
spanning, with probabilityP↑↓51.00 to P↑↓50. This is located atD52.3260.01, i.e., aboveDc . The
spanning cluster has the fractal dimension of standard percolation,D f52.53 atH5Hc(D). We provide evi-
dence that this is asymptotically true even atH50 for Dc,D<Dp beyond a crossover scale that diverges as
Dc is approached from above. Percolation implies extra finite-size effects in the ground states of the 3D
random field Ising model.

DOI: 10.1103/PhysRevB.66.144403 PACS number~s!: 75.60.Ch, 05.50.1q, 75.50.Lk, 64.60.Ak
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I. INTRODUCTION

The random field Ising model~RFIM! is one of the most
basic models for random systems.1–3 Its beauty is that the
mixture of random fields and the standard Ising model c
ates rich physics and leaves many still unanswered proble
By now it is known that three dimensions~3D! is the corner-
stone of the model, since it presents a phase transition w
the randomness proves to be a relevant perturbation to
pure 3D Ising model. For the last 15 years, since the sem
paper by Ogielski,4 the studies of the transition have center
around zero-temperature ground-state computations bec
the temperature is due to renormalization group argum
believed to be an~perhaps dangerously so! irrelevant vari-
able.

Many such works exist so far, the most recent and co
prehensive being due to Middleton and Fisher.5 In spite of all
the effort many uncertainties remain concerning the natur
the phase transition. The question is if the transition is of
second order, of traditional first-order type, or finally som
other kind of discontinuous transition. The order-parame
exponentb may have a finite value or it can be equal
zero.5–12 Its very small value makes it unlikely that insigh
will be obtained in the near future, in spite of the fact that t
optimization algorithms used can at best scale almost
early with the number of spins in the system. Moreover
controversy exists with regards to the role of disorder:
available simulations are not able to settle the ques
whether the critical exponents depend on the particu
choice of the distribution for the random fields, analogou
to the mean-field theory of the RFIM where binary (6h)
disorder results in a first-order transition and Gaussian~see
below! in a second-order one.13

In this paper we focus on a novel aspect of the thr
dimensional RFIM: namely, percolation.14 The goal is to ex-
plore percolation critical phenomenona in the 3D RFIM. T
0163-1829/2002/66~14!/144403~8!/$20.00 66 1444
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work is an extension to our studies of percolation in t
two-dimensional RFIM.15 In the traditional 3D Ising model,
without disorder, the percolation behavior in an applied fie
and its consequences, as whether the phase transition cr
exponents would be affected by the percolation critical
have been known for a long time as the ‘‘trouble wi
Kertész.’’14,16This problem was solved by Wang17 by study-
ing Fortuin-Kasteleyn or Coniglio-Klein18,19 clusters using
so-called ghost spins. In the RFIM the situation is differe
in that at small temperatures one has anonzerospin-spin
overlap q with the ground state: thus the existence of
ground-state percolation transition~even without an externa
field! implies measurable consequences even at finite t
peratures. It also complicates the phase diagram by its e
tence.

There is one fundamental difference between two a
three dimensions~besides the fact that there is no phase tr
sition in two dimensions, and hence there systems are alw
paramagnetic!. In two-dimensional square lattices the critic
percolation site-occupation probability is 0.592 746, i.
above one-half, and in three-dimensional cubic lattices w
below one-half, 0.3116. Therefore in three dimensions, d
in the paramagnetic phase, both the spin orientations sh
span the system~this has been noted by Esseret al. to be true
for the RFIM; see Ref. 20!. Thus introducing an externa
field in paramagnetic systems leads in two dimensions to
percolation of the spin direction parallel with the extern
field. In three dimensions, on the other hand, the exter
field destroys the spanning property of the spin orientat
opposite to the external field.

Consequences of the percolation type of order at the p
magnetic phase are manyfold. There are experimentally
cessible random field magnets, so-called diluted antife
magnets in an external field~DAFF!,21 in which the
percolation order could be seen, should it exist for zero
ternal fields. It is already known that the percolation of t
diluted atoms has a strong contribution to the behavior of
structure factor line shapes of the 3D DAFF.22–24 Near the
©2002 The American Physical Society03-1
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thermodynamical phase transition point the universality cl
of the transition is determined by several exponents, am
them the correlation length exponent~if the transition is con-
tinuous!. The critical percolation phenomenon near the th
modynamical phase transition point may contribute there
introduce extra corrections, which have to be taken into
count when the thermodynamical correlation length ex
nent is determined.

This paper is organized so that it starts with an introd
tion of the random field Ising model in the next section. Al
the numerical method solving exactly the ground state
introduced. In Sec. III the percolation phenomenon is stud
with a nonzero external field. The universality class of t
percolation behavior is determined and the dependenc
the critical external field on the random field strength is
vestigated. Section IV concentrates on the percolation p
nomenon without an external field and compares it with
cases when an external field is applied. The properties of
spanning cluster are studied in Sec. V. Implications of
percolation to the phase diagram are discussed, together
the conclusions in Sec. VI.

II. RANDOM FIELD ISING MODEL AND NUMERICAL
METHOD

The random field Ising model is defined by its ener
Hamiltonian

H52J(̂
i j &

SiSj2(
i

~hi1H !Si , ~1!

where J.0 ~throughout this paper we setJ51, since the
relevant value is its ratio with the random field strength! is
the coupling constant between nearest-neighbor spinsSi and
Sj . We use here cubic lattices.H is a constant external field
which if nonzero is assigned to all of the spins, andhi is the
random field, acting on each spinSi . We concentrate only on
a Gaussian distribution for the random field values,

P~hi !5
1

A2pD
expF2

1

2 S hi

D D 2G , ~2!

with the disorder strength given byD ~in this paperD actu-
ally denotes the ratio between disorder strength and the
pling constant!, the standard deviation of the distributio
The arguments presented in this paper could be extende
other lattices and other distributions, e.g., uniform and bim
dal, too. However, discrete distributions, such as the bimo
one, suffer from degeneracies, and when calculating ther
dynamical quantities extra averaging, over the degenera
has to be done when using discrete distributions.25,26

To find the ground-state structure of the RFIM means t
the Hamiltonian~1! is minimized, in which case the positiv
ferromagnetic coupling constants prefer to have all the sp
aligned in the same direction. On the other hand, the rand
field contribution is to have the spins to be parallel with t
local field and thus has a paramagnetic effect. This comp
tion of ferromagnetic and paramagnetic effects leads t
complicated energy landscape and the finding the gro
state becomes a global optimization problem. An interes
14440
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detail of the RFIM is that forH50 it has an experimenta
realization as a diluted antiferromagnet in a field. By gau
transforming the Hamiltonian of DAFF,

H52J(̂
i j &

SiSje ie j2B(
i

e iSi , ~3!

where the coupling constantsJ,0, e i is the occupation
probability of a spinSi , and B is now a uniform external
field, one gets the Hamiltonian of RFIM~1! with
H50.27,28,21 The ferromagnetic order in the RFIM corre
sponds to antiferromagnetic order in the DAFF, naturally.

For the numerical calculations a graph-theoretical com
natorial optimization algorithm has been used. The Ham
tonian ~1! is transformed into a random flow graph wide
used in computer science with two extra sites: the source
the sink. The positive field valueshi correspond flow capaci
tiescit connected to the sink~t! from a spinSi , similarly the
negative fields withcis are connected to the source (s), and
the coupling constants 2Ji j [ci j between the spins corre
spond to flow capacitiesci j [cji from a siteSi to its neigh-
boring oneSj .29 In the case the external field is applied, on
the local sum of fields,H1hi , is added to a spin toward th
direction it is positive. The algorithms—namely, maximum
flow minimum-cut algorithms—enable us to find the bottl
neck, which restricts the amount of the flow which is po
sible to get from the source to the sink through t
capacities, of such a random graph. This bottleneck, patP,
which divides the system in two parts—sites connected
the sink and sites connected to the source—is the glo
minimum cut of the graph and the sum of the capacit
belonging to the cut(Pci j equals the maximum flow and i
smaller than of any other path cutting the system. The va
of the maximum flow gives the total minimum energy of th
system and the minimum cut defines the ground-state st
ture of the system, so that all spins in the source side of
cut are the spins pointing down, and the spins in the sink s
of the cut point up. The maximum-flow algorithms can
proved to give the exact minimum cut of all the rando
graphs, in which the capacities are positive and with a sin
source and sink.30 We have used a sophisticated method
solving the maximum-flow–minimum-cut problem calle
push-and-relabel by Goldberg and Tarjan,31 which we have
optimized for our purposes. It scales almost linear
O(n1.2), with the number of spins and gives the ground st
in about minute for 106 spins in a workstation.

We have used periodic boundary conditions in all of t
cases. Also the percolation is tested in the periodical or
lindrical way; i.e., a cluster has to meet itself when cross
a boundary in order to span a system. Finding the spann
cluster has been done using the usual Hoshen-Kopel
algorithm.32

III. PERCOLATION WITH AN EXTERNAL FIELD

As a start of the percolation studies of the 3D RFIM w
draw in Fig. 1~a! the spanning probabilities of down spin
P↓ with respect to the uniform external fieldH pointing up
for several system sizesL and for a fixed random field
3-2
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FIG. 1. ~a! The spanning probabilities of minority down spin
P↓ as a function of upward external fieldH for D53.5 with L3

P@83–903#. The number of realizations varies between 5000 re
izations forL58 and 200 forL590. ~b! The finite-size scaling of
the fieldsHc(L), which are from the crossing points of the spa
ning probability curves with the horizontal lines in~a!, leading to
the estimate of the criticalHc50.46160.001 using L21/n, n
50.88. The error bars in the labels of the figure for differentHc are
the errors of the least-squares fits.~c! The data collapse of differen
system sizes with the corresponding criticalHc50.4608.
14440
strengthD53.5. The curves look rather similar to standa
percolation, except that in site percolation the systems s
at the high occupation probability limit, and here the dow
spins do not span, when the external positive field has a la
value, and thus the step in the spanning probability is inve
compared to the one in the occupation percolation. It is
teresting to note, also, that since we are using perio
boundary conditions in all of the directions, also for spa
ning, theP↓(L) lines for various system sizes cross at rath
low P↓ values. This is the case for the otherD, too. Similar
boundary-condition-dependent behavior has been seen in
standard percolation, too.33–35 When we take the crossin
points Hc(L) of the spanning probability curves with fixe
spanning probability valuesP↓50.4, 0.5, 0.6, 0.7, and 0.8
for each systems sizeL, we get an estimate for the critica
external field Hc using finite-size scaling; see Fig. 1~b!.
There we have attempted with success to find the value
Hc using the standard short-range-correlated 3D percola
correlation length exponentn50.88.14 Using the estimated
Hc50.46160.001 forD53.5 we show a data collapse ofP↓
versus (H2Hc)/L

21/n in Fig. 1~c!, which confirms the esti-
mates ofHc andn50.88. We get similar data collapses fo
various other random field strength valuesD as well.

Considering the percolation and critical external field w
respect to the random field strength, there is an obvious c
straint on the phase diagramH vs. D. Below the phase tran
sition critical point,Dc.2.27,5,7,8 only one of the spin ori-
entations may span a system, since in a ferromagnetic sy
the magnetization has a finite, positive or negative, value
thus there cannot be a massive percolation cluster of
opposite spin direction. Since the earlier studies of the ph
transition at the 3D~Refs. 6–9,11, and 12! have shown that
the order parameter exponentb has a value close to zero,
not zero, the transition is sharp and therefore the simu
neous percolation of both~up and down! spin directions
should vanish or have vanished atDc when approaching
from above. The question now remains whether this ta
place exactly at the phase transition point, so that the crit
points would coincide, or for aDp.Dc . In the latter case it
is also of interest what happens forH50 between the critical
points, on the lineDc,D,Dp . We now propose a phas
diagram, Fig. 2, for the percolation phenomenon, and as
which value do the dashed lines in the diagram meet. Ab
we showed that in the direction of the vertical arrow atH
.0 the universal standard percolation correlation length
ponent is valid. What about at the vertical arrow, what a
the critical exponents there?

To answer the question how the percolation critical ext
nal fieldHc behaves with respect to the random field stren
D, we have attempted a critical type of scaling using t
calculatedHc(D) for various D52.5, 2.6, 2.75, 3.0, 3.25
3.5, 4.0, and 4.5. We have been able to use the ansatz

Hc;~D2Dp!d, ~4!

whered51.3160.03 by assumingDp52.43; see Fig. 3~a!.
In Fig. 3~b!, on the other hand, we have plotted the calc
lated D values versus the scaled critical external fie
@Hc(D)#1/1.31 and it gives an estimate forDp52.4360.01.

l-
3-3



up

a

m
-

rc
n
-

b

-
ha
th
ot

d

any
le
the
re

r is

r a

o

o
ra

e

E. T. SEPPA¨ LÄ , A. M. PULKKINEN, AND M. J. ALAVA PHYSICAL REVIEW B 66, 144403 ~2002!
This indicates that the percolation probability lines for
and down spins to lose their spanning property meet atDp
52.4360.01. Note that our studies in the two-dimension
RFIM gave the valuesDp51.6560.05 andd52.0560.10
for systemsto span, not to lose, the spanning propertyas
here.15 We also tested various exponential scaling assu
tions for theHc(D) scaling, but none of them worked. How
ever, here we know thatHc has to vanish at some finiteDp
value, which is greater than or equal toDc .

We have also calculated the order parameter of the pe
lation, the probability that a down spin belongs to the dow
spin spanning clusterP` . Using the scaling for the correla
tion length

jperc;uH2Hcu2n ~5!

and for the order parameter, whenL,jperc ,

P`~H !;~Hc2H !b, ~6!

we get the limiting behaviors

P`~H,L !;H ~Hc2H !b, L,jperc ,

L2b/n, L.jperc ,
~7!

and thus the scaling behavior for the order parameter
comes

P`~H,L !;L2b/nFF ~Hc2H !2n

L G;L2b/n f S Hc2H

L21/n D .

~8!

Note that here and later in this articleb denotes the perco
lation order parameter exponent as opposed to the bulk p
transition order parameter exponent discussed earlier in
paper. We have done a successful data collapses, i.e., pl
the scaling functionf, for variousD using the standard 3D
short-range-correlated percolation exponentsb50.41 andn
50.88, of which the caseD54.5 with Hc51.0441 is shown
in Fig. 4. Note that only the left part~below zero! of the

FIG. 2. The phase diagram for the minority-spin percolation
the 3D RFIM with disorder strengthD and an applied external field
H. The dashed lines define the percolation thresholdsHc(D) for up
and down spins to lose their spanning property, below and ab
which the minority spins do not percolate anymore. The phase t
sition point for the ferro- and paramagnetic phases atD52.27, H
50 is shown as a circle.
14440
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scaling function is shown, sinceP`(H,L) is limited between
@0,1#. When one divides it byL2b/n the part where nonscale
P`(H,L) had a value of unity the scaledP`(H,L)/L2b/n

saturates at different values depending onL. One can easily
see that the smallest system sizeL3583 does not scale~the
rest are scattered around each other and do not have
trend!. We believe that this is due to an intrinsic length sca
over which the spins are correlated and which depends on
random field strength value. This will be discussed in mo
detail in Sec. V, when the scaling of the spanning cluste
studied.

Hence, we conclude that the percolation transition fo
fixed D versus the external fieldH is in the standard 3D
short-range-correlated percolation universality class.14 This

f

ve
n-

FIG. 3. ~a! For each calculatedD the critical positiveHc(D) for
down-spin spanning versusD2Dp , whereDp is estimated to be
2.43. The power-law behavior suggests a scalingHc;(D2Dp)d,
whered51.3160.03. The error bar ford is the error of the least-
squares fit.~b! The same data but plotted as eachD vs @Hc(D)#1/d,
whered51.31, which estimates that, atDp52.4360.01, Hc50.
Again the error bar forDp is the error of the least-squares fit. Th
other details are as in Fig. 1.
3-4
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is confirmed by the fractal dimension of the spanning clus
too, as discussed below. The fact that the critical behavio
the percolation with respect to the external field belongs
the standard short-range-correlated percolation univers
class is not surprising, since the strong-disorder limit can
seen to be related with the site percolation problem and t
e.g., the positive external field decreases the number of
occupied down spins. Also other exponents could be m
sured, such asg for the average sizês& of the clusters and
s andt for the cluster size distribution as well as the frac
dimension of the backbone of the spanning cluster, the f
tal dimension of the chemical distance, the hull expone
etc.

IV. PERCOLATION AT HÄ0

In the previous section we learned that the dashed line
the phase diagram, Fig. 2, meet at the valueDp52.43
60.01, which is well above the phase transition critical po
Dc52.27. This raises the question how this is seen when
external fieldH50 and what happens betweenDc andDp .
Thus we study the phase diagram in the direction of
horizontal arrow in Fig. 2. There are two strategies for t
that we employ separately to evaluate their advantages
disadvantages. That is, one can take theDp to bea priori the
same for allP↑↓ , the probability for simultaneous spannin
of up and down spins. Or then this can be let to vary wi
P↑↓ , as in two dimensions.15

In Fig. 5~a! we have plotted the probability for simulta
neous spanning of upand down spinsP↑↓ as a function of
the Gaussian random field strengthD for various system
sizesL3583, 153, 303, 503, 903, and 1203. This case now
resembles the standard occupation percolation in the s
that the step in the percolation probability is from a lo

FIG. 4. The scaled order parameter probability that a down s
belongs to the down-spin spanning cluster,P` /L2b/n, b50.41, n
50.88 vs the scaled external field (Hc2H)/L21/n, for D54.5 with
L3P@203–903#. The data points are disorder averages over 20
5000 realizations. The corresponding criticalHc(D54.5)
51.0441.
14440
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value to a large value whenD is increased. By estimating
that theDp,H50 at the thermodynamic limit has a value o
2.32 using fixed P↑↓50.2, 0.4, 0.6, and 0.8 for the
Dp,H50(L) we find that the effectiven gets a value of 0.97
60.05 when approaching the critical point in this directio
see Fig. 5~b!. On the other hand, assuming thatn51.0, the
Dp,H50 becomes 2.3260.01; see Fig. 5~c!. These plots show
that the estimates should be correct. However, the data
lapse, Fig. 5~d!, using the estimates above could be bet
Obviously the smallest system sizeL3583 does not scale.

There are a couple of points one should note from
scaling. First, the estimate for theDp,H5052.3260.01 is
still above the phase transition pointDc52.27. Another
point is thatDp,H50 is reasonably far away fromDp52.43
60.01 @note that the error bar in the finite-field case is t
error bar of the least-squares fit in Fig. 3~b! and does not take
into account other sources for the error, e.g., the error od,
statistics, etc., and thus is a lower limit#. The third point is
that P↑↓50.0 at Dp,H50 and P↓50.25 at Hc(D) @for D
53.5; see Fig. 1~c!#. Our take on the two different estimate
is that they are compatible with the following scenario. F
D values that are slightly below 2.43 one can haveonly one
critical spanning cluster, and the probability for this is th
P↓ , about 0.25. Both orientations do span simultaneously
they can do for allD values aboveDc , but they should not
be both critical, unless one decreases the disorder stre
further.

For the estimate of the correlation length exponent, dev
tions from normal percolation are seen sincen51.0060.05
instead ofn50.88. In our opinion this reflects the fact th
for HÞ0 the correlations from the proximity ofDc are neg-
ligible, whereas here the spin-spin correlations change w
system size. The correlation length exponent is higher t
that for percolation, so clear-cut percolation scaling can
be expected. Differences between theH50 andHÞ0 cases
were found also in the two-dimensional case.15 Note that in
two dimensions, the exponent wasdependent on the span
ning probabilityand the standard correlation length expone
was found where the spanning probability for either of t
spin directions to spanP↑/↓ had a nonzero value~remember
that in two-dimensional square lattices without an exter
field at largeD neither of the spin directions span and wi
small D either of them start to span!.

Here we tried, as in two dimensions, to do fits using s
eral criteria forP↑↓5@0.05, 0.15, 0.20, . . . , 0.95# and let-
ting both Dp and n vary depending onP↑↓ . Indeed, we
obtained monotonous behaviors depending onP↑↓ for both
n and Dp . However, this may just reflect how finite-siz
effects depend on the criterion. It is anyhow worth noti
that forP↑↓ approaching zero,Dp gets also closer and close
to 2.27, i.e., the accepted value for the phase transition p
Dc . Moreover the correlation length exponent moves
wardsn51.360.1, in the neighborhood of the phase tran
tion correlation length exponents reported in t
literature.5,8,11 Similarly, if P↑↓ is let to approach unity,Dp
closes on the valueDp52.43 obtained above, in the finite
field case. This behavior may be just coincidence or rela
to the (D-dependent! correlations in the system to how the

in

–

3-5
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FIG. 5. ~a! The spanning probabilities for system sizesL3P@83–1203# of simultaneous up- and down-spin spanningP↑↓ as a function
of D for H50. The data points are disorder averages over 200–5000 realizations.~b! Each system sizeL vs Dp(L)2Dp , whereDp(L)’s are
the corresponding crossing points of the spanning probability curves with the horizontal lines ofP↑↓50.2, 0.4, 0.6, and 0.8 in~a! andDp

is estimated to be 2.32. The power-law behavior suggests a scalingL;(D2Dp)2n, wheren50.9760.05. The error bars in the labels of th
figure for differentn ’s are the errors of the least-squares fits.~c! The same data as in~b!, but now plotted as random field strength valu
Dp(L) vs the scaled system sizeL21/n, wheren51.0, leading to a same estimate ofDp52.3260.01. The error bars in the labels of th
figure for differentDp are the errors of the least-squares fits.~c! The data collapse of~a! with the corresponding criticalDp52.32 andn
51.0.
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change the universality class of percolation in the vicinity
the phase transition. We return to this in the conclusions
Sec. VI.

Hence we have shown that at largeD both spin directions
span simultaneously, and by decreasing random field stre
we find a criticalDp,H50, which is above the phase transitio
point Dc and below which there is no simultaneous spanni
Therefore we conclude that in the whole regimeDc,D
<Dp,H50 there is geometrical criticality in 3D RFIM, sinc
always only either of the spin directions spans the syst
However, the spanning cluster cannot be massive there,
scale with Euclidean dimension (d53), the system still be-
ing paramagnetic, but has to be a fractal. The scaling of
spanning cluster is studied in the next section and the im
cations of the critical region in Sec. VI.

V. SPANNING CLUSTER

In Fig. 6~a! we have plotted the mass of the spanni
cluster of down spins with respect to the system size
Hc(D).0 for four random field strength valuesD52.75,
3.0, 3.5, and 4.0 up to system sizeL351203. As a guide to
14440
f
in

th

.

.
e.,

e
li-

t

the eye the fractal dimensionD f52.53 of the standard per
colation is drawn in the figure and the systems can be s
asymptotically approaching the same scaling. However, th
are obvious finite-size effects, which depend onD. We have
estimated roughly the crossover system sizes for the sys
to reach the correct scaling,Lx.30, 20, 10, and 5 forD
52.75, 3.0, 3.5, and 4.0, respectively. This hints at an ex
nential scaling with a slope of21.4260.03 for the crossover
length scale; see solid diamonds in the inset of Fig. 6~a!. The
above scaling predicts, forD54.5, Lx.3, smaller thanL
58 ~in Fig. 4, this size does not scale!, but note that the
prefactors of the scaling behaviors need not to be the sa
In Fig. 6~b! we have drawn for threeD<Dp , i.e., D
52.35, 2.38, and 2.45~which is so close toDp that itsHc is
practically zero with respect to the numerical precisio
1023), at H50, the scaling of the mass of the spanni
cluster of either of the spin orientations up to system s
L351203. There one can see that the fractal dimensionD f
52.53 of the standard percolation is asymptotically met, t
but at much larger system sizes. Here we have estimated
crossover system sizesLx.80, 60, and 50, forD52.35,
2.38, and 2.45, respectively. They are plotted as open cir
3-6
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in the inset of Fig. 6~a! and are obviously diverging from th
exponential behavior mentioned above when approach
phase transitionDc . These large values forLx do not leave
much room for the asymptotic scaling, since it is difficult
go aboveL351203. However, the crossover is visible. The
is one other thing one notices from Figs. 6~a! and 6~b!. In the
case we plot the mass of the spanning cluster of the d

FIG. 6. ~a! The average mass of spanning cluster of down sp
for random field strength valuesD52.75, 3.0, 3.5, and 4.0 at th
critical positive external field valueHc(D) @see the values from Fig
3~b!#. The 3D percolation fractal dimensionD f52.53 is indicated
with solid lines. In the inset a crossover length scale at which s
tem size the asymptotic behavior is met for each random fi
strength is plotted as solid diamonds. The least-squares fit estim
an exponential behavior with a slope of21.4260.03. ~b! The av-
erage mass of spanning clusters of either spin orientation for
dom field strength valuesD52.35, 2.38, and 2.45 whenH50. The
solid lines are the least-squares fits to the data with the slopes
cated in the labels. The dotted line with a slope ofD f52.53 and the
dashed line with a slope ofd53 are guides to the eye. The es
mated crossover length scales are plotted in the inset of Fig. 6~a! as
open circles.
14440
g

n

spins in D.Dp and Hc(D).0 the crossover is from a
smaller slope to the asymptoticD f52.53 one. In the case
D<Dp the crossover is from the Euclidian dimension~slope
of 3, i.e., effective ferromagnetism! to the asymptoticD f
52.53. There it is obviously affected by the vicinity of th
phase transition point.

VI. DISCUSSION AND CONCLUSIONS

In this paper we have studied the character of the gro
state of the three-dimensional random field Ising magnet
mostly, the paramagnetic phase. A geometrical critical p
nomenon exists in these systems: for cubic lattices in o
nary percolation both occupied and unoccupied sites span
systems when the occupation probability is one-half. In
RFIM this corresponds to the case with a high random fi
strength value, without an external field. When an exter
field is applied and the random field strength decrease
percolation transition, for the other spin orientation to lo
the spanning property, can be seen. The transition is sh
to be in the standard 3D short-range-correlated percola
universality class when studied as a function of the exter
field. Hence, the correlations in the three-dimensional r
dom field Ising magnets are only of finite extent as could
expected in this region of the bulk phase diagram. Based
our numerical results both critical points6Hc(D) approach
whenD is decreased and finally meet at aDp.2.43.Dc , at
which Hc50. When the percolation transition is studie
without an external field and tuning the random field stren
similar behavior is found, i.e., signatures of a percolation l
~a Dp.Dc). This might cause puzzling consequences wh
studying the character of the ground states, because the
colation correlations may influence the magnetization co
lation length.

The major theoretical implications have to do with th
phase transition. Note that earlier ground-state studies of
domain structure implied that there is only a ‘‘one-doma
state’’ below the critical field and a ‘‘two-domain state’’ i
the paramagnetic phase~extending down from high disorde
values!.20 If the transition is first order, then one expects t
percolation properties of the paramagnetic phase to be
continuous in the thermodynamic limit. If the transition
second order, then one may ask what is the correct wa
link the presence of the percolation transition to the criti
phase. AtDc , one expects that the spin-spin correlatio
show power-law correlations. For a normal percolation tra
sition, these are~as in the disordered phase in general! of
short-range character. There is a divergent length scale a
transition is approached from the paramagnetic phase, be
which the spin-spin correlations matter and the scaling of
spanning clusters is volume like.

Assume that the properties of the largest cluster are g
erned by the power-law correlations. An old result by We
rib gives a Harris criterion for this approach to check ho
this would change its structure from ordinary percolation36

If the site occupation probability correlations decay asr 2a,
one has that the decay is relevant ifanold22,0→nnew
52/a, where nownold50.88 for 3D site percolation. One
gets a critical decay exponentac52.27, much larger than
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that found by Middelton and Fisher,5 which is very close to
zero. An application of the theory of correlated percolati
would thus imply that the spin-spin correlations atDc are
relevant for percolation. They would change the universa
class, of percolation, in a way that would reflect such cor
lations. This reasoning would need further consideration

One should note also that although this study was d
using cubic lattices, it can be extended to other lattices,
since all common three-dimensional lattices havepc,0.5.
Thus the transition from both spin orientations spann
phase to only one spin orientation spanning phase sh
exist. In the case of diluted antiferromagnets the percola
is already seen as percolation of diluted spins. The impl
14440
y
-

e
o,

g
ld
n
-

tion of this paper is that the influence of percolation is ev
more rich. Lately there has been interest in studying dom
walls and excitations in RFIM. In both cases the underlyi
percolation criticality should affect the structure of the clu
ters that result from varying the boundary conditions.
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