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Surface scattering analysis of phonon transport in the quantum limit using an elastic model
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We have investigated the effect on phonon energy transport in mesoscopic systems and the reduction in the
thermal conductance in the quantum limit due to phonon scattering by surface roughness, using full three-
dimensional elasticity theory for an elastic beam with a rectangular cross section. At low frequencies, we find
power laws for the scattering coefficients that are strongly mode dependent, and different frofndisieen-
dence, deriving from Rayleigh scattering of scalar waves, that is often assumed. The scattering gives contri-
butions to the reduction in thermal conductance with the same power laws. At higher frequencies, the scattering
coefficients becomes large at the onset frequency of each mode due to the flat dispersion here. We use our
results to attempt a quantitative understanding of the suppression of the thermal conductance from the universal
value observed in the experiment.
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[. INTRODUCTION al.? in experiments on a lithographically defined mesoscopic
suspended beanfof dimensions about 2Z:mXx200 nm
Landauer’s work in the late 50&ef. 1) initiated the ex- X 60 nm). Whilst their elegant experiment displays the uni-
ploration of the nature of quantum transport. A breakthroughversality of ballistic phonon transport, the experiment also
idea, now commonly known as Landauer’s formulation ofshowed adecreasein the thermal conductance below the
quantum transport, states that when elastic scattering domimiversal value in the temperature range of 0.08'K
nates, the electrical conductance can be related to the trang-0.4 K that cannot be explained by the ballistic theory,
mission coefficient of the electron waves. In the ideal case o§ince in this theory an increase in the thermal conductance is
no scattering, this leads to a universal conductance that @xpected as the temperature is raised and more modes are
quantized in units o&°/h at low temperatures, with an ad- excited. The decrease in thermal conductance is presumably
ditional quantum of conductance added as each channel @ssociated with the scattering of the thermal phonons, and
mode of the conductance pathway opens up. The applicatiotan be understood using the ideas of Landauer in terms of
of similar ideas to the phonon counterpart, namely thermathe scattering coefficient of the vibrational waves. This is the
conductance, was recently derived by a number otopic of the present paper.
authors;™* and is now recognize€dto be related to earlier  In this paper, we calculate the effect on the low-
work on the entropy transport at low temperatut€dome  temperature thermal conductance due to scattering of the
workers have extended the concept of the universality of théhermal phonons by surface roughness, which is likely to be
thermal conductance to particles of arbitrary statisticshe major source of scattering in mesoscopic samples. The
(anyons.”® scattering of scalar waves, described by the simple wave
In the case of electrical resistance, the chemical potentiadquation, in waveguides with rough surfaces has been inves-
or the number of conducting modes can be varied at very lowigated by many workers, including ourselves, using both
temperatures, giving sharp jumps between various quantizegumerical and analytic method:13 However, for the low-
values of the resistance. On the other hand, thermal transpdgfequency modes of interest in the low-temperature thermal
by phonons necessarily requires nonzero temperatures #nductance, the physical vibrational waves have quite dif-
populate the modes of the conducting pathway, and the widtferent properties than the waves in the scalar model. For
of the Bose distribution function smears out the quantizatiorexamp|e, the dispersion relations of the modes are different,
of the conductance. Only at very low temperatures, whergyith two of the four modes with zero long-wavelength fre-
just the modes of the conducting pathway with zero fre-quency having a quadratic dispersion at small wave vectors,
quency at long wavelengths contribute to the thermal conrather than the linear dependence given by the simple scalar
ductance, the quantization of the ideal conductance becoméseory. To understand the experimental results quantitatively,
apparent in a universal thermal conductahgg,, with K,  a more accurate treatment of the vibrational waves is needed.
= (w?3)k3T/h is the universal conductance per mode, withAt low temperatures, the wavelengths of the thermally ex-
kg the Boltzmann’s constant aficthe Planck’s constant, and cited modes are large compared with the atomic spacing, and
Ny is the number of modes with zero frequency at longso a treatment based on the equations of macroscopic elas-
wavelengths, which is 4 for a freely suspended elastic bearticity theory is appropriate. Blencow®* has considered the
connecting the two thermal reservoirs. Note that this value o§cattering of elastic waves in a thin-plate waveguide with
the low-temperature conductance in the absence of scatterimgugh surfaces, but prior to our work, the scattering of elastic
is independent of the dimensions and elastic properties of theaves confined in a beamlike waveguide with rough surfaces
thermal pathway. has not been considered.
A low-temperature thermal conductance consistent with Previously, we have investigated the effect of surface
the predicted universal value was measured by Schetab scattering on the low-temperature thermal conductance using
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the scalar wave modét.In that paper, we noted the apparent f y
discrepancy between the results of scalar model with a P
simple assumption for the nature of the surface roughnes: P/

the data seemed to show a delay of the onset of scattering ¢
the temperature increased, which was not predicted by the
model. However, since the scalar model does not properly
account for the properties of the elastic waves, it was not
clear whether this discrepancy is due to an inadequate mod
eling of the surface roughness, or the flaw in the descriptiony=+% +f 2
of the waves themselves. To resolve this matter, and obtain o lnedent transmitted
more accurate account of the scattering of the waves by — reflected
rpggh surf:?\ces, we develo'p a theory based on the full elasy=-% - (X’Z)—“’M—\_':,li e
ticity equations, and use this to calculate the thermal conduc
tance at low temperatures. A short version of this work has
been previously published. FIG. 1. Top: Three-dimensional elastic beam with rectangular
In Sec. Il, the scattering of elastic waves confined to across section. The rough surfaces are on the top, bottom, and sides.
beam of rectangular cross section with rough surfaces is caBottom: Side view of the mathematical model of the structure ac-
culated using the full three-dimensional elasticity theory. Wetually used for the scattering calculation.
use a Green'’s theorem approach and calculate the scattering
coefficient to a quadratic order in the amplitude of the sur+eservoirs smoothly, by a portion of continuously growing
face roughness. These results are quite general, but ratheidth, to eliminate or reduce the scattering of the vibration
intractable for further progress, since the structure of thénodes off a sharp junction. We will suppose that the scatter-
modes in an elastic beam cannot be determined in a closddd by roughness is important only in some narrower portion
form. Thus in Sec. lll, we reduce the expressions to a thinof lengthL.
plate limit to provide a closed form for the displacement The thermal conductance is given by the expression
fields, and to obtain analytical expressions for the scattering 5
behavior. In Sec. IV, the general behavior of the scattering K— h
and the effect on the thermal conductance is analyzed in N ke T2
detail, using a simple description of the surface roughness, to
investigate the physical consequences of the novel featurd¥here wy, is the cutoff frequency of themth mode, g
of the elastic waves. In Sec. V, we use our theory in an=1/(kgT), T is the temperature, arifj,(w) is the transmis-
attempt to fit the data of Schwati al® using more realistic ~Sion coefficient, which for ideal casg,(w)=1. The inte-
descriptions of the surface roughness. A number of the morgration is over the frequency of the modesm that propa-
difficult issues that arise in the elasticity theory are describe@ate in the structure. The transmission coefficient is unity for
in the Appendixes. the ideal case. Any scattering reduces the thermal conduc-
Although our main interest is the scattering of thermallytance, and scattering of the lowest modes can reduce the
excited vibrational waves in mesoscopic systems at low temconductance below the universal value at low temperatures.
peratures, the formulation of the surface scattering is quite To actually perform the scattering calculation, we imbed
general and can be applied to other situations, such as tfie rough beam of length in an infinite beam of the same

scattering of mechanically excited modes in macroscopi€ross section but with smooth surfaces outside the region of
samples. length L (Fig. 1). Thus the mathematical calculation is the

scattering of a wave incident from= —o on a rough por-
tion of the beam with surfaces gt= = W/2+f,(x,z) and at
z=*d/2xf,(x,y), with the height functiond, , defining
A. The model the roughness, which is nonzero only in a finite region 0
<x<L. Forward scattering is evaluated from the intensity of
x— +, and backward scattering from the inten-

and the data by Schwadi al. below a temperature of 0.1 K: /
NN w

Top view

wZe,Bﬁw

1 0
Em: > mem(w)(eBﬁw—_l)Zdw’ (]

Il. GENERAL FORMALISM

The main focus of this paper is the effect of surface
roughness on the low-temperature thermal conductance §faves &
mesoscopic structures. The geometry we consider is a freef/ty Of waves ax——o. _ ,
suspended elastic beam, which we call the bridge, connecg- 10 calculate the scattering amplitude, we take a Green's-
ing two thermal reservoirs. We will consider a beam of rect-'Unction approach similar to our previous work on the scalar

angular cross section of dimensions widhh(in they direc- model* , o
tion) and depthd (in the z direction. The mesoscopic The dlsplace_ment field away from any sources satisfies
structures are often produced lithographically from epitaxi-N€ wave equation:
ally grown material. We choose a convention that the depth

is a dimension in the growth direction, and the width in the

lithographically defined transverse direction. We define, thevherep is the mass density, and

length of the rectangular beam of nominally uniform cross

section asL. In practice the bridge may be joined to the Tij=Ciji diuy (©)

pafui=&jTij ) 2
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is the stress tensor field with;j,; the elastic modulus tensor. Equationg5) and(10) lead to Green'’s theorem expressing
The subscript runs over the three Cartesian coordinates, wehe displacement field at frequenayin terms of a surface
use the symbob, to denote the derivative/dx etc., and integral
repeated indices are to be summed over. The displacement
field satisfies stress-free boundary conditions at the surfaces , , ,
Ug(X)= S,[nj Tij(X")Giq(X", X; )

Tijnils=0, (4)

_ —n{ui(xX)Tjq(X",x;)]dS'. (11

where S denotes the surface boundaries anpds normal to
the surface. Assuming harmonic time dependence at frédle are free to choose any closed integration sur&ceéne

guencyw, Eq.(2) becomes choice is to use the physically rough surface thereby elimi-
nating the first term in Eq(11) due to the boundary condi-
pwzui+Cijk|¢9i&ku|=0. (5)  tion (4). However, the resulting integration over the rough

surface is not easy. Instead, we integrate over the smoothed
We approximate the material of the system as an isotropigurfaces ay= + W/2 andz= + d/2 and impose the boundary
solid. Then the elastic modulus tensor is conditions on the Green’s function to be stress free on these
smoothed surfaces,
Cij =\ 8ij 6 + (6 Sji + 61 6y (6)
where A and u are Lameconstants 4 is also the shear Fijqnj|s_ 0. (12
modulug together with cross sections xt— + « to close the surface.

The total fieldu can be written as the sum of incident and

with E the Young’s modulus and the Poisson ratio.
Even in a rectangular beam geometry the displacement

fields in the propagating modes yielded by these equationg can pe showr(see Appendix A that the integration over

are complicated, and cannot be found analytically. Theghe sections ax’' — = on the right-hand side of Eq11)

modes can be grouped into four classes according to thejf,q givesuy. In the integration over the smoothed surfaces
signature under the parity operatiogs>—y and z— —z.

aty=*W/2 andz= *=d/2, the second term in the integrand

Some modes show regions of anomalous dispersion Wherg,nishes que to E412). Thus, we find the expression for the
the group velocitydw/dk is negative: these regions require a scattered field

careful examination of the notions of “forward” and “back-

ward” scattering for the waves. The lowest-frequency mode

of each class has a frequency that tends to zero at small wave ug(x) = f [N Tij(x")Giq(X",x;®)]dS, (14
number. These four modes are the only ones excited at low s
enough temperature, and are the ones contributing to the uni-.
versal thermal conductance. The structure of these modes _fT the surfaces the _smoothed surfaces= = W/2 andz .
small wave numbers is simple and can be calculated usin__dlz' The stress T'eldr” on 'the smoothed surface is
familiar macroscopic arguments of elasticity theory: they ar valuated by expanding about its value on tbegh sur-

: : ; efaces, where Eq4) applies.
compression, torsion, aritivo orthogonal bending modes. . e '
We define a Green's functidB;q(x,x';t,1") to satisfy the The rest of the section goes as follows: first, we find an

wave equation with a source term s, 8(x—x') S(t—t'), explicit expression fgr the Green'’s function with stress-free
i q boundary conditions; then we apply the boundary perturba-
andT’;;, to be the corresponding stress : .
tion method to project the stress at the rough surfaces onto
the smooth surfaces by expanding the stress-free boundary

u=u"+use (13

ia

Tija=Cijla 4Giq - ®  ierms around the smooth surfaces, using the small roughness
It is convenient to introduce the frequency space version ofS the expansion parameter; and finally we evaluate the
the Green’s function strength of the scattered waves to give the scattering coeffi-
cient.

G iyl N — de iyl —io(t—t")
iq(}XTtt) = Equ(X’X jw)e ) B. Green'’s function

We evaluateSi,(x,x’; w) as an expansion in the complete
orthonormal set of normal modes*™(x) in the ideal ge-
ometry, which satisfies Eq5) and stress-free boundaries at
the smooth surfaces. Heleis the wave number in th&
(10) direction, andm labels the branch of the dispersion curve.

We definew,,(k) as the frequency of the mode at wave

wherex is the observation coordinate amd is the source numberk in the ideal geometry. The modes satisfy the com-
coordinate. pleteness relation

with a similar expression defining;; (x,x"; ). InsertingG,
I', and the source term into E(p) gives

pw°Gig(X,X";0) +d;[jjq(X,X";0) = = 8iqgd(X—X'),
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Z dk m)y o (k) ) The group velocityug" does not have an analytical ex-

_ Jgui (XD*u ()= 6;jo(x—x"). (15  pression for a rectangular beam, and is obtained by differen-
tiating the dispersion curve that must be found numerically.

Substituting this expression on the right-hand side of EqAlternatively, to avoid numerical differentiation, we can re-

(10) leads to the expression for the Green’s function write " in terms of the average power flow in mode
. Sinceui”) is normalized, the poweP, in moden can be
Gig(X', X @) written as
E 1 o dkd)i(k,m)(yr,zl)* d)gk,m)(y,Z) eik(x—x’) 1 . 1 ")
= - A~ y _ o n n)% - 2_.(n
= 27 ) o pl(w+ie)2—w?(K)] Pn—ERef f (—loTu"*)dydz= Sp0vg",
(16) (19
where we write the first expression of the equality expressing the energy flux
_ in terms of the rate of work done across a section, and the
ui(k’m)(x)= (ﬁi(k'”‘)(y,z)e'kX a7 second in terms of the group velocity and the average energy

. o) o ) density evaluated as twice the average kinetic energy. Then
with ¢;"" giving the transverse dependence of the dlsplacel-}én) can be evaluated in terms B, as

ment field. In Eq(16), € is a positive infinitesimal number to
incorporate causalitysiq(x,x";t,t")=0 for t<t’. v(M=2p Ipw? (20)
Equation(16) can now be evaluated by contour integra- g "

tion. The integrand has poles labeled by an ingerear  andP, has an expression directly in terms of displacement
valuesk=k, on the real axis, which are given by solutions to field given by the first equality in Eq19),
the dispersion relatiom(k,) = w for all brancheam. (We
take an incident wave witlw>0.) Note that for branches 1
with regions of anomalous dispersion there may be more PnZERef f (—iwTPu™*)dydz (21)
than one solution to this equation for soree so that the
indexn is not identical to the branch indewr. The poles are  This expression for ™ can also be derived directly from the
shifted slightly off the real axis by the infinitesimalin Eq.  equations of motior‘%
(16), and are given by expanding abdt
i C. Boundary perturbation

k=Kot — In this section, we show the boundary perturbation tech-

g nigue for the rough surfaces on the sides., thex-z bound-

with Uén) the group velocity at theith pole dw,,/d klk:kn- ary planeg We work out the scattering coefficient explicitly

Notice the poles are in the upper half plane §§?>0, and for the surface neay=W/2. The surface near= —W/2 will
in the lower half plane fob ™ <0 give a similar contribution and, assuming uncorrelated
in the p g .

. . . roughness on the two surfaces, is accounted for by multiply-
Now we can perform thd& integration by complex inte- 9 y Y

) . . p ing the single-surface scattering rate by 2 at the end of the
gration. Consider first the casep>x’. The contour must be calculation. The results for the top and bottom surfaces can

closed in the upper half plane so that the contribution fronbe obtained by interchangingandz whenever they occur in

the sem|0|rcle at 'afg*EkJ vanishes. The conftour Integration fthe indices in the displacement fields and stress tensors in the
then picks up contributions from the poles in the upper hal alculation below

. . n)
plane, i.e., wave numbers with’>0. On the other hand, In order to calculate the stress on the smooth surface ap-
for x<x’, the contour must be closed in the lower half planepearing in Eq.(14), we expand the stresE; in a Taylor
and it is poles at wave numbers W"ﬂén)<0 that give non-  series about the flat surface, and impose stress-free boundary
zero residue. Forward scattering or backscattering is thuggnditions at the rough surface which is the small distdnce
seen to be determined by the sign of the group velagl}  away. We also assunfa is differentiable.
rather than by the sign df,, as indeed would be expected g it vectom normal to the rough boundaries to first

physically. order inf is
Evaluating the residues gives the expression for the !

Green'’s function:

n=y—d,f1(x,2)X— ,f1(X,2)Z. (22)
(N) (y! (n)
Gu(X X )= Ui (X" ug” (x) (19  Then the stress-free surface boundary conditionscpan
R 2 2 (n 7 be written as
p@nUg
where u("(x) is written for u“™(x) at the value of the [Tiy— dxf1(X,2) T 3,F 16,2 Tigly— iz 1=0.  (23)

wave numbek=k,, satisfyingw,(k,,) = . The prime on the
sum is used to denote the fact that the sum runs oweith Now expanding Eq(23) in the neighborhood of =W/2 and
vg‘)>0 for x>x', and ovem with vg"<0 for x<x'. taking only the lowest order ifi; andf;, we obtain
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Txyly:W/Z:[é'xf 1(X,2) Tyt 9,F1(X,2) Ty, d/2
ton= | x| " dz— S ITP00UT 00 e,
—1(%,2) 0y Tyl y=wiz (24) di2 pr ()
(30)
Toly=wo=[0:d1(%,2) Toxt 3,f1(x,2) T, where we can now extend the integration limittoe since
—£10,2) 9y Ty lly—wiz (25) f1, and so the integrand, is zero outside the domain of rough-
ness G<x<L. Again mode indices for which vg‘)>0 rep-
Tyyly=wiz=—f10%,2)dy Tyyly=wi2, (26) resent the forward-scattered waves and those m@fko
the backward-scattered waves.
where the first two expressions fa, and T,, have been Now use the expression for the stress tensor on the

used to simplifyT, . Since the terms on the right-hand side smooth surfaces obtained in the preceding se¢@dp-(26),
of Egs. (24)—(26) are explicitly first order in the small pa- and integrate the resulting expressions by parts with respect
rameterf,, the stress field;; on the right-hand side can be to x or z to rewrite the terms im,f, andd,f, as integrations

evaluated at zeroth order, i.e., for ideal smooth surfacesverf,. After these manipulations, we firtg ,, can be writ-
These results are used in EG4). ten as

D. Scattering coefficient

, , thm="— —f dxf dz fi(x,2)I(™"(x,2),
We now evaluate the expression for the scattered field 2pwv{VJ) =) —ar

given by an integration over the beam surfatg$. To cal- (31
culate the scattering coefficient, we consider an incident h
wave of unit amplitude in a single moda. Again in this, where
section we will outline the calculation for the scattering by ) B (m) (m) (M) ()% (m)
the single surface at=W/2, and will include the effects of r (X,2)=[(xTool + 9y Toy’ + 92Tz U™ + (95T
the other surfaces at the end. We therefore have +ayT§'}")+aZT§T))u§”)* +9 T(yr;) §n)*

+ T g u™M* + T 9,uiM* + T (9 ulM*
U(S]C(X):J' J[Tiy(X')qu(X',X;w)]y/=W/2dX'dZ'. XX YXHX zz VZ¥z ZX( Xz

27 + ) 1y - w2 (32
We can now evaluate the forward and backscattering a pplylng the equations of motior5) and remembering
plitudes by using Eq(18) for the Green’s function in Eq. |{ w2=0 for alli-and for allx,z leads to the somewhat
(27), and evaluating the scattered wave at large positive anaImp er expression
negativex,

r™0(x,2)=[ = pw(u{™uf™* +uMul* + uMul*)

US(x 22y, Z)wf dx’ f b + T a,ul* + T o,u* + T (9 uM*
a2 (”)>o 2pwv{)

X[Tiy(X U™ (X)* 1y —pu{V (%), Notice that the scattering separates into a kinetic té&tra
(28) first line) and a stress terrtthe second ling
The above form fod" (™™ s still neither instructive nor
d/2 . practical for numerical evaluation. It can be further simpli-
S(‘(X_> ©.y, Z)~J dx’ f ! fied using the expressiori8) and(7) for the stress tensor in
dr2 (n)<0 2pw v( ) terms of displacements. First, we use the boundary condition
T{W=0 for they stress to give ay=W/2,

+3,ul™*) ], _wi- (33

X[Tiy (XU () * Ty _pyu{P().

(29 gyl =— ui;a)(axuﬁ(mhr aul™my, (34)
The stress tensor;; corresponding to the full displacement o ]
field of the wave is evaluated from Eq&4)—(26). Since  This can be used to simplify the expressions for the other
these expressions explicitly include the small roughness anf:omponents of the stress tensory atWi/2,
plitude f, on the right-hand side, to calculate the scattering at
lowest order in the roughness amplitude it is sufficient to m m m
replace allT;; on the right-hand side by the valtl'ém) in the Tax)_(l_az) (™ +0d,ui™), (35
incident modem. From Eqs(28) and(29), we see thati®{x)
is expressed as a sum over mod&¥(x), and the coefficient
of each mode is then the scattering amplitaiglg, from in- T(M =
cident modem into moden, so that (1—a?)

(aa,ul™ + g,ulm), (36)
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E The scattering rate is given by multiplying, »|* by the
T = m(ﬁxu(zm)+(7zu§<m))- (37 ratio of the group velocities in the scattered and incident
waves'’ We also treat the roughness of the surface statisti-
Inverting these gives at=W/2 cally, and take an ensemble averagienoted by angular

bracket$ to give the final expression for the scattering rate

1 from modem to moden by the per unit length of single
()= = (T(m_ ;{m Yn,m ;
dxlx " =g (Tod =0 T3z, (38 rough surface ay=Wi/2 given by
m_ L rm (m) vy’
s :E(Tzz _UTxx )s (39 'Yn,ml—: (gm)<|tn,m|2>
2(1+0) 1
U+ UM = ———T(D. (40)

- 4p2w2vém)vg”)

We emphasize that Eq$34)—(40) are only true for the di2 o 2
stress-free boundaries, and are not generally true in the bulk X < U dzfy(kn—k,,2)[ ™M (z) > (45)
of the material. —ar
Using these results, we get
We are interested in the reduction of the phonon heat
i a2 o transport due to rough surfaces. Only the backscattered
thm=— —(H)J dz fy(kn—k,,2T™M(2) (4)  waves(those withv{"”<0) reduce the amount of heat trans-
2pwvg/-di2 mitted. Thus we define,,, the thermal attenuation coeffi-
with cient of modem per unit length, to be the sum of the scat-

tering rates from the incident modm to all possible
o backscattered modes, per unit length of rough surface. This
F(m’”)z{pwz(qﬁf(m)(ﬁf(n)*+d)§,m)¢§,n)*+¢§m)¢gn)*) can be written for scattering off the single rough surface
considered so far:

—ElTRTE A TRT )~ (oTPTR”
Ymk = ; 'Vn,ml-
1 )
+ T )] — —T T , (42) Yo 0
H y=W/2
1
where we have introduced the explicit dependence of = zn: 402020 (m) (n)
u{W(x) as in Eq.(17) and the stress tensor oM< pe
(Mg — T iknx a2z — 2
Tij () =T (y,2)e"r, (43 ><<f dzt,(ky—k,,2)TM"(Z) > (46)
—d/

so that thex’ integratioanjust the Fourier transforirof the To include the second rough side surface, assuming un-

roughness function, anl is a function of thez coordinate  correlated roughness, we simply have to multiply the expres-

only. sion for y,, by a factor of 2. The expression for scattering off
Alternatively, using Eqs(35—(37), we can derive an ex- the top and bottom surfaces, if these are rough too, can be

pression explicitly in the displacement fields, which is usefulderived in a similar manner and the result may be obtained

for numerical evaluation, by exchanging andzin Eq. (46). The total scattering rate is
the sum of the scattering off all the surfaces.
Tmn) 20 (M) (% L p(M) ()% | p(M) p(n) We have assumed that the amplitude of the surface rough-
I PO i Ty dy T+ ) ness is small, allowing us to use perturbation theory to derive

the above expressions. In this weak scattering limit, the
[(k K, (m) (n)*J”; ¢(m)(? ¢(n)*) transmission coefficient i,=1— y,L. When we estimate

(1 sz Trvz the S|gze of the surface roughness from the data of Schwab

) ) et al,” we find that the weak scattering approximation is suf-

+ U('km¢§<m)52¢§n)* B 'kn&zqﬁgm) ‘ﬁ(xn)*)] ficient for all frequencies except near the onset of the higher
—M(ikm¢§m)r9z )((n)*+kmkn¢§m)¢gn)* modes, Wh(_are the scgttering tends_ to diverge due to the

group-velocity factors in the denominator of E46). The

transmission coefficient becomes small over a narrow range
+ 0, I, * —iknd, ™ ) : near these onset frequencies, and the simple expression for
y=Wi2 7T is inadequate here. To interpolate to the small transmis-

(44)  sion for strong scattering, we use the approximation
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T=exd — ymL]. (47 obtained using the method described in Ref. 18. For the in-
plane modes we find, up to a normalization factgrthat is
This expression correctly includes the exponential decay ofommon to both even- and odd-parity waves, the even
the wave due to successive scattering out events, but doesodes
not include multiple scattering that may eventually scatter
the wave back into the forward direction. However, for the

2_.2
calculatio_n of the thermal conductivity in the temperature Ux(x,y)=ikAl K chos( x2W cos x1Y)

range of interest, the effect of the strong scattering regions 2k2 2

around the onset of the higher modes is negligible, and other

interpolation expressions between the weak scattering ex- X1 _

. . . . _ A ikx 48
pression valid for most frequencies and the small transmis- cos x2y)co 5> || (48)
sion near the onset frequencies give very similar predictions.

_ k2= x2 W
I1l. THIN-PLATE LIMIT 1 X2 .
uy(X,Y):Al{ 2x COS(T)S”‘(XN)
Although the expression in the preceding section is gen- !
eral and applicable to any rectangular waveguide with rough W _
. ) X1 . ikx
surfaces, there are no closed-form expressions for the dis- +x2€0§ —5—|sin(xay) |€™, (49

placement fields in general, and so a direct evaluation of the
scattering has to be done completely numerically. Here, we
instead use thehin-plate approximation ekW,%8 which and the odd modes
yields closed-form expressions for the displacement fields of

the modeqin terms of a dispersion curves,(k) given by _

numerical solution of a simple transcendental equatidhe Uy(X,y)=iKA;
thin-plate limit captures the important properties of the elas-

tic modes; for example the quadratic dispersion of the bend-

ing modes at small wave numbers, and the regions of anoma- _ sin( ﬂv) sin(x2y)
lous dispersion, as well as providing analytical expressions 2

enabling us to do further analysis of the scattering. The thin-
plate theory is applicable where the thickness of the sample
is much less than the width and the wavelengths are much
greater than the thickness, which is the case for many meso-
scopic systems at low temperatures.

The use of the thin-plate limit for mesoscopic structures
was proposed in Ref. 18, where the calculation of the struc-
ture of the modes is described in more detail. It is found that
the modes can be separated into two classestane modes  \yhere y, = (w2/c2—k2) 2 and y,= (w?/c2—k?)2, with c,
where the polarization of the displacement is largely in thepe transverse sound velocity agdthe longitudinal velocity
x-y plane(together with small strains in thedirection given  , 5 large thin plate
by the Poisson effegtand the displacement field is com-
pletely specified by giving theertically averaged horizontal

displacement componentg(u,y) andu,(x,y); andflexural co+]__E oo [ E 52
modeswhere the displacement is primarily in thelirection U N2p(l+e) (1-0?)

— p
and is specified by a vertical displacement fielgx,y).

Within each class we can further distinguish the modes bynq, andk are related by the dispersion curve that must be
their parity undey— —y. For the in-plane modes, we define foung numerically. In the thin-plate limit, it is sufficient to

the modg as even iﬁx(x,—y)=UX(x,y) and odd ifuy(x, take for the in-plane modes
—Y)=—UxX,y). Similarly, the even flexural modes have

uzg,—y)=uz(x,y) and the odd modes havg,(x,—y)= ux(x,y,z)zUx(x,y), (53

—U,(X,y). As in the general case, there are four branches of

the dispersion curves that tend to zero frequency as the wave _

number goes to zero, corresponding to one mode from each Uy(X,Y,2)=Uy(X,y), (54)

of these classes. The low-frequency even in-plane mode cor-

responds to the compression mode, and the odd mode corre-

sponds to the bending mode. The low-frequency even flex-

ural mode corresponds to the second bending mode, and the

low-frequency odd flexural mode is the torsion mode. Similarly, the vertical displacement field for the even flex-
Explicit expressions for the displacement fields can beural modes is

—kz_ﬁsin( Jsin| X2
2k2 le 2

eikX, (50)

— k2= x5 [ x2W
Uy(X,y)= —Al[ o 1cos(xly)sm(27)

eikX’ (51)

w
+ x,Sin XlT

u,(x,y,z)=0. (55
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. X_W T T
Uz(X,y) =Ag| cosh ——|costix.y)
g
k20— x?2 W .
- *cosh X coshix_y)|e*, é’
K2o—x? 2 g
(<5}
=]
(56) g
[ X
and for the odd flexural modes °
. YW 10 100
U,(X,y)=A, Siﬂl’(T)Sinf{)my) Mode number N
FIG. 2. Mode frequencyoy as a function of mode numbét:
kzg-—)(z+ o xeW o crosses represent thin-plate theory; circles represgntlgorithm;
-3 >SN 2 sinh(x_y) |e"™, and solid line represent bulk mode density of states calculation. A
ko —x= thickness-to-width ratial/W=0.38 was used.
(57)

For the bulk mode calculation, there are three polariza-
where y.=(k?>+\pd/Dw)? and y_=(k®— \pd/Dw)? tions (one longitudinal and two transvejseith propagation
with D=Ed%12(1— o) the flexural rigidify, and againo  velocitiesc,, andc,, respectively, withc, as before and
andk are related by the appropriate dispersion curve. In the
classical thin-plate theory, the displacement fields are given c \/ E(1-o0)

- =

in terms ofu, by the expressions p(l+0)(1-20)

(61)

The precise details of the boundary conditions are unimpor-

Ux(X,Y,2) == Zd,U(X,y), (38 tant in the mode counting for large mode numbers. If we
assume standing waves in the transverse direction corre-
uy(x,y,z):—z&yaz(x,y), (59 sponding to zero normal derivative boundary conditions on

the wave functions, the cutoff frequencies are

Uz(X,y,Z)ZUz(X,y)- (60) mar\ 2 nr 2
®f mn=Ct (W + T) (twofold degenerate
This approximation is adequate for evaluating the surface
stress integrals in E@46), but turns out not to be sufficiently (62
accurate to evaluate the energy flux expression for the grougyr the transverse waves, and
velocity (21). We discuss this case in Sec. Il C 2 below.
B mm\? [nm\? g 63
A. Ideal thermal conductance @1,mn=Crr W * d (nondegeneraje(63)
Since our quantitative calculation of the scattering coeffifor the longitudinal waves, witm,n=0,1,2. ... For large

cient relies on the analytic expressions for the elastic modeg, n we can use the continuous form for the frequegyof
available only in the thin-plate limit, it is essential to esti- ine Nth mode

mate the temperature range where the thin-plate limit is ap-

plicable for a given experimental structure. On the other dw 2 1
hand, as the wavelength becomes much smaller than the di- N= _wﬁ( —+ _2) ) (64)
mensions of the structure, we should to be able to treat the 4m c; ¢

waves in terms of separate longitudinal and transverse waves

in the bulk of the material, without worrying too much about ~ Figure 2 shows the cutoff frequencies as a function of
the complicated standing-wave transverse-mode structum@ode number for the thickness-to-width ratiéW=0.38.
important for the long-wavelength modes. In this regime,The thin-plate theory gives a good approximation at lower
which we refer to as the bulk mode limit, the counting of thefrequencies. The accuracy of the thin-plate theory becomes
modes is insensitive to the details of the boundary condibetter asd/W gets smaller. For example, in the case of
tions, and is the same as for a scalar wave approximatiors/\WW= 0.1 (not shown, the error in the cutoff frequencies of
The ideal thermal conductance depends only on cutoff frethe first 13 modes is less than 3%, whilst the error is as large
quency of the modefsee Eq.(1)], and we can assess the as 5% for the first seven modes for the caB®/=0.38
applicability of these simple limiting approximations by shown in the figure. In terms of the ideaho-scattering
comparing the mode cutoff frequencies with results from ahermal conductancgEq. (1) with the transmission coeffi-
numerical calculation of the full elasticity theory. For the full cient set to unity, we find that ford/W=0.38 the error in the
elastic theory, we use thexy z algorithm.”%° thermal conductance is less than 4% upl'te0.4 K. Thus,
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the thin-plate limit is adequate to examine the scattering ef- 9(kn—kp) a2 __ 2
fects in this temperature range. At large frequena®/c, ynym—m J dz'(Mmn(z) (66)
> 30, the elasticity theory results approach closely the con- 2p°w —dr2

tinuum bulk mode calculation&@4). The thin-plate approxi-
mation clearly fails in this limit, since it predictdxw cor-
responding to a @ structure.

where Eq.(46) is multiplied by a factor of 2 to account for
the two surfaces at= +*W/2.

With the closed forms of the displacement fields at hand,
we can obtain the analytical expression for the attenuation
The thin-olat ] I od by o coefficient. We first evaluat& (™" from Eq. (42). Since

e thin-plate approximation is implemented by no |C|ng (m)
that the stress-free boundary conditions imply that the stress 0, the expression fof reduces to
componentd;, are zero on the top and bottom surfaces. For
small thickness this implies that the componehtsfor any T(mn)
i are small everywhere. In most situations these components
can be approximated as z€roThis simplifies many of the 1
terms appearing in Eq41). Also, at low temperatures, only - —( n)*)
modes with no strong dependence onzlweordinate will be E
excited, so that the mode sum extends over modes with in- m)
creasing numbers of nodes in thelirection only. In addition, puttingT}>’ in Eq. (37) at the stress-free bound-

In this section, we calculate the scattering of the elasti@'y 0 zero gives
waves by surface roughness for a thin plate. We assume that () m
the roughness is confined to the sides, since in the experi- d Uz "= = 0 dUy (68)
ments theses are prepared lithographically, whereas the to
and bottom surfaces are produced by the epitaxial growt#) thatT{ from Eq. (35) simplifies to
process. (m)_ (m)

For simplicity, we assume the roughness functigrhas T =By (69)
nozdependence. This is probably a reasonable description qf .
the roughness produced by a typical lithographic process (()@ ow Eq. (66) can be written as
anisotropic chemical etch. Then the Fourier-transformed ~
roughness functiof, (k,,—k,) can be pulled outside of the Vi m_M
integral in Eg.(46), and the statistical average over the T 2p%0% (m) (“)
roughness can be performed to give

B. Attenuation coefficient in the thin-plate limit

PP (FD B0+ HD BV + BN )

(67)

y=W/2

f " dpu?e™ g

2
: (70)

+Ekgknd{™ dV* 1, i

([F1(0)[2=g(k)L, (65)

whereg(k) is the Fourier transform of the roughness corre-where the index is summed ovex,y,z. The scattering in
lation function the thin-plate limit is seen to have two components: the ki-
netic term, the first term in the square bracket in Ef),
~ : which involves all components of the displacement; and the
g(k)=f dxe *X(f1(x)f1(0)). stress term, the second term, which just depends on the lon-
gitudinal displacement.
Equation(46) leads to the back-scattering rate from mode To see how the scattering rate scales with the parameters,
m to moden it is useful to rewrite Eq(70) as

y=W/2

172 d/2 W/2 d y 12+
( f g ¢(n)*)
wi2

(7D

f " 42 ¢_(m) B 4 ¢>(m) 0
I(Km— ko)L [ W22 —az | pw
Ynmk=

WA vém)vén)) (fd/z JW/Z dy¢(m)¢(m)*
W
W/2

d/r2 —di2

The first factor is a dimensionless measure of the strength afvolves integrals over the displacement fields, where we
the roughness; the second factor is a dimensionless ratio thhave introduced the explicit normalization factors in the de-

depends, through the dispersion relation, only on the geometominator so that we may evaluate the ratio using convenient
ric ratio d/W and the Poisson ratio; and the final factor unnormalized expressions for the displacements.
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C. Evaluating the group velocity
As we have seen in Eq20), we can avoid evaluating the

group velocity appearing in E¢70) via numerically differ-
entiating the dispersion curve by instead relating the grou

PHYSICAL REVIEW B56, 144302 (2002

Uy(X,Y,2) = = ZU(X,Y). (79

Using these expressions with Eqg4) and (75) shows that
IShe first two terms in Eq(72) are of orderd?, i.e., third order

velocity to the energy flux in the mode, which in turn can be'n the expansion parameter of thin-plate thedf. It turns
written as an explicit integral1). Thus, we need to evaluate ©Ut that to this order, weannotneglect the last term i,

the expressioriwe suppress the mode index in this section €V€N though alk components.in the stress tensor_ are nomi-
nally “small.” Indeed comparing the group velocity evalu-

1 ated from Eq.(72), neglecting the term if,,, with those
P:—ERE{WJ f (Tyxux +Tyuy + T3 )dydz. given by numerically differentiating the dispersion curve
(72) shows a clear discrepancy. This same problem comes up in
deriving the wave equation for the flexural waves

involving the displacement fields and their derivatives.
In the thin-plate limit thez components of the stress are
small. If we approximatel,,=0, then expression&) and

pdw?u,=DV*u,. (80)

(7) can be used to evaluate tagomponent of the strain, The term on the left-hand side is the mass per unit area times
the vertical acceleration, which is given by the integral over

dU,=— (dxUytdyuy). (73

a
(1-0)

the depth ofo,T,,+4,T,,. Clearly, the components df,;
cannot be neglected completely. Their “smallness” is what

leads to the unusual fourth-order derivative appearing in this
This can be then used to simplify the in-plane components ofvave equation, with a coefficient again proportionatfo
the stress We have used two methods to arrive at the correct calcu-
lation of the energy flux integral for the flexural waves,

(dxux+ adyuy), (74)

XX— (1- 0_2)

which is then used to calculate the group velocity for the
these waves. The first is to use an improved approximation to

the expressions for the in-plane displaceménits and (75)
and a nonzerd,, following the approach of Timoshenkd.
—(0dUx+ dyly), (75) The second evaluates the energy flux in terms of the vertical

T =
.

displacement and an effective vertical force, and in addition

the rotational displacememtand corresponding torqud, as
is used in the macroscopic derivatiOof the wave equation

T

E
yx:m(<9xuy+ AyUy). (76) (80). Either of these methods leads to the expression for the

energy flux

These expression are used to evaluate the first two terms in
the integrand in Eq(72). The evaluation of the last term in
the integrand turns out to depend on whether we are looking
at the in-plane or flexural modes, and we now consider each
case in turn.

1. In-plane modes

For the in-plane modes in the thin-plate limit, it is suffi-

P=_-wDR

1 _ -
5 e{fdy[2k3uzu;‘+k(1—o)(ayuz)(7yu§
—k(1+0)(32u,)u3 T+ DK[ (1= o) (ayu,)u} 1y—wie

—DK[(1— o) (dyU)U% Ty —wya - (81)

ciently accurate to approximalg,=~0, and we can evaluate The derivations are displayed in Appendix B. The compari-

the remaining terms if® with the approximationsi,=u,, son of the group velocity derived from E¢81) and from

uy:Uy independent of. This yields numerically differentiating the dispersion curve now shows
agreement to high accuracy.

iwEd — — =
P=Rej — mf dy[2(auy+ a&yuy)ux

IV. SCATTERING ANALYSIS

The thermal attenuation is calculated from E@0) for

The group velocity for each mode can be accurately evalu-

+(1_U)(ﬁxay+aygx)®]] ' (77) normalized mode displacement fields or Edfl), in general.

ated numerically from the equalityg=2P/pw2, with the
2 Flexural modes energy fluxP given by Eq.(77) for the in-plane modes and
Eq. (81 for the flexural modegboth expressions are for

For the flexural mode the approximatiods,~0 and

normalized displacement fieldS'hese are all explicit results

u,(X,y,2)=U,(x,y) independent of lead to the expressions in terms of the mode displacements, which are given by Egs.

for the horizontal displacements (48)—(51) for the in-plane modes, and Eq5§6) and(57) for
L the flexural modes.
Uy(X,Y,2)=—ZU,(X,Y), (78) Before analyzing the scattering behavior, we first need to
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1.2} Nt

~ 0.8} N5
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>7 0.4 H _:: 1

-0.4 .
0 0 2

e 6 8 oW/c,

FIG. 3. Dispersion relation for in-plane modemlid) and flex- FIG. 4. Group velocity for in-plane modes for the same param-
ural modes(dashed for a geometry ratia/W=0.375 and Poisson €ters as Fig. 3: dash dotted line represents in-plane bending mode;
ration 0.24. The wave numbers are scaled with the witltiand the ~ Solid line represents compression mode. The wave numbers are

N
o

frequencies byW/c, with ¢,= \u/p. scale;:l with the widthw, and the group velocities by, with c;
=\ulp.

have a good understanding of the dispersion relation of the

- - ession mode suddenly drops t00.5c; around oWI/c;
modes, since the scattering rates are strongly dependent 61{14.6, then gradually recovers and approaches,0.9hese

this. : ; : ]
features of the dispersion curve will be reflected in the be-
_ , ) ) havior of the scattering of the waves.
A. Dispersion relation and group velocity
The dispersion relations for a representative case are B. Scattering behavior

shown in Fig. 3. For this example, we have used a Poisson : - ; ; :
ratio of 0.24 and a depth to width ratio dfW=0.375, val- We first consider the scattering and reduction of the ther

ues corresponding to the experimental work of SchwafN@l transport by white-noise roughnegék)=g(0). This

et al® As we have discussed, the modes fall into four classeér’}”OWS us to focus on the rple of gec_Jmetry and_the unusual

depending on their parity signatures. We label the lowesfn0d€ structure of the elastic waves in the physics.

mode from each class, the one with zero frequency as the I”_ the low-frequency limit, the dispersion curve and the_

wave number goes to zero, as mode 0, and the modes wi atial dependence of the modes take on the simple analytic

successively higher cutoff frequencies in each class as mo arms shown in Tab!e |, allowing us to ”.‘ake analytic predic-
1, mode 2, etc., in that class. tions for the scattering at low frequencies and then the ther-

Notice that one of the curves in the figure, the one for thém’lI conductance _at_low temperatures. Since _only small wave

in-plane mode with cutoff frequencysWic '~5 shows vector scattering is involved in these calculations, the results
t— . .

anomalous dispersion with the frequentgcreasingas the are trLJe for a general roughness correlation function, pro-
wave number increases up to aboM/3. (This is actually ~videdg(0) is nonzero. The mode structure in Table | may be
an even mode, and some higher even and odd modes al§glculated from Eqs(48)—(57) taking k—0 or from argu-
show anomalous dispersioriThe dispersion curves for all ments of macroscopic elasticity theory. S
modesn>0 have zero S|0pe, and SO zero group Ve|ocity, at The Cont”buuons to the thermal attenuation CoeffICIent In
onset. As we will see later, this results in a diverging scatterthe low-frequency limit W/c;<1) from the various scat-
ing rate at each mode onset. For the 0 modes, aso—0  tering processes are shown in the Tabl&The expressions
two of the modesthe compression and torsion moglesve ~ take on their simplest form if we introduce the frequency
linear dispersion, whilst the other two lowest modas- ~ Scaled with the velocity of the long-wavelength compression
plane and flexural bending modesxhibit quadratic disper- mode w=wcg/W with cg=+E/p=+2(1+0o)c;,. The
sion. Figure 4 shows the group velocitieg for the four ~ power laws can largely be understood from the prefactor in
lowest in-plane modes. The group velocity of the bendingEg. (71), ¥, m>w?/v{™v{". The group-velocity , becomes
mode approaches zero as—0, whilst that of the compres- constant at small frequencies for the compression and the
sion mode becomes constant. The group velocity of the comtorsion modes. Thus the torsion-torsion tt and compression-

TABLE I. Dispersion relation, group velocity, ariddnnormalized transverse-mode structure for the four
modes with zero frequency at zero wave vector.

wl\Elp ve/\Elp ox by b,
Extension k 1 1 O(ky) O(k2)
In-plane bend (w/\12)k? (w//3)k —iky 1 0O(k2)
Torsion V2/(1+ o) (d/w)k V2/(1+ o) (d/w) O(ky2 -z y
Flex bend (d/12)k? (d/\3)k —ikz O(k%y2) 1
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TABLE Il. Scattering coefficients for the zero onset frequency modes at low frequemcisnotes
compression, b denotes bemdlenotes torsion, bb denotes bend-to-bend scattering etc. Values are quoted for

ymW*/g(0) as a function of scaled frequenay= wcg /W. For the flexural bend-to-bend scatterifip) the

terms in the braces in EG70) cancel to leading order resulting in very smaw®) scattering. There is no
scattering between in-plane and flexural modes for the assumed z independent roughness.

In plane Flexural
cc bb bc,cb tt bb tb,bt
-, — 54 A1+ 0) [Wa|? Woo 1+ 0) 2 W | 2
2w V3w 3 — ol| — — - T ==
232% 4 d d 4 d

compression cc scattering shows thé dependence corre- each mode where the group velocity is zero. In addition, the
sponding to Rayleigh scattering in one dimension, and akarge scattering aroundW/c,=5 derives from the region of
was found for scalar waves with linear dispersion. On theanomalous dispersion, since the group velocity is small in
other hand, for the bending modegocwl’z. This has the this frequency range. The inset to Fig. 5 shows an expanded
important consequence that the in-plane bend-bend scatteriew of the low-frequency behavior, using the results from
ing increases more rapidly at low frequencies proportional tarable Il together with the next order correction for the
w, and the torsion-bend th and compression-bend cb scattetompression-bend scattering. The agreement for the com-
ing have anw®? frequency dependence. For the flexural pression mode is very good even updbV/c,~3, whereas
bend-bend scattering, the two terms in the braces iN®By. for the bend mode the correspondence is only good for
cancel to leading order resulting in smaller scatte{a>?) oW/c;=0.5. The scattering for the flexural modes shows
than given by the prefactor alone. Note that the expressiongenerally similar results(Fig. 6) although the behavior is
for the flexural modes involve additional factors\Wfd, so  simpler corresponding to the rather featureless dispersion
that these modes will be scattered more strongly at a given curves. At low frequencieginset to Fig. 6, the scattering of
in the thin-plate limit. This is because these modes are softethe flexural-bend mode is small, since the intramode scatter-
so that the scattering wave vectors are larger for the samiag is reduced by the cancellation discussed above.
frequency. Figure 7 shows the total scatterig,y,, for the in-plane
The numerical results for the attenuation coefficigntof ~ modes on a log-log plot, again with white-noise roughness.
the four lowest modes are shown in Fig. 5 for the in-planeAt very low frequencies, the scattering varies proportional to
and in Fig. 6 for the flexural modes. The plot for the in-planew corresponding to the dominant intramode scattering of the
modes, in particular, shows interesting structure derivingcompression mode at low frequenci€égable Il). For fre-
from the complicated dispersion curves of Fig. 3. Much ofquencies up towW/c,=3.5, the first nonzero onset fre-
this structure can be understood from the product of grouguency of an in-plane modé¢he analytic low-frequency ex-
velocities in the denominator of E¢r0). In particular, there pression given by summing the in-scattering expressions
is a square-root divergence ip, at the onset frequency of from Table ll(cc, cb, bc, and bbshown as the dotted line in
Fig. 7], gives a good approximation to the full results. At
7x10°

2
=%

%

3

5X10° |

1x10°+

x10°r T \
AN
1x10°r . 1 o o QS

° 2 4 6 Scaled frequency (pd/ D) oW
Scaled frequency, oW/ g

Scattering coefficient

Scattering coefficient
2
<,

FIG. 6. Attenuation coefficien,W*/g(0) for scattering from

FIG. 5. Attenuation coefficieny,,\W*/g(0) for scattering from  the two lowestm=0 flexural modes to any other mode as a func-
the two lowestm=0 in-plane modes to any other mode as a func-tion of scaled frequency12(1— o) (W/d)Wi/ce : solid line rep-
tion of scaled frequencyW/c, : solid line represents in-plane bend resents the flexural-bend mode; dashed line represents torsion
mode; dashed line represents compression mode. The inset showmde. The inset shows an enlargement of the low-frequency region,
an enlargement of the low-frequency region, and compares with thand compares with the analytic low-frequency expressions from
analytic low-frequency expressions from Table IlI: dotted line rep-Table |l: dotted line shows an analytic approximation for the
resents analytic in-plane bend mode; dash-dotted line represenfiexural-bend mode; dash-dotted line shows an analytic expression
analytic compression mode; other lines as in the main figure. for the torsion mode; other lines as in the main figure.
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Scaled Frequency oWic, FIG. 8. Reduction in the thermal conductance scaled with the

- universal conductance,, for the lowest in-plane modes as a func-
FIG. 7. Total scatteringymW*/g(0) for the in-plane modes tjon of scaled temperatur&/Te with Te=hce/ksW: solid line
on a log-log plot. The dotted line shows the low-frequency analyticshows low-temperature analytical expressions from Table II: points
expression from Table I, and the dashed line shows a power law 4gpoy full expression evaluated numerically. The quantity plotted is
(Note that the heights of the peaks in the plot are not significant( sk _+ sK,,)/2K,, with 5K, 5K, , the depression of the contribu-

depending on how close the individual poili¢eparated by 0.01in  tions to the conductance by the scattering for the compression and
wWi/c,, used in constructing the ploare to the mode onset fre- jn_pjane bending modes.

guencies, where the scattering diverges.

. . L . The individual plots are then independent of the geometry.
higher frequencies the total scattering increases rapidly, fokrg compine the contributions from the in-plane and flexural

lowing a general trend proportional " (dashed lingto- 1,465 the ratial/W is needed to relate the two temperature
gether with dl\gergent scattering at each mode onset freécale factors. In the thin-plate limiTe= (d/W) Te<Te.
quency. Thew” power law can be understood as the

combination of the explicitv? dependence of Eq70), to-

gether with two powers ofs coming from the number of V. COMPARISON WITH EXPERIMENT

modes available for scattering from and to. A. Experimental geometry

Based on the scanning electron microsc6®¥M) micro-
graph of the experimental structuewe set the dimensions

In the weak scattering limit, the change in thermal con-of the structure in the following way. In the experimental
ductance at low temperatures can be derived directly fromtructure of Schwatet al, the thermal pathway was con-
the expressions for the scattering at low frequencies. If wetructed with the shape functidtV(x) =W cosh@x) so that
write the thermal attenuation coefficient of moueas y,L ~ the beam width becomes large and joins smoothly to the
=A(w/ wo)P, wherep is the power law obtained in the low- thermal reservoirs at the ends, reducing the scattering due to
frequency limit andw, some characteristic frequency, then the geometric imperfection at these junctions. Unfortunately,
the corresponding contribution of the suppression of the therthis makes the calculation of the behavior of the elastic

C. Change in the thermal conductance

mal conductance from this mode is waves in the beams much harder. However, both with and
o without the scattering off surface roughness, we expect the
K /Ky=Al(T/To)P, (82 narrow portion of the beam to dominate the behavior. Thus,

with To=7w,/kg the corresponding characteristic tempera-"e simplify the structure and model it as an elastic beam

ture andK = 72k3T/3h the universal thermal conductance.

The constant,, can be obtained evaluating the integral 10 ' ' ' '
3 (= yPt2ey 8r |
| =_J dy——. (83 o °
p 2Jo (ey_l)Z 2 61 o ° ° 1
o o
Thus the power law for the temperature dependence of the % 4t . ° .
depression of the thermal conductivity is the same as the one e
for the low-frequency behavior of the scattering coefficient. 2+ A .
Figures 8 and 9 show the thermal conductance depression
scaled with the universal valu¢, as a function of the ap- 5 05 o2 o8 o8 1.0

propriate scaled temperature for the lowest in-plane and flex-
ural modes, showing the deviation from the low-temperature
power laws as the temperature is raised. For the in-plane F|G. 9. Similar to Fig. 8 5K/2K,, for the lowest flexural modes

modes, we use the characteristic temperatufg (torsion and flexural bendings a function of the scaled tempera-
=fhce/kgW and for the flexural mode3y=7%cgd/kgW?. ture T/Tg with Tp=7%cgd/kgW?.

Scaled temperature (W/d)T/T,
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1.1 = . mental data at the low temperatures, while decreasifft

10' does not provide enough scattering in the range<(.1

1 <0.2 K.

0.9 Although there is considerable scatter in the data over the
i range of the fit, the systematic differences between the pre-

g 08 dictions and the data lead us to propose a modified form of

o7l the roughness correlation that reduces the scattering at small
. wave numbers,

06
i ~ a(k—kg)?

085 07 g(k)= \/;aézexr{ - %} (85)

TK

FIG. 10. Attempts to fit the low-temperature ddte0.2 K us- A nonzgro value_ of the p.arame.tkg leads ta a roughness
ing various values 0h62/W?: solid line—/7as2/W3=0.1: dotted correlation function that is maximum at a length scale of

line—7ad%W3=0.05; dashed line~mad%W3=0.02; open orderkal, and serves to reduce the scattering at long wave-
ancy (i.e., the overestimation of the scattering at long wave-

with rectangular cross section of widW, depthd, and ef- 'ef?gths in the theory compared W'th experimenas found

fective lengthL. We estimate the width as the narrowest YSIN9 the scalar !“Ode' of the elastic wavéghe fuI_I elas-
ticity theory considered here actually makes the discrepancy

width of the structureW=160 nm, andL=1 um as the ) . . .
length over which the width is approximately constant. TheVOr'SE, Since the scattering at small frequencies now is pre-

thickness of the material wak=60 nm. The accuracy of the dicted to increase more rapidly at small frequencies than the
ak= . > . . )

length estimation is not very critical, since the only length® fOU?thI’] the SC"?"af theory, varying ;?éjb;’v'tlrll p<2 for

dependence in the scattering rateppears in the combina- most of the scattering processes, see Table Il.

tion 8°L, wheres is the rms roughness which is a parameterth To fit the (tjat; of Schdv;alat/ al, vx:e ?e(:r? to dﬁterr?lt?]e
of the model, so that any error in the assignment ofill ree parametersy, a, ando. Ve evaluate ne quality ot the

just change the value assignedd&oOn the other hand, the I'rt] b)t/hcalculatlng the mtianisquare tdewatlon of th? dgtj\ Eo'ron\t
width W plays a crucial role, for example determining the € theory curve over the temperature range up 1o 9.4 K.

frequency cutoffs of the various modes, and so the temperiligher temperatures, many modes becoming excited and the
ture dependence of the thermal conduc’tivity scattering of individual modes becomes strong, so that our

theory is less reliable. Since the onset frequency of the scat-
tering at low frequencies and the initial decrease in thermal
B. Roughness correlation function conductance with increasing temperature near the onset are

Since the nature of the surface roughness on the experf@inly determined byko, this parameter is the easiest to
mental structure is not known, to fit the experimental data weletermine. We find the value,W=4.9 rather insensitive to
need a sensible parametrization of the roughness. As a staffle values of and é.

ing point, we choose a Gaussian correlation function for the Although a reasonable fit to the data was shown in the
roughness, leading to the spectral density preceding articlé> we have now done a more systematic

investigation of the error. A plot of the error as a function of
22 6 and a shows that the fit parametefsand a are strongly
9(k) = \/;aézex;{——kz}. (84)  correlated. This is presumably because an increasa, in
4 which reduces the scattering at small wave numbers and fre-
quencies that is important at low temperatures, can be com-
This parametrization of the roughness contains two paranpensated by an increasedn If we fix koW at 4.9, then using
eters:s the rms roughness aralthe correlation length. the standardy? estimate for the confidence le%&lof the
To analyze the data, we first quantify the amount of scatfitted values ofé and a leads to values of5,a at 68.3%
tering by subtracting the data of Schwetbal. from the ideal confidence level covering ranges as wide asa2W<8 and
thermal conductance obtained numerically using thg¢Z"  0.1< §/W<0.5 (and we have not looked at larger values of
algorithm?® Then we attempt to fit the data by adjusting thethe parametejs However, as the two fit parameters are cor-
two parametersi and 5°L. related, fixing one parameter gives a much tighter constraint
The inadequacy of Eq84) in fitting the experimental on the second one. For example: ongds fixed at 5/W
data is shown by the low-temperature fits in Fig. 10. Atthese=0.1, the 93% confidence limit gives<@/W<4; for
low temperatures only small wave-number modes are exs/W=0.25, the 93% confidence limit gives 5%/W
cited, so that the exponential term in £84) can be approxi- <7.6; and for 5/W=0.4, the 93% confidence limit gives
mated as unity ang(k)=g(0)=mas?. Thus the rough- 6.4<a/W<8.4. Since the values of and a are not well
ness parameters only appear in the combinatiéh and this  determined separately, we use the knowledge of the experi-
guantity can be varied as an attempt to fit the low-mental geometry to constrain the parameters further. The
temperature region. As seen from the figure, increasify  physical roughness due to chemical etch has been
causes scattering that is systematically larger than the expegstimated’ from the SEM micrograph to be abou/W

144302-14



SURFACE SCATTERING ANALYSIS OF PHONON . .. PHYSICAL REVIEW B6, 144302 (2002

6 1.0
10 E '( ‘oo - 08
e 06
g 4
2 - 2
1 o aeeet 0 00° 04
——-—W E
0.2
0-5 ' L 0'%.0 0.1 0.2 03 04 0.5
.01 0.1 1 T
TK

FIG. 11. Thermal conductance per mode scaled with universal FIG. 13. Individual mode contribution to the thermal conduc-
value K, : solid line represents fit using roughness parameteréance' The lowest twolfle>.< modes and lowest three in-plane modes
alW=55, 5/W=0.2, andk,W=4.9; circles represents data of are shown. The contributions #/K, from the four modes with

zero onset frequency tend to unity at low temperatures. The higher
modes only contribute at higher temperature. The modes are: dash-
dotted line shows in-plane bending; dashed line shows compres-

_ ) . . sion; dotted line shows torsion; dashed-dotted-dot line shows out-of
=0.2. The best fit value ok for this value of /W is /W ,ahe bending. The solid line shows the sum of all the mode con-

=5.5, and we use these values together WillV=4.9 to  tributions, reduced by K, . Values of the roughness parameters

obtain the fit shown in Figs. 11 and 12. For the quantitativeused werea/W=5.5, §/W=0.2, k,W=4.9, andd/W=0.375.

estimate of the error in the fit that we are using, the fit is

significantly better than the one in Ref. 15: the parametershown in Fig. 13. The flex-bending mode shows a much

used there correspond to an increase in y#fevalue of smaller contribution to the reduction i at low tempera-

Ax?=2.7 from the best fit. tures for the reason we have already discussed. The modes
The difficulty of fitting the data is due the lack of data with nonzero onset frequencies start to contribute signifi-

points at very low temperatures: it is in this range, wherecantly above abouT=0.2 K, and this is the predominant

only a few modes are involved, that we have a very goodcause for the increase in thermal conductivity above this

understanding of the scattering. At higher temperatures margmperature, since the recovery of the thermal conductance

more modes become involved and the scattering of indifor the lowest mode occurs very slowly.

vidual modes becomes strong, so that the second-order ap-

proximation used in calculating the scattering will not be VI. CONCLUSION

good. A full test of the theory explaining the reduction in the ] )

thermal conductance in terms of the scattering off surface We have investigated the effect of surface roughness on

roughness requires more data below a temperature of abotite Scattering of elastic waves in a rectangular beam or

0.08 K for the type of geometry used by Schwetbal., or waveguide, and the resulting depression of the thermal con-

systems with smaller geometries where the effects can bductance in the low-temperature quantized limit, using full
measured at higher temperatures. elasticity theory. Our formulation is quite general, but to ob-

tain concrete results we have specialized to the thin-plate
limit, which should be a reasonable approximation for many
mesoscopic experiments where the depth of the structures is
It is interesting to investigate the contribution to the totalfixed by the epitaxial growth, whilst the width is determined
thermal conductance of the individual modes with the roughiithographically. The thin-plate limit preserves the peculiar
ness parameters used to fit the experimental data. This features of the elastic waves in the full elastic theory, namely
a quadratic dispersion at long wavelengths for two of the
low-frequency modes, and regions of negative dispersion in

Schwabet al. The dotted line shows the ideal value with no scat-
tering.

C. Individual mode contribution to the thermal conductance

08 1 the spectra. A robust result is that the low-frequency
asymptotic dependence of the scattering by unstructured
04 roughness of the modes that propagate at low frequencies
v (the ones that are important in the low temperature universal
< 02 thermal conductangalepends on the structure of the modes
and the dispersion relation, andrist the simplew? depen-
0.0 dence of Rayleigh scattering as found in the scalar approxi-
° mation to the modes. We find different power laws for the
025 03 02 o3 o4 various mode scattering processes that can be understood

largely from the dispersion relations at:for intramode scat-

tering for the in-plane bend modéghe flex-bend intramode
FIG. 12. Same as in Fig. 11 but showing the decreadé/sf,  Scattering is anomalous because of a cancellation between

from the ideal value. leading-order terms, and varies as); »®? for scattering
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between the bend modes and the modes with linear dispegether with the cross sectionsxdt— +c. In this appendix,
sion (torsion and compression modeand the usuab? for ~ we show that the integration over the sectionstat simply
the intramode scattering of the modes with linear dispersionyields the incident fielcug‘, and this allows us to deduce the
The current experimental data on the suppression of the lowexpression for the scattered field as an integration over the
temperature thermal conductance below the universal valuside surfaces. To deduce this result, we first need to derive
does not extend to low enough temperatures to provide what are known as reciprocity relations for the elastic
good test of these predictions. To investigate this predictiomodest®
further, it would be interesting to extend the experiments to  Let u(”) and u® be the displacement fields for modes
lower temperatures or to smaller devices such as carbogind s in the ideal beam, and@(”, T the corresponding
nanotubes, where the characteristic temperature seales)  stress tensor fields. The modes satisfy the wave equation at
a typical thermally excited phonon has a wavelength compafrequencyw, so that
rable with the device dimensionare higher.

We have used our results to understand the data of po?u+9.TM=0
Schwabet al, who observed a depression of the thermal N
conductance below the universal value in the temperature
range of 0.1-0.4 K. Although the scatter in the data is con-
siderable at these low temperatures, the observations seem to | . , _ (s) .
show a delay in the onset of the depression scattering as t ultiply the first equat(|r()3n by~ and the complgx conju-
temperature is raised, beyond which it can be fitted with oug@te of the second byi™”, subtract the two equations, inte-
predictions for unstructured surface roughness. We tentgdraté over a volume of the beam betwersx, and x
tively resolve this delay by supposing that the surface rough= X2, and finally use the divergence theorem to find
ness has a maximum amplitude at some nonzero length
scale, which we parametrize by a shifted Gaussian correla-
tion function. Due to the lack of data at low temperatures, a
precise determination of the roughness parameters is not pos-
sible. However, we do obtain a fit to the data with parametersvhere the integral is over the surface bounding the volume,
that do not look unreasonable when compared with electrogonsisting of the sides of the beam betwegrand x,, and
micrographs of the actual devices. the sections ax; andx,. The integrations over the sides of

Our results are based on second-order perturbation theonhe beam are zero by the stress-free boundary conditions. For
and the thermal conductance is evaluated assuming the scafte integration over the sections introduce the expldaite-
tering over the length of the device is small. This is a goodyendencai”) = ¢(y,z)ek™ and T =T(y,z) ek with k,
approximation at low temperatures, but the scattering beme wave number of modeat frequencyw, etc. Then Eq.
comes strong at higher temperatures, particularly for the NeWA3) reduces to
modes excited as the temperature is raised, which have a
diverging scattering at onset due to the flat dispersion rela- (1- ik (xa=x2)
tion here. At higher temperatures multiple scattering and per-
haps phonon localization will therefore become important. (%) (TS
Kambili et al'* and Sanchez-Giet al*? have numerically Xf j[(ﬁi T’ =& ’Ti* 1dydz=0 (Ad)
investigated the these effects in the simplified scalar wave
approximation. It would be interesting in the future to extendand the integral is independent xf Unless the prefactor is

pw?ul®+9,T(7=0, (A2)

L[ui(5>*T§jf)— u{"T{* In;ds=0, (A3)

their work to the full elasticity model. zero, this shows us that the integral over the section must be
zero, and so
ACKNOWLEDGMENTS

This work was supported by NSF Grant No. DMR- f f [uE* 1O —yOTE* 1 dydz=0, k #ks. (A5)
9873573. We thank Ruben Krasnopolsky for help on the nu-
merical codes. This is one version of the reciprocity relations.

For our purposes, it is more convenient to express the
APPENDIX A: INCIDENT AND SCATTERED FIELDS condition for the reciprocity integral to be zero in terms of

the group velocity rather than the wave number. To do so, we
fieed to consider the dispersion curves. The condition for the
reciprocity integral to be nonzerd, =kg for modesr,s at
the same frequency, actually impliesr ands are thesame

Using Green’s theorem, we have expressed the displac
ment field at frequencw in terms of the surface integral

Ug(X) = f [nj’Tij(x’)qu(x’,x) mode, so that in fath)=vg5) . The only other possibility is
s' thatr ands are modes with dispersion curves that cross at
—n/ui(x)Tjje(x’,x)1dS. (A1)  frequencyw, k=k;=ks. However, only modes of different

y,z parity signatures can cross, and then the integration over
Equation(Al) involves the integration over a closed surfacethe section for these different modes in E&5) is again
S’, which we have chosen to be the smooth boundaries tazero. Thus, we can rewrite the reciprocity relation as
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(% (1)« (NS M) () introducing the scalar potenti&(x,y) and vector potential
J J[Ui T —up ' Ti" 1dydz=0, vy’ #vg”. {(x,y) defining the corrections to the in-plane strain and
(A6) rotation. HereV | =(dy,d,) is the horizontal gradient. In ad-

dition, the vertically averaged stress, is taken to be
If r ands are the same mode, the integral is related to the

energy flux and hence to the group velodisge Eq.(19)],

Tox (FxUz+ d,Uy) (B4)

_—2 =
21t o)
f fdydz(ui(')*Ti(j’)—ui(')Ti(j’)*)=2ipwvg). (A7) (with a similar expression fofl,, given by replacing the
subscriptx with y everywherg Here the “shear correction

factor” x, a number of order unity, is introduced to take into
account the deviations of the in-plane displacements from
the assumed linear dependencezdfin the usual thin-plate
approximation,T,; are set to zero angg/=—V ,w so that
(Uy,uy)=—2V w.

With the Timoshenko approximations, the equations of

Nk \nfi (s) : ’ T
modesuy(x’)™ with v <0,_smce here< >x for any finite motion for the three components of displacement are now
X. On the other hand, the field paitT are made up of the investigated

incident wave and waves scattered from the roughness at t,o"equations of motion for the horizontal displacement

finite x, and so consist of modas(x') with v{)>0. The . . —
integral in Eq.(Al) over the section at’ —« is therefore lead to an equation relating to u, (Ref. 2§

the sum of terms involving [[u{®* T® —uTE* 1 dydz _
with v andv{? of opposite sign. All these terms are zero 5{(1—U)V2¢+(1+ o)V, V- —k*ud(h+V, u,)=0

We now use Eq9A6) and (A7) to evaluate the contribu-
tions to Eq.(Al) from the integrations over the sections at
X' — F oo,

Let us first considex’ — 0. According to Eq(18), thex’
dependence of the Green’s-function p&rI" consist of

g
according to Eq(A6), and so there is no contribution from (B5)

the section ak’ — . 5 o ,

Similar arguments apply to the sectionsdt—>—. The (remembeD=Ed*/12(1-0*), with E the YOUQQS modu-
Green's-function is made up of modes wity>0. The scat- lus andu the shear modulysThe inertial terms); ¢ turn out
tered component of the field consists of modes with, 0 be negligible in this equation. Using E@3), Eq. (BS)
<0, and there is no contribution to the integral over thePecomes
section from these modes. On the other hand, the incident

in ; p o (m) : : 2 ) D
wave u™ is modeu,, with vy’>0, and there is the single DV, V23(S—w)—«?udV, S+ = (1-0)V,
term withv " =0 {™ surviving in the sum over modes in the 2

Green’'s-function. Using Eq(A7) the integral just gives < (V275 2,dV. X (£2)=
o i . - =0. B6
u{™(x). Writing u=u""+u® then leads to Eq(14) in the (Vif2)=kopdV, x({2) (B6)
text. Taking the vertical curl of Eq(B6) gives
D 2
APPENDIX B: ENERGY FLUX FOR FLEXURAL MODES 5(1—0’)VLQ— K2,LLd 0=0, (B7)

The classical thin plate approximation of settihg=0 is ) - ) . ,
not sufficient to calculate the energy flux of the flexural With Qiz'v.ix‘_/’:_vig the rotation. For a wave distur-
modes using the integré?2). In this appendix, we evaluate Pancee'™, this gives an exponential dependenceypa™"¥
the correct expression for the energy flux by two differentWith
methods, first using the extended thin-plate theory of

2
Timoshenk®? (see also Graff?® and then using a method in 2 ded_ (B8)
terms of the energy of plate deformatidhthat avoids these D(1-o0)
difficulties.

Since A " '~d<W, the rotation will be large only over a

In the extended thin-plate approximation of Timoshenko,boundary layer region with width of order near the edges
the z dependence of the in-plane displacements is still aPy = +W/2, where the solution takes the form
proximated as linear '

Qxy=2WR2)=Q(=W2)eke V=W, (BY)

Uy(X,Y,2) =2z, (X,Y), Bl
(XY, D) =2(X.Y) B1) The vector potential has a similar solution, so that last
_ two terms in Eq.(B6) cancel. This leaves for the scalar po-
Uy(X,y,Z)—Zwy(X,y)- (Bz) tentialS,
However, thex,y dependence is no longer assumed to be 5 — )
given by the gradient of the mean vertical displacement V.[DVi(S—uy)—«“ndS]=0, (B10)
U,(x,y), but by the more general expression which immediately gives
P=—V U, +V, S+V, X({2), (B3) DV?S—«?udS=DV?u,. (B1D)
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(We are only interested iV ; S and so do not need to keep L(X,y=+W/2)
track of the arbitrary gradient-free function that could be
added to this equation. ikD(1-0) — —

The equation of motion for the vertical displacement is =TT d (IyUz)ly= =wie :

Kop
(Ref. 26
- (B20)
k?udV2S=—pdw?u,. (B12)

Thus, finally we have expressions for the horizontal dis-
Together Eqs(B11) and (B12) give placement fieldB3) and(B1) together with Eqs(B14b) and
(B20) definingSand{, and Eq.(B4). These can be used to
_ calculate the additional contribution to the energy flux com-
> =DV'u,. (B13)  ing from theT,, term in Eq.(72). [The corrections ta, and

K p u, derived here do not change the contributions from the first
This is the usual fourth-order wave equation, with a smalltwo terms in Eq.(72) to the order we require, since these
correction term of orderd/W)? (the second term in the terms are already third order in the small paramei&w. |
brackets on the left-hand sideNote that solutions to this e therefore need to evaluate
equation vary on the long scale of order! or W, and not
the small scale. "*~d, so that to a good approximation f f Tusdydz= Kzﬂdf dy(8,S+ay0)us .
we have

_ D _
pdw2< u,— —deuZ

(B21)

PdeUZIDVfUz, (Bl4a Both terms in the integral give contributions at the same
order. The first term, coming from the correction to the in-
plane strainB14b), is

D _,—
S=-— dVluZ. (B14b
CH Kz,udf dy(4,S) u;*:—Df (0.V?u,u* dy. (B22)
The first equation is now the standard fourth-order wave _ ) _ )
equation. The second equation f8rshows it to be small The second term in the integrand is only large in the bound-

compared withu, by of order @/W)2. ary layer region near the edges, and from @1.9) evaluates

The boundary conditions at the edges are that all stressd®
are zero so that, in particular, gt = W/2,

the edge contributions

ad | dy(0,0)0 =~ IKD(L- o) (9,000 -
f dzT,,= xk?ud(dyu,+ i) =0. (B15) (B23)

Combining these expressions for E§21) with Eq. (77)

Substituting Eq(B3) into this gives together with Eqs(78) and(79) yields the final expression
&yS— (9X§=O. (816@ wkD

P=——
Equation(B16a together with Eq(B14b) tells us the size of 2
the ¢ correction, which ay= = W)/2 takes the value

Re{ f dy[2K?U U + (1= 0)(d,U,)(dyu,)*

o —(1+0)(d2u)uf 1+[ (1= o) (dyu)ui = "E 1,
L0y =EWI) == 5 - (VU v (B24)

(B17)  which is identical to Eq.(81). An alternative approach to

This expression can be simplified using the boundary condi(—:alcmalte the energy flux is to use the expression for the

: . energy of distortions of the plate evaluated using the lowest-
tion T,,=0 aty=*=W/2, which from Eq.(75) and Eqs(78) .
and (79) gives aty— +Wi2, order expressions Eqé74), (75) and(78), (79)] (Ref. 19

_ _ _ 1 _
Jou,=— odiu,=ok?u,, (B18) F=§Df f (V2u,)?+2(1-0)

x{ ( 32@)2_ #u, i,
— IXdy ax? gy?
(&yuz)|y=iW/2- y

It turns out that the higher-order corrections discussed above
(B19) are not needed in this expression, and so we can derive the

The potential is only large in the boundary layers near the €nergy flux without these difficulties. The functional deriva-
edges where it takes the form tive of F with respect tau, yields the vertical force per unit

so that

dxdy. (B25)

ikD(1— o)
Lxy==W2)=— ———
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area in the interior of the plate, which can be used to derivés the torque that couples to the angular displacentgnt
the fourth-order wave equation, as well as expressions for the 5y, /4x, and

energy flux into the plate across the boundaries. The latter

expressions give us the result for the energy flux along the Fy=*W/2)= t2D(1—cr)(9)2(yUZ|y=iW,2 (B29)

beam ) ] ]
is a vertical force localized at the edges of the plate.

Substituting Eqs(B27)—(B29) into Eq.(B26) gives

1 ((iwD)
PZERG{ 2

1 _
P=§Re{—iw“ M, 6% +Vu* dy

B B | ayveoza,+ o) (- o
+(Fcu;|y:W/2+ Fcu;|y—W/2)”v (826)

where + [ vl - ool -2(1-0)

_ 27 2
V Dax[(yxuz“’ (2 0') ayuz] (827) X(axayUZ)U; y:W/2+ 2(1_ 0)((9X&yuz)u; y_le}] )
is the effective vertical force that couples to the vertical dis-
placement,, (B30)
- — Evaluatingd, =ik, and using integration by parts, we again
M= —D(d2u,+ gdZu,) (B28)  get Eq,(8%‘x 9 imed yP J
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