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Surface scattering analysis of phonon transport in the quantum limit using an elastic model

D. H. Santamore and M. C. Cross
Department of Physics, California Institute of Technology 114-36, Pasadena, California 91125

~Received 10 April 2002; published 8 October 2002!

We have investigated the effect on phonon energy transport in mesoscopic systems and the reduction in the
thermal conductance in the quantum limit due to phonon scattering by surface roughness, using full three-
dimensional elasticity theory for an elastic beam with a rectangular cross section. At low frequencies, we find
power laws for the scattering coefficients that are strongly mode dependent, and different from thev2 depen-
dence, deriving from Rayleigh scattering of scalar waves, that is often assumed. The scattering gives contri-
butions to the reduction in thermal conductance with the same power laws. At higher frequencies, the scattering
coefficients becomes large at the onset frequency of each mode due to the flat dispersion here. We use our
results to attempt a quantitative understanding of the suppression of the thermal conductance from the universal
value observed in the experiment.
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I. INTRODUCTION

Landauer’s work in the late 50s~Ref. 1! initiated the ex-
ploration of the nature of quantum transport. A breakthrou
idea, now commonly known as Landauer’s formulation
quantum transport, states that when elastic scattering d
nates, the electrical conductance can be related to the tr
mission coefficient of the electron waves. In the ideal cas
no scattering, this leads to a universal conductance tha
quantized in units ofe2/h at low temperatures, with an ad
ditional quantum of conductance added as each chann
mode of the conductance pathway opens up. The applica
of similar ideas to the phonon counterpart, namely therm
conductance, was recently derived by a number
authors,2–4 and is now recognized5 to be related to earlie
work on the entropy transport at low temperatures.6 Some
workers have extended the concept of the universality of
thermal conductance to particles of arbitrary statist
~anyons!.7,8

In the case of electrical resistance, the chemical poten
or the number of conducting modes can be varied at very
temperatures, giving sharp jumps between various quant
values of the resistance. On the other hand, thermal trans
by phonons necessarily requires nonzero temperature
populate the modes of the conducting pathway, and the w
of the Bose distribution function smears out the quantizat
of the conductance. Only at very low temperatures, wh
just the modes of the conducting pathway with zero f
quency at long wavelengths contribute to the thermal c
ductance, the quantization of the ideal conductance beco
apparent in a universal thermal conductanceN0Ku with Ku

5(p2/3)kB
2T/h is the universal conductance per mode, w

kB the Boltzmann’s constant andh the Planck’s constant, an
N0 is the number of modes with zero frequency at lo
wavelengths, which is 4 for a freely suspended elastic be
connecting the two thermal reservoirs. Note that this value
the low-temperature conductance in the absence of scatte
is independent of the dimensions and elastic properties o
thermal pathway.

A low-temperature thermal conductance consistent w
the predicted universal value was measured by Schwaet
0163-1829/2002/66~14!/144302~19!/$20.00 66 1443
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al.9 in experiments on a lithographically defined mesosco
suspended beam~of dimensions about 1mm3200 nm
360 nm). Whilst their elegant experiment displays the u
versality of ballistic phonon transport, the experiment a
showed adecreasein the thermal conductance below th
universal value in the temperature range of 0.08 K,T
,0.4 K that cannot be explained by the ballistic theo
since in this theory an increase in the thermal conductanc
expected as the temperature is raised and more mode
excited. The decrease in thermal conductance is presum
associated with the scattering of the thermal phonons,
can be understood using the ideas of Landauer in term
the scattering coefficient of the vibrational waves. This is
topic of the present paper.

In this paper, we calculate the effect on the low
temperature thermal conductance due to scattering of
thermal phonons by surface roughness, which is likely to
the major source of scattering in mesoscopic samples.
scattering of scalar waves, described by the simple w
equation, in waveguides with rough surfaces has been in
tigated by many workers, including ourselves, using b
numerical and analytic methods.10–13 However, for the low-
frequency modes of interest in the low-temperature ther
conductance, the physical vibrational waves have quite
ferent properties than the waves in the scalar model.
example, the dispersion relations of the modes are differ
with two of the four modes with zero long-wavelength fr
quency having a quadratic dispersion at small wave vect
rather than the linear dependence given by the simple sc
theory. To understand the experimental results quantitativ
a more accurate treatment of the vibrational waves is nee
At low temperatures, the wavelengths of the thermally e
cited modes are large compared with the atomic spacing,
so a treatment based on the equations of macroscopic
ticity theory is appropriate. Blencowe14,4 has considered the
scattering of elastic waves in a thin-plate waveguide w
rough surfaces, but prior to our work, the scattering of ela
waves confined in a beamlike waveguide with rough surfa
has not been considered.

Previously, we have investigated the effect of surfa
scattering on the low-temperature thermal conductance u
©2002 The American Physical Society02-1
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the scalar wave model.13 In that paper, we noted the appare
discrepancy between the results of scalar model with
simple assumption for the nature of the surface roughn
and the data by Schwabet al. below a temperature of 0.1 K
the data seemed to show a delay of the onset of scatterin
the temperature increased, which was not predicted by
model. However, since the scalar model does not prop
account for the properties of the elastic waves, it was
clear whether this discrepancy is due to an inadequate m
eling of the surface roughness, or the flaw in the descrip
of the waves themselves. To resolve this matter, and obta
more accurate account of the scattering of the waves
rough surfaces, we develop a theory based on the full e
ticity equations, and use this to calculate the thermal cond
tance at low temperatures. A short version of this work h
been previously published.15

In Sec. II, the scattering of elastic waves confined to
beam of rectangular cross section with rough surfaces is
culated using the full three-dimensional elasticity theory.
use a Green’s theorem approach and calculate the scatt
coefficient to a quadratic order in the amplitude of the s
face roughness. These results are quite general, but r
intractable for further progress, since the structure of
modes in an elastic beam cannot be determined in a clo
form. Thus in Sec. III, we reduce the expressions to a th
plate limit to provide a closed form for the displaceme
fields, and to obtain analytical expressions for the scatte
behavior. In Sec. IV, the general behavior of the scatter
and the effect on the thermal conductance is analyzed
detail, using a simple description of the surface roughnes
investigate the physical consequences of the novel feat
of the elastic waves. In Sec. V, we use our theory in
attempt to fit the data of Schwabet al.9 using more realistic
descriptions of the surface roughness. A number of the m
difficult issues that arise in the elasticity theory are descri
in the Appendixes.

Although our main interest is the scattering of therma
excited vibrational waves in mesoscopic systems at low t
peratures, the formulation of the surface scattering is q
general and can be applied to other situations, such as
scattering of mechanically excited modes in macrosco
samples.

II. GENERAL FORMALISM

A. The model

The main focus of this paper is the effect of surfa
roughness on the low-temperature thermal conductanc
mesoscopic structures. The geometry we consider is a fr
suspended elastic beam, which we call the bridge, conn
ing two thermal reservoirs. We will consider a beam of re
angular cross section of dimensions widthW ~in the y direc-
tion! and depthd ~in the z direction!. The mesoscopic
structures are often produced lithographically from epita
ally grown material. We choose a convention that the de
is a dimension in the growth direction, and the width in t
lithographically defined transverse direction. We define,
length of the rectangular beam of nominally uniform cro
section asL. In practice the bridge may be joined to th
14430
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reservoirs smoothly, by a portion of continuously growin
width, to eliminate or reduce the scattering of the vibrati
modes off a sharp junction. We will suppose that the scat
ing by roughness is important only in some narrower port
of lengthL.

The thermal conductance is given by the expression2–4

K5
\2

kBT2 (
m

1

2pEvm

`

Tm~v!
v2eb\v

~eb\v21!2
dv, ~1!

where vm is the cutoff frequency of themth mode, b
51/(kBT), T is the temperature, andTm(v) is the transmis-
sion coefficient, which for ideal caseTm(v)51. The inte-
gration is over the frequencyv of the modesm that propa-
gate in the structure. The transmission coefficient is unity
the ideal case. Any scattering reduces the thermal cond
tance, and scattering of the lowest modes can reduce
conductance below the universal value at low temperatu

To actually perform the scattering calculation, we imb
the rough beam of lengthL in an infinite beam of the sam
cross section but with smooth surfaces outside the regio
length L ~Fig. 1!. Thus the mathematical calculation is th
scattering of a wave incident fromx52` on a rough por-
tion of the beam with surfaces aty56W/26 f 1(x,z) and at
z56d/26 f 2(x,y), with the height functionsf 1,2 defining
the roughness, which is nonzero only in a finite region
,x,L. Forward scattering is evaluated from the intensity
waves asx→1`, and backward scattering from the inte
sity of waves asx→2`.

To calculate the scattering amplitude, we take a Gree
function approach similar to our previous work on the sca
model.13

The displacement fieldu away from any sources satisfie
the wave equation:

r] t
2ui5] jTi j , ~2!

wherer is the mass density, and

Ti j 5Ci jkl ]kul ~3!

FIG. 1. Top: Three-dimensional elastic beam with rectangu
cross section. The rough surfaces are on the top, bottom, and s
Bottom: Side view of the mathematical model of the structure
tually used for the scattering calculation.
2-2
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SURFACE SCATTERING ANALYSIS OF PHONON . . . PHYSICAL REVIEW B66, 144302 ~2002!
is the stress tensor field withCi jkl the elastic modulus tenso
The subscripti runs over the three Cartesian coordinates,
use the symbol]x to denote the derivative]/]x etc., and
repeated indices are to be summed over. The displacem
field satisfies stress-free boundary conditions at the surfa

Ti j nj uS50, ~4!

whereS denotes the surface boundaries andnj is normal to
the surface. Assuming harmonic time dependence at
quencyv, Eq. ~2! becomes

rv2ui1Ci jkl ] j]kul50. ~5!

We approximate the material of the system as an isotro
solid. Then the elastic modulus tensor is

Ci jkl 5ld i j dkl1m~d ikd j i 1d i l dk j!, ~6!

where l and m are Lame´ constants (m is also the shea
modulus!

l5Es/~11s!~122s!, m5E/2~11s! ~7!

with E the Young’s modulus ands the Poisson ratio.
Even in a rectangular beam geometry the displacem

fields in the propagating modes yielded by these equat
are complicated, and cannot be found analytically. T
modes can be grouped into four classes according to t
signature under the parity operationsy→2y and z→2z.
Some modes show regions of anomalous dispersion w
the group velocitydv/dk is negative: these regions require
careful examination of the notions of ‘‘forward’’ and ‘‘back
ward’’ scattering for the waves. The lowest-frequency mo
of each class has a frequency that tends to zero at small w
number. These four modes are the only ones excited at
enough temperature, and are the ones contributing to the
versal thermal conductance. The structure of these mode
small wave numbers is simple and can be calculated u
familiar macroscopic arguments of elasticity theory: they
compression, torsion, and~two orthogonal! bending modes.

We define a Green’s functionGiq(x,x8;t,t8) to satisfy the
wave equation with a source term2d iqd(x2x8)d(t2t8),
andG i jq to be the corresponding stress

G i jq[Ci jkl ]kGlq . ~8!

It is convenient to introduce the frequency space version
the Green’s function

Giq~x;x8;t,t8!5E dv

2p
Giq~x;x8;v!e2 iv(t2t8), ~9!

with a similar expression definingG i jq(x,x8;v). InsertingG,
G, and the source term into Eq.~5! gives

rv2Giq~x,x8;v!1] jG i jq~x,x8;v!52d iqd~x2x8!,
~10!

wherex is the observation coordinate andx8 is the source
coordinate.
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Equations~5! and~10! lead to Green’s theorem expressin
the displacement field at frequencyv in terms of a surface
integral

uq~x!5E
S8

@nj8Ti j ~x8!Giq~x8,x;v!

2nj8ui~x8!G i jq~x8,x;v!#dS8. ~11!

We are free to choose any closed integration surfaceS8. One
choice is to use the physically rough surface thereby eli
nating the first term in Eq.~11! due to the boundary condi
tion ~4!. However, the resulting integration over the rou
surface is not easy. Instead, we integrate over the smoo
surfaces aty56W/2 andz56d/2 and impose the boundar
conditions on the Green’s function to be stress free on th
smoothed surfaces,

G i jqnj uS50, ~12!

together with cross sections atx8→6` to close the surface
The total fieldu can be written as the sum of incident an

scattered waves

u5uin1usc. ~13!

It can be shown~see Appendix A! that the integration over
the sections atx8→6` on the right-hand side of Eq.~11!
just givesuq

in . In the integration over the smoothed surfac
at y56W/2 andz56d/2, the second term in the integran
vanishes due to Eq.~12!. Thus, we find the expression for th
scattered field

uq
sc~x!5E

S
@nj8Ti j ~x8!Giq~x8,x;v!#dS8, ~14!

with the surfaceS the smoothed surfacesy56W/2 and z
56d/2. The stress fieldTi j on the smoothed surface i
evaluated by expanding about its value on therough sur-
faces, where Eq.~4! applies.

The rest of the section goes as follows: first, we find
explicit expression for the Green’s function with stress-fr
boundary conditions; then we apply the boundary pertur
tion method to project the stress at the rough surfaces o
the smooth surfaces by expanding the stress-free boun
terms around the smooth surfaces, using the small rough
as the expansion parameter; and finally we evaluate
strength of the scattered waves to give the scattering co
cient.

B. Green’s function

We evaluateGiq(x,x8;v) as an expansion in the comple
orthonormal set of normal modesu(k,m)(x) in the ideal ge-
ometry, which satisfies Eq.~5! and stress-free boundaries
the smooth surfaces. Herek is the wave number in thex
direction, andm labels the branch of the dispersion curv
We definevm(k) as the frequency of the modem at wave
numberk in the ideal geometry. The modes satisfy the co
pleteness relation
2-3
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(
m

E dk

2p
ui

(k,m)~x8!* uj
(k,m)~x!5d i j d~x2x8!. ~15!

Substituting this expression on the right-hand side of
~10! leads to the expression for the Green’s function

Giq~x8,x;v!

52(
m

1

2pE2`

`

dk
f i

(k,m)~y8,z8!* fq
(k,m)~y,z!

r@~v1 i e!22vm
2 ~k!#

eik(x2x8),

~16!

where we write

ui
(k,m)~x!5f i

(k,m)~y,z!eikx ~17!

with f i
(k,m) giving the transverse dependence of the displa

ment field. In Eq.~16!, e is a positive infinitesimal number to
incorporate causality,Giq(x,x8;t,t8)50 for t,t8.

Equation~16! can now be evaluated by contour integr
tion. The integrand has poles labeled by an indexn near
valuesk5kn on the real axis, which are given by solutions
the dispersion relationvm(kn)5v for all branchesm. ~We
take an incident wave withv.0.! Note that for branches
with regions of anomalous dispersion there may be m
than one solution to this equation for somev, so that the
index n is not identical to the branch indexm. The poles are
shifted slightly off the real axis by the infinitesimal« in Eq.
~16!, and are given by expanding aboutkn

k5kn1
i e

vg
(n)

,

with vg
(n) the group velocity at thenth pole dvm /dkuk5kn

.

Notice the poles are in the upper half plane forvg
(n).0, and

in the lower half plane forvg
(n),0.

Now we can perform thek integration by complex inte-
gration. Consider first the case,x.x8. The contour must be
closed in the upper half plane so that the contribution fr
the semicircle at largeuku vanishes. The contour integratio
then picks up contributions from the poles in the upper h
plane, i.e., wave numbers withvg

(n).0. On the other hand
for x,x8, the contour must be closed in the lower half pla
and it is poles at wave numbers withvg

(n),0 that give non-
zero residue. Forward scattering or backscattering is t
seen to be determined by the sign of the group velocityvg

(n)

rather than by the sign ofkn , as indeed would be expecte
physically.

Evaluating the residues gives the expression for
Green’s function:

Giq~x8,x;v!5 i( 8
n

ui
(n)~x8!* uq

(n)~x!

2rvn vg
(n)

, ~18!

where ui
(n)(x) is written for ui

(k,m)(x) at the value of the
wave numberk5kn satisfyingvm(kn)5v. The prime on the
sum is used to denote the fact that the sum runs overn with
vg

(n).0 for x.x8, and overn with vg
(n),0 for x,x8.
14430
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The group velocityvg
(n) does not have an analytical ex

pression for a rectangular beam, and is obtained by differ
tiating the dispersion curve that must be found numerica
Alternatively, to avoid numerical differentiation, we can r
write vg

(n) in terms of the average power flow in moden.
Since ui

(n) is normalized, the powerPn in mode n can be
written as

Pn5
1

2
ReE E ~2 ivTix

(n)ui
(n)* !dydz5

1

2
rv2vg

(n) ,

~19!

the first expression of the equality expressing the energy
in terms of the rate of work done across a section, and
second in terms of the group velocity and the average ene
density evaluated as twice the average kinetic energy. T
vg

(n) can be evaluated in terms ofPn as

vg
(n)52Pn /rv2 ~20!

and Pn has an expression directly in terms of displacem
field given by the first equality in Eq.~19!,

Pn5
1

2
ReE E ~2 ivTix

(n)ui
(n)* !dydz. ~21!

This expression forvg
(n) can also be derived directly from th

equations of motion.16

C. Boundary perturbation

In this section, we show the boundary perturbation te
nique for the rough surfaces on the sides~i.e., thex-z bound-
ary planes!. We work out the scattering coefficient explicitl
for the surface neary5W/2. The surface neary52W/2 will
give a similar contribution and, assuming uncorrelat
roughness on the two surfaces, is accounted for by multip
ing the single-surface scattering rate by 2 at the end of
calculation. The results for the top and bottom surfaces
be obtained by interchangingy andz whenever they occur in
the indices in the displacement fields and stress tensors in
calculation below.

In order to calculate the stress on the smooth surface
pearing in Eq.~14!, we expand the stressTi j in a Taylor
series about the flat surface, and impose stress-free boun
conditions at the rough surface which is the small distancef 1
away. We also assumef 1 is differentiable.

The unit vectorn̂ normal to the rough boundaries to fir
order in f 1 is

n̂. ŷ2]xf 1~x,z!x̂2]zf 1~x,z!ẑ. ~22!

Then the stress-free surface boundary conditions Eq.~4! can
be written as

@Tiy2]xf 1~x,z!Tix2]zf 1~x,z!Tiz#y5(W/2)1 f50. ~23!

Now expanding Eq.~23! in the neighborhood ofy5W/2 and
taking only the lowest order inf 1 and f 18 , we obtain
2-4
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SURFACE SCATTERING ANALYSIS OF PHONON . . . PHYSICAL REVIEW B66, 144302 ~2002!
Txyuy5W/2.@]xf 1~x,z!Txx1]zf 1~x,z!Txz

2 f 1~x,z!]yTxy#uy5W/2 , ~24!

Tzyuy5W/2.@]xf 1~x,z!Tzx1]zf 1~x,z!Tzz

2 f 1~x,z!]yTzy#uy5W/2 , ~25!

Tyyuy5W/2.2 f 1~x,z!]yTyyuy5W/2 , ~26!

where the first two expressions forTxy and Tzy have been
used to simplifyTyy . Since the terms on the right-hand sid
of Eqs. ~24!–~26! are explicitly first order in the small pa
rameterf 1, the stress fieldTi j on the right-hand side can b
evaluated at zeroth order, i.e., for ideal smooth surfac
These results are used in Eq.~14!.

D. Scattering coefficient

We now evaluate the expression for the scattered fi
given by an integration over the beam surfaces~14!. To cal-
culate the scattering coefficient, we consider an incid
wave of unit amplitude in a single modem. Again in this,
section we will outline the calculation for the scattering
the single surface aty5W/2, and will include the effects o
the other surfaces at the end. We therefore have

uq
sc~x!5E E @Tiy~x8!Giq~x8,x;v!#y85W/2dx8dz8.

~27!

We can now evaluate the forward and backscattering
plitudes by using Eq.~18! for the Green’s function in Eq
~27!, and evaluating the scattered wave at large positive
negativex,

uq
sc~x→`,y,z!.E

2`

x

dx8E
2d/2

d/2

dz8 (
n,vg

(n)
.0

i

2rv vg
(n)

3@Tiy~x8!ui
(n)~x8!* #y85W/2uq

(n)~x!,

~28!

uq
sc~x→2`,y,z!.E

x

`

dx8E
2d/2

d/2

dz8 (
n,vg

(n)
,0

i

2rv vg
(n)

3@Tiy~x8!ui
(n)~x8!* #y85W/2uq

(n)~x!.

~29!

The stress tensorTi j corresponding to the full displaceme
field of the wave is evaluated from Eqs.~24!–~26!. Since
these expressions explicitly include the small roughness
plitude f 1 on the right-hand side, to calculate the scattering
lowest order in the roughness amplitude it is sufficient
replace allTi j on the right-hand side by the valueTi j

(m) in the
incident modem. From Eqs.~28! and~29!, we see thatusc(x…
is expressed as a sum over modesu(n)(x…, and the coefficient
of each mode is then the scattering amplitudetn,m from in-
cident modem into moden, so that
14430
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tn,m5E
2`

`

dxE
2d/2

d/2

dz
i

2rv vg
(n) @Tiy

(m)~x!ui
(n)~x!* #y5W/2 ,

~30!

where we can now extend the integration limit to6` since
f 1, and so the integrand, is zero outside the domain of rou
ness 0,x,L. Again mode indicesn for which vg

(n).0 rep-
resent the forward-scattered waves and those withvg

(n),0
the backward-scattered waves.

Now use the expression for the stress tensor on
smooth surfaces obtained in the preceding section~24!–~26!,
and integrate the resulting expressions by parts with res
to x or z to rewrite the terms in]xf 1 and]zf 1 as integrations
over f 1. After these manipulations, we findtn,m can be writ-
ten as

tn,m52
i

2rvvg
(n)E

2`

`

dxE
2d/2

d/2

dz f1~x,z!G (m,n)~x,z!,

~31!

where

G (m,n)~x,z!5@~]xTxx
(m)1]yTxy

(m)1]zTxz
(m)!ux

(n)* 1~]xTzx
(m)

1]yTzy
(m)1]zTzz

(m)!uz
(n)* 1]yTyy

(m)uy
(n)*

1Txx
(m)]xux

(n)* 1Tzz
(m)]zuz

(n)* 1Tzx
(m)~]xuz

(n)*

1]zux
(n)* !#y5W/2 . ~32!

Applying the equations of motion~5! and remembering
Tiy

(m)uy5W/250 for all i and for allx,z leads to the somewha
simpler expression

G (m,n)~x,z…5@2rv2~ux
(m)ux

(n)* 1uy
(m)uy

(n)* 1uz
(m)uz

(n)* !

1Txx
(m)]xux

(n)* 1Tzz
(m)]zuz

(n)* 1Txz
(m)~]zux

(n)*

1]xuz
(n)* !#y5W/2 . ~33!

Notice that the scattering separates into a kinetic term~the
first line! and a stress term~the second line!.

The above form forG (m,n) is still neither instructive nor
practical for numerical evaluation. It can be further simp
fied using the expressions~3! and~7! for the stress tensor in
terms of displacements. First, we use the boundary condi
Tyy

(m)50 for they stress to give aty5W/2,

]yuy
(m)52

s

~12s!
~]xux

(m)1]zuz
(m)!. ~34!

This can be used to simplify the expressions for the ot
components of the stress tensors aty5W/2,

Txx
(m)5

E

~12s2!
~]xux

(m)1s]zuz
(m)!, ~35!

Tzz
(m)5

E

~12s2!
~s]xux

(m)1]zuz
(m)!, ~36!
2-5
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Txz
(m)5

E

2~11s!
~]xuz

(m)1]zux
(m)!. ~37!

Inverting these gives aty5W/2

]xux
(m)5

1

E
~Txx

(m)2sTzz
(m)!, ~38!

]zuz
(m)5

1

E
~Tzz

(m)2sTxx
(m)!, ~39!

]xuz
(m)1]zux

(m)5
2~11s!

E
Txz

(m) . ~40!

We emphasize that Eqs.~34!–~40! are only true for the
stress-free boundaries, and are not generally true in the
of the material.

Using these results, we get

tn,m52
i

2rv vg
(n)E

2d/2

d/2

dz f̃1~km2kn ,z!Ḡ (m,n)~z! ~41!

with

Ḡ (m,n)5H rv2~fx
(m)fx

(n)* 1fy
(m)fy

(n)* 1fz
(m)fz

(n)* !

2
1

E
@~ T̄xx

(m)T̄zz
(n)* 1T̄zz

(m)T̄zz
(n)* !2~sT̄zz

(m)T̄xx
(n)*

1T̄xx
(m)T̄zz

(n)* !#2
1

m
T̄xz

(m)T̄zx
(n)* J

y5W/2

, ~42!

where we have introduced the explicitx dependence o
ui

(n)(x) as in Eq.~17! and the stress tensor

Ti j
(n)~x!5T̄i j ~y,z!eiknx, ~43!

so that thex8 integration is just the Fourier transformf̃ of the
roughness function, andḠ is a function of thez coordinate
only.

Alternatively, using Eqs.~35!–~37!, we can derive an ex
pression explicitly in the displacement fields, which is use
for numerical evaluation,

Ḡ (m,n)5H rv2~fx
(m)fx

(n)* 1fy
(m)fy

(n)* 1fz
(m)fz

(n)* !

2
2m

~12s!
@~kmknfx

(m)ux
(n)* 1]zfz

(m)]zfz
(n)* !

1s~ ikmfx
(m)]zfz

(n)* 2 ikn]zfz
(m)fx

(n)* !#

2m~ ikmfz
(m)]zfx

(n)* 1kmknfz
(m)fz

(n)*

1]zfx
(m)]zfx

(n)* 2 ikn]zfx
(m)fz

(n)* !J
y5W/2

.

~44!
14430
lk
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The scattering rate is given by multiplyingutn,mu2 by the
ratio of the group velocities in the scattered and incid
waves.17 We also treat the roughness of the surface stat
cally, and take an ensemble average~denoted by angular
brackets! to give the final expression for the scattering ra
gn,m from modem to moden by the per unit length of single
rough surface aty5W/2 given by

gn,mL5
vg

(n)

vg
(m) ^utn,mu2&

5
1

4r2v2vg
(m)vg

(n)

3K U E
2d/2

d/2

dz f̃1~km2kn ,z!Ḡ (m,n)~z!U2L . ~45!

We are interested in the reduction of the phonon h
transport due to rough surfaces. Only the backscatte
waves~those withvg

(n),0) reduce the amount of heat tran
mitted. Thus we definegm , the thermal attenuation coeffi
cient of modem per unit length, to be the sum of the sca
tering rates from the incident modem to all possible
backscattered modes, per unit length of rough surface. T
can be written for scattering off the single rough surfa
considered so far:

gmL5 (
n

vg
(n)

,0

gn,mL

5 (
n

vg
(n)

,0

1

4r2v2vg
(m)vg

(n)

3K U E
2d/2

d/2

dz f̃1~km2kn ,z!Ḡ (m,n)~z!U2L . ~46!

To include the second rough side surface, assuming
correlated roughness, we simply have to multiply the expr
sion forgm by a factor of 2. The expression for scattering o
the top and bottom surfaces, if these are rough too, can
derived in a similar manner and the result may be obtai
by exchangingy andz in Eq. ~46!. The total scattering rate is
the sum of the scattering off all the surfaces.

We have assumed that the amplitude of the surface rou
ness is small, allowing us to use perturbation theory to de
the above expressions. In this weak scattering limit,
transmission coefficient isTm.12gmL. When we estimate
the size of the surface roughness from the data of Sch
et al.,9 we find that the weak scattering approximation is s
ficient for all frequencies except near the onset of the hig
modes, where the scattering tends to diverge due to
group-velocity factors in the denominator of Eq.~46!. The
transmission coefficient becomes small over a narrow ra
near these onset frequencies, and the simple expressio
Tm is inadequate here. To interpolate to the small transm
sion for strong scattering, we use the approximation
2-6
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Tm.exp@2gmL#. ~47!

This expression correctly includes the exponential decay
the wave due to successive scattering out events, but
not include multiple scattering that may eventually sca
the wave back into the forward direction. However, for t
calculation of the thermal conductivity in the temperatu
range of interest, the effect of the strong scattering regi
around the onset of the higher modes is negligible, and o
interpolation expressions between the weak scattering
pression valid for most frequencies and the small transm
sion near the onset frequencies give very similar predictio

III. THIN-PLATE LIMIT

Although the expression in the preceding section is g
eral and applicable to any rectangular waveguide with ro
surfaces, there are no closed-form expressions for the
placement fields in general, and so a direct evaluation of
scattering has to be done completely numerically. Here,
instead use thethin-plate approximation d!W,19,18 which
yields closed-form expressions for the displacement field
the modes@in terms of a dispersion curvesvm(k) given by
numerical solution of a simple transcendental equation#. The
thin-plate limit captures the important properties of the el
tic modes; for example the quadratic dispersion of the be
ing modes at small wave numbers, and the regions of ano
lous dispersion, as well as providing analytical expressi
enabling us to do further analysis of the scattering. The th
plate theory is applicable where the thickness of the sam
is much less than the width and the wavelengths are m
greater than the thickness, which is the case for many m
scopic systems at low temperatures.

The use of the thin-plate limit for mesoscopic structu
was proposed in Ref. 18, where the calculation of the str
ture of the modes is described in more detail. It is found t
the modes can be separated into two classes:in-plane modes,
where the polarization of the displacement is largely in
x-y plane~together with small strains in thez direction given
by the Poisson effect! and the displacement field is com
pletely specified by giving thevertically averaged horizonta

displacement components ux̄(x,y) and ūy(x,y); andflexural
modes, where the displacement is primarily in thez direction
and is specified by a vertical displacement fieldūz(x,y).
Within each class we can further distinguish the modes
their parity undery→2y. For the in-plane modes, we defin
the mode as even ifūx(x,2y)5ūx(x,y) and odd if ūx(x,
2y)52ūx(x,y). Similarly, the even flexural modes hav
ūz(x,2y)5ūz(x,y) and the odd modes haveūz(x,2y)5

2ūz(x,y). As in the general case, there are four branche
the dispersion curves that tend to zero frequency as the w
number goes to zero, corresponding to one mode from e
of these classes. The low-frequency even in-plane mode
responds to the compression mode, and the odd mode c
sponds to the bending mode. The low-frequency even fl
ural mode corresponds to the second bending mode, an
low-frequency odd flexural mode is the torsion mode.

Explicit expressions for the displacement fields can
14430
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obtained using the method described in Ref. 18. For the
plane modes we find, up to a normalization factorA1 that is
common to both even- and odd-parity waves, the ev
modes

ūx~x,y!5 ikA1F k22x1
2

2k2
cosS x2W

2 D cos~x1y!

2cos~x2y!cosS x1W

2 D Geikx, ~48!

ūy~x,y!5A1Fk22x1
2

2x1
cosS x2W

2 D sin~x1y!

1x2cosS x1W

2 D sin~x2y!Geikx, ~49!

and the odd modes

ūx~x,y!5 ikA1F k22x1
2

2k2
sin~x1y!sinS x2W

2 D
2sinS x1W

2 D sin~x2y!Geikx, ~50!

ūy~x,y!52A1Fk22x1
2

2x1
cos~x1y!sinS x2W

2 D
1x2sinS x1W

2 D cos~x2y!Geikx, ~51!

wherex15(v2/ct
22k2)1/2 and x25(v2/cl

22k2)1/2, with ct

the transverse sound velocity andcl the longitudinal velocity
in a large thin plate,

ct5A E

2r~11s!
, cl5A E

r~12s2!
, ~52!

andv andk are related by the dispersion curve that must
found numerically. In the thin-plate limit, it is sufficient t
take for the in-plane modes

ux~x,y,z!.ūx~x,y!, ~53!

uy~x,y,z!.ūy~x,y!, ~54!

uz~x,y,z!.0. ~55!

Similarly, the vertical displacement field for the even fle
ural modes is
2-7
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ūz~x,y!5A2F coshS x2W

2 D cosh~x1y!

2
k2s2x1

2

k2s2x2
2

coshS x1W

2 D cosh~x2y!Geikx,

~56!

and for the odd flexural modes

ūz~x,y!5A2F sinhS x2W

2 D sinh~x1y!

2
k2s2x1

2

k2s2x2
2

sinhS x1W

2 D sinh~x2y!Geikx,

~57!

where x15(k21Ard/Dv)2 and x25(k22Ard/Dv)2,
with D5Ed3/12(12s2) the flexural rigidify, and againv
andk are related by the appropriate dispersion curve. In
classical thin-plate theory, the displacement fields are gi
in terms ofūz by the expressions

ux~x,y,z!.2z]xūz~x,y!, ~58!

uy~x,y,z!.2z]yūz~x,y!, ~59!

uz~x,y,z!.ūz~x,y!. ~60!

This approximation is adequate for evaluating the surf
stress integrals in Eq.~46!, but turns out not to be sufficiently
accurate to evaluate the energy flux expression for the gr
velocity ~21!. We discuss this case in Sec. III C 2 below.

A. Ideal thermal conductance

Since our quantitative calculation of the scattering coe
cient relies on the analytic expressions for the elastic mo
available only in the thin-plate limit, it is essential to es
mate the temperature range where the thin-plate limit is
plicable for a given experimental structure. On the oth
hand, as the wavelength becomes much smaller than th
mensions of the structure, we should to be able to treat
waves in terms of separate longitudinal and transverse w
in the bulk of the material, without worrying too much abo
the complicated standing-wave transverse-mode struc
important for the long-wavelength modes. In this regim
which we refer to as the bulk mode limit, the counting of t
modes is insensitive to the details of the boundary con
tions, and is the same as for a scalar wave approxima
The ideal thermal conductance depends only on cutoff
quency of the modes@see Eq.~1!#, and we can assess th
applicability of these simple limiting approximations b
comparing the mode cutoff frequencies with results from
numerical calculation of the full elasticity theory. For the fu
elastic theory, we use the ‘‘xyz algorithm.’’20
14430
e
n

e

up

-
es

p-
r
di-
e
es

re
,

i-
n.
-

a

For the bulk mode calculation, there are three polari
tions ~one longitudinal and two transverse! with propagation
velocitiescl 8 andct , respectively, withct as before and

cl 85A E~12s!

r~11s!~122s!
. ~61!

The precise details of the boundary conditions are unimp
tant in the mode counting for large mode numbers. If
assume standing waves in the transverse direction co
sponding to zero normal derivative boundary conditions
the wave functions, the cutoff frequencies are

v t,mn5ctAS mp

W D 2

1S np

d D 2

~ twofold degenerate!

~62!

for the transverse waves, and

v l ,mn5cl 8AS mp

W D 2

1S np

d D 2

~nondegenerate! ~63!

for the longitudinal waves, withm,n50,1,2. . . . For large
m,n we can use the continuous form for the frequencyvN of
the Nth mode

N5
dW

4p
vN

2 S 2

ct
2

1
1

cl 8
2 D . ~64!

Figure 2 shows the cutoff frequencies as a function
mode number for the thickness-to-width ratiod/W50.38.
The thin-plate theory gives a good approximation at low
frequencies. The accuracy of the thin-plate theory becom
better asd/W gets smaller. For example, in the case
d/W50.1 ~not shown!, the error in the cutoff frequencies o
the first 13 modes is less than 3%, whilst the error is as la
as 5% for the first seven modes for the cased/W50.38
shown in the figure. In terms of the ideal~no-scattering!
thermal conductance@Eq. ~1! with the transmission coeffi-
cient set to unity#, we find that ford/W50.38 the error in the
thermal conductance is less than 4% up toT;0.4 K. Thus,

FIG. 2. Mode frequencyvN as a function of mode numberN:
crosses represent thin-plate theory; circles representxyz algorithm;
and solid line represent bulk mode density of states calculation
thickness-to-width ratiod/W50.38 was used.
2-8
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SURFACE SCATTERING ANALYSIS OF PHONON . . . PHYSICAL REVIEW B66, 144302 ~2002!
the thin-plate limit is adequate to examine the scattering
fects in this temperature range. At large frequenciesvW/ct
.30, the elasticity theory results approach closely the c
tinuum bulk mode calculations~64!. The thin-plate approxi-
mation clearly fails in this limit, since it predictsN}v cor-
responding to a 2d structure.

B. Attenuation coefficient in the thin-plate limit

The thin-plate approximation is implemented by notici
that the stress-free boundary conditions imply that the st
componentsTiz are zero on the top and bottom surfaces. F
small thickness this implies that the componentsTiz for any
i are small everywhere. In most situations these compon
can be approximated as zero.19 This simplifies many of the
terms appearing in Eq.~41!. Also, at low temperatures, onl
modes with no strong dependence on thez coordinate will be
excited, so that the mode sum extends over modes with
creasing numbers of nodes in they direction only.

In this section, we calculate the scattering of the ela
waves by surface roughness for a thin plate. We assume
the roughness is confined to the sides, since in the exp
ments theses are prepared lithographically, whereas the
and bottom surfaces are produced by the epitaxial gro
process.

For simplicity, we assume the roughness functionf 1 has
no z dependence. This is probably a reasonable descriptio
the roughness produced by a typical lithographic proces
anisotropic chemical etch.21 Then the Fourier-transforme
roughness functionf̃ 1(km2kn) can be pulled outside of thez
integral in Eq. ~46!, and the statistical average over th
roughness can be performed to give

^u f̃ 1~k!u2&5g̃~k!L, ~65!

whereg̃(k) is the Fourier transform of the roughness cor
lation function

g̃~k!5E dxe2 ikx^ f 1~x! f 1~0!&.

Equation~46! leads to the back-scattering rate from mo
m to moden
h
th
e

14430
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gn,m5
g̃~km2kn!

2r2v2vg
(m)vg

(n) U E
2d/2

d/2

dzḠ (m,n)~z!U2

, ~66!

where Eq.~46! is multiplied by a factor of 2 to account fo
the two surfaces aty56W/2.

With the closed forms of the displacement fields at ha
we can obtain the analytical expression for the attenua
coefficient. We first evaluateḠ (m,n) from Eq. ~42!. Since
Tiz

(m).0, the expression forḠ reduces to

Ḡ (m,n).Frv2~fx
(m)fx

(n)* 1fy
(m)fy

(n)* 1fz
(m)fz

(n)* !

2
1

E
~ T̄xx

(m)T̄xx
(n)* !G

y5W/2

. ~67!

In addition, puttingTzz
(m) in Eq. ~37! at the stress-free bound

ary to zero gives

]zuz
(m)52s]xux

(m) , ~68!

so thatTxx
(m) from Eq. ~35! simplifies to

Txx
(m)5E]xux

(m) . ~69!

Now Eq. ~66! can be written as

gn,m5
g̃~km2kn!

2r2v2vg
(m)vg

(n) U E
2d/2

d/2

dz@rv2f i
(m)f i

(n)*

1Eksknfx
(m)fx

(n)* #y5W/2U2

, ~70!

where the indexi is summed overx,y,z. The scattering in
the thin-plate limit is seen to have two components: the
netic term, the first term in the square bracket in Eq.~70!,
which involves all components of the displacement; and
stress term, the second term, which just depends on the
gitudinal displacement.

To see how the scattering rate scales with the parame
it is useful to rewrite Eq.~70! as
gn,mL5
g̃~km2kn!L

2W4 S W2v2

vg
(m)vg

(n)D 3

U E
2d/2

d/2

dzFf i
(m)f i

(n)* 1
Ekskn

rv2
fx

(m)fx
(n)* G

y5W/2
U2

S E
2d/2

d/2

dzE
2W/2

W/2 dy

W
f i

(m)f i
(m)* D 1/2S E

2d/2

d/2

dzE
2W/2

W/2 dy

W
f i

(n)f i
(n)* D 1/2. ~71!
we
e-

ient
The first factor is a dimensionless measure of the strengt
the roughness; the second factor is a dimensionless ratio
depends, through the dispersion relation, only on the geom
ric ratio d/W and the Poisson ratios; and the final factor
of
at
t-

involves integrals over the displacement fields, where
have introduced the explicit normalization factors in the d
nominator so that we may evaluate the ratio using conven
unnormalized expressions for the displacements.
2-9
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C. Evaluating the group velocity

As we have seen in Eq.~20!, we can avoid evaluating th
group velocity appearing in Eq.~70! via numerically differ-
entiating the dispersion curve by instead relating the gr
velocity to the energy flux in the mode, which in turn can
written as an explicit integral~21!. Thus, we need to evaluat
the expression~we suppress the mode index in this sectio!

P52
1

2
ReF ivE E ~Txxux* 1Tyxuy* 1Tzxuz* !dydzG .

~72!

involving the displacement fields and their derivatives.
In the thin-plate limit thez components of the stress a

small. If we approximateTzz50, then expressions~3! and
~7! can be used to evaluate thez component of the strain,

]zuz52
s

~12s!
~]xux1]yuy!. ~73!

This can be then used to simplify the in-plane component
the stress

Txx5
E

~12s2!
~]xux1s]yuy!, ~74!

Tyy5
E

~12s2!
~s]xux1]yuy!, ~75!

Tyx5
E

2~11s!
~]xuy1]yux!. ~76!

These expression are used to evaluate the first two term
the integrand in Eq.~72!. The evaluation of the last term i
the integrand turns out to depend on whether we are look
at the in-plane or flexural modes, and we now consider e
case in turn.

1. In-plane modes

For the in-plane modes in the thin-plate limit, it is suf
ciently accurate to approximateTzx.0, and we can evaluat
the remaining terms inP with the approximationsux.ūx ,
uy.ūy independent ofz. This yields

P5ReH 2
ivEd

4~12s2!
E dy@2~]xūx1s]yūy!ūx*

1~12s!~]xūy1]yūx!ūy* #J . ~77!

2. Flexural modes

For the flexural mode the approximationsTzx.0 and
uz(x,y,z).ūz(x,y) independent ofz lead to the expression
for the horizontal displacements

ux~x,y,z!.2zūz~x,y!, ~78!
14430
p

of
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uy~x,y,z!.2zūz~x,y!. ~79!

Using these expressions with Eqs.~74! and ~75! shows that
the first two terms in Eq.~72! are of orderd3, i.e.,third order
in the expansion parameter of thin-plate theoryd/W. It turns
out that to this order, wecannotneglect the last term inTzx ,
even though allz components in the stress tensor are nom
nally ‘‘small.’’ Indeed comparing the group velocity evalu
ated from Eq.~72!, neglecting the term inTzx , with those
given by numerically differentiating the dispersion cur
shows a clear discrepancy. This same problem comes u
deriving the wave equation for the flexural waves

rdv2ūz5D¹'
4 ūz . ~80!

The term on the left-hand side is the mass per unit area ti
the vertical acceleration, which is given by the integral ov
the depth of]xTzx1]yTzy . Clearly, the components ofTzi
cannot be neglected completely. Their ‘‘smallness’’ is wh
leads to the unusual fourth-order derivative appearing in
wave equation, with a coefficient again proportional tod3.

We have used two methods to arrive at the correct ca
lation of the energy flux integral for the flexural wave
which is then used to calculate the group velocity for t
these waves. The first is to use an improved approximatio
the expressions for the in-plane displacements~74! and ~75!
and a nonzeroTzx following the approach of Timoshenko.22

The second evaluates the energy flux in terms of the vert
displacement and an effective vertical force, and in addit
the rotational displacementu and corresponding torqueM, as
is used in the macroscopic derivation19 of the wave equation
~80!. Either of these methods leads to the expression for
energy flux

P.
1

2
vDReH E dy@2k3ūzūz* 1k~12s!~]yūz!]yūz*

2k~11s!~]y
2ūz!ūz* #1Dk@~12s!~]yūz!ūz* #y5W/2

2Dk@~12s!~]yūz!ūz* #y52W/2J . ~81!

The derivations are displayed in Appendix B. The compa
son of the group velocity derived from Eq.~81! and from
numerically differentiating the dispersion curve now sho
agreement to high accuracy.

IV. SCATTERING ANALYSIS

The thermal attenuation is calculated from Eq.~70! for
normalized mode displacement fields or Eq.~71!, in general.
The group velocity for each mode can be accurately eva
ated numerically from the equalityvg52P/rw2, with the
energy fluxP given by Eq.~77! for the in-plane modes and
Eq. ~81! for the flexural modes~both expressions are fo
normalized displacement fields!. These are all explicit results
in terms of the mode displacements, which are given by E
~48!–~51! for the in-plane modes, and Eqs.~56! and~57! for
the flexural modes.

Before analyzing the scattering behavior, we first need
2-10
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SURFACE SCATTERING ANALYSIS OF PHONON . . . PHYSICAL REVIEW B66, 144302 ~2002!
have a good understanding of the dispersion relation of
modes, since the scattering rates are strongly dependen
this.

A. Dispersion relation and group velocity

The dispersion relations for a representative case
shown in Fig. 3. For this example, we have used a Pois
ratio of 0.24 and a depth to width ratio ofd/W50.375, val-
ues corresponding to the experimental work of Schw
et al.9 As we have discussed, the modes fall into four class
depending on their parity signatures. We label the low
mode from each class, the one with zero frequency as
wave number goes to zero, as mode 0, and the modes
successively higher cutoff frequencies in each class as m
1, mode 2, etc., in that class.

Notice that one of the curves in the figure, the one for
in-plane mode with cutoff frequencyvW/ct.5, shows
anomalous dispersion with the frequencydecreasingas the
wave number increases up to about 3W21. ~This is actually
an even mode, and some higher even and odd modes
show anomalous dispersion.! The dispersion curves for a
modesn.0 have zero slope, and so zero group velocity
onset. As we will see later, this results in a diverging scat
ing rate at each mode onset. For then50 modes, asv→0
two of the modes~the compression and torsion modes! have
linear dispersion, whilst the other two lowest modes~in-
plane and flexural bending modes! exhibit quadratic disper-
sion. Figure 4 shows the group velocitiesvg for the four
lowest in-plane modes. The group velocity of the bend
mode approaches zero asv→0, whilst that of the compres
sion mode becomes constant. The group velocity of the c

FIG. 3. Dispersion relation for in-plane modes~solid! and flex-
ural modes~dashed! for a geometry ratiod/W50.375 and Poisson
ration 0.24. The wave numbers are scaled with the widthW, and the
frequencies byW/ct with ct5Am/r.
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pression mode suddenly drops to;0.5ct around vW/ct
;4.6, then gradually recovers and approaches 0.9ct . These
features of the dispersion curve will be reflected in the
havior of the scattering of the waves.

B. Scattering behavior

We first consider the scattering and reduction of the th
mal transport by white-noise roughnessg̃(k)5g̃(0). This
allows us to focus on the role of geometry and the unus
mode structure of the elastic waves in the physics.

In the low-frequency limit, the dispersion curve and t
spatial dependence of the modes take on the simple ana
forms shown in Table I, allowing us to make analytic pred
tions for the scattering at low frequencies and then the th
mal conductance at low temperatures. Since only small w
vector scattering is involved in these calculations, the res
are true for a general roughness correlation function, p
vided g̃(0) is nonzero. The mode structure in Table I may
calculated from Eqs.~48!–~57! taking k→0 or from argu-
ments of macroscopic elasticity theory.

The contributions to the thermal attenuation coefficient
the low-frequency limit (vW/ct!1) from the various scat-
tering processes are shown in the Table II.23 The expressions
take on their simplest form if we introduce the frequen
scaled with the velocity of the long-wavelength compress
mode v̄5vcE /W with cE5AE/r5A2(11s)ct . The
power laws can largely be understood from the prefacto
Eq. ~71!, gn,m}v2/vg

(m)vg
(n) . The group-velocityvg becomes

constant at small frequencies for the compression and
torsion modes. Thus the torsion-torsion tt and compress

FIG. 4. Group velocity for in-plane modes for the same para
eters as Fig. 3: dash dotted line represents in-plane bending m
solid line represents compression mode. The wave numbers
scaled with the widthW, and the group velocities byct with ct

5Am/r.
ur
TABLE I. Dispersion relation, group velocity, and~unnormalized! transverse-mode structure for the fo
modes with zero frequency at zero wave vector.

v/AE/r vg /AE/r fx fy fz

Extension k 1 1 O(ky) O(kz)
In-plane bend (w/A12)k2 (w/A3)k 2 iky 1 O(kz)
Torsion A2/(11s)(d/w)k A2/(11s)(d/w) O(kyz) 2z y
Flex bend (d/A12)k2 (d/A3)k 2 ikz O(k2yz) 1
2-11
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TABLE II. Scattering coefficients for the zero onset frequency modes at low frequencies:c denotes
compression, b denotes bend,t denotes torsion, bb denotes bend-to-bend scattering etc. Values are quo

gmW4/g̃(0) as a function of scaled frequencyv̄5vcE /W. For the flexural bend-to-bend scattering~bb! the

terms in the braces in Eq.~70! cancel to leading order resulting in very smallO(v̄3) scattering. There is no
scattering between in-plane and flexural modes for the assumed z independent roughness.

In plane Flexural

cc bb bc,cb tt bb tb,bt

2v̄2 A3v̄ 35/4

23/2
v̄3/2

9~11s!

4
SWv̄

d
D2

OFSWv̄

d
D3G 35/4~11s!1/2

4
S Wv̄

d
D 3/2
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compression cc scattering shows thev2 dependence corre
sponding to Rayleigh scattering in one dimension, and
was found for scalar waves with linear dispersion. On
other hand, for the bending modesvg}v1/2. This has the
important consequence that the in-plane bend-bend sca
ing increases more rapidly at low frequencies proportiona
v, and the torsion-bend tb and compression-bend cb sca
ing have anv3/2 frequency dependence. For the flexu
bend-bend scattering, the two terms in the braces in Eq.~70!
cancel to leading order resulting in smaller scatteringO(v3)
than given by the prefactor alone. Note that the express
for the flexural modes involve additional factors ofW/d, so
that these modes will be scattered more strongly at a givev
in the thin-plate limit. This is because these modes are so
so that the scattering wave vectors are larger for the s
frequency.

The numerical results for the attenuation coefficientgm of
the four lowest modes are shown in Fig. 5 for the in-pla
and in Fig. 6 for the flexural modes. The plot for the in-pla
modes, in particular, shows interesting structure deriv
from the complicated dispersion curves of Fig. 3. Much
this structure can be understood from the product of gr
velocities in the denominator of Eq.~70!. In particular, there
is a square-root divergence ingm at the onset frequency o

FIG. 5. Attenuation coefficientgmW4/g̃(0) for scattering from
the two lowestm50 in-plane modes to any other mode as a fun
tion of scaled frequencyvW/ct : solid line represents in-plane ben
mode; dashed line represents compression mode. The inset s
an enlargement of the low-frequency region, and compares with
analytic low-frequency expressions from Table II: dotted line re
resents analytic in-plane bend mode; dash-dotted line repres
analytic compression mode; other lines as in the main figure.
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each mode where the group velocity is zero. In addition,
large scattering aroundvW/ct55 derives from the region o
anomalous dispersion, since the group velocity is smal
this frequency range. The inset to Fig. 5 shows an expan
view of the low-frequency behavior, using the results fro
Table II together with the next order correction for th
compression-bend scattering. The agreement for the c
pression mode is very good even up tovW/ct;3, whereas
for the bend mode the correspondence is only good
vW/ct&0.5. The scattering for the flexural modes sho
generally similar results,~Fig. 6! although the behavior is
simpler corresponding to the rather featureless disper
curves. At low frequencies,~inset to Fig. 6!, the scattering of
the flexural-bend mode is small, since the intramode sca
ing is reduced by the cancellation discussed above.

Figure 7 shows the total scattering(mgm for the in-plane
modes on a log-log plot, again with white-noise roughne
At very low frequencies, the scattering varies proportiona
v corresponding to the dominant intramode scattering of
compression mode at low frequencies~Table II!. For fre-
quencies up tovW/ct.3.5, the first nonzero onset fre
quency of an in-plane mode@the analytic low-frequency ex
pression given by summing the in-scattering expressi
from Table II~cc, cb, bc, and bb!, shown as the dotted line in
Fig. 7#, gives a good approximation to the full results. A

-

ws
e

-
nts

FIG. 6. Attenuation coefficientgmW4/g̃(0) for scattering from
the two lowestm50 flexural modes to any other mode as a fun
tion of scaled frequencyvA12(12s2)(W/d)W/cE : solid line rep-
resents the flexural-bend mode; dashed line represents to
mode. The inset shows an enlargement of the low-frequency reg
and compares with the analytic low-frequency expressions fr
Table II: dotted line shows an analytic approximation for t
flexural-bend mode; dash-dotted line shows an analytic expres
for the torsion mode; other lines as in the main figure.
2-12
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SURFACE SCATTERING ANALYSIS OF PHONON . . . PHYSICAL REVIEW B66, 144302 ~2002!
higher frequencies the total scattering increases rapidly,
lowing a general trend proportional tov4 ~dashed line! to-
gether with divergent scattering at each mode onset
quency. The v4 power law can be understood as t
combination of the explicitv2 dependence of Eq.~70!, to-
gether with two powers ofv coming from the number o
modes available for scattering from and to.

C. Change in the thermal conductance

In the weak scattering limit, the change in thermal co
ductance at low temperatures can be derived directly fr
the expressions for the scattering at low frequencies. If
write the thermal attenuation coefficient of modem asgmL
5A(v/v0)p, wherep is the power law obtained in the low
frequency limit andv0 some characteristic frequency, the
the corresponding contribution of the suppression of the th
mal conductance from this mode is

dKm /Ku5AIp~T/T0!p, ~82!

with T05\v0 /kB the corresponding characteristic tempe
ture andKu5p2kB

2T/3h the universal thermal conductanc
The constantI p can be obtained evaluating the integral

I p5
3

p2E0

`

dy
yp12ey

~ey21!2
. ~83!

Thus the power law for the temperature dependence of
depression of the thermal conductivity is the same as the
for the low-frequency behavior of the scattering coefficie

Figures 8 and 9 show the thermal conductance depres
scaled with the universal valueKu as a function of the ap
propriate scaled temperature for the lowest in-plane and fl
ural modes, showing the deviation from the low-temperat
power laws as the temperature is raised. For the in-pl
modes, we use the characteristic temperatureTE
5\cE /kBW and for the flexural modesTF5\cEd/kBW2.

FIG. 7. Total scattering(mgmW4/g̃(0) for the in-plane modes
on a log-log plot. The dotted line shows the low-frequency analy
expression from Table II, and the dashed line shows a power law
~Note that the heights of the peaks in the plot are not signific
depending on how close the individual points~separated by 0.01 in
vW/ct , used in constructing the plot! are to the mode onset fre
quencies, where the scattering diverges.!
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The individual plots are then independent of the geome
To combine the contributions from the in-plane and flexu
modes, the ratiod/W is needed to relate the two temperatu
scale factors. In the thin-plate limit,TF5(d/W)TE!TE .

V. COMPARISON WITH EXPERIMENT

A. Experimental geometry

Based on the scanning electron microscopy~SEM! micro-
graph of the experimental structure,24 we set the dimensions
of the structure in the following way. In the experiment
structure of Schwabet al., the thermal pathway was con
structed with the shape functionW(x)5W cosh(Ax) so that
the beam width becomes large and joins smoothly to
thermal reservoirs at the ends, reducing the scattering du
the geometric imperfection at these junctions. Unfortunat
this makes the calculation of the behavior of the elas
waves in the beams much harder. However, both with
without the scattering off surface roughness, we expect
narrow portion of the beam to dominate the behavior. Th
we simplify the structure and model it as an elastic be

c
4.
t,

FIG. 8. Reduction in the thermal conductance scaled with
universal conductanceKu for the lowest in-plane modes as a fun
tion of scaled temperatureT/TE with TE5\cE /kBW: solid line
shows low-temperature analytical expressions from Table II: po
show full expression evaluated numerically. The quantity plotted
(dKc1dKib)/2Ku with dKc ,dKib , the depression of the contribu
tions to the conductance by the scattering for the compression
in-plane bending modes.

FIG. 9. Similar to Fig. 8,dK/2Ku for the lowest flexural modes
~torsion and flexural bending! as a function of the scaled temper
ture T/TF with TF5\cEd/kBW2.
2-13
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D. H. SANTAMORE AND M. C. CROSS PHYSICAL REVIEW B66, 144302 ~2002!
with rectangular cross section of widthW, depthd, and ef-
fective lengthL. We estimate the width as the narrowe
width of the structure,W.160 nm, andL51 mm as the
length over which the width is approximately constant. T
thickness of the material wasd560 nm. The accuracy of the
length estimation is not very critical, since the only leng
dependence in the scattering rateg appears in the combina
tion d2L, whered is the rms roughness which is a parame
of the model, so that any error in the assignment ofL will
just change the value assigned tod. On the other hand, the
width W plays a crucial role, for example determining th
frequency cutoffs of the various modes, and so the temp
ture dependence of the thermal conductivity.

B. Roughness correlation function

Since the nature of the surface roughness on the exp
mental structure is not known, to fit the experimental data
need a sensible parametrization of the roughness. As a s
ing point, we choose a Gaussian correlation function for
roughness, leading to the spectral density

g̃~k!5Apad2expF2
a2

4
k2G . ~84!

This parametrization of the roughness contains two par
eters:d the rms roughness anda the correlation length.

To analyze the data, we first quantify the amount of sc
tering by subtracting the data of Schwabet al. from the ideal
thermal conductance obtained numerically using the ‘‘xyz’’
algorithm.20 Then we attempt to fit the data by adjusting t
two parametersa andd2L.

The inadequacy of Eq.~84! in fitting the experimental
data is shown by the low-temperature fits in Fig. 10. At the
low temperatures only small wave-number modes are
cited, so that the exponential term in Eq.~84! can be approxi-
mated as unity andg̃(k).g̃(0)5Apad2. Thus the rough-
ness parameters only appear in the combinationad2, and this
quantity can be varied as an attempt to fit the lo
temperature region. As seen from the figure, increasingad2

causes scattering that is systematically larger than the ex

FIG. 10. Attempts to fit the low-temperature dataT&0.2 K us-
ing various values ofad2/W3: solid line—Apad2/W350.1; dotted
line—Apad2/W350.05; dashed line—Apad2/W350.02; open
circles—from the experimental data of Schwabet al.
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mental data at the low temperatures, while decreasingad2

does not provide enough scattering in the range 0.1,T
,0.2 K.

Although there is considerable scatter in the data over
range of the fit, the systematic differences between the
dictions and the data lead us to propose a modified form
the roughness correlation that reduces the scattering at s
wave numbers,

g̃~k!5Apad2expF2
a2~k2k0!2

4 G . ~85!

A nonzero value of the parameterk0 leads to a roughnes
correlation function that is maximum at a length scale
orderk0

21, and serves to reduce the scattering at long wa
lengths. As mentioned in the Introduction, the same discr
ancy~i.e., the overestimation of the scattering at long wav
lengths in the theory compared with experiment! was found
using the scalar model of the elastic waves.13 The full elas-
ticity theory considered here actually makes the discrepa
worse, since the scattering at small frequencies now is
dicted to increase more rapidly at small frequencies than
v2 found in the scalar theory, varying asvp with p,2 for
most of the scattering processes, see Table II.

To fit the data of Schwabet al., we need to determine
three parameters:k0 , a, andd. We evaluate the quality of the
fit by calculating the mean-square deviation of the data fr
the theory curve over the temperature range up to 0.4 K
higher temperatures, many modes becoming excited and
scattering of individual modes becomes strong, so that
theory is less reliable. Since the onset frequency of the s
tering at low frequencies and the initial decrease in therm
conductance with increasing temperature near the onse
mainly determined byk0, this parameter is the easiest
determine. We find the valuek0W54.9 rather insensitive to
the values ofa andd.

Although a reasonable fit to the data was shown in
preceding article,15 we have now done a more systema
investigation of the error. A plot of the error as a function
d and a shows that the fit parametersd and a are strongly
correlated. This is presumably because an increase ia,
which reduces the scattering at small wave numbers and
quencies that is important at low temperatures, can be c
pensated by an increase ind. If we fix k0W at 4.9, then using
the standardx2 estimate for the confidence level25 of the
fitted values ofd and a leads to values ofd,a at 68.3%
confidence level covering ranges as wide as 2,a/W,8 and
0.1,d/W,0.5 ~and we have not looked at larger values
the parameters!. However, as the two fit parameters are co
related, fixing one parameter gives a much tighter constr
on the second one. For example: onced is fixed at d/W
50.1, the 93% confidence limit gives 3,a/W,4; for
d/W50.25, the 93% confidence limit gives 5.5,a/W
,7.6; and ford/W50.4, the 93% confidence limit give
6.4,a/W,8.4. Since the values ofd and a are not well
determined separately, we use the knowledge of the exp
mental geometry to constrain the parameters further.
physical roughness due to chemical etch has b
estimated24 from the SEM micrograph to be aboutd/W
2-14
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SURFACE SCATTERING ANALYSIS OF PHONON . . . PHYSICAL REVIEW B66, 144302 ~2002!
50.2. The best fit value ofa for this value ofd/W is a/W
55.5, and we use these values together withk0W54.9 to
obtain the fit shown in Figs. 11 and 12. For the quantitat
estimate of the error in the fit that we are using, the fit
significantly better than the one in Ref. 15: the parame
used there correspond to an increase in thex2 value of
Dx252.7 from the best fit.

The difficulty of fitting the data is due the lack of da
points at very low temperatures: it is in this range, whe
only a few modes are involved, that we have a very go
understanding of the scattering. At higher temperatures m
more modes become involved and the scattering of in
vidual modes becomes strong, so that the second-orde
proximation used in calculating the scattering will not
good. A full test of the theory explaining the reduction in t
thermal conductance in terms of the scattering off surf
roughness requires more data below a temperature of a
0.08 K for the type of geometry used by Schwabet al., or
systems with smaller geometries where the effects can
measured at higher temperatures.

C. Individual mode contribution to the thermal conductance

It is interesting to investigate the contribution to the to
thermal conductance of the individual modes with the rou
ness parameters used to fit the experimental data. Th

FIG. 11. Thermal conductance per mode scaled with unive
value Ku : solid line represents fit using roughness parame
a/W55.5, d/W50.2, andk0W54.9; circles represents data o
Schwabet al. The dotted line shows the ideal value with no sc
tering.

FIG. 12. Same as in Fig. 11 but showing the decrease ofK/Ku

from the ideal value.
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shown in Fig. 13. The flex-bending mode shows a mu
smaller contribution to the reduction inK at low tempera-
tures for the reason we have already discussed. The m
with nonzero onset frequencies start to contribute sign
cantly above aboutT.0.2 K, and this is the predominan
cause for the increase in thermal conductivity above t
temperature, since the recovery of the thermal conducta
for the lowest mode occurs very slowly.

VI. CONCLUSION

We have investigated the effect of surface roughness
the scattering of elastic waves in a rectangular beam
waveguide, and the resulting depression of the thermal c
ductance in the low-temperature quantized limit, using f
elasticity theory. Our formulation is quite general, but to o
tain concrete results we have specialized to the thin-p
limit, which should be a reasonable approximation for ma
mesoscopic experiments where the depth of the structure
fixed by the epitaxial growth, whilst the width is determine
lithographically. The thin-plate limit preserves the pecul
features of the elastic waves in the full elastic theory, nam
a quadratic dispersion at long wavelengths for two of
low-frequency modes, and regions of negative dispersion
the spectra. A robust result is that the low-frequen
asymptotic dependence of the scattering by unstructu
roughness of the modes that propagate at low frequen
~the ones that are important in the low temperature unive
thermal conductance! depends on the structure of the mod
and the dispersion relation, and isnot the simplev2 depen-
dence of Rayleigh scattering as found in the scalar appr
mation to the modes. We find different power laws for t
various mode scattering processes that can be unders
largely from the dispersion relations at:v for intramode scat-
tering for the in-plane bend mode~the flex-bend intramode
scattering is anomalous because of a cancellation betw
leading-order terms, and varies asv3); v3/2 for scattering

al
rs

-

FIG. 13. Individual mode contribution to the thermal condu
tance. The lowest two flex modes and lowest three in-plane mo
are shown. The contributions toK/Ku from the four modes with
zero onset frequency tend to unity at low temperatures. The hig
modes only contribute at higher temperature. The modes are: d
dotted line shows in-plane bending; dashed line shows comp
sion; dotted line shows torsion; dashed-dotted-dot line shows ou
plane bending. The solid line shows the sum of all the mode c
tributions, reduced by 4Ku . Values of the roughness paramete
used werea/W55.5, d/W50.2, k0W54.9, andd/W50.375.
2-15
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D. H. SANTAMORE AND M. C. CROSS PHYSICAL REVIEW B66, 144302 ~2002!
between the bend modes and the modes with linear dis
sion ~torsion and compression modes!; and the usualv2 for
the intramode scattering of the modes with linear dispers
The current experimental data on the suppression of the
temperature thermal conductance below the universal v
does not extend to low enough temperatures to provid
good test of these predictions. To investigate this predic
further, it would be interesting to extend the experiments
lower temperatures or to smaller devices such as car
nanotubes, where the characteristic temperature scales~when
a typical thermally excited phonon has a wavelength com
rable with the device dimensions! are higher.

We have used our results to understand the data
Schwabet al., who observed a depression of the therm
conductance below the universal value in the tempera
range of 0.1–0.4 K. Although the scatter in the data is c
siderable at these low temperatures, the observations see
show a delay in the onset of the depression scattering as
temperature is raised, beyond which it can be fitted with
predictions for unstructured surface roughness. We te
tively resolve this delay by supposing that the surface rou
ness has a maximum amplitude at some nonzero le
scale, which we parametrize by a shifted Gaussian corr
tion function. Due to the lack of data at low temperatures
precise determination of the roughness parameters is not
sible. However, we do obtain a fit to the data with parame
that do not look unreasonable when compared with elec
micrographs of the actual devices.

Our results are based on second-order perturbation the
and the thermal conductance is evaluated assuming the
tering over the length of the device is small. This is a go
approximation at low temperatures, but the scattering
comes strong at higher temperatures, particularly for the n
modes excited as the temperature is raised, which ha
diverging scattering at onset due to the flat dispersion r
tion here. At higher temperatures multiple scattering and p
haps phonon localization will therefore become importa
Kambili et al.11 and Sanchez-Gilet al.12 have numerically
investigated the these effects in the simplified scalar w
approximation. It would be interesting in the future to exte
their work to the full elasticity model.
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APPENDIX A: INCIDENT AND SCATTERED FIELDS

Using Green’s theorem, we have expressed the displ
ment field at frequencyv in terms of the surface integral

uq~x!5E
S8

@nj8Ti j ~x8!Giq~x8,x!

2nj8ui~x8!G i jq~x8,x!#dS8. ~A1!

Equation~A1! involves the integration over a closed surfa
S8, which we have chosen to be the smooth boundaries
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gether with the cross sections atx8→6`. In this appendix,
we show that the integration over the sections at6` simply
yields the incident fielduq

in , and this allows us to deduce th
expression for the scattered field as an integration over
side surfaces. To deduce this result, we first need to de
what are known as reciprocity relations for the elas
modes.16

Let u(r ) and u(s) be the displacement fields for modesr
and s in the ideal beam, andT(r ), T(s) the corresponding
stress tensor fields. The modes satisfy the wave equatio
frequencyv, so that

rv2ui
(r )1] jTi j

(r )50,

rv2ui
(s)1] jTi j

(s)50, ~A2!

Multiply the first equation byui
(s)* and the complex conju-

gate of the second byui
(r ) , subtract the two equations, inte

grate over a volume of the beam betweenx5x1 and x
5x2, and finally use the divergence theorem to find

E
S
@ui

(s)* Ti j
(r )2ui

(r )Ti j
(s)* #n̂ jdS50, ~A3!

where the integral is over the surface bounding the volum
consisting of the sides of the beam betweenx1 andx2, and
the sections atx1 andx2. The integrations over the sides o
the beam are zero by the stress-free boundary conditions
the integration over the sections introduce the explicitx de-
pendenceu(r )5f(y,z)eikrx andT(r )5T̄(r )(y,z)eikrx with kr
the wave number of moder at frequencyv, etc. Then Eq.
~A3! reduces to

~12ei (kr2ks)(x12x2)!

3E E @f i
(s)* T̄ix

(r )2f i
(r )T̄ix

(s)* #dydz50 ~A4!

and the integral is independent ofx. Unless the prefactor is
zero, this shows us that the integral over the section mus
zero, and so

E E @ui
(s)* Tix

(r )2ui
(r )Tix

(s)* #dydz50, krÞks . ~A5!

This is one version of the reciprocity relations.
For our purposes, it is more convenient to express

condition for the reciprocity integral to be zero in terms
the group velocity rather than the wave number. To do so,
need to consider the dispersion curves. The condition for
reciprocity integral to be nonzero,kr5ks for modesr ,s at
the same frequencyv, actually impliesr ands are thesame
mode, so that in factvg

(r )5vg
(s) . The only other possibility is

that r and s are modes with dispersion curves that cross
frequencyv, k5kr5ks . However, only modes of differen
y,z parity signatures can cross, and then the integration o
the section for these different modes in Eq.~A5! is again
zero. Thus, we can rewrite the reciprocity relation as
2-16
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E E @ui
(s)* Tix

(r )2ui
(r )Tix

(s)* #dydz50, vg
(r )Þvg

(s) .

~A6!

If r and s are the same mode, the integral is related to
energy flux and hence to the group velocity@see Eq.~19!#,

E E dydz~ui
(r )* Ti j

(r )2ui
(r )Ti j

(r )* !52irvvg
(r ) . ~A7!

We now use Eqs.~A6! and~A7! to evaluate the contribu
tions to Eq.~A1! from the integrations over the sections
x8→6`.

Let us first considerx8→`. According to Eq.~18!, thex8
dependence of the Green’s-function pairG,G consist of
modesus(x8)* with vg

(s),0, since herex8.x for any finite
x. On the other hand, the field pairu,T are made up of the
incident wave and waves scattered from the roughnes
finite x, and so consist of modesur(x8) with vg

(r ).0. The
integral in Eq.~A1! over the section atx8→` is therefore
the sum of terms involving**@ui

(s)* Tix
(r )2ur

(r )Tix
(s)* # dydz

with vg
(r ) andvg

(s) of opposite sign. All these terms are ze
according to Eq.~A6!, and so there is no contribution from
the section atx8→`.

Similar arguments apply to the section atx8→2`. The
Green’s-function is made up of modes withvg.0. The scat-
tered component of the fieldu consists of modes withvg
,0, and there is no contribution to the integral over t
section from these modes. On the other hand, the incid
wave uin is modeum with vg

(m).0, and there is the single
term withvg

(n)5vg
(m) surviving in the sum over modes in th

Green’s-function. Using Eq.~A7! the integral just gives
uq

(m)(x). Writing u5uin1usc then leads to Eq.~14! in the
text.

APPENDIX B: ENERGY FLUX FOR FLEXURAL MODES

The classical thin plate approximation of settingTzi50 is
not sufficient to calculate the energy flux of the flexu
modes using the integral~72!. In this appendix, we evaluat
the correct expression for the energy flux by two differe
methods, first using the extended thin-plate theory
Timoshenko22 ~see also Graff!,26 and then using a method i
terms of the energy of plate deformations19 that avoids these
difficulties.

In the extended thin-plate approximation of Timoshen
the z dependence of the in-plane displacements is still
proximated as linear

ux~x,y,z!.zcx~x,y!, ~B1!

uy~x,y,z!.zcy~x,y!. ~B2!

However, thex,y dependence is no longer assumed to
given by the gradient of the mean vertical displacem
ūz(x,y), but by the more general expression

c52“'ūz1“'S1“'3~z ẑ!, ~B3!
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introducing the scalar potentialS(x,y) and vector potential
z(x,y) defining the corrections to the in-plane strain a
rotation. Here“'5(]x ,]y) is the horizontal gradient. In ad
dition, the vertically averaged stressTzx is taken to be

Tzx.k2
E

2~11s!
~]xūz1]zux! ~B4!

~with a similar expression forTzy given by replacing the
subscriptx with y everywhere!. Here the ‘‘shear correction
factor’’ k, a number of order unity, is introduced to take in
account the deviations of the in-plane displacements fr
the assumed linear dependence onz.22 In the usual thin-plate
approximation,Tzi are set to zero andc52“'w so that
(ux ,uy)52z“'w.

With the Timoshenko approximations, the equations
motion for the three components of displacement are n
investigated.

The equations of motion for the horizontal displaceme
lead to an equation relatingc to ūz ~Ref. 26!

D

2
$~12s!¹2c1~11s!“'“'•c%2k2md~c1“'ūz!50

~B5!

~rememberD5Ed3/12(12s2), with E the Young’s modu-
lus andm the shear modulus!. The inertial terms] t

2c turn out
to be negligible in this equation. Using Eq.~B3!, Eq. ~B5!
becomes

D“'¹'
2 ~S2w!2k2md“'S1

D

2
~12s!“'

3~¹'
2 z ẑ!2k2md“'3~z ẑ!50. ~B6!

Taking the vertical curl of Eq.~B6! gives

D

2
~12s!¹'

2 V2k2md V50, ~B7!

with V5 ẑ•“'3c52¹'
2 z the rotation. For a wave distur

banceeikx, this gives an exponential dependence ony, e6ly

with

l2.
2k2md

D~12s!
;d22. ~B8!

Since l21;d!W, the rotation will be large only over a
boundary layer region with width of orderd near the edges
y56W/2, where the solution takes the form

V~x,y.6W/2!.V~6W/2!eikxe2luy7W/2u. ~B9!

The vector potentialz has a similar solution, so that las
two terms in Eq.~B6! cancel. This leaves for the scalar p
tential S,

“'@D¹'
2 ~S2ūz!2k2mdS#50, ~B10!

which immediately gives

D¹'
2 S2k2mdS5D¹'

2 ūz . ~B11!
2-17
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~We are only interested in“'S and so do not need to kee
track of the arbitrary gradient-free function that could
added to this equation.!

The equation of motion for the vertical displacement
~Ref. 26!

k2md¹'
2 S52rdv2ūz . ~B12!

Together Eqs.~B11! and ~B12! give

rdv2S ūz2
D

k2md
¹'

2 ūzD 5D¹'
4 ūz . ~B13!

This is the usual fourth-order wave equation, with a sm
correction term of order (d/W)2 ~the second term in the
brackets on the left-hand side!. Note that solutions to this
equation vary on the long scale of orderk21 or W, and not
the small scalel21;d, so that to a good approximation27

we have

rdv2ūz5D¹'
4 ūz , ~B14a!

S52
D

k2md
¹'

2 ūz . ~B14b!

The first equation is now the standard fourth-order wa
equation. The second equation forS shows it to be small
compared withūz by of order (d/W)2.

The boundary conditions at the edges are that all stre
are zero so that, in particular, aty56W/2,

E dzTzy5k2md~]yūz1cy!50. ~B15!

Substituting Eq.~B3! into this gives

]yS2]xz50. ~B16a!

Equation~B16a! together with Eq.~B14b! tells us the size of
the z correction, which aty56W/2 takes the value

z~x,y56W/2!52
D

k2md

1

ik
~]y¹'

2 ūz!uy56W/2 .

~B17!

This expression can be simplified using the boundary co
tion Tyy50 aty56W/2, which from Eq.~75! and Eqs.~78!
and ~79! gives aty56W/2,

]y
2ūz52s]x

2ūz5sk2ūz , ~B18!

so that

z~x,y56W/2!52
ikD~12s!

k2md
~]yūz!uy56W/2 .

~B19!

The potentialz is only large in the boundary layers near t
edges where it takes the form
14430
ll

e

es

i-

z~x,y.6W/2!

52
ikD~12s!

k2md
~]yūz!uy56W/2e

2luy7W/2u.

~B20!

Thus, finally we have expressions for the horizontal d
placement field~B3! and~B1! together with Eqs.~B14b! and
~B20! definingS andz, and Eq.~B4!. These can be used t
calculate the additional contribution to the energy flux co
ing from theTzx term in Eq.~72!. @The corrections toux and
uy derived here do not change the contributions from the fi
two terms in Eq.~72! to the order we require, since thes
terms are already third order in the small parameterd/W.#

We therefore need to evaluate

E E Tzxuz* dydz.k2mdE dy~]xS1]yz!ūz* .

~B21!

Both terms in the integral give contributions at the sa
order. The first term, coming from the correction to the
plane strain~B14b!, is

k2mdE dy~]xS! ūz* 52DE ~]x¹'
2 ūz!ūz* dy. ~B22!

The second term in the integrand is only large in the bou
ary layer region near the edges, and from Eq.~B19! evaluates
to the edge contributions

k2mdE dy~]yz!ūz* 52 ikD~12s!@~]yūz!ūz* #uy52W/2
y5W/2 .

~B23!

Combining these expressions for Eq.~B21! with Eq. ~77!
together with Eqs.~78! and ~79! yields the final expression

P.
vkD

2
ReH E dy@2k2ūzūz* 1~12s!~]yūz!~]yūz!*

2~11s!~]y
2ūz!ūz* #1@~12s!~]yūz!ūz* #y52W/2

y5W/2 J ,

~B24!

which is identical to Eq.~81!. An alternative approach to
calculate the energy flux is to use the expression for
energy of distortions of the plate evaluated using the lowe
order expressions Eqs.~74!, ~75! and ~78!, ~79!# ~Ref. 19!

F5
1

2
DE E F ~¹'

2 ūz!
212~12s!

3H S ]2ūz

]x]y
D 2

2
]2ūz

]x2

]2ūz

]y2 J Gdxdy. ~B25!

It turns out that the higher-order corrections discussed ab
are not needed in this expression, and so we can derive
energy flux without these difficulties. The functional deriv
tive of F with respect toūz yields the vertical force per uni
2-18
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area in the interior of the plate, which can be used to de
the fourth-order wave equation, as well as expressions for
energy flux into the plate across the boundaries. The la
expressions give us the result for the energy flux along
beam

P5
1

2
ReH 2 ivF E Mxux* 1Vūz* dy

1~Fcūz* uy5W/21Fcūz* uy52W/2!G J , ~B26!

where

V52D]x@]x
2ūz1~22s!]y

2ūz# ~B27!

is the effective vertical force that couples to the vertical d
placementūz ,

Mx52D~]x
2ūz1s]y

2ūz! ~B28!
M

s,

. B

I.

flu

14430
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is the torque that couples to the angular displacementux

5]ūz /]x, and

Fc~y56W/2!562D~12s!]xy
2 ūzuy56W/2 ~B29!

is a vertical force localized at the edges of the plate.
Substituting Eqs.~B27!–~B29! into Eq. ~B26! gives

P5
1

2
ReH ~ ivD !

2 F E dy~]x
2ūz1s]y

2ūz!~2]xūz!*

1E dy@]x
3ūz1~22s!]x]y

2ūz#ūz* 22~12s!

3~]x]yūz!ūz* Uy5W/212~12s!~]x]yūz!ūz* Uy52W/2G J .

~B30!

Evaluating]x5 ik, and using integration by parts, we aga
get Eq.~81!.
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