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Minimal model of the phonon-phason dynamics in icosahedral quasicrystals and its application
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Different existing elastodynamical models of icosahedral quasicrystals are analyzed. The simplest minimal
model of the phonon-phason dynamics is formulated. Physical restrictions and possible applications of the
proposed model are considered. Several generalizations of the minimal model are discussed. It is shown that
the phonon-phason coupling induces a resonant absorption peak of low-frequency sound waves in the tem-
perature region corresponding to a thermal activation of phason excitations. The maximum value of the
logarithmic decrement of the sound wave damping depends on the propagation direction and the wave polar-
ization. The anisotropy is proportional to the square of the phonon-phason coupling céhsténir estima-
tion shows that the effect can be resolved experimentally if the relative valle @ not negligible with
respect to four other elastic constants of the icosahedral quasicrystal. Namely, the difference should not exceed
two orders of magnitude.
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I. INTRODUCTION IIl. PHASON-PHONON DYNAMICS MODELS
AND THEIR ANALYSIS

Quasicrystal$QC's) discovered in 1984Ref. 1) combine In their pioneering work Lubensky and co-workers have
aperiodic long-range positional order with noncrystallo-proposed a system of elastodynamical equations describing
graphic rotational symmetry. The diffractograms of thesethe behavior of an icosahedral GJC:
materials can be indexed with the help of linear combina-

tions of a finite numbeN of basis vectord; in reciprocal dp+V-g=0,

space. This fact makes possible the expansion of the quasic-

rystal density function in Fourier series. The numibéiis oF oF
always greater than the dimension of the physical space ‘9t9i_Vj(7lijk|Vk9|)=—5—ui—pVi o

which results in specific symmetry properties responsible for

the physical difference between quasicrystals and crystals. In SF

particular, QC’s have an additional Goldstone phason degree Ui+ Ty —v;=0,
. . . . 5Ui

of freedomw, which is absent in a crystalline state. The

inhomogeneous variation @f corresponds to a relative shift

of incommensurate density waves which form Q@:’Ehe Jow;+T fz

inhomogeneous variation off gives a contribution to the b ow;

elastic energy of QC'3 As a result, the elastic properties of

QC'’s, and especially their dynamical elastic properties, hav

0, 1)

é(vherep is the densityg is the momentum densityy;;, is
éhe ordinary viscosity tensoF, is the ratio of the total QC
ergy to its volumel", andTI',, are the dissipative kinetic
coefficients, ana; is the velocity of the point with respect to
%he coordinate system. The first Eq. of systéinis a mass

" valent. but oth tually i tibl Isconservation law. The second one has the form of a modified
are guite equivalent, but others are mutually Incompatible. 5 iar_stokes equation. Its right part is an elastic force vec-

our opinion, the updated experimental results and theoreticg), acting upon a unit volume. This vector consists of two
knowledge in the physics of QC's permit now to formulate h4rts  the first of which is induced by a medium strain and
the simplest minimal model of the phonon-phason dynamicsye second one is caused by a density change due to a mass
and to discuss its properties and its limitations together witheyrrent. The left part of the second equation also includes
the modifications of the minimal model for different applica- two terms. The first one stands for a unit volume acceleration
tions. This task constitutes the aim of the present work. Theind the second one corresponds to the viscosity friction. The
paper is organized as follows. In Sec. Il we discuss the exthird and the fourth equations describe relaxation phenomena
isting models of the phonon-phason dynamics and formulatéh QC's.

the minimal model. Section Il is devoted to the limitations  The solution of systeril) show$° that the sound veloci-
and some applications of the proposed model. Section I\ies are isotropic but their damping reflects the icosahedral
considers the phonon-phason coupling mechanism of theymmetry of the structure. The anisotropic part of the vis-
resonant absorption of sound waves. cous damping is probably smaller in magnitude by a factor

phonon-phason dynamics in QC’s have been proposed. Ea
model is presented as a system of coupled differential equ
tions. Some of the equations belonging to different model
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j ' ] FeI:thonor{huu)""thasor(KlaK2)+Fcoup(K3): (2

730°C 1 where\ andu are the Lame coefficient&; andK, are the
1 phason elastic constants, aid, stands for the phonon-
phason coupling term. According to Refs. 10 and 11 the
componentsP;; of the ordinary stress tensor can be calcu-
—800°C 1 lated as the derivatives of the elastic enefgywith respect
to the corresponding components of the ordinary strain ten-
sorEj; . Consequently, the componerg have a linear re-
lation with the component&;; and d;w; of the ordinary
strain and the phason one, respectively. Hgvg is defined
as the derivative of thgth component of the phason degree
FIG. 1. Stress-strain dependences of icosahedrglfath;Mng s Of freedomw with respect to théth component of the radius
sample stressed along twofold directif@10, 0/0, 0/3 at different ~ vector. The tensoH;; of the phason stress is introduced
temperaturegRef. 8. analogously to the classical tens@y; : its components are
defined as the derivatives of ener@) with respect to the
of 10'° than the isotropic part. The phason relaxation time incorresponding strain componerdsv; . The components;;
a sample with a size 1 cm is of the order of 3—300000 yr. are also linearly related to thg;; and d;w; tensors. Two
Actually the result® mean that the sound attenuation an-interdependent partial differential equations of motion of a
isotropy and the phason jumps should be experimentallynedium were proposed. The first of them has the form:
nonobservable in these materials. As far as the authors know,
there exists no direct experimental work reporting the obser-
vation of the sound attenuation anisotropy in icosahedral
QC's. But to date the phason motion in quasicrystals is wel
knowrf and constitutes a contradiction with the resfiftén
attempt to modify system1) has been made.ln the
approach;® The phonon relaxation rate gives the diffusion

760°C
———

4 6 8
E/%

diPy +fi=pu, ()

l/vherefi is the density of bulk forceg; is the mass density,

andu; is the acceleration of the point. As is well known, this
equation, which is analogous to the second Newton’s law, is
constant of defects. The modelistinguishes the kinetic con- @S0 valid in the crystalline case. The second equation ex-
stant for the phonor, and that for the defecE, since presses the vector of the phason acceleration and has a form
phonons and phasons are relaxed much more quickly tharimiiar to that of Eq.(3):
the defects. Consequently an additional defect relaxation
process is considered. d;H;; +0i=pW;. (4)

As has been shown in several recent experimental works
(see, for example, Ref)8the elastic behavior of QC’s at low Hereg; is the density of phason bulk forces. Evidently, Eq.
strain is similar to that of ordinary crystals. Even in the re-(4) is analogous to the second Newton’s law for the so-called
gion of high temperatures the low strain is always elgsé@ generalized phason force. Equatig@sand(4) were derived
Fig. 1. Plastic deformation starts at some critical nonzerousing the consideration of the QC motion in the six-
stress value. Similarly to the case of ordinary metallic sysdimensional(6D) space, where the description of QC'’s is
tems, the critical stress value decreases with the temperatusémilar to that of ordinary crystals in the 3D space. It ex-
increase. plains completely “crystalline” and resembling forms of

In our opinion the third equation of systefh) describing  Egs.(3) and (4).
the phonon relaxation is principally applicable only to plastic  We start the analysis of this model on the note that it is
solids or to liquid systems. This equation states that in theossible to write an equation of motion for a generalized
stressed QC's its strain relaxes with the velocity proportionatlegree of freedom in the form of the second Newton’s law
to its amplitude at any strain value. It means that purelyonly if there exists a corresponding conservation law. How-
elastic stress in QC’s is impossible even at low phonon anever, the phason mode in QC's corresponds to atomic jumps
phason displacements andw corresponding to linear dif- or diffusion, no conservation law corresponds to the diffu-
ferential equations. Actually the third equation in systédin  sion of atoms. Moreover, the direct solution of E¢®. and
contradicts the well-known fact that the dissipative function(4) assuming that both bulk phonon and phason forces are
of an elastic solid depends only on the spatial derivatives oéqual to zero predicts six soundlike branches with the disper-
the displacement rat&d;u; and not on the displacement sion law w>q. This result is inconsistent with the experi-
rates du; themselves. Consequently in an elastic solid, mental datasee, for example, Ref. 12n icosahedral QC’s
acoustic-phonon relaxation is mainly caused by the viscosityhich show only three branches of such a type. Nevertheless
phenomenon described by the viscosity tenggy; . the theoretical idea which admits the propagation of sound-

Another approach to the elastodynamics of QC’s has beelike phason modes in icosahedral QC'’s is used up to date. In
proposed in Ref. 10 and developed in Ref. 11 In this modeRef. 13 the authors try to calculate on this basis a low-
the term of elastic energy corresponding to the density variatemperature heat capacity of icosahedral QC’s. The explicit
tion is neglected and the elastic energy is presented in thierm of energy(2) is used, the density of external forces is
following form: supposed to be zero, and the system of equati®nand (4)
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is solved. The number of resulting soundlike branches isublattice with respect to another. Neglecting the pinning ef-

found to be equal to six and contradicts again all availabldect, one can consider the velocity of phason modes in IIC’s.

experimental data. Thus, soundlike phason modes in IIC’s are really observable.
Reference 13 together with other theoretical works is al'he simplest form of the equation of phason motion in IIC’s

response to the abundant data accumulated due to recent éx-Presented in the following form:

perimental interest in low-temperature properties of QC's.

One of the striking results concerning the heat-capacity ﬂjHij:Peffﬁi, (5)

Cp(T) measurements is reported in Ref. 14 for

Algg MngPdy, g single crystals grown by the Chokhralsky wherep,; is the effective(or relative density which is as-
method and for AlRe;Pdy 4 high-quality monophase sociated with the relative motion of sublattices, the phason
QC's. For the icosahedral 4 MngPdy, ¢, the cubic(as a friction, phason bulk forces, and the phason pinning being
function of temperatujecontribution to the low-temperature neglected. In contrast with the case of IIC the phason degrees
heat capacityCy(T) was found to be much greatemearly  of freedom in QC's do not correspond, in principle, to such
the doubl¢ than the expected acoustic-phonon contributionking of sliding. This fact implies the different forms of the
calculated using low-temperature transverse and Iongitudin@quaﬂon of phason motion in QC’s and in IIC’s. To complete
sound waves data. The same result was obtained for the sy§re analysis let us note that though the existing models of the
tem AlPdRe It iS interesting to note that the Vibrational CO”'QC e|astodynamics explain Severa' features Of the phason_
tribution to heat capacity calculated using directly the experiphonon motion, none of them is completely consistent with
mental density functiom(E) of vibrational states fits quite the experimental data.
well the experimental dependence @f(T).*® The result is In the following section we formulate a minimal model
impOSSible to obtain by the calculation in the framework Ofwhmh tries to describe the basic features of the phason_
the Debye theory of lattice heat capacity based on the veloghonon elastodynamics and can be generalized to account
ity of sound waves. for more fine effects. In the quasicrystalline case, the attenu-
In order to explain this discrepancy, the notion of so-ation of phason modes is essential in the dynamical theory.
called nonacoustic localized states in QC's is usually intro-The simplest way to introduce this attenuation is to assume
duced in literaturgsee, for example, Ref. 15For further that the phason bulk forceg—D\)v- whereD is the fric-
analysis one should clarify the relation between these states | ~oefficient. According to the prlévious analysis, the pha-
a_nd the ph"?‘s_o_” dynamics. For that goa_l two qualitativelyyoy o omentum in QC'’s is not conservétiere exis’,t only
different definitions of a phason can be distiguished. If pha—three soundlike branchesnplying per=0. In this case the

sonls ar? Cg”.s'de“?d to llae coltﬁectlve a?“t’m'c rg_cm?elxll obtained equation of the phason motion in QC’s becomes
noniocallzea In reciproca spacthere exists no Irect rela- .equivalent to the fourth equation of systém, if the relation
tion of the localized states to the phason dynamics. Th'%etween material constants I, = 1/D. In other words, in
approach is adopted in all the models of the phonon-phasofl, o, model and the approach developed in Refs. 4 and 5

dynamics analyzed in the present work. According to thethe phason modes in QC’s are considered as overdamped.

alternative definition, phasons are understood as local atomigy " inimal model of the phonon-phason elastodynamics in
Jumps between several nelghb9r|ng positions separatgd_byi osahedral QC’s can be then presented as a system of the
distance smaller than the atomic diameter and by a minimg(, following equations:

potential barrier which makes possible atomic tunneling be-
tween these positions even at very low temperature. Then . .
corresponding atomic jumps can give a contribution to the d;Pij=pui, J;H;;=Dw;, (6)
low-temperature heat capacity as is the case in glassy

systems® Maybe it is more convenient to call these stateswhere Pi;=dF/JEj; is the ordinary(phonorn stress tensor
“localized nonphonon” ones because the atoms move in thignd H;; = dF/d(dw; /x;) is a nonsymmetrical tensor of the
case in the potential that is evidently nonharmonic. phason stress, the energybeing presented by E@2). Ac-

The resumming conclusion of this comparison is that theually, the minimal model6) can be considered as a com-
models of QC elastodynamics based on the continuous me@romise between the approaches of Refs. 4 and 5 and Refs.
dium approximatiofi®%*! cannot be used to calculate the 10 and 11, or as a simplification of the model presented in
low-temperature heat capacity of QC's. Nonpropagating colRef. 20. Diffusion processes not related to the collective pha-
lective phason modes cannot contribute to the density of vison mode exitations are not considered in the proposed mini-
brational state$’ It concerns also the simplest minimal mal model.
model of the phonon-phason dynamics developed in this The solutions of the resulting system of linear differential
work. However there exists a class of incommensurate struequations can be found in the form of phonon-phason waves.
tures where the collective phason modes are really similar tdhese waves are characterized by a 6D polarization vékttor
sound one$'® and the elstodynamic model developed inand by an ordinary 3D wave vectqr If the constant of the
Refs. 10 and 11 can be applied. These substances are thkonon-phason coupling is small, then the waves with pre-
incommensurate intergrowth compoun@$C). IIC needs dominately phonon polarization and the waves with the pre-
two or more mutually incommensurate sublattices to characdominately phason one can be distinguished. The minimal
terize its structure. In IIC the above-mentioned phason momodel of the phason-phonon elastodynamics is reduced to
mentum conservation law corresponds to the sliding of onghe following six equations:
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TABLE |. Effective elastic constant, 6.¢, andl as a function of the wave vectordirection and the
sound wave polarization.

q u w K | Oet N
q(1,7,0)/N u(1,7,0)/N w(7,—1,0)/N Ki—4/3K, — 2K, —6¢ Jr+2
u(0,0,1) w(0,0,1) Ki+2/3K, 0 2¢) 1
u(—7,1,0/N w(1,7,0)/N Ky +2/3K, 0 2§ Jr+2
a({7%,1,0)/N u(72,1,0)/N w(1,72,0/N Kq+ 413K, 2/3K4 10/%,  \37+3
u(0,0-1) w(0,0,1) Ki—2/3K, 435  —14/% 1
u(—1,72,0/N  w(—7%1,0//N Ki—2/3K, 43Ky —14/%; 37+3
q(1,0,0 u(1,0,0) w(1,0,0 K,—1/3K, Ks 0 1
u(0,1,0) w(0,1,0) Ki+t(r—1RB3)K, 'Ky 271§ 1
u(0,0-1) w(0,0,1) Ki+(2/3- 1)K, 7Kg —27¢ 1

6 corresponding solutions of syste(® permits to determine

2 [Cyj(@Uj]=a(k)Uy, (7)  the two-component zero vectofu,w) of the above-

=1 mentioned matrix. The ratio of the zero-vector components is
where Cy(q) is the well-known phonon-phason dynamical equal to the_rati'o of the phonon and the ph_ason comporjents
matrix (DM), U, is the 6D polarization consisting of 3D of the polarlzatlo_n vectoU_ (sepond and third columns in
phonon polarizatiom and 3D phason polarization. In Eq. ~ 12ble |, respectively Taking into account the phonon-
(7), for k=1,2,3 the coefficient(k) is equal topw? and for ~ Phason coupling leads to the phonon frequengy(q),
k=4,5,6 its value iSD w, wherei =/~ 1. The solutions of which has both real and Imaginary parts. The Imaginary part
system(7) are the dispersion relations(q) and correspond- determines the phonon damping coefficiéatt phonon life-

ing polarizations. To analyze the solutions of Ef).one can  iMe) in the minimal model. The phason frequenoy,{q)

use the fact that a linear system with a zero right-hand sidia‘s purely i.maginary, t_he_ ph.asons in the minimal model being
characterized by their lifetime only.

has a solution if its determinant is equal to zero. But the The minimal model of the oh h lastod .
analytical solution of the presented system in its genera| € minimal modet of the phonon-phason elastodynamics
as several important physical consequences.

form is impossible because of the enormous number of term (1) Both the effective phonon-phason coupling and the

in the resulting equation. So we will consider analytica”y%ﬁective phason elastic constant are anisotropic and they

only three particular cases corresponding to the wave vectoh . hedral v, A fichb hes d d
which are parallel to fivefold, threefold, and twofold symme- ave an icosanedral Symmetlry. ACOUSHC brancnes decrease In

try axes, respectively. For these directions the determinant (glfferent ways in different crystallographlc directions. .
matrix M can be presented as a product of three determi- (2) The_doubly d_egenerated_ acoustlc_wave propagating
nants, which have the following form: along the fivefold axis does not interact with the correspond-

ing phason mode.

o 192 (3) Taking into account the phonon-phason interaction
) =0 8 breaks the transverse phonon degeneracy along the twofold
2 2 ; ()
Iq Kg-—iDw axis.

Here it should be stressed that the observation of the

wherev, |, andK are the effective constants of phonon eIas'abo e-mentioned effects corresponding to the deviation from
ticity, phonon-phason coupling, and phason elasticity. Pha: v : ponding

son frictionD and densityp are the same as in Eq®). For an |fsotrop|c symmﬁtry becaomﬁs pﬁss'blef '.f t%idphasons are
the above-mentioned high-symmetry directions one can caE.OI rozen, or in other words the phason frictibndoes not
the wave longitudinafor transversalif the phonon parti of IVErge.
its polarization vector is parallelor perpendicular to its
wave vectorg. For the longitudinal waves the coefficient
in Eq. (8) should be changed to+2u and for the transverse
modesv= u. Other coefficients are presented in Table | as a
function of the wave-vector directioffirst column and the (1) The first limitation is related to a discrete atomic ape-
wave polarization. riodic structure of QC'’s. In the case of the continuous isotro-
Vanishing of the determinant of systei®) defines simul-  pic medium as well as in the crystalline case one can classify
taneously two dispersion relations(q) for the waves the normal modes according to their frequencies and wave vec-
phonon and phason types. Without taking into account theors. In the quasicrystalline case it is possible only at the
phonon-phason coupling, the first relation has the formbeginning of the acoustic branches in the vicinity of the cen-
pw?=vqg? and the second is given hy=—iKqg?D. For ters of Brillouin zones. For a mode with an essentially big
an infinitely large value of the phason friction coefficient thefrequency one cannot assign an exact value of the wave vec-
phasons become frozen and their relaxation time divergesor. The corresponding atomic motion presents a superposi-
The substitution in the matrix of systefB) of one of the tion of waves with close wave vectors. Consequently, the

IIl. LIMITATIONS AND FURTHER DEVELOPMENT
OF THE MINIMAL MODEL
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finite width of the acoustic dispersion curves is defined not (4) Another important extention of the minimal model is
only by the finite lifetime of phonongby the imaginary part obtained by taking into account in the DM) of the fourth-
of wyna(Q)], but also by the discrete atomic aperiodic struc-(or highe) degree terms in the wave vector. Even in the
ture of QC’s. It is impossible to take this effect into accountsimplest model of a linear atomic chain with only one type of
in the frame of the model developed in the continuous meatoms, the acoustic dispersion branch is linear only in the
dium approximation. Therefore the conclusions of the mini-vicinity of nodes in reciprocal space. It is related to the way
mal model can be applied only for the propagation of athe DM depends on the wave vector. In Ref. 21 it is shown
sound wave with a wavelength essentially greater than ththat the terms of fourth degree distinguish already an icosa-
interatomic distances. hedral QC from an isotropic medium. For QC’s the phonon

(2) Let us consider the second limitation. As it is well block in the DM has one additional independent coefficient
knowr? the propagation of the sound waves is accompaniesvith respect to the isotropic case. It means that even in the
by the appearance of areas of a local-density change. So thawv-temperature region where the phasons are frozen, the
local temperature of these areas differs from the averagecoustic-phonon dispersions in an icosahedral QC are isotro-
temperature of a QC. Therefore to analyze the acoustic wavgic only in the long-wavelength limit. The fourth-degree
propagation in addition to the elastic stress we have to allovterms in the DM lead to nine independent coefficients,
for the thermal one caused by the temperature variation. Theamely, three phonon-phonon coefficients, three phason-
above-mentioned mechanism leads to the medium heatinghonon coefficients, and three phason-phason ones. To study
and to the sound wave attenuation. For the cases of an icostite propagation of acoustic waves with long wave vectors,
hedral symmetry and of an isotropic medium, this mechathe terms of higher order in the wave vector should be taken
nism works only for longitudinal wave®. It can be taken into account in the phonon-phonon block in the DM. Modi-
into account by the substitution of fying the minimal model in such a way we obtain several

changes in determinafi8). The termu’q*+ 8.¢q* is added
to the element in the first row and in the first column to

)\=)\T+L)\T2 (9) account for the TA wave propagation, whereas the term
14 1xq (N +2u")g*+ 8.1q” is added to the same element in the LA
®C wave case. The constanis and w' correspond to the
E

fourth-degree isotropic terms; the last column of Table | rep-

into the solution of motion equations. In formu®@) y is the  resents the anisotropic valug; in the units of the second-
coefficient of thermal conductivityCg is the specific heat of order elasticity constanf) . Then in the approximation of
a unit volume at constant straihg and A are elastic coef- frozen phasondi.e., in the low-temperature regipnthe
ficients at constant entropy and at constant temperature, réecond-order anisotropy of all the acoustic branches is deter-
spectively. mined by only one material constafjt. Note also that when

(3) Another phenomenon that can be taken into account ithe second-order terms are taken into account the degeneracy
the framework of the approach that we propose is a pinnin@f the TA modes propagating along twofold axes is lifted,
effect, extensively studied experimentally and well underthough the modes propagating along threefold and fivefold
stood for incommensurate phases. For example, in the ll@xes remain degenerate. The corresponding frequency square
mentioned in the previous analysis this effect takes place if &plitting  w7(q)—w5(q) can be expressed as ¢2/
relative shift of the sublattices leads to a restoring elastic%ZT)Suq“/p. Table | shows that the maximal splitting in-
force. The resulting elastic energy of this system depends netuced by this effect is observed for the LA modes with the
only on the vectorw gradients but also on the vecter  wave vectors parallel to threefold and fivefold axes. Its value
value. Usually the pinning effect is considered to be a conis then given by (10/9 6)&,q*/p.
sequence of structural imperfections in an incommensurate
system. For vanishing the frequency of the phason mode IV. RESONANT ANISOTROPIC ABSORPTION
tends not to zero but to a finite nonzero value determined by OF LOW-FREQUENCY ACOUSTIC WAVES
the strength of the pinning effect. After a phase transition
which makes initially incommensurate sublattices commen- The minimal model presented in the preceding section
surate, the phason mode becomes a usual optical vibratioR€rmits to discuss quantitatively the peculiarities of acoustic-
and the elastic constant of the pinning effect determines itehonon dispersion in the long-wavelength limit. The sound
frequency in the first Brullouin-zone center. Along the sameattenuation mechanism caused by local temperature devia-
line the pinning effect in QC’s can be easily taken into ac-tions[see point2)] in the preceding sectiorapplies for LA
count in our model. It can be done by a slight modification ofmodes only. Therefore we start here from the analysis of TA
the DM phason block7). The same small constaf corre- ~ modes. To calculate the anisotropy of the functigq(q) it
sponding to the pinning effect strength should be added to aif Necessary to take into account the effects associated with
three diagonal elements of the phason block. Of course, thide isotropic relaxation of acoustic phonons. For that, the
terms that are independent of the wave vector appear in tHé'st equation of systent) should be completed by a term
DM when the vectow value is taken into account in the due to usual viscosity. This term is determined by the tensor
elastic energy of the system. The resulting determiri@nt  7ijki » Which is isotropic in the case of icosahedral symmetry.
changes also very slightly: the constditis added to the The viscosity gives a contribution to the tota_l stress value
element in the second row and in the second column. proportional to the velocity of strailA Pj; = 7;;, Ex . Then,
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after evident transformations, the form of determin@tis  between the TA wave propagating along a fivefold axis
modified. Namely, for TA waves the termi - wq? is added  (12/K=0) and the TA wave propagating along a threefold
to the element in the first row and in the first column, axis (12/K=16K3/[9(K;—2/3K,)], see Table )l is about
whereas for LA waves the termillwg? is added to the 19%. If K; is two orders of magnitude smaller than other
same element. Herg" and 7!/ are two independent coeffi- constants then the difference of velocities is not more than
cients of the viscosity tensor. Though the usual viscosity i9.01%. For the cases with intermediate valuesDoft is
isotropic in the case of icosahedral symmetry, the phasonecessary to estimate the isotropic viscosity vaite The
viscosity which gives a contribution of the same type but inratio g%/ (pw/ )~ mwn*/u can be considered in the pro-
the element2,2) is anisotropi¢® Thus in the following con-  posed model as a logarithmic decrement of free degay
sideration, we analyze the solutien,,,(q) of the equation  Internal frictionQ 1 is related toy asy/#. The value of the
) 5 . 5 internal friction measured far from the resonance regfon
MmO~ = pot =l ©q Iq —0 (10) the frequency 2000 Hz and the temperature of about 550 K
lg? Kg?—iDw| was reported to beQ 1=1.3x10"%.2° This yields 7"
=670 Ns/nf. From Eq. (11) one can see thatg?

where the effective coefficients andl depend on the wave- <4pul(77-)2. Therefore the given estimation gf value is

vector (q) direction and on the polarization according to valid only if g<10% nm™. For smaller wavelength the de-

Table 1. .Phason .fI’ICtIOI’l coefficiend is considered t.o.be a pendence of viscosity upon the wavelength should be taken
decreasing function of temperature. All other coefficients in;

. o nto account.
Eq. (10) are constants. Let us first analyze the limit cases. If

the oh : it tends to infinity(and the t ¢ Usually the experimental data on the internal friction in a
e phason viscositip tends to infinity(and the temperature sample are presented as a dependenc® of(T). In the
goes to absolute zeyothen

proposed model it is worth presenting it as a function

Q~(In[D]). This choice is justified on the one hand by the
(11  fact that the most temperature-dependent quantity in the

model is the phason viscosiy, and on the other hand by

The anisotropy is evidently absent both in the real and théhe variation ofD in a wide range. The logarithmic scale is
imaginary part ofw,n(q). In the other limit case, the pha- also justified by se_vera_l physical conS|dera_1t|ons. Indeed, to
son relaxation time is negligible @=0. It results in analyze the relaxation time of thermally activated processes,

the Arrhenius relation is often used :

_—in'g*+J4pug®~ (7 )*q"*
U)phn— 2p .

—in g’ +Vapa(u—17K)— (7))

Wnphn= . (12) H
phn 2p Trel™ Tinf€X kB_T )

In this case the anisotropy of the damping coefficient is com- ] S ) .
pletely absent and the sound velocity in the long-wavelengti'hereiy is the characteristic time constaht,is the activa-

limit is expressed as tion enthalpy, andg is Boltzmann's constant. For an esti-
mation one can assume that the phason relaxation time sat-
w—1%IK isfies the similar equation, then the temperature is
V= T- 13 proportional to InD) % Several estimations based on the

proposed model are given in Figs. 2 and 3. In all the cases

Equations(12) and(13) are valid provided>—0 at a finite  the phason-phonon coupling constant was taken tdbe
nonzero value of.. For TA modes of different symmetry, the ~0.1K;. We discuss first the correspondence between these
value u—12/K plays the role of an effective shear modulus. figures and the available experimental data, and then propose

To estimate the numerical values of corresponding quana series of experiments which can clarify the considered phe-
tities one can use the material constants of icosahedral QC'aomenon.
For AlygPdyMng, the constants are known:p The internal friction is often measured at a fixed oscillator
=5100 kg/ni, % w=0.65x 10 N/m?, A=0.75 frequency. To satisfy this condition, E(LO) is solved for a
x 10t N/m?.22 Following different estimatiorf§?>we have given set of the parametetmcluding D) with a constraint
chosen K;=0.81x10" N/m? ~K,=-0.42<10" N/m*.  Re(w,n,) is equal to a constant value. From the practical
However, for the moment there exists no reliable estimatiorpoint of view, Eq.(10) is solved using well-known analytical
of the phonon-phason coupling const&nt even of its order  formulas for the solutions of the cubic equations. This pro-
of magnitude. In Ref. 26 the phonon-phason coupling concedure is repeated several times to choose the appropriate
stantK ; is estimated theoretically to be one order of magni-real value ofg. Then Q™! and V are calculated a®*
tude smaller than other constants. By contrast, the analysis ef 2Im(w,n,)/Re(wphn) and V=Re(wyn)/q. The coeffi-
the diffuse scattering profile in the vicinity of Bragg cient 2 in the expression for the internal friction appears due
reflectioné® leads to the value df ; higher than the value of to the above-mentioned relation between the internal friction
the phason elasticity constalt. In the well-known works and the logarithmic decrement of the free decay. At the value
of de Boissieu and co-workers also devoted to the diffusef the material constants used for the figures’ construction,
scattering profile analysis, the constd®y is considered to the difference betweeX as a function of InD) calculated at
be negligible(see, for example Refs. 27 and)2& we take  constang andV(In[D]) calculated at constant oscillator fre-
K3~0.1K; then in the limitD = 0 the difference of velocities quency is very small in comparison with the scale of Figs. 2
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0.012 1 0.006 |
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FIG. 2. (a) Internal frictionQ ™~ values as a function of natural
logarithm of the phason friction coefficient for different TA modes  FIG. 3. (a) Internal frictionQ~* values as a function of natural
in an icosahedral QC. Oscillation frequency is 2000 Hz. Cuve logarithm of the phason friction coefficient for different LA modes
Straight line, TA mode propagating along fivefold axis. Cubze  in an icosahedral QC. Oscillation frequency is 2000 Hz. Cuxve
First TA mode propagating along twofold axis. If, for example, the LA mode propagating along fivefold axis. CurbeLA mode propa-
wave vector of the mode is directed alofi0] then the mode is  gating along threefold axis. Curve LA mode propagating along
polarized along[010] direction. Curvec: TA mode propagating twofold axis.(b) Dependence of sound velocities on natural loga-
along threefold axis. Curvd: Second TA mode propagating along rithm of the phason friction coefficient for different LA modes in an
twofold axis. If, for example, the wave vector of the mode is di- icosahedral QC. Oscillation frequency is 2000 Hz. Same mode no-
rected along100] then the mode is polarized alop@01] direction.  tations like in(a).

(b) Dependence of sound velocities on natural logarithm of the . . . . .
phason friction coefficient for different TA modes in an icosahedra‘lelyt'c‘rjllly estimate the height of the absorption peak with re-

QC. Oscillation frequency is 2000 Hz. Same mode notations IikeSpeCt to the background level E@(ZKV)' (As usual, for TA
in (a. modesyv= u and for LA modesy=\+2u.) The above ana-

lytical estimations are valid iQ " 1<1. Both expressions for
the peak height and for the peak position are in good agree-
and 3. The same concerns the funct®@n'(In[D]). This can  ment with the direct numerical calculations presented in
be explained by almost linear dependence betweemR@l  Figs. 2a) and 3a). Unfortunately, we have not got values of
andq and by very small change of the sound velocity be-some material constants that enter . Therefore the con-
tween limit caseD =0 andD=c. Let us stress that both tripution of thermal conductivity to the attenuation of LA
the left and right parts of the dependences presented in Figmodes cannot be calculated. For crystalline metallic systems
2(a) and 2b) are in complete agreement with the limit casesthjs contribution is not very essential. Also we have no ex-

D=0 andD == [see Eqs(11)—(13)]. A similar analytical  perimental data to estimatg!. In the corresponding calcu-
analysis is also possible for the limit cases of the LA modesation we putnllz 7". Let us recall that the viscosity con-

[see Figs. @& and 3b)]. stant variation leads mainly to the change of the background
In Fig. 2(a) the “background” internal friction is approxi- internal friction.
mately defined by the expressiang®/ . This follows from The experimental dependen€e X(T) (Ref. 29 demon-

Egs. (11) and (12 and from the relation Re{,,,)  strates two absorption peaks. The experimentally observed
~q+/ulp. The analogous expression for the background inpeak (A) is related to the localized atomic junfsiot de-
ternal friction of the LA modegsee Fig. 8a)] looks like  scribed by the theoretical model under consideration. The
wnl (N +2p). authors of Ref. 29 associate the high-temperature absorption
The maximum of the sound wave damping corresponds tpeak (B) with the collective atomic motions. However the

the wave vector for whichynRe(wpnn)~1, wherer,,sis  data presented in Ref. 29 seem to be not sufficient to con-
the phason relaxation time. Using the estimationss clude if the absorption peaB) height is different for the
~D/(Kg?) andqg?~[Re(wpnn) ]°p/v one can conclude that samples cut along different crystallographic directions.
the maximal sound attenuation corresponds to a regioherefore the experimental study of this peak may be very
where Dv~KRe(w,) p. Using this relation one can ana- useful for experimental verification of the proposed model.
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The values resummed in Table | permit us to conclude Also the measurement of the internal frictiQi ! and of
that in the simplest model the minimal internal friction cor- the velocityV as functions of the oscillator frequency at con-
responds to the transverse modes in a sample cut along tseant temperature<800—-900 K) may be useful for the veri-
fivefold axis. In the harmonic approximatidgin the case of fication of the following properties of the model. In the low-
small oscillationy the TA mode propagating along a fivefold frequency limit at any finite nonzero value DBfthe relative
axis is not coupled to the corresponding phason mode. As eontribution of the ternD w into Eq.(10) is more essential.
result the resonant absorption peak is absent for the mode Therefore the anisotropy of sound velocities disappears and
this type. The absorption peak can appear, however, in @ 1—0 (similarly to the case oD =x). In theq—0 limit
model that takes into account nonharmonic phonon-phasoiie phason part of the 6D polarization of the acoustic-type
coupling. Possibly, the pedlB) is only partly related to the waves tends to zero. Indeed, in the vicinity of any fixed
resonant phonon-phason coupling. Other collective atomignedium point the acoustic wave with the given amplitude
excitations(for example, the dislocation motipoan contrib-  and wave vectoq produces local strain proportional to the
ute to this peak. The question of whether the contributions ofalue. Consequently, the induced phason strain in the vicinity
such excitations are anisotropic or not is still open. In anyof the same point, being proportional to the ordinary strain,
case such excitations lead to the peak broadening and changmds to zero in the long-wavelength limit. Therefore the
its intensity. Another possible source of the change of thephason effect on the sound velocities is negligibl&lever-
peak parameters is the temperature dependence of the elasfieless the finite valu® 1/q is anisotropic. The ratidR
constants that is not taken into account by the developedetween the lengths of the phason and phonon parts of the
model. The data presented in Ref. 30 can be also compar@b polarization can be rigorously deduced from the matrix
with the conclusions of the minimal model. The measure<{10). For that, it is simpler to take the second line of this
ment of internal friction at frequency 2.8 Hz at 1000 K matrix. Then R=|q2/(tiphn— Kg?). For large enough
[high-temperature edge of the ped®)] shows that th® '  wave vectors or high frequencieR, tends tol/K and the
value for a sample cut along the fivefold axis is smaller tharlattice vibration induces the corresponding phason motion.
for a sample cut along the twofold axis. In addition, the If Re(wpn,)>Dv/(Kp) then the sound dispersion corre-
authors of Ref. 30 report that in the high-temperature regionsponds to Eq(12) (similarly to the case oD=0). In this
the effective shear modulus measured for the transversgnit the value IM@pny is isotropic. Therefore the anisot-
modes in a sample cut along the fivefold axis is greater tharbpy of theQ ! value is caused by the anisotropy of the real
the modulus measured in a sample cut along the twofolghart of frequency. Accordingly, the phason influence is also
axis, the difference being equal to 2 GPa. Both these factgxpressed in a weak anisotropic decrease of the sound ve-
are in a good qualitative agreement with the results presentegcities. This decrease occurs essentially in the intermediate
in Fig. 2. We think that an additional investigation of internal regime ~ where Reg,n)~Dv/(Kp). The point o
friction in differently orientated samples at low frequencieszDv/(Kp) approximately corresponds to the maximum of
(less than 10 Hzand high temperatureup to 1000 K may  Q~Y(Rg wpn,l). The above-mentioned estimation for the
be very useful to justify the contribution of the resonantpeak maximum height with respect to the isotropic back-
phonon-phason coupling into the ped origin. In this re-  ground level is still valid:Q X ~12/(2K»). The contribu-
gion of frequencies and temperatures, an activation of phajon of the resonant phonon-phason coupling to the depen-
son modes with large relaxation timeg; is expected. dence Q (R wpyy]) in the intermediate- and low-

Finally, let us note that if the phonon-phason couplingfrequency regions is well described by the Debye function:
constant is one order of magnitude smaller than the value

adopted in the previous estimati@re., K;~0.01K) then in

Fig. 2(b) the maximal difference between the velociteeand = -1
d is divided by 100 and is not higher than 0.4 m/s. For the Q (Re wpnnl) =2Qnmax
case of Fig. ®) this difference will be not higher than 0.2

m/s. It will be practically impossible to measure this sound

ve[ocity .anisotropy experimentally. The absorption .peak ACKNOWLEDGMENTS
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frozen at low temperature. This approach results in a slight inSlt is interesting to note that this “isotropic” long-wavelength re-

crease of the acoustic-mode contribution to the vibrational den

sity of states at low frequencies if the phonon-phason coupling is

taken into account. But in our opinion this effect is too weak to
explain the value of the vibrational part of the low-temperature

heat capacity. Moreover, according to all experimental results
known to us the collective phason modes at low temperature are

gion can be expanded due to the phason pinning effect, provided
the pinning constantg is much greater than the other terms in
the element(2, 2) of matrix (10). Nevertheless in the present
consideration, we neglect the pinning effect, since usually in
incommensurate crystals it does not occur in the high-
temperature limit.
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