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Minimal model of the phonon-phason dynamics in icosahedral quasicrystals and its application
to the problem of internal friction in the i-AlPdMn alloy
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Different existing elastodynamical models of icosahedral quasicrystals are analyzed. The simplest minimal
model of the phonon-phason dynamics is formulated. Physical restrictions and possible applications of the
proposed model are considered. Several generalizations of the minimal model are discussed. It is shown that
the phonon-phason coupling induces a resonant absorption peak of low-frequency sound waves in the tem-
perature region corresponding to a thermal activation of phason excitations. The maximum value of the
logarithmic decrement of the sound wave damping depends on the propagation direction and the wave polar-
ization. The anisotropy is proportional to the square of the phonon-phason coupling constantK3. Our estima-
tion shows that the effect can be resolved experimentally if the relative value ofK3 is not negligible with
respect to four other elastic constants of the icosahedral quasicrystal. Namely, the difference should not exceed
two orders of magnitude.
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I. INTRODUCTION

Quasicrystals~QC’s! discovered in 1984~Ref. 1! combine
aperiodic long-range positional order with noncrystal
graphic rotational symmetry. The diffractograms of the
materials can be indexed with the help of linear combi
tions of a finite numberN of basis vectorsbi in reciprocal
space. This fact makes possible the expansion of the qu
rystal density function in Fourier series. The numberN is
always greater than the dimension of the physical sp
which results in specific symmetry properties responsible
the physical difference between quasicrystals and crystal
particular, QC’s have an additional Goldstone phason deg
of freedomw, which is absent in a crystalline state. Th
inhomogeneous variation ofw corresponds to a relative shi
of incommensurate density waves which form QC’s.2 The
inhomogeneous variation ofw gives a contribution to the
elastic energy of QC’s.3 As a result, the elastic properties o
QC’s, and especially their dynamical elastic properties, h
a specific character. To date three different models of
phonon-phason dynamics in QC’s have been proposed. E
model is presented as a system of coupled differential eq
tions. Some of the equations belonging to different mod
are quite equivalent, but others are mutually incompatible
our opinion, the updated experimental results and theore
knowledge in the physics of QC’s permit now to formula
the simplest minimal model of the phonon-phason dynam
and to discuss its properties and its limitations together w
the modifications of the minimal model for different applic
tions. This task constitutes the aim of the present work. T
paper is organized as follows. In Sec. II we discuss the
isting models of the phonon-phason dynamics and formu
the minimal model. Section III is devoted to the limitation
and some applications of the proposed model. Section
considers the phonon-phason coupling mechanism of
resonant absorption of sound waves.
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II. PHASON-PHONON DYNAMICS MODELS
AND THEIR ANALYSIS

In their pioneering work Lubensky and co-workers ha
proposed a system of elastodynamical equations descri
the behavior of an icosahedral QC:4,5

] tr1“•g50,

] tgi2¹j~h i jkl ¹kgl !52
dF

dui
2r¹i

dF

dr
,

] tui1Gu

dF

dui
2v i50,

] twi1Gw

dF

dwi
50, ~1!

wherer is the density,g is the momentum density,h i jkl is
the ordinary viscosity tensor,F is the ratio of the total QC
energy to its volume,Gu and Gw are the dissipative kinetic
coefficients, andv i is the velocity of the point with respect t
the coordinate system. The first Eq. of system~1! is a mass
conservation law. The second one has the form of a modi
Navier-Stokes equation. Its right part is an elastic force v
tor acting upon a unit volume. This vector consists of tw
parts, the first of which is induced by a medium strain a
the second one is caused by a density change due to a
current. The left part of the second equation also inclu
two terms. The first one stands for a unit volume accelera
and the second one corresponds to the viscosity friction.
third and the fourth equations describe relaxation phenom
in QC’s.

The solution of system~1! shows4,5 that the sound veloci-
ties are isotropic but their damping reflects the icosahe
symmetry of the structure. The anisotropic part of the v
cous damping is probably smaller in magnitude by a fac
©2002 The American Physical Society04-1
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of 1010 than the isotropic part. The phason relaxation time
a sample with a size 1 cm is of the order of 3–300 000 y

Actually the results4,5 mean that the sound attenuation a
isotropy and the phason jumps should be experiment
nonobservable in these materials. As far as the authors k
there exists no direct experimental work reporting the obs
vation of the sound attenuation anisotropy in icosahed
QC’s. But to date the phason motion in quasicrystals is w
known6 and constitutes a contradiction with the results.4,5 An
attempt to modify system~1! has been made.7 In the
approach,4,5 The phonon relaxation rate gives the diffusio
constant of defects. The model7 distinguishes the kinetic con
stant for the phononGu and that for the defectGd since
phonons and phasons are relaxed much more quickly
the defects. Consequently an additional defect relaxa
process is considered.

As has been shown in several recent experimental wo
~see, for example, Ref. 8!, the elastic behavior of QC’s at low
strain is similar to that of ordinary crystals. Even in the r
gion of high temperatures the low strain is always elastic~see
Fig. 1!. Plastic deformation starts at some critical nonze
stress value. Similarly to the case of ordinary metallic s
tems, the critical stress value decreases with the tempera
increase.

In our opinion the third equation of system~1! describing
the phonon relaxation is principally applicable only to plas
solids or to liquid systems. This equation states that in
stressed QC’s its strain relaxes with the velocity proportio
to its amplitude at any strain value. It means that pur
elastic stress in QC’s is impossible even at low phonon
phason displacementsu and w corresponding to linear dif-
ferential equations. Actually the third equation in system~1!
contradicts the well-known fact that the dissipative functi
of an elastic solid depends only on the spatial derivatives
the displacement rate¹i] tuj and not on the displacemen
rates ] tuj themselves.9 Consequently in an elastic solid
acoustic-phonon relaxation is mainly caused by the visco
phenomenon described by the viscosity tensorh i jkl .

Another approach to the elastodynamics of QC’s has b
proposed in Ref. 10 and developed in Ref. 11 In this mo
the term of elastic energy corresponding to the density va
tion is neglected and the elastic energy is presented in
following form:

FIG. 1. Stress-strain dependences of icosahedral Al70.5Pd21Mn8.5

sample stressed along twofold direction@0/0, 0/0, 0/2# at different
temperatures~Ref. 8!.
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wherel andm are the Lame coefficients,K1 andK2 are the
phason elastic constants, andK3 stands for the phonon
phason coupling term. According to Refs. 10 and 11
componentsPi j of the ordinary stress tensor can be calc
lated as the derivatives of the elastic energy~2! with respect
to the corresponding components of the ordinary strain t
sor Ei j . Consequently, the componentsPi j have a linear re-
lation with the componentsEi j and ] iwj of the ordinary
strain and the phason one, respectively. Here] iwj is defined
as the derivative of thej th component of the phason degre
of freedomw with respect to thei th component of the radius
vector. The tensorHi j of the phason stress is introduce
analogously to the classical tensorPi j : its components are
defined as the derivatives of energy~2! with respect to the
corresponding strain components] iwj . The componentsHi j
are also linearly related to theEi j and ] iwj tensors. Two
interdependent partial differential equations of motion o
medium were proposed. The first of them has the form:

] j Pi j 1 f i5rüi , ~3!

where f i is the density of bulk forces,r is the mass density
andüi is the acceleration of the point. As is well known, th
equation, which is analogous to the second Newton’s law
also valid in the crystalline case. The second equation
presses the vector of the phason acceleration and has a
similar to that of Eq.~3!:

] jHi j 1gi5rẅi . ~4!

Heregi is the density of phason bulk forces. Evidently, E
~4! is analogous to the second Newton’s law for the so-ca
generalized phason force. Equations~3! and~4! were derived
using the consideration of the QC motion in the s
dimensional~6D! space, where the description of QC’s
similar to that of ordinary crystals in the 3D space. It e
plains completely ‘‘crystalline’’ and resembling forms o
Eqs.~3! and ~4!.

We start the analysis of this model on the note that it
possible to write an equation of motion for a generaliz
degree of freedom in the form of the second Newton’s l
only if there exists a corresponding conservation law. Ho
ever, the phason mode in QC’s corresponds to atomic jum
or diffusion, no conservation law corresponds to the dif
sion of atoms. Moreover, the direct solution of Eqs.~3! and
~4! assuming that both bulk phonon and phason forces
equal to zero predicts six soundlike branches with the disp
sion law v}q. This result is inconsistent with the exper
mental data~see, for example, Ref. 12! in icosahedral QC’s
which show only three branches of such a type. Neverthe
the theoretical idea which admits the propagation of sou
like phason modes in icosahedral QC’s is used up to date
Ref. 13 the authors try to calculate on this basis a lo
temperature heat capacity of icosahedral QC’s. The exp
form of energy~2! is used, the density of external forces
supposed to be zero, and the system of equations~3! and~4!
4-2
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is solved. The number of resulting soundlike branches
found to be equal to six and contradicts again all availa
experimental data.

Reference 13 together with other theoretical works i
response to the abundant data accumulated due to recen
perimental interest in low-temperature properties of QC
One of the striking results concerning the heat-capa
Cp(T) measurements is reported in Ref. 14 f
Al68.2Mn9Pd22.8 single crystals grown by the Chokhralsk
method and for Al70Re8.6Pd21.4 high-quality monophase
QC’s. For the icosahedral Al68.2Mn9Pd22.8, the cubic~as a
function of temperature! contribution to the low-temperatur
heat capacityCp(T) was found to be much greater~nearly
the double! than the expected acoustic-phonon contribut
calculated using low-temperature transverse and longitud
sound waves data. The same result was obtained for the
tem AlPdRe. It is interesting to note that the vibrational co
tribution to heat capacity calculated using directly the exp
mental density functiong(E) of vibrational states fits quite
well the experimental dependence ofCp(T).15 The result is
impossible to obtain by the calculation in the framework
the Debye theory of lattice heat capacity based on the ve
ity of sound waves.

In order to explain this discrepancy, the notion of s
called nonacoustic localized states in QC’s is usually int
duced in literature~see, for example, Ref. 15!. For further
analysis one should clarify the relation between these st
and the phason dynamics. For that goal two qualitativ
different definitions of a phason can be distiguished. If p
sons are considered to be collective atomic modes~surely
nonlocalized in reciprocal space! there exists no direct rela
tion of the localized states to the phason dynamics. T
approach is adopted in all the models of the phonon-pha
dynamics analyzed in the present work. According to
alternative definition, phasons are understood as local ato
jumps between several neighboring positions separated
distance smaller than the atomic diameter and by a mini
potential barrier which makes possible atomic tunneling
tween these positions even at very low temperature. T
corresponding atomic jumps can give a contribution to
low-temperature heat capacity as is the case in gla
systems.16 Maybe it is more convenient to call these sta
‘‘localized nonphonon’’ ones because the atoms move in
case in the potential that is evidently nonharmonic.

The resumming conclusion of this comparison is that
models of QC elastodynamics based on the continuous
dium approximation4,5,10,11 cannot be used to calculate th
low-temperature heat capacity of QC’s. Nonpropagating c
lective phason modes cannot contribute to the density of
brational states.17 It concerns also the simplest minim
model of the phonon-phason dynamics developed in
work. However there exists a class of incommensurate st
tures where the collective phason modes are really simila
sound ones18,19 and the elstodynamic model developed
Refs. 10 and 11 can be applied. These substances ar
incommensurate intergrowth compounds~IIC!. IIC needs
two or more mutually incommensurate sublattices to cha
terize its structure. In IIC the above-mentioned phason m
mentum conservation law corresponds to the sliding of
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sublattice with respect to another. Neglecting the pinning
fect, one can consider the velocity of phason modes in IIC
Thus, soundlike phason modes in IIC’s are really observa
The simplest form of the equation of phason motion in IIC
is presented in the following form:

] jHi j 5re f füi , ~5!

wherere f f is the effective~or relative! density which is as-
sociated with the relative motion of sublattices, the phas
friction, phason bulk forces, and the phason pinning be
neglected. In contrast with the case of IIC the phason deg
of freedom in QC’s do not correspond, in principle, to su
kind of sliding. This fact implies the different forms of th
equation of phason motion in QC’s and in IIC’s. To comple
the analysis let us note that though the existing models of
QC elastodynamics explain several features of the pha
phonon motion, none of them is completely consistent w
the experimental data.

In the following section we formulate a minimal mod
which tries to describe the basic features of the phas
phonon elastodynamics and can be generalized to acc
for more fine effects. In the quasicrystalline case, the atte
ation of phason modes is essential in the dynamical the
The simplest way to introduce this attenuation is to assu
that the phason bulk force gi52Dẇi , whereD is the fric-
tion coefficient. According to the previous analysis, the ph
son momentum in QC’s is not conserved~there exist only
three soundlike branches! implying re f f50. In this case the
obtained equation of the phason motion in QC’s becom
equivalent to the fourth equation of system~1!, if the relation
between material constants isGw51/D. In other words, in
both our model and the approach developed in Refs. 4 an
the phason modes in QC’s are considered as overdam
The minimal model of the phonon-phason elastodynamic
icosahedral QC’s can be then presented as a system o
two following equations:

] j Pi j 5rüi , ] jHi j 5Dẇi , ~6!

where Pi j 5]F/]Ei j is the ordinary~phonon! stress tensor
andHi j 5]F/](]wi /]xj ) is a nonsymmetrical tensor of th
phason stress, the energyF being presented by Eq.~2!. Ac-
tually, the minimal model~6! can be considered as a com
promise between the approaches of Refs. 4 and 5 and R
10 and 11, or as a simplification of the model presented
Ref. 20. Diffusion processes not related to the collective p
son mode exitations are not considered in the proposed m
mal model.

The solutions of the resulting system of linear different
equations can be found in the form of phonon-phason wa
These waves are characterized by a 6D polarization vectoU
and by an ordinary 3D wave vectorq. If the constant of the
phonon-phason coupling is small, then the waves with p
dominately phonon polarization and the waves with the p
dominately phason one can be distinguished. The mini
model of the phason-phonon elastodynamics is reduce
the following six equations:
4-3
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TABLE I. Effective elastic constantsK, de f , and I as a function of the wave vectorq direction and the
sound wave polarizationu.

q u w K I de f N

q^1,t,0&/N u^1,t,0&/N w^t,21,0&/N K124/3K2 22K3 26j uu At12
u^0,0,1& w^0,0,1& K112/3K2 0 2j uu 1

u^2t,1,0&/N w^1,t,o&/N K112/3K2 0 2j uu At12
q^t2,1,0&/N u^t2,1,0&/N w^1,t2,0&/N K114/3K2 2/3K3 10/9j uu A3t13

u^0,0,21& w^0,0,1& K122/3K2 4/3K3 214/9j uu 1
u^21,t2,0&/N w^2t2,1,0&/N K122/3K2 4/3K3 214/9j uu A3t13

q^1,0,0& u^1,0,0& w^1,0,0& K121/3K2 K3 0 1
u^0,1,0& w^0,1,0& K11(t21/3)K2 t21K3 2t21j uu 1

u^0,0,21& w^0,0,1& K11(2/32t)K2 tK3 22tj uu 1
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@Ck j~q!U j #5a~k!Uk , ~7!

whereCk j(q) is the well-known phonon-phason dynamic
matrix ~DM!, Uk is the 6D polarization consisting of 3D
phonon polarizationu and 3D phason polarizationw. In Eq.
~7!, for k51,2,3 the coefficienta(k) is equal torv2 and for
k54,5,6 its value isiDv, wherei 5A21. The solutions of
system~7! are the dispersion relationsv(q) and correspond-
ing polarizations. To analyze the solutions of Eq.~7! one can
use the fact that a linear system with a zero right-hand s
has a solution if its determinant is equal to zero. But
analytical solution of the presented system in its gene
form is impossible because of the enormous number of te
in the resulting equation. So we will consider analytica
only three particular cases corresponding to the wave vec
which are parallel to fivefold, threefold, and twofold symm
try axes, respectively. For these directions the determinan
matrix M can be presented as a product of three deter
nants, which have the following form:

Unq22rv2 Iq2

Iq2 Kq22 iDv
U50, ~8!

wheren, I, andK are the effective constants of phonon ela
ticity, phonon-phason coupling, and phason elasticity. P
son frictionD and densityr are the same as in Eqs.~6!. For
the above-mentioned high-symmetry directions one can
the wave longitudinal~or transversal! if the phonon partu of
its polarization vector is parallel~or perpendicular! to its
wave vectorq. For the longitudinal waves the coefficientn
in Eq. ~8! should be changed tol12m and for the transverse
modesn5m. Other coefficients are presented in Table I a
function of the wave-vector direction~first column! and the
wave polarization.

Vanishing of the determinant of system~8! defines simul-
taneously two dispersion relationsv(q) for the waves the
phonon and phason types. Without taking into account
phonon-phason coupling, the first relation has the fo
rv25nq2, and the second is given byv52 iKq2/D. For
an infinitely large value of the phason friction coefficient t
phasons become frozen and their relaxation time diver
The substitution in the matrix of system~8! of one of the
14420
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corresponding solutions of system~8! permits to determine
the two-component zero vector̂u,w& of the above-
mentioned matrix. The ratio of the zero-vector component
equal to the ratio of the phonon and the phason compon
of the polarization vectorU ~second and third columns in
Table I, respectively!. Taking into account the phonon
phason coupling leads to the phonon frequencyvphn(q),
which has both real and imaginary parts. The imaginary p
determines the phonon damping coefficient~or phonon life-
time! in the minimal model. The phason frequencyvphs(q)
is purely imaginary, the phasons in the minimal model be
characterized by their lifetime only.

The minimal model of the phonon-phason elastodynam
has several important physical consequences.

~1! Both the effective phonon-phason coupling and t
effective phason elastic constant are anisotropic and t
have an icosahedral symmetry. Acoustic branches decrea
different ways in different crystallographic directions.

~2! The doubly degenerated acoustic wave propaga
along the fivefold axis does not interact with the correspo
ing phason mode.

~3! Taking into account the phonon-phason interact
breaks the transverse phonon degeneracy along the two
axis.

Here it should be stressed that the observation of
above-mentioned effects corresponding to the deviation fr
an isotropic symmetry becomes possible if the phasons
not frozen, or in other words the phason frictionD does not
diverge.

III. LIMITATIONS AND FURTHER DEVELOPMENT
OF THE MINIMAL MODEL

~1! The first limitation is related to a discrete atomic ap
riodic structure of QC’s. In the case of the continuous isot
pic medium as well as in the crystalline case one can clas
normal modes according to their frequencies and wave v
tors. In the quasicrystalline case it is possible only at
beginning of the acoustic branches in the vicinity of the ce
ters of Brillouin zones. For a mode with an essentially b
frequency one cannot assign an exact value of the wave
tor. The corresponding atomic motion presents a superp
tion of waves with close wave vectors. Consequently,
4-4
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finite width of the acoustic dispersion curves is defined
only by the finite lifetime of phonons@by the imaginary part
of vphn(q)], but also by the discrete atomic aperiodic stru
ture of QC’s. It is impossible to take this effect into accou
in the frame of the model developed in the continuous m
dium approximation. Therefore the conclusions of the mi
mal model can be applied only for the propagation o
sound wave with a wavelength essentially greater than
interatomic distances.

~2! Let us consider the second limitation. As it is we
known9 the propagation of the sound waves is accompan
by the appearance of areas of a local-density change. S
local temperature of these areas differs from the aver
temperature of a QC. Therefore to analyze the acoustic w
propagation in addition to the elastic stress we have to al
for the thermal one caused by the temperature variation.
above-mentioned mechanism leads to the medium hea
and to the sound wave attenuation. For the cases of an ic
hedral symmetry and of an isotropic medium, this mec
nism works only for longitudinal waves.20 It can be taken
into account by the substitution of

l5lT1
lS2lT

11
ixq2

vCE

~9!

into the solution of motion equations. In formula~9! x is the
coefficient of thermal conductivity,CE is the specific heat o
a unit volume at constant strain,lS andlT are elastic coef-
ficients at constant entropy and at constant temperature
spectively.

~3! Another phenomenon that can be taken into accoun
the framework of the approach that we propose is a pinn
effect, extensively studied experimentally and well und
stood for incommensurate phases. For example, in the
mentioned in the previous analysis this effect takes place
relative shift of the sublattices leads to a restoring ela
force. The resulting elastic energy of this system depends
only on the vectorw gradients but also on the vectorw
value. Usually the pinning effect is considered to be a c
sequence of structural imperfections in an incommensu
system. For vanishingq the frequency of the phason mod
tends not to zero but to a finite nonzero value determined
the strength of the pinning effect. After a phase transit
which makes initially incommensurate sublattices comm
surate, the phason mode becomes a usual optical vibra
and the elastic constant of the pinning effect determines
frequency in the first Brullouin-zone center. Along the sa
line the pinning effect in QC’s can be easily taken into a
count in our model. It can be done by a slight modification
the DM phason block~7!. The same small constantf s corre-
sponding to the pinning effect strength should be added to
three diagonal elements of the phason block. Of course,
terms that are independent of the wave vector appear in
DM when the vectorw value is taken into account in th
elastic energy of the system. The resulting determinant~8!
changes also very slightly: the constantf s is added to the
element in the second row and in the second column.
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~4! Another important extention of the minimal model
obtained by taking into account in the DM~7! of the fourth-
~or higher! degree terms in the wave vector. Even in t
simplest model of a linear atomic chain with only one type
atoms, the acoustic dispersion branch is linear only in
vicinity of nodes in reciprocal space. It is related to the w
the DM depends on the wave vector. In Ref. 21 it is sho
that the terms of fourth degree distinguish already an ico
hedral QC from an isotropic medium. For QC’s the phon
block in the DM has one additional independent coefficie
with respect to the isotropic case. It means that even in
low-temperature region where the phasons are frozen,
acoustic-phonon dispersions in an icosahedral QC are iso
pic only in the long-wavelength limit. The fourth-degre
terms in the DM lead to nine independent coefficien
namely, three phonon-phonon coefficients, three phas
phonon coefficients, and three phason-phason ones. To s
the propagation of acoustic waves with long wave vecto
the terms of higher order in the wave vector should be ta
into account in the phonon-phonon block in the DM. Mod
fying the minimal model in such a way we obtain seve
changes in determinant~8!. The termm8q41de fq

4 is added
to the element in the first row and in the first column
account for the TA wave propagation, whereas the te
(l812m8)q41de fq

4 is added to the same element in the L
wave case. The constantsl8 and m8 correspond to the
fourth-degree isotropic terms; the last column of Table I re
resents the anisotropic valuede f in the units of the second
order elasticity constantj uu . Then in the approximation o
frozen phasons~i.e., in the low-temperature region!, the
second-order anisotropy of all the acoustic branches is de
mined by only one material constantj uu . Note also that when
the second-order terms are taken into account the degene
of the TA modes propagating along twofold axes is lifte
though the modes propagating along threefold and fivef
axes remain degenerate. The corresponding frequency sq
splitting v1

2(q)2v2
2(q) can be expressed as (2/t

12t)j uuq
4/r. Table I shows that the maximal splitting in

duced by this effect is observed for the LA modes with t
wave vectors parallel to threefold and fivefold axes. Its va
is then given by (10/916)j uuq

4/r.

IV. RESONANT ANISOTROPIC ABSORPTION
OF LOW-FREQUENCY ACOUSTIC WAVES

The minimal model presented in the preceding sect
permits to discuss quantitatively the peculiarities of acous
phonon dispersion in the long-wavelength limit. The sou
attenuation mechanism caused by local temperature de
tions @see point~2!# in the preceding section! applies for LA
modes only. Therefore we start here from the analysis of
modes. To calculate the anisotropy of the functionvphn(q) it
is necessary to take into account the effects associated
the isotropic relaxation of acoustic phonons. For that,
first equation of system~6! should be completed by a term
due to usual viscosity. This term is determined by the ten
h i jkl , which is isotropic in the case of icosahedral symme
The viscosity gives a contribution to the total stress va
proportional to the velocity of strain:DPi j 5h i jkl Ėkl . Then,
4-5
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after evident transformations, the form of determinant~8! is
modified. Namely, for TA waves the term2 ih'vq2 is added
to the element in the first row and in the first colum
whereas for LA waves the term2 ih uuvq2 is added to the
same element. Hereh' andh uu are two independent coeffi
cients of the viscosity tensor. Though the usual viscosity
isotropic in the case of icosahedral symmetry, the pha
viscosity which gives a contribution of the same type but
the element~2,2! is anisotropic.20 Thus in the following con-
sideration, we analyze the solutionvphn(q) of the equation

Umq22rv22 ih'vq2 Iq2

Iq2 Kq22 iDv
U50, ~10!

where the effective coefficientsK andI depend on the wave
vector ~q! direction and on the polarization according
Table I. Phason friction coefficientD is considered to be a
decreasing function of temperature. All other coefficients
Eq. ~10! are constants. Let us first analyze the limit cases
the phason viscosityD tends to infinity~and the temperature
goes to absolute zero!, then

vphn5
2 ih'q21A4rmq22~h'!2q4

2r
. ~11!

The anisotropy is evidently absent both in the real and
imaginary part ofvphn(q). In the other limit case, the pha
son relaxation time is negligible orD50. It results in

vphn5
2 ih'q21A4rq2~m2I 2/K !2~h'!2q4

2r
. ~12!

In this case the anisotropy of the damping coefficient is co
pletely absent and the sound velocity in the long-wavelen
limit is expressed as

V5Am2I 2/K

r
. ~13!

Equations~12! and ~13! are valid providedD→0 at a finite
nonzero value ofq. For TA modes of different symmetry, th
valuem2I 2/K plays the role of an effective shear modulu

To estimate the numerical values of corresponding qu
tities one can use the material constants of icosahedral Q
For Al70.3Pd21.5Mn8.2 the constants are known:r
55100 kg/m3,22 m50.6531011 N/m2, l50.75
31011 N/m2.23 Following different estimations24,25 we have
chosen K150.8131011 N/m2, K2520.4231011 N/m2.
However, for the moment there exists no reliable estimat
of the phonon-phason coupling constantK3, even of its order
of magnitude. In Ref. 26 the phonon-phason coupling c
stantK3 is estimated theoretically to be one order of mag
tude smaller than other constants. By contrast, the analys
the diffuse scattering profile in the vicinity of Brag
reflections25 leads to the value ofK3 higher than the value o
the phason elasticity constantK1. In the well-known works
of de Boissieu and co-workers also devoted to the diff
scattering profile analysis, the constantK3 is considered to
be negligible~see, for example Refs. 27 and 28!. If we take
K3'0.1K1 then in the limitD50 the difference of velocities
14420
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between the TA wave propagating along a fivefold a
(I 2/K50) and the TA wave propagating along a threefo
axis „I 2/K516K3

2/@9(K122/3K2)#, see Table I! is about
1%. If K3 is two orders of magnitude smaller than oth
constants then the difference of velocities is not more th
0.01%. For the cases with intermediate values ofD it is
necessary to estimate the isotropic viscosity valueh'. The
ratio h'q2/(rv/p)'pvh'/m can be considered in the pro
posed model as a logarithmic decrement of free decayg.
Internal frictionQ21 is related tog asg/p. The value of the
internal friction measured far from the resonance region~for
the frequency 2000 Hz and the temperature of about 550!
was reported to beQ2151.331024.29 This yields h'

5670 N s/m2. From Eq. ~11! one can see thatq2

!4rm/(h')2. Therefore the given estimation ofh' value is
valid only if q!1024 nm21. For smaller wavelength the de
pendence of viscosity upon the wavelength should be ta
into account.

Usually the experimental data on the internal friction in
sample are presented as a dependence ofQ21(T). In the
proposed model it is worth presenting it as a functi
Q21(ln@D#). This choice is justified on the one hand by th
fact that the most temperature-dependent quantity in
model is the phason viscosityD, and on the other hand b
the variation ofD in a wide range. The logarithmic scale
also justified by several physical considerations. Indeed
analyze the relaxation time of thermally activated process
the Arrhenius relation is often used :

t rel5t infexpS H

kBTD ,

wheret inf is the characteristic time constant,H is the activa-
tion enthalpy, andkB is Boltzmann’s constant. For an est
mation one can assume that the phason relaxation time
isfies the similar equation, then the temperature
proportional to ln(D)21. Several estimations based on th
proposed model are given in Figs. 2 and 3. In all the ca
the phason-phonon coupling constant was taken to beK3
'0.1K1. We discuss first the correspondence between th
figures and the available experimental data, and then prop
a series of experiments which can clarify the considered p
nomenon.

The internal friction is often measured at a fixed oscilla
frequency. To satisfy this condition, Eq.~10! is solved for a
given set of the parameters~including D) with a constraint
Re(vphn) is equal to a constant value. From the practic
point of view, Eq.~10! is solved using well-known analytica
formulas for the solutions of the cubic equations. This p
cedure is repeated several times to choose the approp
real value ofq. Then Q21 and V are calculated asQ21

52Im(vphn)/Re(vphn) and V5Re(vphn)/q. The coeffi-
cient 2 in the expression for the internal friction appears d
to the above-mentioned relation between the internal frict
and the logarithmic decrement of the free decay. At the va
of the material constants used for the figures’ constructi
the difference betweenV as a function of ln(D) calculated at
constantq andV(ln@D#) calculated at constant oscillator fre
quency is very small in comparison with the scale of Figs
4-6
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and 3. The same concerns the functionQ21(ln@D#). This can
be explained by almost linear dependence between Re(vphn)
and q and by very small change of the sound velocity b
tween limit casesD50 andD5`. Let us stress that both
the left and right parts of the dependences presented in F
2~a! and 2~b! are in complete agreement with the limit cas
D50 andD5` @see Eqs.~11!–~13!#. A similar analytical
analysis is also possible for the limit cases of the LA mod
@see Figs. 3~a! and 3~b!#.

In Fig. 2~a! the ‘‘background’’ internal friction is approxi-
mately defined by the expressionvh'/m. This follows from
Eqs. ~11! and ~12! and from the relation Re(vphn)
'qAm/r. The analogous expression for the background
ternal friction of the LA modes@see Fig. 3~a!# looks like
vh uu/(l12m).

The maximum of the sound wave damping correspond
the wave vector for whichtphsRe(vphn)'1, wheretphs is
the phason relaxation time. Using the estimationstphs
'D/(Kq2) andq2'@Re(vphn)#2r/n one can conclude tha
the maximal sound attenuation corresponds to a reg
whereDn'KRe(vphn)r. Using this relation one can ana

FIG. 2. ~a! Internal frictionQ21 values as a function of natura
logarithm of the phason friction coefficient for different TA mod
in an icosahedral QC. Oscillation frequency is 2000 Hz. Curvea:
Straight line, TA mode propagating along fivefold axis. Curveb:
First TA mode propagating along twofold axis. If, for example, t
wave vector of the mode is directed along@100# then the mode is
polarized along@010# direction. Curvec: TA mode propagating
along threefold axis. Curved: Second TA mode propagating alon
twofold axis. If, for example, the wave vector of the mode is
rected along@100# then the mode is polarized along@001# direction.
~b! Dependence of sound velocities on natural logarithm of
phason friction coefficient for different TA modes in an icosahed
QC. Oscillation frequency is 2000 Hz. Same mode notations
in ~a!.
14420
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lytically estimate the height of the absorption peak with
spect to the background level asI 2/(2Kn). ~As usual, for TA
modesn5m and for LA modesn5l12m.! The above ana-
lytical estimations are valid ifQ21!1. Both expressions for
the peak height and for the peak position are in good ag
ment with the direct numerical calculations presented
Figs. 2~a! and 3~a!. Unfortunately, we have not got values o
some material constants that enter Eq.~9!. Therefore the con-
tribution of thermal conductivity to the attenuation of L
modes cannot be calculated. For crystalline metallic syste
this contribution is not very essential. Also we have no e
perimental data to estimateh uu. In the corresponding calcu
lation we puth uu5h'. Let us recall that the viscosity con
stant variation leads mainly to the change of the backgro
internal friction.

The experimental dependenceQ21(T) ~Ref. 29! demon-
strates two absorption peaks. The experimentally obser
peak ~A! is related to the localized atomic jumps29 not de-
scribed by the theoretical model under consideration. T
authors of Ref. 29 associate the high-temperature absorp
peak ~B! with the collective atomic motions. However th
data presented in Ref. 29 seem to be not sufficient to c
clude if the absorption peak~B! height is different for the
samples cut along different crystallographic direction
Therefore the experimental study of this peak may be v
useful for experimental verification of the proposed mode

e
l
e

FIG. 3. ~a! Internal frictionQ21 values as a function of natura
logarithm of the phason friction coefficient for different LA mode
in an icosahedral QC. Oscillation frequency is 2000 Hz. Curvea:
LA mode propagating along fivefold axis. Curveb: LA mode propa-
gating along threefold axis. Curvec: LA mode propagating along
twofold axis. ~b! Dependence of sound velocities on natural log
rithm of the phason friction coefficient for different LA modes in a
icosahedral QC. Oscillation frequency is 2000 Hz. Same mode
tations like in~a!.
4-7
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The values resummed in Table I permit us to conclu
that in the simplest model the minimal internal friction co
responds to the transverse modes in a sample cut along
fivefold axis. In the harmonic approximation~in the case of
small oscillations! the TA mode propagating along a fivefo
axis is not coupled to the corresponding phason mode. A
result the resonant absorption peak is absent for the mod
this type. The absorption peak can appear, however,
model that takes into account nonharmonic phonon-pha
coupling. Possibly, the peak~B! is only partly related to the
resonant phonon-phason coupling. Other collective ato
excitations~for example, the dislocation motion! can contrib-
ute to this peak. The question of whether the contributions
such excitations are anisotropic or not is still open. In a
case such excitations lead to the peak broadening and ch
its intensity. Another possible source of the change of
peak parameters is the temperature dependence of the e
constants that is not taken into account by the develo
model. The data presented in Ref. 30 can be also comp
with the conclusions of the minimal model. The measu
ment of internal friction at frequency 2.8 Hz at 1000
@high-temperature edge of the peak (B)] shows that theQ21

value for a sample cut along the fivefold axis is smaller th
for a sample cut along the twofold axis. In addition, t
authors of Ref. 30 report that in the high-temperature reg
the effective shear modulus measured for the transv
modes in a sample cut along the fivefold axis is greater t
the modulus measured in a sample cut along the two
axis, the difference being equal to 2 GPa. Both these f
are in a good qualitative agreement with the results prese
in Fig. 2. We think that an additional investigation of intern
friction in differently orientated samples at low frequenci
~less than 10 Hz! and high temperature~up to 1000 K! may
be very useful to justify the contribution of the resona
phonon-phason coupling into the peak~B! origin. In this re-
gion of frequencies and temperatures, an activation of p
son modes with large relaxation timest inf is expected.

Finally, let us note that if the phonon-phason coupli
constant is one order of magnitude smaller than the va
adopted in the previous estimation~i.e.,K3'0.01K1) then in
Fig. 2~b! the maximal difference between the velocitiesa and
d is divided by 100 and is not higher than 0.4 m/s. For
case of Fig. 3~b! this difference will be not higher than 0.
m/s. It will be practically impossible to measure this sou
velocity anisotropy experimentally. The absorption pe
height with respect to the background@Figs. 2~a! and 3~a!# is
also 100 times smaller in this case. However by the f
quency decrease it is possible to make the background l
much smaller and to resolve eventually the resonant l
frequency acoustic wave absorption induced by the phon
phason coupling.
e
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Also the measurement of the internal frictionQ21 and of
the velocityV as functions of the oscillator frequency at co
stant temperature ('800–900 K) may be useful for the ver
fication of the following properties of the model. In the low
frequency limit at any finite nonzero value ofD the relative
contribution of the termDv into Eq. ~10! is more essential.
Therefore the anisotropy of sound velocities disappears
Q21→0 ~similarly to the case ofD5`). In theq→0 limit
the phason part of the 6D polarization of the acoustic-ty
waves tends to zero. Indeed, in the vicinity of any fix
medium point the acoustic wave with the given amplitu
and wave vectorq produces local strain proportional to theq
value. Consequently, the induced phason strain in the vici
of the same point, being proportional to the ordinary stra
tends to zero in the long-wavelength limit. Therefore t
phason effect on the sound velocities is negligible.31 Never-
theless the finite valueQ21/q is anisotropic. The ratioR
between the lengths of the phason and phonon parts of
6D polarization can be rigorously deduced from the mat
~10!. For that, it is simpler to take the second line of th
matrix. Then R5Iq2/( iDvphn2Kq2). For large enough
wave vectors or high frequencies,R tends toI /K and the
lattice vibration induces the corresponding phason motio

If Re(vphn)@Dn/(Kr) then the sound dispersion corre
sponds to Eq.~12! ~similarly to the case ofD50). In this
limit the value Im(vphn) is isotropic. Therefore the anisot
ropy of theQ21 value is caused by the anisotropy of the re
part of frequency. Accordingly, the phason influence is a
expressed in a weak anisotropic decrease of the sound
locities. This decrease occurs essentially in the intermed
regime where Re(vphn)'Dn/(Kr). The point v0
5Dn/(Kr) approximately corresponds to the maximum
Q21(Re@vphn#). The above-mentioned estimation for th
peak maximum height with respect to the isotropic ba
ground level is still valid:Qmax

21 'I 2/(2Kn). The contribu-
tion of the resonant phonon-phason coupling to the dep
dence Q21(Re@vphn#) in the intermediate- and low
frequency regions is well described by the Debye functio

Q21~Re@vphn# !52Qmax
21 Re~vphn!/v0

11@Re~vphn!/v0#2
.
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