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Hidden degree of freedom and critical phase in a two-dimensional electron gas
in the presence of a random magnetic field
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We establish the existence of a hidden degree of freedom associated with the critical phase of a spinless
electron system in a spatially correlated random magnetic field with vanishing mean. Although implied in an
earlier scenari¢S.C. Zhang and D.P. Arovas, Phys. Rev. Lé. 1886(1994], the hidden degree of freedom
has not been identified or explored in existing numerical and analytical studies, however. Whereas the critical
electron states are carried by the zero-field contours of the field landscape, the hidden degree of freedom in our
present work is recognized as being connected to the formation of vortices in these special contours. We argue
that, as opposed to the coherent backscattering mechanism of weak localization, a new type of scattering
processes in the contours controls the underlying physics of localization in the random magnetic field system.
In addition, we investigate the role of vortices in governing the metal-insulator transition and propose a
renormalization-group diagram for the system under study.
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[. INTRODUCTION fully addressed. Nevertheless, among these various conflict-
ing results and conclusions, the most notable idea, to us, is
The problem of electron motion in the presence of a ranthe implication ofa possible degree of freedom hidden in the
dom magnetic field in two dimensions has been of fundaRMF problem Briefly stated, it was suggested by Zhang and
mental interest in several physical situations: unitary symmeArovas™ that a new type of scattering specified by some
try of localization! gauge-field description of high hidden varigble could produce or diminish a mass gap that,
superconductors,and Chern-Simon theory of half filed in turn, decides the phase of the system. Interestingly, an
quantum Hall systenisAs a result, a great amount of effort introduction of sqch an extra variable WOl_JId, as it tums out,
has been made during the past two decades in order to ufesolve outstanding issues related to the interpretation of the

: | ical results available to date.
derstand the transport properties of the random magnetl'aume_”Ca A .
field (RMF) model. According to the scaling theory of local- Stimulated by this insighiwe have carried out a compre-

ization, in the absence of interactions, all states of a tWO_henswe search for a hypothesized hidden degree of freedom

. . . . . been encountered and explored in the context of
dimensional(2D) disordered system are localizédrield- that has not b

h ical studv based h i del h two-dimensional localization. The purpose of our search was
theoretical study ased on t '€ noniin@amodel approach y,ae fold: to determine the existence/nonexistence of the
subsequently confirms this picture and indeed predicts thai,,, degree of freedom: identify its nature and origin, if it

the result also holds for systems in which the time-rever_saéxists; and investigate its role in governing the metal-
symmetry is brokeR.The RMF model, therefore, has a deli- insulator transition in the RMF problem.
cate standing, for, on one hand, it is expected to represent the The random magnetic field configurations considered in
unitary class of localization in which the time-reversal sym-qur work were chosen to be correlated over a finite range.
metry is broken by a magnetic field; on the other hand, therhere are several reasons for such a choice. First, unlike the
presence of magnetic field might, inarguably, give rise todiagonal disorder case, where the scalar potential fluctuation
some exotic effects of nonperturbative origin. Typical ex-can be taken to bé correlated, being associated with a vec-
amples of these effects include the formation of Landau levior potential, the magnetic field can only vary smoothly over
els that cannot be obtained at any order of perturbation exa finite range. Second, it is this type of RMF that was as-
pansion in terms of the magnetic field strength, and theserted to possess a metal-insulator transition in recent nu-
celebrated topological term of the integer quantum Hall ef-merical work!* Furthermore, a model with spatialy corre-
fect (QHE).® lated magnetic field could be connected to an effective
The fundamental and interesting question of whether 2[hetwork model; the connection, in turn, explains the nature
electrons can become delocalized in a RMF remains contreef localization/delocalization in the RMF problem. Finally
versial, however. The unusual single-particle properties oind most importantly, a smoothly varying magnetic field,
the model have been discussed in Refs. 7,8. In a large nunphysically speaking, is expected to radically influence the
ber of papers, it has been argued that there is a band @fectron eigenstates in a similar way that a uniform magnetic
delocalized states?~*° Similarly, in a large number of pa- field forms Landau levels in a free electron gas, opening a
pers, it has been argued that all states are localzeéd. possibility for nonperturbation effects to come into play.
There are also papers in which evidence for a single critical Our paper is organized as follows. Section Il presents our
energy has been presenfédrurthermore, of the papers that numerical computation of localization length for RMF sys-
support the existence of conducting states, the physical ortems. We propose in Sec. Ill a two-parameter scaling proce-
gin of the delocalization in the RMF problem has not beendure to analyze the data. The following two sections contain
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our study of electron wave function in a RMF. The relevancewhich has usually been named the correlation length. There
of the problem under study with respect to a network modebre two possibilities(i) & is finite, in which case the wave
is dicussed in Sec. VI and followed by a summary and thefunction at large distances has an exponential form and the

Appendix. system is in the insulating phase, afid ¢ is infinite, in
which case the wave function is extended and the system is
Il. EXTENDED STATES IN A RANDOM MAGNETIC in the conducting phase. In order to quantify systems of finite
FIELD AND THE SHORTCOMINGS OF THE STANDARD size, one defines dimensionlesguantity, the so-called re-
SCALING SCHEME duced localization length , , by normalizing the localiza-

. . . . tion length with respect to the system width,= \, /M.

We con§|der the model Of. noninteracting spinless e.leCThe newly defined length would serve as a suitable indicator
trons hopping on a square lattice subjected to a perpgndlcul% how the wave function in a disordered sample responds as
random magnetic f[eld and a random §calar potential. Th‘fhe restriction on sample size is gradually relaxed, from
model Hamiltonian is defined as follows: which the meaningful information with regard to the bulk

properties of the system can be extracted efficiently.
H= _tE (e Hijci‘erJre*iﬁijchciHE ViCiTCi . It appears straigthforward to generate the correlated ran-
(i) i dom magnetic flux as described in Eg). Since the field

configuration has zero average, fluxes of opposite sign are
equally likely. However, we find it necessary at this stage to
fte an advance result, which is to be shown later, that the
electron transport along the strip is mainly carried by the
boundaries between magnetic domains, or the zero-field con-
X . ) tours. Thus, the implementation of flux mentioned above,
uted in the interval —;W,3W]. The magnetic flux through although straightforvsard, is problematic because it violates

each plaquette is equal to the sum_of the Peierls phéises the percolation property of these contours if the system is not
along its four edges. For systems with an open boundary, th,

Land be ch v he hori §ufficiently wide. In Fig. 1, the magnetic boundaries are
andau gauge can be chosen, namajy,z_ on the horizon--  opqyn in"black lines for different magnetic configurations
tal links of the lattice. We are interested in the case where th

. roduced from EQ.(2) with o¢=5.0 in four cylidrical
fluxes at different plaquettes are correlated over a lengt amples of successively doubled widths. Evidently, in order
scaleo;. The flux through plaguettp is then generated in i

. ) for the black lines in the pictures to percolate, the sample
the following way: width M has to reach some certain value, e.g., 100 lattice
spacings or more. Otherwise, starting from, say, the left end

d)p:% 2 fqef(|Rp7Rq|2/¢rf2), ) of the sample, an electron trgveling along the ;ero—field con-
afl4 “q tours can hardly reach the right end. Increasing the sample
size will certainly cause these contours to percolate, leading
where hy is to adjust the flux strengthf, is the field to a spurious enhancement of the electron conduction. We
“source,” chosen randomly withifi—1,1]. Unless specified have determined that this enhancement of the reduced local-
otherwise, the flux parameters in this paper are set thgbe ization lengthA ,, can be substantially large, in some case as
=1.0 ando;=5.0, corresponding to a smoothly varying flux |arge as a factor of 10, ad increases from 10 to 240 lattice
between— ¢o/2 and ¢o/2, wheregy is the flux quantum. It spacings. As a matter of fact, this is what was observed in a
is easy to see that with the above set yp;)=0 and recent numerical repdftand a false metal-insulator transi-
(i ¢j>~exp(—|R1-—Rj|2/ZUf). tion with two distinct scaling branches followed, as a resullt.
In this section, we shall employ the standard transfer ma©bviously, only when these contours become percolating
trix method?® which has enjoyed tremendous success in thehoughout the sample do the data reflect the true conduction
study of localization. The system under consideration is obf the system. It is thus very important to enforce the perco-
strip geometry of widthM and lengthL, where periodic lation condition for the zero-field lines in all the samples in
boundary condition is imposed across the strip width Bpd  use. We achieved this goal by regularly imposing a vanishing
in principle, has to be sent to infinity, leavilg the only total flux through eaciM XM square segment in the elon-
characteristic length for the system. In practicds chosen gated strip. In doing so, we forced domains of opposite mag-
to be about 1®longer than Mto achieve the self-averaging netic field to cover essentially same areas, making the do-
and a first standard deviation of 0.5% for data presentedhain boundaries smoothly connect with one another within
below. For such a large value bf a successive multiplica- each segment and thus along the strip. This regulation in our
tion of the transfer matrices converges and is characterizeflux implementation effectively removed the spuriousness in-
by a set ofM-Lyapunov exponents, which determine how herent in the data and, as we shall see below, leads to non-
fast the wave function is damped along the strip. The smalltrivial results.
est of these exponents, therefore, contributes the most to the The main panel of Fig. 2 shows our results for the reduced
transport. Its reciprocal, which has dimension of length, idocalization length at energig= —1.0 at different values of
the localization length\,, of the wave function, being con- size and disorder strength. We were able to carry out the
fined on the strip. As the system width is enlarged, the localmost extensive study of this kind allowed in current comput-
ization length approaches its bulk valde=limy_.\y, ers; systems of width up to 240 lattice constants were used

wherec/ is a fermion creation operator at sitand the first
summation is over nearest neighbors. Here on, we shall s
the hopping elemeritto be the unit of energy and the lattice
constanta the unit of length. The diagonal disorder is intro-
duced through the randomness\ih and uniformly distrib-
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FIG. 2. Reduced localization length in random field model with
175 ' 1175 Er= —1.0,h0=1.0,o-f=5.Q. In§et: Correlation length obtained by
data collapsésee explanation in text
1501 150 . . . . "
to sampling. This behavior signals the onset of a critical
125 125 phase in which the electron wave function is self-similar at
all length scales that are set . In other words, in this
100! 4 100 scale-invariant regime, the wave function at large distances
has an algebraic spatial dependence, instead of an exponen-
7 75 tial decay. This very interesting situation has actually been
encountered in several numerical studies where a line of
- - critical points was reportetf:'® However, the restriction in
small system size and low-precision data precluded a conclu-
25 125 sive statement to be reached in previous work. More impor-
tantly, little effort has been made to elucidate the physics of
0 0 delocalization in general and of a line of fixed points in

0 50 100 150 200 particular for the RMF problem.
We must note that a highly plausible mechanism for de-
FIG. 1. From top to bottom: Percolation patterns of €0  |ocalization in systems containing RMF can easily be seen
contours of the magnetic field landscape generated froniZkdor  from the very construction of our computation, in which the
four samples of widthiM =25, 50, 100, and 200, respectively. In ghacigl implementation of flux plays a crucial role. For field
each sample, the top and bottom edges are connected forming 4 figrations of vanishing mean, it is the zero-field contours
et o s o o i Gy extened ttes by petcalating hroughout 1 55
i . : ) ) . tem. When a plain application of ER) was used which, as
regions. Black lines represent the magnetic boundaries, which onl?g evident in Fig. 1, did not ensure the percolation of these
begin to percolate in large samples. A . . .
contours, the size-invariant behavior at small disorder was
not observed as in Ref. 14. Clearly, by inherently imposing
at, for a reason to be clarified later, disorder of intermediatehe percolation condition, our flux implementation has cap-
strength, 3.&W=5.0. At all other disorder values, the tured the essential physics of delocalization in the RMF
width was chosen to be 6, 10, 20, 40, 80, and 160. As can bmodel and has thus yielded extended states as an immediate
seen from Fig. 2, for strong disorder, the reduced localizatiorronsequence. From this explanation, the notion of a critical
length continuously decreases as a function of the striphase appears to be very robust and inevitable.
width, which is to be extrapolated to zero at lafgelimit, Perhaps rather surprising is, instead, the presence of an
corresponding to an insulating phase. At very large disordeinsulating phase in a RMF, given the percolation of the zero-
the reduced localization length indeed experiences an expdield countours regardless of all other parameters in the prob-
nential drop asvl increases, a typical behavior in strong lo- lem. It is our main purpose in the rest of this paper to assess
calization regime. Remarkably, for all small values of disor-a legitimate, and even more fundamental, questwhy lo-
der, W=4.0, the reduced localization length appears to becalization in a RMF system?his system deserves a thor-
size independent, at least within the statistical error bars dueugh consideration in its own stand because the presence of
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a magnetic field, uniform or nonuniform, quenches the ki-the 3D Anderson problem or in the presence of spin-orbit
netic energy and radically alters the character of electromcattering.
eigenstates. While coherent backscattering is the mechanism In fact, in order to successfully describe a situation with a
of localization in a random scalar potential, the localizationcontinuum of fixed points, it is necessary to adopt an extra
in the case where the kinetic energy is quenched, like thgca"ng variable and, consequently, abandon the one-
QHE for example, is the quantum hopping of cyclotron mo-parameter scaling hypothesisA clear example is the
tions. One can now envisage a situation in which electronkgsterlitz-Thouless transition in ai®(2)-spin model in
are subjected to a staggered magnetic field. The electrons afghich the low-temperature phase corresponds to a line of
forced to reside mainly around the magnetic boundariesgritical points. Beside the spin stiffness, a new degree of
where the field changes its sign, forming the so-called “edg§reedom—the “fugacity” of vortices—is required to describe
states.” The introduction of randomness in the magnetighe transition. Literally, in dealing with such two scaling
field, as well as an additional random scalar potential if apyariaples, the examination of th®(2)-spin model indeed
plicable, scatters these states, presumably, in afundamenta}lgquireS a special analy&fswhich is briefly explained in
different manner from that of the Anderson localization. In\yhat follows. In the orderedlow-temperaturg phase, the
other words, since the edge states are nonperturbative in escaling function, i.e., the scale dependence of spin stiffness,
sence, it is an open question of whether their character inyas found by solving a set of two renormalization-group
duced by magnetic field survive the introduction of disorderRG) equations. At severaflow) temperature values, the
Nevertheless, in the remainder of this section, we wish t&caling fucntion was then fit with simulational data and ex-
focus on the attempts to incorporate the RMF data into therapolated to infinite system, where one could extract the
general framework of the localization understanding. A comy|k spin stiffness that was then used to determine the criti-
mon practice in the study of localization is the data collapsegg| Kosterlitz-Thouless temperatufg . In the disordered
in which the reduced localization length is assumed to satisfyhjgh-temperatugephase, where it was much less transparent

the finite-size scalingnsatz to find a compact solution to the RG equations, the single-
parameter scalingnsatzwas assumed antlx; was calcu-

A(W) E(W) lated by data collapse procet_jure analogous to the_localiza-
Ay(W)= M =f( M ) (3 tion cases. However, the critical temperatdrg; obtained

by approaching from the high-temperature side is observed
to be far worse than that computed from the low-temperature
wheref is a universal scaling function, ard=limy_.\y is  sidé* because the presence of the second variable necessar-
the bulk localization length or the correlation length. As anily invalidates the scalinginsatz

ansatz Eq. (3) then requires justification which will be Similarly, it should be clear that a plain application of the
achieved if all the data points of,, at different values of scaling assumptio(8) into the RMF case is problematic and,
disorder and length scale can be collapsed onto a singliedeed, does not yield much reliable information with regard
curve described by The correlation length is also obtained to the transition point. For the time being, since a micro-
in this data collapse process and will usually be fit with somescopic theory, i.e., a set of RG equations, describing the hy-
trial singular function to determine the critical point. Since pothesized critical lines of the RMF problem is not ready at
the aboveansatzacceptsé/M as the only argument, it is hand, we would like to focus, instead, on two important and
equivalent to the one-parameter scaling hypothesis that comtimately related issues which are of broader range of appli-
ductance is the only relevant scaling variable in the problentations. They arg(i) test of the validity of the one-parameter
and that the notion of @ function g(g)=dIng/dinM is  scaling hypothesis, and (ii) determination of the existence of
well defined? In fact, in many localization problems, such as a hidden degree of freedom, if there is any, in a general
the Anderson model in two and three dimensions, the singlelocalization problem.

parameter scaling scheme has been exploited with remark- Before we present our method in the following section, let
able succe<s and the scaling hypothesis has been verifiedus briefly discuss other available conclusions in opposition to
with great confidence in these circumstances. If this scalinghe possibility of a line of fixed points. Generally, such a
procedure is to be adopted and applied to our RMF datpossibility has been excluded on two following grounds:
obtained in previous calculations, the correlation length for (a) A scale-invariant phase would require an identically
strong disorder is shown in the inset of Fig. 2, which seemwanishing function, an unacceptable requirement given the
to reveal a divergence at a critical disorder of intermediateanalyticity of theg function®

strength. However, there is a caveat. On one hand, the scal- (b) A scaling function for conductance in a RMF, obtained
ing assumptior{3), by virtue of its inherent size dependence from the data collapse using E¢(B), was claimed’ to be
through¢é/M, obviously fails to account for the scale invari- reasonably close to the theoretical scaling function for the
ance atW=4.0, unless¢ is set to be infinite in the whole unitary class of ther model.

weak disorder region. On the other hand, contradictorily, Once again, the aforementioned arguments are crucially
data collapse cannot describe such a continuous region tsed on an implicit assumption of the single-parameter scal-
infinite £ because the procedure could at most give rise ting hypothesis. As fofa), the introduction of an additional
isolatedfixed poin{s). The reason is that, inferred from its scaling variable can easily lead to a critical phase without
analyticity, theB function could only have isolated nadg  violating the analyticity of the RG equations such as the
some of which characterize the transition p@ptsuch as famous Kosterlitz-Thouless transition. Evidently, the as-

144201-4



HIDDEN DEGREE OF FREEDOM AND CRITICAL PHAE . .. PHYSICAL REVIEW B 66, 144201 (2002

sumption of a one-variablg function is no longer a mean- 7.0 - x - ; , ; '

ingful concept in such a case. Neither is the one-parameter - o (a)

scaling function quoted ifb) if conductance is not the only 80+ & .

scaling variable in the problem. Subsequent attempts of data L% ]

collapse, as well as conclusions regarding the unitary sym- 5.0 - l 4

metry can no longer be made with any reasonable confi- T

dence. In fact, in dealing with a system that contains a criti- a0l % |

cal phase, data collapse overall is a wrong practice because '

this phase could easily be misidentified with an insulator, as M I ‘é‘? |

will be discussed at the end of the following section. 30 - i
IIl. TWO-PARAMETER ANALYSIS 20 1
OF THE LOCALIZATION LENGTH r

Since the one-parameter scaling is the central theme of 10 — I

localization studies, the purpose of this section is to suggest 0.0 e

a different procedure to test this crucial hypothesis. As de- "0.45 0.65 0.75

scribed in the previous section, the standard practice has AM( )/AM

been the data collape or finite-size scaling technique using

the localization length. However, an obvious disadvantage of

this technique is itdbias that is to say, one is required to 3.5

know a priori the actual phase of the system in order to do -

the scaling, while this is what the scaling is supposed to tell! 30

Accidentally, in all systems so far encountered in the local- I

ization study, the data collape always gives rise to one- or o5 |

two-branch scaling curves, both corresponding to pisage

which the electron wavefunction has finite correlation length. 00 L

Inevitably, this “standard” technique would fail to identify A

the critical phase—a phase that has infinite correlation M

length. Moreover, the prejudice in the one-parameter as- 15 ¢

sumption hinders the detection of other parameters, if there 1

are any. 10 -

Our idea to circumvent these deficiencies is simple. In

addition to the localization length,,, let us consider the 05 +

reciprocal of the second smallest Lyapunov exponent of the irte

transfer matrix and denote it bg/,j) Being the leading and 0.0 . : . \ M

subleading contributions to the electron transport and yet be- 0.45 0.55 265 0.75

ing two independent physical quantitiesy, and\{? carry Iy

the fullest anccomplementarynformation as far as the trans- g5 3 Two-parameter plots of Anderson modeké@ two and
port properties are concerned. If the single-parameter scaling) nree dimensions. Fermi enery=0.0(0) and—1.0(0). Dis-
apphe;s, le., the_ dependence of the two lengths on disordegrderw ranges from 4.0 to 20.0 ite) and from 4.0 to 2.0 irb).
chemical potential, and so on can be absorbed into the COfrows show the flow direction of data along the increment of

relation lengthé, then they can be written as functions of one system widthM =6, 8, 12, 16, 32, 64, 128, 256 féa) and linearly

dimensionless argumegtM: increases from 6 to 20 falb). Fixed points atA,,=0 and atA
—o are denoted by (insulatoy andM (metallic), respectivelyC
EWLE, ...) indicates the isolated repulsive critical point.
AM(M,W,E,...)=Mf(T , P P

the elimination after Eqs(4) must have been invalid since

EWE, ...) the two functionsf and g necessarily contain at least one

W ) (40 more extra argument besidéM. In what follows, we shall
actually use a set of ,A{?/Ay,) instead of fy A2,
whereg is an additional scaling function. After an elimina- whereA{2=\{?)/M, for better illustrations.
tion of the only argument availabl&M, the resultant rela- We first apply the procedure discussed above into the
tion between the two lengths is obviously a single-valuedwyell-understood 2D Anderson model, particles hopping from
function,)\M:f(g‘l()\(,v",’))). If they are now plotted against site to site on a square lattice and scattered by a random
each other on a scattering histogram, then all the data pointcalar potential. Theoretically, the single-parameter scaling
must fall onto a single curve regardlessMf W, E, as well  hypothesis is believed to hold and all states are expected to
as other unspecified parameters of the system. Conversely,b localized! Figure 3a) shows our results of the localiza-
the data points scatter over a wide region in the histogranmtjon lengthA,, and the ratio/\(,ﬁ)/AM for systems of differ-

AD(MWE, ...)=M g(
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ent sizes and at various values of Fermi energy and diagone  1.50 ' ' . - ' . .
disorder. Specifically, the Fermi energy =0.0 (circle
symbolg and E= —1.0 (square symbojs and the disorder

runs from 2.0 up to 20.0, both in the energy unit of the 1T
hopping element. Arrows indicate the direction of datdvas
is successively increased. Remarkably, an excellent verifica 100 -

tion of the single-parameter scaling theory in the 2D Ander-
son model is obtained for systems of size as small as si»
lattice spacings. As evident in Fig(e8, all the data points Ay o755
automaticallyalign on a single curve that also appears to be
independent of Fermi energy. Moreover, as the system is
enlarged, the data points are driven along the curve toward: 0.50 |
[, the insulating “fixed point” corresponding td,,=0. That
there is no other fixed point that separates the flow line is a
definite indication that the system entirely lies in an insulat- 0.25
ing phase.

The method is next applied to another well-understood
situation, the Anderson model in three dimensions, in which %9 22~ 420 ""035 o040 (8'2‘5
the scaling hypothesis is again believed to hold and, interest Ay TIA
ingly, a metal-insulator transition has been prediétathe
results are shown in Fig.(B) for systems of size ranging  FIG. 4. Two-parameter plot of Hall systemp=1/4¢o,W
from 6 to 20 and at different energies and disorders. Again=10 in the lowest Landau band. Fermi energy ranges from
with the self-alignment of data points, the scaling hypothesis~ 2675 (@) down to—3.3 (LJ). Arrows show the flow direction
is indisputably verified in this case. Interestingly, there are?’ data along the increment of system sia=6, 8, 10, 16,
three fixed points on the flow line: the insulating fixed pointzo‘ 40, 80, 1601 mdn_cates the insulating fixed points, whi@ is
I with A,=0 (strong disorder regimethe conductingme- the single critical point.
tallic) fixed pointM with A,=« (weak disorder regime
and asingle repulsive(critical) fixed pointC that separates Interestingly enough, the application of our analysis into
the two phases. Moreover, this critical point appears to béhe RMF model provides much appealing information. We
insensitive to the Fermi energy, confirming the universalitypresent in Fig. 5 data for Fermi energy- — 1.0, disordeiV
of the critical conductance in the 3D Anderson model. from 3.0 to 4.0(circles and from 4.2 to 14.@squares and

We next turn our attention to an also well-studied casegsystem widthM running from 6 to 240. Clearly, since the
the integer quantum Hall effect. The magnetic flux perdata points do not fall on a single curve, this must be taken
plaquette is¢$=1/4¢, and the diagonal disorder iV  as arobust evidence of a hidden scaling variable and hence a
=1.0. With this choice of parameters, the center of the low-breakdown of the one-parameter scaling hypothesis in the
est Landau level is determined to be -aR.675. Several RMF problem. As we have mentioned, it is the use\@) in
values of Fermi energy are thus shown fren2.675 down to  our analysis that maps out this extra variable unambiguously,
—3.3(the band tailin Fig. 4. It has also been established by which otherwise cannot be observed within the standard
extensive theoretical and experimental studies that electrogcaling procedure. Amid its anticipatory existence discussed
states are critical only at the band center and localized othat length in the previous sectiothis is the first time the new
erwise. Once again, our procedure beautifully reveals in Figdegree of freedom in the RMF system inarguably manisfests.
4 the expected feature of this model: Only at criticality Its pronounced influence on the RMF data, indeed, as strong
shown by the black solid line, the data flow runs towards ands that in the integer quantum Hall case, can be seen in Fig.
terminates at the critical point denoted 8y while all other 5 (and in comparison with Fig.)4 There are two distinct
flows (open dotted lingsfollow a common curve to end &t  regions corresponding to different behaviors of data, sepa-
the insulating fixed point af\\,=0. The critical pointC  rated by the solid lineA of disorderW=4.0. Below this
governs the flow lines within its vicinity. Evidently, unlike line, the data lie in the regime of strong disorder and are
the Anderson models presented in the previous paragraphattracted towards—the insulating fixed point—at the lower
the data flow of the quantum Hall system do not fall on aright corner of the histogram. In contrast, the data alse
single curve, thereby signaling the presence of an extra scalend to flow towards the left side of the histogram and stop
ing variable. Theoretically, the quantum Hall system is con-on the dotted linéAB, a coalescence of fixed points. Clearly,
trolled by another relevant variabiethe Hall conductance this two-parameter picture has provided us a global view in
oxy, beside the logitudinal conductaneg,. What is strik- ~ determining the ultimate fate of the RMF system at large
ing in our picture is the evidence of a new scaling variablelength scales. As a result, one only has to focus in the vicin-
which, to our understanding, is directly observed for the firstity of A, the end point of the critical regime, to distinguish
time withouta priori knowledge ofo,, . Overall, the useful- the behavior of the two corresponding phases. By the time
ness of the method we have introduced so far lies in itshe system size reaches 240 lattice constants, while the line
capability of detecting a new scaling variable when there i A itself and that above it have come to termination, the line
one, while giving a null answer when there is none. right below it, after spending sometime in this vicinity, has

050 055 0.60 0.65
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FIG. 6. Schematic renormalization-group flow diagram of the
random field modelX represents the hidden degree of freedgiis.
conductance and its critical value gs. Shaded region above line
(a) is the critical phase. Dotted lines below lifie) are projected.

FIG. 5. Two-parameter plot of the random magnetic field modelarrowed thick dotted line is the projected sweep at microscopic
at energyE=—1.0, field parameters;=1.0, 0;=>5.0. Disorder |ength scale.

W=3.0, 3.1, 3.2, 3.4, 3.6, 3.8), 4.0 (@), and from 4.2 to 14.0
(Od). Error bar is of size of symbols. Arrows indicate the flow region, the RG lines are driven along lirle) towards the

direction as system size is increased =6, 10, 20, 40, 80, insulating fixed point where the “fugacity” is further en-
160, 240. 1 is the insulating fixed point ak,,=0. Dotted lineAB hanced.

is the_lc_qus of putative_ critical pointa.A is the separatrix between As our final point in this section, it is very interesting to
the critical and insulating phases. observe that in contrast to general assumption, the reduced
localization length in the critical phase is also subjected to a
already meandered to the insulating fixed point. We, thereslight size-dependenceéAs evident from Fig. 5, on the
fore, are on a solid ground to conclude that our RMF systenfpoundary of the critical phaséine aA), A\ endures a 12%
undergoes a metal-insulator transitionVet=4.0. In addi- decrease from its initial value as the system size sweeps from
tion, the conductance at this critical disorder and at the largb to 240 lattice spacings. In account for this size dependence,
est length scaléi.e., atA) is determined to be 1.26/h, of the wave function must acquire an additional logarithmic

the order of the quantum conductance, in justification for theSPatial correction, apart from the power-law form. Again,
genuine quantum-mechanical nature of this transition. this situation has actually been well known in the Kosterlitz-

Also note that the two-parameter pictures in all four Con_Thouless transition in which the spin-spin correlatio gt

sidered situations share a common feature: their data flows established to 58

do not cross. We are thus able to make a general statement. I8
The evolution of a system with respect to an increase in size (S(x) $(0))~ n_|x|
only depends upon its current state. In other words, if one |x| /4
attempts to construct a set of renormalization-grdR®)
equationts) for the system, its analyticity will be, in effect,
ensur_ed. For the RMF model, in account for the ewdence_ Ofnis is the first time a similar situation has been encountered
the hidden degree of freedom and basing on our nUMerical, \he context of localization. The implication of this slight
data, we propose a RG flow diagram shown in Fig. 6. Th&aie dependence is far reaching in both theoretical and ex-
picture is in close resemblance to the RG diagram of theyerimental sides. It, in fact, resolves a central issue in inter-
O(2)-spin model in which the conductance is replaced bypreting numerical data regarding the critical phase of the
the temperature inverse. The thick dotted line is the projecteggMF model. Using the Landauer formuidthe conductance
sweep at the microscopic length scale. The shaded regioft the critical disordeMW,=4.0 is found to be:g(W,,M
above line(a) is the critical phase with infinite correlation =6)~ 1.58¢?/h and g(W.,M=240)~ 1.26e*/h. That
length. As one moves along the RG line in this region, onemeans the conduction has undergone a considerable reduc-
always stays at criticality and the wave function therebytion, which is about 20—25%, as a function of the system
looks self-similar at all length scale; or in other words, thesize. We are confident that several numerical studies in the
wave function has a power-law decay character at large diRMF model have mistakenly interpreted the decrease in con-
tance. The new degree of freedom—the “fugacity”—is ductance as a signature of an insulating state. In addition,
eventually renormalized to zero in this phase. Out of thisdue to this size dependence, any attempt to collapse data

In addition, the spin stiffness in its ordered phase is also
odified by a logarithmic correctiof. To our knowledge,
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points onto a scaling curve is no longer sensible. A similar 3g0
conclusion can apply equally well to experimental interpre-
tation, where the inverse of temperature plays the role of the
length scale. A drop of conductance as temperature is re- 2so}
duced might not necessarily imply an insulating groundstate,
especially when the groundstate is critical in essence. We
suggest that, if possible in such a case, another measurable200t
quantity should be used together with the conductance to
map out a two-parameter picture and identify the critical
phase with greater confidence. 150

IV. ANATOMY OF THE WAVE FUNCTION IN A RANDOM
FIELD: QUALITATIVE PICTURES

100

Our examination so far has evinced the evidence of a
critical phase, by virtue of the percolation picture, and a hid-
den degree of freedom, inferred from the two-parameter
analysis. Nevertheless, there is as yet no microscopic under-
standing of these observations. The questions to answer in-
clude: What is the nature and origin of newly found degree
of freedom? What role does it play in governing the metal- 300}
insulator transition? What is the mechanism of localization in
a RMF, after all? We devote this section to addressing these
important issues by approaching the problem at its bottom- 250
most: the structure of its wave function.

We exploited the Lanczos diagonalization algorithm to
compute the wave function of electrons on a square 30
X 300 sample with periodic boundary conditigfBC) im-
posed in both directions. The sample was subjected to a
smoothly varying magnetic field with zero total flux. No di-
agonal disorder applied, otherwise. We adopted the choice of
gauge suggested in Ref. 10. For the purpose of illustration,
the correlation length of the magnetic flux was chosen to be
os=15 lattice constants, antd,=4.0, correponding to a
strong field. The wave function closest to a given endfgy s

was obtained from the Lanczos diagonalization of the (
—E) ! matrix?’ that is to say, the eigenstate corresponding "
to its largest eigenvalue in modulus was selected. Of, e

Figure 7 presents our results at Fermi enefgy — 3.0, 0 o0 . 150 200 250 300

close to the band edge. The upper panel displays a typical 5 7 ypper panel: Zero-field lines of a random fieie-
flux configuration, in which the magnetic boundaries shown, . ineq in text Lower panel: Density plot of the square of a wave

in black lines are percolatingNote the PBC on all four  ¢,nction at energyE = — 3.0 for the above field configuration.
sides of the sampleThe lower panel shows the probability

density, i.e., the wave function squared, where the dark spotsystem appears inevitable. Thus, the network picture justifies
represent a high-density region. In comparing the two panelsur assertion in Sec. Il regarding the relevant mechanism of
our initial impression is that the electron wave function isdelocalization in a RMF; it is the percolation of zero-field
clearly extended throughout the sample, following the fractakontours that is responsible for the extensiveness of the wave
pattern of the zero-field contours of the magnetic field landfunction and, hence, the existence of the conducting states.
scape. Electrons favorably reside around these lines within a As an interesting consequence of this picture, when an
few lattice spacings, forming a quasi-one-dimensional tubexternal magnetic field is applied atop the RMF, evidently,
with finite length. We have checked that stronger field and/othe percolation of magnetic boundaries is lifted. The RMF
higher Fermi energy would broaden the width of the tubessystem is then expected to behave somewhat closer to an
but the overall picture remains unchanged. At the first sightinsulator, causing a positive magnetoresistance. This expec-
it is, therefore, sensible to describe the RMF system in theation is borne out by the results obtained by Kalmeyer and
language of a one-dimensional network, similar to that proco-workers in a numerical wotk which establishes that the
posed by Chalker and Coddingt8rio represent the integer RMF magnetoresistance is positive in both conducting and
QHE. Given the inherent connection of the tubes at theénsulating phases. The result for the insulating phase is quite
saddle points of the field landscape, the scattering at thdistinctive in comparison to the Anderson localization in
nodes of the network is symmetfiso the criticality of the ~ which case magnetic field, by suppressing coherent back-

50

0 200
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Y tion. This trajectory has been named a “snake stateap-
L . parently in deference to its snakelike shape. Sometimes, all
these trajectories are commonly called “edge states” for their
B>0 W d relative position to the zero-field line. As pointed out by
Mdller, % the finite transverse size of these states is actually a
purely quantum-mechanical effect since a classical orbit has
s no constraint on its radius. In addition, the quantum tunnel-
ing between a pair of driftsnake states results in a new pair
of symmetric/antisymmetric states, or equivalently, states of
B<0 W d opposite parity pairwise. Detailed quantum mechanical
treatment?® further confirm that, in most cases, in each pair
of energy bands there are two snake and two drift states at
the Fermi energy. Most prominent are the snake states that
peak right on th&8=0 line; so in the context of the network

model, they have a considerable chance to percolate and thus
%rry extended wave functions. The drift states, on the other

FIG. 8. Schematic illustration of classical trajectories of drift
stateqd) and snake statds) in a nonuniform magnetic field, which
flow in opposite directions, in most cases.

scattering, results in a negative magnetoresistance inste
These authors also related the magnetoresistance of the R
model to a striking behavior of longitudinal conductanpgg

of the half filled quantum Hall system. In particular, it has
been observed in experimefitshat the quantum Hall system
develops a deep minimum jm, as magnetic field is swept
through its half filling value. Theoretically, at such a strong

magnetic field, where the number of flux quanta is twice th ion demonstrated in Fig. 7 disagrees with this conclusion.

Pu;nber Off ele'ctrc.)nsi e?ch illecttrog captures'ttwo f#xhiualméur careful examinations on the localization length and mag-
0 form a fermionic electron-fiux tub€ composite, WRICN T€€IS , o e gistance, furthermore, depict a delocalization picture

no net magnetic field. It is argued, however, that the com-

. i . . .~~~ Instead. More importantly, we shall point out in the discus-
posites are still subjected to a static random flux dlstr|but|or15ion that the version of the network model considered in

induced from the presence of a random potential. That.'s.t?hose works was too restrictive to account for the RMF prob-
say, the RMF model is presumed to be the correct descrlptlol?em, unless under two major revisions. Specifically, that ver-

of the quantum Hall system close to half filling. Slightly sion assumed an incorrect scattering matrix at the nodes of

away from ha!f fiI_Iing, the c_omposite fermions experience 4the network, or the regions where the zero-field lines meet.
small magnetic field remainder after the flux quanta have In view O’f the percolation pattern, how, then, could an

been absorbed. In view of this picture, the deep minimum o]:alectron gas in a RMF become localized under some circum-

Pxx Can be explained at once as a direct consequence of t fances, say, at strong disorder or close to the band edge? To

percolatmn status .Of the zero-field contours. W_hat we f|n_ nswer this question, it is necessary to reconsider the case of
appealing, by turning the above statement upside down, '6HE, where the percolation also plays a key role. As is

that the very observation of the minimum pf in experi- well-known? in this situation electrons at enerdy reside

ments provides us an independent and complementary eVl the equipotential line¥=E— (n+ 1) # w,. We produce

Qence for the extensiveness of the wave function along_ thﬁ1 Fig. 9 a wave function of a potential configuration similar
lines of zero field. While we are cautioned that a positive

; . : “to that in the upper panel of Fig(&, with hy replaced by
magnetoresistance is also shared by a Fermi gas, we consider_ :
this scenario unlikely as a Fermi gas would eventually bec-i?0 2.0. The magnetic flux per plaquette wag, and the

come localized with an infinitesimal amount of impurities, Fermi energyE=2.8, right at the center of the lowest Lan-

. dau level. Again we obtain a similar picture that supports the
fchereby ””fﬂb'e to account for the apparent conducting beha¥)'ercolation of an extended state. In this sense, the quantum
ior of half filled quantum Hall systems. '

The phvsical role of th&=0 i tioned ab h Hall and RMF systems share the common physics of delo-
ind (ejg y3|ca|1 r_?_ edo_ d t_'l b ".}\ﬁs r;‘oe”r'l‘?r;]e tad'O\éIeth S calization. However, whereas the development of insulating
Indeed been clariiied in detail by v, which SUdI€d € 4164 i the former is achieved by destroying the percolation
electron motion in a linearly varying magnetic field. We shall

. . . i . o as one moves away from the Landau band center, this picture
reproduce its main results in the Appendix, while giving a

! . ) . . “offers little clue towards the localization in a RMF.
brief explanation of the ingredients necessary for our coming However, closer inspections of Fig(5J versus Fig. 9

dls_cusspns. At the c_Iass_lcaI level, there_ are two types 0Feveal a striking difference between the corresponding wave
trajectories sketched in Fig. 8. In the region far away fromfunctions of the two cases. For the quantum Hall system,

thg BZO line, th? particle fo]lows a cyclqtron Orb'.t whose aside from the percolation pattern, there is no other notice-
guiding center drifts perpendicular to the field gradient alongable feature in view: the wave function is characterless; it is

x (forward) direction. Following Miier, we shall call this  everywhere monotonous. In startling contrast, the RMF wave
orbit a “drift state.” In the region of small field=0, the  function posseses a far more complex structure along its
particle travels in a snakelike trajectory back and forth acrosgnain frame. As is prominent in Fig.(B), every segment in

theB=0 line along, most of the time; x (backward direc-  its network is solidly filled with series of pearl-like objects,

nd, due to their position off the zero-field line, at the first

ght, are less likely to contribute to the RMF transport. We
shall soon clarify their fundamental role, however. In the
meantime, we must note that there have been studies that
attempted a different reasoning: the couple of snake states
would ultimately become localized due to the mixittgn-
neling between themselvé&® First, the RMF wave func-
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FIG. 9. Density plot of the square of a wave function in the
quantum Hall system. Fermi ener@~ 2.8 close to the center of
the lowest Landau band and 1/4 flux quantum is threaded through 259
each plaquette. The diagonal disorder configuration is chosen as in
Fig. 7(a) with hy replaced by,=2.0.

200
tiny spots of high- and low-density succesively arranged next
to one another. Apparently, this unusual feature implies some
form of singularity, which, at our first guess, is the existence
of zeros in the wave function. As a matter of fact, a definite
answer to our initial speculation can be found from the ex-
amination of electron motion outlined in a previous para-
graph. Let us consider again the edge states in Fig. 8, as eact
travels along thé8=0 line. Two noticeable aspects can be
seen immediately. The snake and drift states @jevastly
distinct in wave number by flowing in opposite directions;
(ii) widely far apart while maintaining a considerable over- ol ! .
lap. It is these important differences that profoundly resultin = o 50 100 150 200 250 300
zeros(or node$ of the wave function when the two states ) )
scatter against each other. Furthermore, it is an established FIG. 10. Curl of current, as descnk.)ed.un text. Upper panel.
fact® that an isolated zero is necessarily the center of a vorduantum Hall system, using wave fun‘.:t'or? in Fig. 9. Lower panel.

. . L .- 'RMF system, same wave function as in Figh)7
tex current. As an illustration, we shall give in the Appendix

an explicit construction of a wave function with arrays of saqgle regions of the potential landscape. In the lower panel,
nodes and current circulating around them. o the RMF current pattern demonstrates a discontinous flow,
For the time being, to visualize the current vortices in ourhe cyrrent is irregularly disrupted into arrays of vortices and
Hall and RMF cases, we compute the curl of current flowingantivortices represented by bright and dark spots of size
inside each plaquetteV(xJ), =>nJ;;, where the summa- about a few lattice spacings. While noticeable everywhere,
tion is around the plaquette adgj’s are current on its four one can easily find, e.g., on the segment at the lower left
edges. Shown in Fig. 10 are the curl results for the waveorner a series of such spots arranged in a consecutive fash-
functions in Figs. 9 and (B), respectively. Once again, a ion.
salient contrast between the two cases is manifest. In the As is evident in Fig. 10, the pronounced difference be-
upper panel, currents within the links of the Hall network aretween the two systems therefore cannot be overstated:
continuous, the flow is laminar. In fact, the simplicity and whereas the integer QHE is controlled by the scattering at
regularity of current flows explain the spectacular success ahe nodes of the network, it is the physics on the links of the
the network model in representing the QHE, most notably itsietwork that plays the central role in the RMF.
critical exponent. In other words, the Chalker-Coddington It appears very likely that the newly found vortices are
model captures the relevant physics, indeed the most impomtimately associated with the compelling evidence of the
tant one, of the integer QHE: the scattering of currents at th@idden degree of freedom established in our scaling study. In

150

100
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fact, both phenomema should be viewed as two sides of the/. ANATOMY OF THE WAVE FUNCTION IN A RANDOM
same coin. On the one hand, the formation of vortices is the FIELD: QUANTITATIVE RESULTS

direct consequence of the mixing of drift and snake states,
which, on the other hand, the hidden degree of freedom Cha(/'ortices and the MIT in a RMF, our task at hand is to seek

acterizes. Accordingly, we are in a position to make the fol-o;t 5 characteristic measure to probe such a connection.

lowing conjecture. While coherent backscattering, i.e., theciearly, a suitable candidate is the average transmission co-
interference between an electron close path and its time resficient through the links of the network. Also, what makes
verse, is the underlying physics of weak localizatithe it attractive is that it is a local property of the wave function,
interference between snake and drift states is the drivingather than a global one such as the localization length or
force of localization in systems subjected to a random magconductance.

netic field.As a result, the RMF system can only achieve its Let us again consider aM X M square samp]e Wrapped
insulating phase, under some circumstances, through thgh a torus and subjected to a RMF and a random scalar
coupling processes on the links of its network, as opposed tgotential. For a finite sample, there is a nondissipative cur-
the node scattering in the QHE situation. We must emphasizgant flowing around the torus in both of its directiofillote

that our conclusion is not the same as those discussed tRat there is no edge current in these samplBse value of
other previous work in two essential aspects. First, an eleghis total current varies from sample to sample and vanishes
tron gas in a RMF still manages to maintain its Criticality, Ol on average since RMF Conﬁgurations come in pairs that sup-
its extended phase, if the Scattering of the edge states is n@brt currents of Opposite Signs_ However, its root-mean-

sufficiently strong. There is an inherent competition betweersquaredrms) fluctuation is still a sensible quantity to char-
two tendencies: the delocalization, inferred from the percogcterize the conduction. Also in thé— o limit, with no net

lation of the snake states, and the localization, induced ffomnagnetic field, the total current is of course vanishing.
the |_nterference of the snaland drift states. Second,. early Therefore, we expect the finite-size current to scalelgs
studies always neglected the profound role of the drift states, \—» where v is a positive number. Our naive guess is
which is important to be restated as follows. It is only due tothat ,=2 because the total current reflects the overall con-
the vast differences in wave number and spatial location beqyction in all the set of links and would suffer if any of them
tween a pair of snake and drift states that vortices can bgs pjocked by vortices and the number of links is propor-

pronouncedly formed. tional to M2. In other words, we may interprét?\/(J%) as
A successful microscopic theory for the RMF must, there-,[he average local current in & x M sample
fore, involve a correct description of process occurring on The calculation is the same as described in Sec. IV, except

the links of the network. This observation has, in fact beeqN : .
. ; n e switched back tthy=1.0 ando;=5.0, and applied atop
mentioned by Zhang and ArovasRegardless of the techni- a scalar potential ran(zjomly choscfen withiin 2W. 2W]. The

cal correctness of their formulation, we are certain that Valicample size isvl =26, 36, 50, 70, 100, 140, and 200. The
ous intuitive aspects of the picture drawn in their work are . \mber of samples is typically 1®r higher to reach a pre-
corroborated in our present study. Specifically, the eIemen(—:ision 0f 2-3%. In the inset of Fig. 11 20 000 data points are
tary excitations of an electron gas in a RMF are found to beShOWn each dét representing thé currehy, §,) of a con-
the Ie dgef states; states ;hat are [()jroduced bﬁ trl]g peculiar 'H{;urati,on of magnetic field and scalar ;:;o{ential wilih
terplay of quantum mechanics and magnetic field. Scattering® - : -

=26, W=4.0 and at Fermi energig=—1.0. Much to our

among these states gives rise to vortices, a new kind of sec- . L eI .
ondary excitations. Characterizing the vortices is theire_xpectaﬂon, the _stgtlsucal distribution of curr_ents IS symmet-
“fugacity,” the hidden degree of freedom independently ob-i¢ around the origiJ=0 and appears to satisfy a Gaussian
served in our scaling analysis. Depending upon physical Cond!stnbutm_n. From the data in the inset, the propablhty den-
ditions, the vortices can unrestrictedly proliferate. In theSity Of finding a current at a given amplitud@dy|
phase, where the scattering is irrelevant, or few vortices ar& VJux T Jwy is computed and shown in the main panel of
present in each link of the network, the “fugacity” is sup- Fig. 11. The solid line is the Gaussian distribution function,
presed, the edge states remain gapless and carry currents.pigtted for comparison:
the phase where scattering is relevant, or there are too many
vortices involved, the “fugacity” is enhanced, a mass gap 1 S
opens up driving the system into the localized phase. p(x)=—xe* 20,

Overall, we conclude that the correct RMF network o
model must take into account the effect of vortices. Every

link in the network is actually a quasi-one-dimensional tubeVherex=|Ju| ando=(Jjy). With a very good agreement

with vortices residing inside. Intuitively, one would expect OPtained in Fig. 11, the rms current is thus a self-averaging
the presence of vortices to “block” the current flows, henceduantity; that is, its average oved independent samples
driving the conduction on the contours, and ultimately, theCONVerges as 4N for large N. Therefore, in our following
metal-insulator transitiofMIT). As a matter of fact, the pos- computation, we shall actually také(J%) = \a/2(|Jy|) for
sibility of such a scenario has been studied in great details igonvenience.

the context of quantum wires and tubes. It has been estab- Figure 12 presents similarly obtained result€at —1.0
lished that the formation of vortices critically affects the cur-for various sample sizes and disorders. The initial impression
rent flow in two-dimensional bent tub&s. of the picture is thaM?+/ JZM) appears to be well behaved.

Having speculated about the possible connection between
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600 0070 posed to have undergone a transition from a finite value to
zero as a function of disorder. The data in this computation,

0.005 - unfortunately, are not of good enough quality to locate a

500 clear-cut transition point. Nonetheless, we see that the pic-
z 0000 ture does indicate a critical disordéf,~ 4.0, consistent with
a0 | - our localization length study in Sec. Ill.

Sheng and Weng, and Yang and Bhatt shortly afterard,
used the Chern number of a sample wrapped on a torus as a

-0.005 -

EI\ 300 | 7"4 :& 0010 s L criterion of delocalization. By studying the scaling behavior

il 7 R, 0010 0005 ‘j—°°° 0005 0010 of the number of current-carrying states as a function of

p-1 f N x sample size, these authors indeed identified a metal-insulator
200 transition at a finite energ¥., or equivalently a critical

disorderW, . Our results are compatible with their findings.
However, there is a minor difference. While the Chern num-
100 - ber is a global property of the wave function, we in fact dealt
with its local attribute. Of course, one might argue that the
local conduction is simply a reflection of the wave function
8_000 0.002 0.004 0.006 0.008 as a whole, in that if the system is localized, the local current
S must be also small as a consequence. That is to say, our
consideration ofM?2./(JZ) delivers no new information as
FIG. 11. Probability density of current distributiécolumng as  does the localization length. Equipped with the justification
compared to the Gaussian distributi@olid line). Inset: Scattering ¢ Mzm as a local conduction, we have looked at the
histogram of currents for 20000 independent samples With problem from below. In a RMF system, the metal-insulator
=26,hp=1.0,0=5.0,E=~3.0, andw=4.0. transition observed at large length scale should be regarded

as the manifestation of a transition of the conduction at mi-
. . .pe 2 .
This justifies our use o1+ J2M> and, hence, our interpre- croscopic distances.

tation regarding it as a measure of local currents. Interest- Interestingly, the local current used in our work turns out
ingly, its amplitude is also of order—the hopping element, 4 pa analogous to the quantiy?AE proposed by Edwards
exactly what is expected of a current. We thus have a legalng Thoules€® whereAE is the energy shift as one switches
basis to regardv?\(Jy) as the average local current, or from periodic to antiperiodic boundary condition. Their cri-
local conduction, from now on. In the region of weak disor- terion of localization is to be adapted for the RMF case in
der, W=4.0, it endures a slight size-dependence then tendghat follows. Let us take aM xM square sample with
to saturate at a finite value of ordemt large system size. some configuration of random magnetic field and scalar po-
This means that the bulk conduction on the links of the nettentjal, and compute the curred$, flowing through the
work survives the thermodynamic limit. On the other hand.sample at a given enerds. At the next step, we further put
in the region of strong disorder, it is strongly supressed as thgany copies of the sample together to form an infinite peri-
system size is increased. The bulk local current is thus supsdic system with the original sample as a unit cell. Clearly,
the current in the whole system is still, . We now allow

20 ‘ ' ‘ ' these large unit cells, instead of being identical, to pick up
o0 M=26 different field configurations within the same population.
o0 M=36 Clearly, the average quantity(JZ,) would play the role of
"""" * m=§g an “effective” hopping element, whereas the energy fluctua-
o M= tion among states arouriglis typically W/M?2. The system is
< M=100 . .
o Me140 then equivalent to the old system withhW replaced by

________ » M=200 M2\/(3Z)/W. If this parameter is smaller than the original
one, it should obviously become even smaller if the argu-
] ment is repeated one stage further, combining cells for bigger
cells, and so on. Therefore, we arrive at a tentative criterion
for localization:

2
- L>M2 (Jw)
W W
B .Z 2 EOO.OO or
. Sala 0630870006,
. I I . 1 "‘“iﬂééﬁwf&&%gﬁggﬁ
0.0
0.0 20 40 6.0 8.0 10.0 MZJ(3) <t=L1. 5
w Although the coefficient in the right-hand side of E@)
FIG. 12. Root-mean-square of current. should not be taken seriously, to our surprise, the numerical
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results in Fig. 12 show a remarkable agreement: at the puta e i . R g
tive critical disordetW,=4.0, M2\(J2,) is ~1.08+0.02.
It is worth noting that the above argument is a coarse-
graining one in essence. Literally, it was a precursor to late
developments of the scaling theory of localization. By the g Py | g Py
same token, in the RMF problem, it elucidates the role of the ,—---%7Z . 2 “ . 7/ d
new length scaler;, the correlation length of the random
field, or roughly the average length of the links in its corre-
sponding network. As one coarse-grains the system startiny
from a microscopic length, if the links contain few vortices,
by the time one reaches;, the vortices will have been (= . i/'/ - /f//”, //,/f', _____ y
renormalized away, leaving the system in a critical state. The !
system will then look self-similar at all length scales. On the
other hand, if too many vortices are present, they will be-
come dominant at large distances, driving the system into a
insulating state. ) 7 — w o — ;
’ 74 & 4 /4

VI. DISCUSSION

We are now in a position to discuss two existing analyti-
cal approaches to the RMF problem. The first of these s the FIG. 13. Schematic illustration of the two-channel network
field theoretical nonlinearr model (NLoM) originally de- - )
veloped in Ref. 17. It was concllﬁde;th;t a% eIeZtron gagmdel. Clockwise and counterclockwise arrows indicate the current

. ) ) . lows in boundaries of magnetic domains. Big shaded circles are the
SUbJeCt?d t.o af;correlated RMF be_longs to .the un!tary class mixers where tunneling bgtween two snake gt&eﬁd and dashed
of Iocahzamon, thereby onIyFséqstalnlng an insulating phase."nes) takes place. Note that Ref. 18 damst allow snake states of
Although in two recent papers,it was argued that the same different parities(even and oddto mix at nodegsmall solid and
results should be reached for a RMF with long-range corre- pen circles of the network.
lation, we are confident that the visual pictures produce

throughout our study have told us something otherwise. Weyithin pairs of snake states of even and odd paritigih
believe that it is almost a general rule of thumb that therespect to a reflection across their own zero-field)liwas
presence of a magnetic field, uniform or nonuniform, inevi-considered. We produce schematically in Fig. 13 such a two-
tably confers a profound influence upon the behavior ofchannel network model in which the tunneling between a
quantum particles. The electron wave function, as perfectly,ajr of channels takes place within the links of the network.
visible in Sec. IV, manifests a radical change in its structurerhe pig squares represent magnetic domains of consecutive
as the magnetic field quenches its kinetic energy. In particUperpendicular directions. The arrows indicate the current
lar, the electron wave function acquires a fractal charactef|yy along the boundaries between adjacent domains. While

accompanied by a spontaneous formation of vortex currentshe mixing between snake states on the links is characterized
both of which should be considered lasilt-in effects of the  py 5 U(2)-symmetric matrix

magnetic field. Moreover, the model undoubtedly fails to _ _
account for the existence of the hidden degree of freedom e® 0 \[cos¢p —sing\(e'¥ O
pointed out and discussed throughout our work. The reason U:( 0 eupz)( ) 0 e
for this failure is that ther model is a series expansion in

1/g, whereg is the conductance, whereas interesting physicsn Ref. 18, the scattering at the nodes of the network, i.e., the
established in our work occurs in the region of quantumsaddle points of the magnetic field landscape, was param-
conductance. It is worth noting that all numerical studies etrized as
available to date, a strong random magnetic field was used

as opposed to a weak field limit in temodel approachin

). (6)

sing  cos¢

coshé, 0 sinhé, 0

another recentr-model study® the long-range effects of 0 coshé, 0 sinhé,

magnetic_: fields were cp_nside_red an_d claimed t_o have yielded sinhé, 0 coshé, 0 . (7)
a metal-insulator transition with a single node in hiéunc- )

tion. However, our results have discordantly established a 0 sinho, 0 coshd,

whole critical phase, in which thg function loses its puta-

tive meaning. In virtue of the percolation at the saddle points, baétts

As mentioned in a previous section, it is sensible to ap{i=1,2) must be fixed equal t6,=In(1++/2), while their
proximate the RMF problem by an effective network model.fluctuations around 6. has been determined to be
Actually, such an attempt has been made in Refs. 18,19trelevant’’ Using the above form of the scattering matrices,
However, in these studies, the possible role of drift states iit was then asserted, by means of numerical simulatfons
localization was totally omitted. Rather, only the tunnelingand a spin-representation mappifigthat the model only
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supports an insulating phase. However, it is very important to VII. CONCLUSION

note tha}, by mea(rjls of qu)‘ the n.odeThsca.tterlng were In this paper, we have carried out the most comprehensive
incorrectly assumed to bgarity preservingThat is to say, 8s iy estigation of the localization properties of the RMF sys-

illustrated in Fig. 13, snakt_e states of even and odd paritie§y, our main findings, strongly supported by compelling
were supposed to scatter independently at the nodes of thg;ijences, are the existence of a finite region of extended
network. Without a parity-conservation rule at play, the scatstates(critical phasg and a hidden degree of freedom. The
tering processes doot discriminate the two snake states. BY critical phase in a RMF is found to be as prominent a state of
that, the formulation in these studt&s® was too restrictive matter as the quantum Hall states. We devised a two-
to draw a reliable outcome. One has to introduce an extrdarameter procedure to analyze our extensive simulation
parameter in matrix7) to describe the mixing between chan- data. Not only does it recover the results of other well-
nels of opposite parities. In fact, the results obtained in Refunderstood situations, our method also elucidates localiza-
18 can be understood as follows. For two snake states wittion problems from a different standpoint by testing their
equal energy living on a link, the tunneling between themvery basis: the single-parameter scaling hypothesis. For the
lifts their degeneracy, effectively producing an additional po-RMF model, the hypothesis, which has withstood the test of
tential fluctuation from link to link. The states would thus time, is found in our study to be invalidated by the presence
find it difficult to tunnel through the nodes due to the restric-of the hidden degree of freedom. In exploring a possible

tion in the node scaterring, whose effect is expected to b@rigin for this extra degree of freedom, we further estab-
nullified once more freedom in scattering is addg@bvi-  lished the dual role of the edge states that are formed along

ously, such a model with too many phenomenological finefhe magnetic field boundaries. On one hand, extended states
tuned parameters is no longer tractable! are carried by edge states by virtue of their percolation na-

Interestingly, we must note that even within the formula-t"e: On the other hand, specified by the hidden degree of

tion of the two-channel network considered in Ref. 18, afreedom, the sqattermg_amopg the egige states forms a differ-
nt set of vortices, which, in turn, influences the electron

e g Ut gt Koy anf 2 R 8 e s
. localization in a RMF, that is, the tunneling between edge
supports_a cr!tl_cal phasfe aﬂ?. Instead of using the @2)-_ states(not the same mechanism as in other previous work,
symmetric mixing matrix as in Eq6), these authors consid- \,vevey, should deservedly be viewed as a counterpart to
ered a U(1XSO(2) one, whose angles’s (i=1,4) on  the coherent backscattering of weak localization.
each link were all set equéhough still random from link to Insofar as the possibility of conducting phases in disor-
link). No level split was found, and the system remainedgered systems is concerned, and given that quantum Hall
critical at 6= 6. . Although we do not expect the version in states are the only ones known to sustain in two dimensions,
Ref. 38 to be the right description for a RMF, it does, how-the finding of a different conducting phase in our study is
ever, indicate the sensitivity of the outcome, in favor or dis-intriguing. In that vision, we hope that the RMF model

favor of critical states, depending upon the model formulawould allow different theoretical perpectives to emerge, es-

tion. . _ . pecially in light of tantalizing experimental evidences of an
_In closing our discussion, there are two comments Weynexpected metallic groundstate in Si-MOSFET and other
wish to make: heterostructure¥ In particular, it would be a very interest-

(i) The two-channel network model can apply equallying possibility if the RMF model would, arguably, turn out to

well to the problem of spin-unresolved QHE Witgh the elec-pe a nontrivial fixed point of disordered interacting systems
tron spins playing the role of the two channls” In this  under some circumstanc&.

case,f;’s are set equal to each other but can take an arbitrary

value otherwise. It has been concludfetf that the single ACKNOWLEDGMENTS

critical point within a Landau band is split into two, the
citical exponent at each point remaining unaffected, e., S X . 4
=7/3. At a further stage, if one allows states of different spinnal inspiration and various crltl_cal commen.ts n t.h.e vvprk. !
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at criticality with an additional blocking factor on its links.
Interestingly, the criticality is observed to be stable against
blocking and the system undergoes a metal-insulator tran-
stion of a new type. The results are to be reported Consider a magnetic field perpendicular to fhey plane
elsewherd? of the form B(y)=Byy. Two types of classical orbits of
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APPENDIX: FORMATION OF VORTICES
IN A NONUNIFORM MAGNETIC FIELD
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v

=Y, 0 Yo y

FIG. 14. Effective potential for positive and negatikgs.

electrons were shown in Fig. 8, but the orbit size and the

energy spectrum have to be determined by quantum mechan- FIG. 15. Energy spectrum of electron gas in a linearly varying
ics. With the vector potential chosenAs: — %Bo y23< thex magnetic field. Energy bands are formed pairwise with opposite
component of momentum is a good quantum numipgr, Panty.

=nk,. The wave function can thus be written in the form

WX, y) = x(ky,y) e, where y(k,,y) is a solution to the ~@n+1)m
equation e e
X X
n y=y1 wherex" (y1)=x"(y1)
“omX +[Veri(ky,y) —E] x=0. (A1) and
Figure 14 illustrates the effective potential N 7
X= -
eBy 2 2 k;_kx

(A2)

1
Veri(Ky,¥Y)= 5—| iky— —— -
eff(Kx,Y) 2m< 2 y y=Yy, where x"(y,)=—x" (V).

For k,>0, V¢ has the form of a double well that sup- They component of the current is
ports symmetric and antisymmetric states aboutytteis. _ dy* dy~ _

These states have peaks around the potential minig Jyo* av - d—X+ sinl (ky, — Kk, ) x], (A4)

=+ (2hk,/eBy) Y2 Obviously, they are thdrift statesthat y y

reside on the two sides of the zero-field line and flow for-which vanishes at=n =/(k, —k, ). A schematic picture of
wards inx direction. Fork,<0, there are also symmetric the wave function is shown in Fig. 16, where the direction of
amd antisymmetric states, but the split in their energy iscurrent flow is indicated by arrows. At the outer edges, there

bigger. These are thsnake stateshat center on the zero- are forward flows corresponding to the drift states; while the
field line and. most of the time. flow backwards ix di-  Shake states flowing backward in the center. There are also

rection. A schematic plot of the energy bands is shown irf"/ays of nodes and vortices in the interior of the wave func-
Fig. 15. Beside, , the band index is also a good quantum 1ON- ) .
number. It is identified as the parity of with respect to a It is worthy of note that the formation of vortices in a

reflection about thg axis. The energy bands appear to Comenonuniform magnetic field has not been mentioned before, to
with odd and even parities pairwise. Within such a pair ofour understanding. The reason might have been that one only

bands, except at an energy close to their minima, there afgPnsidered the clean case, i.e., the coupling between the
always two drift states and two snake states, each pair Q'.:rnake and drift states was omitted. However, several factors

states being very close in wave number. Therefore, it is sufi! ré@l situations could induce the coupling. For example,
ficient to consider the scattering between one drift state and'eY are finite length of th&=0 contour, its imperfect ge-
one snake state at wave numbgr and k; , respectively, °mMetlry. effect of impurities, to name a few.

which results in the following wave function:

pxy)=cx (y) ek b ey (y) €X. (A3)

Without loss of generality, we set"=c™=1. Both xy"(y)
and y~(y) are real function of y. While xy*(y) has two
peaks atty,, x (y) centers aroung=0. Obviously, the FIG. 16. Schematic pattern of vortices along the magnetic
wave function in Eq(A3) has a series of isolated nodes at boundary(the x axis).
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