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Hidden degree of freedom and critical phase in a two-dimensional electron gas
in the presence of a random magnetic field

Hoang K. Nguyen*
Department of Physics and Astronomy, University of California, Los Angeles, California 90095-1547

~Received 4 March 2002; published 8 October 2002!

We establish the existence of a hidden degree of freedom associated with the critical phase of a spinless
electron system in a spatially correlated random magnetic field with vanishing mean. Although implied in an
earlier scenario@S.C. Zhang and D.P. Arovas, Phys. Rev. Lett.72, 1886~1994!#, the hidden degree of freedom
has not been identified or explored in existing numerical and analytical studies, however. Whereas the critical
electron states are carried by the zero-field contours of the field landscape, the hidden degree of freedom in our
present work is recognized as being connected to the formation of vortices in these special contours. We argue
that, as opposed to the coherent backscattering mechanism of weak localization, a new type of scattering
processes in the contours controls the underlying physics of localization in the random magnetic field system.
In addition, we investigate the role of vortices in governing the metal-insulator transition and propose a
renormalization-group diagram for the system under study.

DOI: 10.1103/PhysRevB.66.144201 PACS number~s!: 71.30.1h, 72.10.2d, 71.23.2k
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I. INTRODUCTION

The problem of electron motion in the presence of a r
dom magnetic field in two dimensions has been of fun
mental interest in several physical situations: unitary symm
try of localization,1 gauge-field description of high-Tc

superconductors,2 and Chern-Simon theory of half filled
quantum Hall systems.3 As a result, a great amount of effo
has been made during the past two decades in order to
derstand the transport properties of the random magn
field ~RMF! model. According to the scaling theory of loca
ization, in the absence of interactions, all states of a tw
dimensional~2D! disordered system are localized.4 Field-
theoretical study based on the nonlinears model approach
subsequently confirms this picture and indeed predicts
the result also holds for systems in which the time-reve
symmetry is broken.5 The RMF model, therefore, has a de
cate standing, for, on one hand, it is expected to represen
unitary class of localization in which the time-reversal sy
metry is broken by a magnetic field; on the other hand,
presence of magnetic field might, inarguably, give rise
some exotic effects of nonperturbative origin. Typical e
amples of these effects include the formation of Landau l
els that cannot be obtained at any order of perturbation
pansion in terms of the magnetic field strength, and
celebrated topological term of the integer quantum Hall
fect ~QHE!.6

The fundamental and interesting question of whether
electrons can become delocalized in a RMF remains con
versial, however. The unusual single-particle properties
the model have been discussed in Refs. 7,8. In a large n
ber of papers, it has been argued that there is a ban
delocalized states.7,9–15 Similarly, in a large number of pa
pers, it has been argued that all states are localized.16–21

There are also papers in which evidence for a single crit
energy has been presented.22 Furthermore, of the papers tha
support the existence of conducting states, the physical
gin of the delocalization in the RMF problem has not be
0163-1829/2002/66~14!/144201~16!/$20.00 66 1442
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fully addressed. Nevertheless, among these various con
ing results and conclusions, the most notable idea, to u
the implication ofa possible degree of freedom hidden in t
RMF problem. Briefly stated, it was suggested by Zhang a
Arovas11 that a new type of scattering specified by som
hidden variable could produce or diminish a mass gap t
in turn, decides the phase of the system. Interestingly,
introduction of such an extra variable would, as it turns o
resolve outstanding issues related to the interpretation of
numerical results available to date.

Stimulated by this insight,we have carried out a compre
hensive search for a hypothesized hidden degree of free
that has not been encountered and explored in the conte
two-dimensional localization. The purpose of our search w
three fold: to determine the existence/nonexistence of
new degree of freedom; identify its nature and origin, if
exists; and investigate its role in governing the met
insulator transition in the RMF problem.

The random magnetic field configurations considered
our work were chosen to be correlated over a finite ran
There are several reasons for such a choice. First, unlike
diagonal disorder case, where the scalar potential fluctua
can be taken to bed correlated, being associated with a ve
tor potential, the magnetic field can only vary smoothly ov
a finite range. Second, it is this type of RMF that was
serted to possess a metal-insulator transition in recent
merical work.14 Furthermore, a model with spatialy corre
lated magnetic field could be connected to an effect
network model; the connection, in turn, explains the nat
of localization/delocalization in the RMF problem. Final
and most importantly, a smoothly varying magnetic fie
physically speaking, is expected to radically influence
electron eigenstates in a similar way that a uniform magn
field forms Landau levels in a free electron gas, openin
possibility for nonperturbation effects to come into play.

Our paper is organized as follows. Section II presents
numerical computation of localization length for RMF sy
tems. We propose in Sec. III a two-parameter scaling pro
dure to analyze the data. The following two sections cont
©2002 The American Physical Society01-1
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our study of electron wave function in a RMF. The relevan
of the problem under study with respect to a network mo
is dicussed in Sec. VI and followed by a summary and
Appendix.

II. EXTENDED STATES IN A RANDOM MAGNETIC
FIELD AND THE SHORTCOMINGS OF THE STANDARD

SCALING SCHEME

We consider the model of noninteracting spinless el
trons hopping on a square lattice subjected to a perpendic
random magnetic field and a random scalar potential.
model Hamiltonian is defined as follows:

H52t(̂
i j &

~eiu i j ci
†cj1e2 iu i j cj

†ci !1(
i

Vici
†ci , ~1!

whereci
† is a fermion creation operator at sitei and the first

summation is over nearest neighbors. Here on, we shal
the hopping elementt to be the unit of energy and the lattic
constanta the unit of length. The diagonal disorder is intr
duced through the randomness inVi and uniformly distrib-
uted in the interval@2 1

2 W, 1
2 W#. The magnetic flux through

each plaquette is equal to the sum of the Peierls phaseu ’s
along its four edges. For systems with an open boundary
Landau gauge can be chosen, namely,u i j 50 on the horizon-
tal links of the lattice. We are interested in the case where
fluxes at different plaquettes are correlated over a len
scales f . The flux through plaquettep is then generated in
the following way:

fp5
h0

s f
2/4

(
q

f qe2(uRp2Rqu2/s f
2), ~2!

where h0 is to adjust the flux strength;f q is the field
‘‘source,’’ chosen randomly within@21,1#. Unless specified
otherwise, the flux parameters in this paper are set to beh0
51.0 ands f55.0, corresponding to a smoothly varying flu
between2f0/2 andf0/2, wheref0 is the flux quantum. It
is easy to see that with the above set up,^f i&50 and
^f i f j&;exp(2uRi2Rju2/2s f

2).
In this section, we shall employ the standard transfer m

trix method,23 which has enjoyed tremendous success in
study of localization. The system under consideration is
strip geometry of widthM and lengthL, where periodic
boundary condition is imposed across the strip width andL,
in principle, has to be sent to infinity, leavingM the only
characteristic length for the system. In practice,L is chosen
to be about 105 longer than Mto achieve the self-averagin
and a first standard deviation of 0.5% for data presen
below. For such a large value ofL, a successive multiplica
tion of the transfer matrices converges and is character
by a set ofM-Lyapunov exponents, which determine ho
fast the wave function is damped along the strip. The sm
est of these exponents, therefore, contributes the most to
transport. Its reciprocal, which has dimension of length
the localization lengthlM of the wave function, being con
fined on the strip. As the system width is enlarged, the loc
ization length approaches its bulk valuej[ limM→`lM ,
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which has usually been named the correlation length. Th
are two possibilities:~i! j is finite, in which case the wave
function at large distances has an exponential form and
system is in the insulating phase, and~ii ! j is infinite, in
which case the wave function is extended and the syste
in the conducting phase. In order to quantify systems of fin
size, one defines adimensionlessquantity, the so-called re
duced localization lengthLM , by normalizing the localiza-
tion length with respect to the system width:LM[ lM /M .
The newly defined length would serve as a suitable indica
to how the wave function in a disordered sample respond
the restriction on sample size is gradually relaxed, fro
which the meaningful information with regard to the bu
properties of the system can be extracted efficiently.

It appears straigthforward to generate the correlated
dom magnetic flux as described in Eq.~2!. Since the field
configuration has zero average, fluxes of opposite sign
equally likely. However, we find it necessary at this stage
cite an advance result, which is to be shown later, that
electron transport along the strip is mainly carried by t
boundaries between magnetic domains, or the zero-field c
tours. Thus, the implementation of flux mentioned abo
although straightforward, is problematic because it viola
the percolation property of these contours if the system is
sufficiently wide. In Fig. 1, the magnetic boundaries a
shown in black lines for different magnetic configuratio
produced from Eq.~2! with s f55.0 in four cylidrical
samples of successively doubled widths. Evidently, in or
for the black lines in the pictures to percolate, the sam
width M has to reach some certain value, e.g., 100 lat
spacings or more. Otherwise, starting from, say, the left
of the sample, an electron traveling along the zero-field c
tours can hardly reach the right end. Increasing the sam
size will certainly cause these contours to percolate, lead
to a spurious enhancement of the electron conduction.
have determined that this enhancement of the reduced lo
ization lengthLM can be substantially large, in some case
large as a factor of 10, asM increases from 10 to 240 lattic
spacings. As a matter of fact, this is what was observed
recent numerical report14 and a false metal-insulator trans
tion with two distinct scaling branches followed, as a resu
Obviously, only when these contours become percolat
thoughout the sample do the data reflect the true conduc
of the system. It is thus very important to enforce the per
lation condition for the zero-field lines in all the samples
use. We achieved this goal by regularly imposing a vanish
total flux through eachM3M square segment in the elon
gated strip. In doing so, we forced domains of opposite m
netic field to cover essentially same areas, making the
main boundaries smoothly connect with one another wit
each segment and thus along the strip. This regulation in
flux implementation effectively removed the spuriousness
herent in the data and, as we shall see below, leads to
trivial results.

The main panel of Fig. 2 shows our results for the reduc
localization length at energyE521.0 at different values of
size and disorder strength. We were able to carry out
most extensive study of this kind allowed in current comp
ers; systems of width up to 240 lattice constants were u
1-2
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at, for a reason to be clarified later, disorder of intermed
strength, 3.8<W<5.0. At all other disorder values, th
width was chosen to be 6, 10, 20, 40, 80, and 160. As ca
seen from Fig. 2, for strong disorder, the reduced localiza
length continuously decreases as a function of the s
width, which is to be extrapolated to zero at largeM limit,
corresponding to an insulating phase. At very large disor
the reduced localization length indeed experiences an e
nential drop asM increases, a typical behavior in strong l
calization regime. Remarkably, for all small values of dis
der, W&4.0, the reduced localization length appears to
size independent, at least within the statistical error bars

FIG. 1. From top to bottom: Percolation patterns of theB50
contours of the magnetic field landscape generated from Eq.~2! for
four samples of widthM525, 50, 100, and 200, respectively. I
each sample, the top and bottom edges are connected form
horizontal cylinder. Gray scale is based on the logarithmic of
intensity of the magnetic field. Higher fields correspond to ligh
regions. Black lines represent the magnetic boundaries, which
begin to percolate in large samples.
14420
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to sampling. This behavior signals the onset of a criti
phase in which the electron wave function is self-similar
all length scales that are set byM. In other words, in this
scale-invariant regime, the wave function at large distan
has an algebraic spatial dependence, instead of an expo
tial decay. This very interesting situation has actually be
encountered in several numerical studies where a line
critical points was reported.10,13 However, the restriction in
small system size and low-precision data precluded a con
sive statement to be reached in previous work. More imp
tantly, little effort has been made to elucidate the physics
delocalization in general and of a line of fixed points
particular for the RMF problem.

We must note that a highly plausible mechanism for d
localization in systems containing RMF can easily be se
from the very construction of our computation, in which th
special implementation of flux plays a crucial role. For fie
configurations of vanishing mean, it is the zero-field conto
that carry extended states by percolating throughout the
tem. When a plain application of Eq.~2! was used which, as
is evident in Fig. 1, did not ensure the percolation of the
contours, the size-invariant behavior at small disorder w
not observed as in Ref. 14. Clearly, by inherently impos
the percolation condition, our flux implementation has ca
tured the essential physics of delocalization in the RM
model and has thus yielded extended states as an imme
consequence. From this explanation, the notion of a crit
phase appears to be very robust and inevitable.

Perhaps rather surprising is, instead, the presence o
insulating phase in a RMF, given the percolation of the ze
field countours regardless of all other parameters in the p
lem. It is our main purpose in the rest of this paper to ass
a legitimate, and even more fundamental, question:Why lo-
calization in a RMF system?This system deserves a tho
ough consideration in its own stand because the presenc

a
e
r
ly

FIG. 2. Reduced localization length in random field model w
EF521.0, h051.0, s f55.0. Inset: Correlation length obtained b
data collapse~see explanation in text!.
1-3
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HOANG K. NGUYEN PHYSICAL REVIEW B66, 144201 ~2002!
a magnetic field, uniform or nonuniform, quenches the
netic energy and radically alters the character of elect
eigenstates. While coherent backscattering is the mecha
of localization in a random scalar potential, the localizati
in the case where the kinetic energy is quenched, like
QHE for example, is the quantum hopping of cyclotron m
tions. One can now envisage a situation in which electr
are subjected to a staggered magnetic field. The electron
forced to reside mainly around the magnetic boundar
where the field changes its sign, forming the so-called ‘‘ed
states.’’ The introduction of randomness in the magne
field, as well as an additional random scalar potential if
plicable, scatters these states, presumably, in a fundamen
different manner from that of the Anderson localization.
other words, since the edge states are nonperturbative in
sence, it is an open question of whether their character
duced by magnetic field survive the introduction of disord

Nevertheless, in the remainder of this section, we wish
focus on the attempts to incorporate the RMF data into
general framework of the localization understanding. A co
mon practice in the study of localization is the data collap
in which the reduced localization length is assumed to sat
the finite-size scalingansatz:

LM~W![
lM~W!

M
5 f S j~W!

M D , ~3!

wheref is a universal scaling function, andj5 limM→`lM is
the bulk localization length or the correlation length. As
ansatz, Eq. ~3! then requires justification which will be
achieved if all the data points ofLM at different values of
disorder and length scale can be collapsed onto a si
curve described byf. The correlation length is also obtaine
in this data collapse process and will usually be fit with so
trial singular function to determine the critical point. Sin
the aboveansatzacceptsj/M as the only argument, it is
equivalent to the one-parameter scaling hypothesis that
ductance is the only relevant scaling variable in the prob
and that the notion of ab function b(g)[d ln g/d ln M is
well defined.4 In fact, in many localization problems, such
the Anderson model in two and three dimensions, the sin
parameter scaling scheme has been exploited with rem
able success23 and the scaling hypothesis has been verifi
with great confidence in these circumstances. If this sca
procedure is to be adopted and applied to our RMF d
obtained in previous calculations, the correlation length
strong disorder is shown in the inset of Fig. 2, which see
to reveal a divergence at a critical disorder of intermedi
strength. However, there is a caveat. On one hand, the
ing assumption~3!, by virtue of its inherent size dependen
throughj/M , obviously fails to account for the scale invar
ance atW&4.0, unlessj is set to be infinite in the whole
weak disorder region. On the other hand, contradictor
data collapse cannot describe such a continuous regio
infinite j because the procedure could at most give rise
isolatedfixed point~s!. The reason is that, inferred from it
analyticity, theb function could only have isolated node~s!,
some of which characterize the transition point~s!, such as
14420
-
n
sm

e
-
s

are
s,
e
c
-
lly

es-
n-
r.
o
e
-
,

fy

le

e

n-

e-
rk-
d
g
ta
r
s
e
al-

,
of
o

the 3D Anderson problem or in the presence of spin-o
scattering.

In fact, in order to successfully describe a situation with
continuum of fixed points, it is necessary to adopt an ex
scaling variable and, consequently, abandon the o
parameter scaling hypothesis. A clear example is the
Kosterlitz-Thouless transition in anO(2)-spin model in
which the low-temperature phase corresponds to a line
critical points. Beside the spin stiffness, a new degree
freedom—the ‘‘fugacity’’ of vortices—is required to describ
the transition. Literally, in dealing with such two scalin
variables, the examination of theO(2)-spin model indeed
requires a special analysis24 which is briefly explained in
what follows. In the ordered~low-temperature! phase, the
scaling function, i.e., the scale dependence of spin stiffn
was found by solving a set of two renormalization-gro
~RG! equations. At several~low! temperature values, th
scaling fucntion was then fit with simulational data and e
trapolated to infinite system, where one could extract
bulk spin stiffness that was then used to determine the c
cal Kosterlitz-Thouless temperatureTKT . In the disordered
~high-temperature! phase, where it was much less transpar
to find a compact solution to the RG equations, the sing
parameter scalingansatzwas assumed andTKT was calcu-
lated by data collapse procedure analogous to the loca
tion cases. However, the critical temperatureTKT obtained
by approaching from the high-temperature side is obser
to be far worse than that computed from the low-temperat
side24 because the presence of the second variable nece
ily invalidates the scalingansatz.

Similarly, it should be clear that a plain application of th
scaling assumption~3! into the RMF case is problematic and
indeed, does not yield much reliable information with rega
to the transition point. For the time being, since a mic
scopic theory, i.e., a set of RG equations, describing the
pothesized critical lines of the RMF problem is not ready
hand, we would like to focus, instead, on two important a
intimately related issues which are of broader range of ap
cations. They are:(i) test of the validity of the one-paramete
scaling hypothesis, and (ii) determination of the existence
a hidden degree of freedom, if there is any, in a gene
localization problem.

Before we present our method in the following section,
us briefly discuss other available conclusions in opposition
the possibility of a line of fixed points. Generally, such
possibility has been excluded on two following grounds:

~a! A scale-invariant phase would require an identica
vanishingb function, an unacceptable requirement given t
analyticity of theb function.16

~b! A scaling function for conductance in a RMF, obtaine
from the data collapse using Eq.~3!, was claimed17 to be
reasonably close to the theoretical scaling function for
unitary class of thes model.

Once again, the aforementioned arguments are cruc
based on an implicit assumption of the single-parameter s
ing hypothesis. As for~a!, the introduction of an additiona
scaling variable can easily lead to a critical phase with
violating the analyticity of the RG equations such as t
famous Kosterlitz-Thouless transition. Evidently, the a
1-4
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sumption of a one-variableb function is no longer a mean
ingful concept in such a case. Neither is the one-param
scaling function quoted in~b! if conductance is not the only
scaling variable in the problem. Subsequent attempts of
collapse, as well as conclusions regarding the unitary s
metry can no longer be made with any reasonable co
dence. In fact, in dealing with a system that contains a c
cal phase, data collapse overall is a wrong practice bec
this phase could easily be misidentified with an insulator
will be discussed at the end of the following section.

III. TWO-PARAMETER ANALYSIS
OF THE LOCALIZATION LENGTH

Since the one-parameter scaling is the central them
localization studies, the purpose of this section is to sugg
a different procedure to test this crucial hypothesis. As
scribed in the previous section, the standard practice
been the data collape or finite-size scaling technique u
the localization length. However, an obvious disadvantag
this technique is itsbias; that is to say, one is required t
know a priori the actual phase of the system in order to
the scaling, while this is what the scaling is supposed to t
Accidentally, in all systems so far encountered in the loc
ization study, the data collape always gives rise to one
two-branch scaling curves, both corresponding to phase~s! in
which the electron wavefunction has finite correlation leng
Inevitably, this ‘‘standard’’ technique would fail to identify
the critical phase—a phase that has infinite correlat
length. Moreover, the prejudice in the one-parameter
sumption hinders the detection of other parameters, if th
are any.

Our idea to circumvent these deficiencies is simple.
addition to the localization lengthlM , let us consider the
reciprocal of the second smallest Lyapunov exponent of
transfer matrix and denote it bylM

(2) . Being the leading and
subleading contributions to the electron transport and yet
ing two independent physical quantities,lM and lM

(2) carry
the fullest andcomplementaryinformation as far as the trans
port properties are concerned. If the single-parameter sca
applies, i.e., the dependence of the two lengths on disor
chemical potential, and so on can be absorbed into the
relation lengthj, then they can be written as functions of o
dimensionless argumentj/M :

lM~M ,W,E, . . . !5M f S j~W,E, . . . !

M D ,

lM
(2)~M ,W,E, . . . !5M gS j~W,E, . . . !

M D , ~4!

whereg is an additional scaling function. After an elimina
tion of the only argument availablej/M , the resultant rela-
tion between the two lengths is obviously a single-valu
function,lM5 f (g21(lM

(2))). If they are now plotted agains
each other on a scattering histogram, then all the data po
must fall onto a single curve regardless ofM, W, E, as well
as other unspecified parameters of the system. Converse
the data points scatter over a wide region in the histogr
14420
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the elimination after Eqs.~4! must have been invalid sinc
the two functionsf and g necessarily contain at least on
more extra argument besidej/M . In what follows, we shall
actually use a set of (LM ,LM

(2)/LM) instead of (lM ,lM
(2)),

whereLM
(2)[lM

(2)/M , for better illustrations.
We first apply the procedure discussed above into

well-understood 2D Anderson model, particles hopping fro
site to site on a square lattice and scattered by a ran
scalar potential. Theoretically, the single-parameter sca
hypothesis is believed to hold and all states are expecte
be localized.4 Figure 3~a! shows our results of the localiza
tion lengthLM and the ratioLM

(2)/LM for systems of differ-

FIG. 3. Two-parameter plots of Anderson model in~a! two and
~b! three dimensions. Fermi energyE50.0(s) and21.0(h). Dis-
orderW ranges from 4.0 to 20.0 in~a! and from 4.0 to 2.0 in~b!.
Arrows show the flow direction of data along the increment
system width.M56, 8, 12, 16, 32, 64, 128, 256 for~a! and linearly
increases from 6 to 20 for~b!. Fixed points atLM50 and atLM

→` are denoted byI ~insulator! andM ~metallic!, respectively.C
indicates the isolated repulsive critical point.
1-5
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HOANG K. NGUYEN PHYSICAL REVIEW B66, 144201 ~2002!
ent sizes and at various values of Fermi energy and diag
disorder. Specifically, the Fermi energy isE50.0 ~circle
symbols! and E521.0 ~square symbols!, and the disorder
runs from 2.0 up to 20.0, both in the energy unit of t
hopping element. Arrows indicate the direction of data asM
is successively increased. Remarkably, an excellent veri
tion of the single-parameter scaling theory in the 2D And
son model is obtained for systems of size as small as
lattice spacings. As evident in Fig. 3~a!, all the data points
automaticallyalign on a single curve that also appears to
independent of Fermi energy. Moreover, as the system
enlarged, the data points are driven along the curve tow
I, the insulating ‘‘fixed point’’ corresponding toLM50. That
there is no other fixed point that separates the flow line
definite indication that the system entirely lies in an insul
ing phase.

The method is next applied to another well-understo
situation, the Anderson model in three dimensions, in wh
the scaling hypothesis is again believed to hold and, inter
ingly, a metal-insulator transition has been predicted.4 The
results are shown in Fig. 3~b! for systems of size ranging
from 6 to 20 and at different energies and disorders. Ag
with the self-alignment of data points, the scaling hypothe
is indisputably verified in this case. Interestingly, there
three fixed points on the flow line: the insulating fixed po
I with LM50 ~strong disorder regime!, the conducting~me-
tallic! fixed point M with LM5` ~weak disorder regime!,
and asingle repulsive~critical! fixed point C that separates
the two phases. Moreover, this critical point appears to
insensitive to the Fermi energy, confirming the universa
of the critical conductance in the 3D Anderson model.

We next turn our attention to an also well-studied ca
the integer quantum Hall effect. The magnetic flux p
plaquette isf51/4f0 and the diagonal disorder isW
51.0. With this choice of parameters, the center of the lo
est Landau level is determined to be at22.675. Several
values of Fermi energy are thus shown from22.675 down to
23.3 ~the band tail! in Fig. 4. It has also been established
extensive theoretical and experimental studies that elec
states are critical only at the band center and localized
erwise. Once again, our procedure beautifully reveals in F
4 the expected feature of this model: Only at critical
shown by the black solid line, the data flow runs towards a
terminates at the critical point denoted byC; while all other
flows ~open dotted lines! follow a common curve to end atI,
the insulating fixed point atLM50. The critical pointC
governs the flow lines within its vicinity. Evidently, unlik
the Anderson models presented in the previous paragra
the data flow of the quantum Hall system do not fall on
single curve, thereby signaling the presence of an extra s
ing variable. Theoretically, the quantum Hall system is co
trolled by another relevant variable,6 the Hall conductance
sxy , beside the logitudinal conductancesxx . What is strik-
ing in our picture is the evidence of a new scaling varia
which, to our understanding, is directly observed for the fi
time withouta priori knowledge ofsxy . Overall, the useful-
ness of the method we have introduced so far lies in
capability of detecting a new scaling variable when there
one, while giving a null answer when there is none.
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Interestingly enough, the application of our analysis in
the RMF model provides much appealing information. W
present in Fig. 5 data for Fermi energyE521.0, disorderW
from 3.0 to 4.0~circles! and from 4.2 to 14.0~squares!, and
system widthM running from 6 to 240. Clearly, since th
data points do not fall on a single curve, this must be tak
as a robust evidence of a hidden scaling variable and hen
breakdown of the one-parameter scaling hypothesis in
RMF problem. As we have mentioned, it is the use ofLM

(2) in
our analysis that maps out this extra variable unambiguou
which otherwise cannot be observed within the stand
scaling procedure. Amid its anticipatory existence discus
at length in the previous section,this is the first time the new
degree of freedom in the RMF system inarguably manisfe
Its pronounced influence on the RMF data, indeed, as str
as that in the integer quantum Hall case, can be seen in
5 ~and in comparison with Fig. 4!. There are two distinct
regions corresponding to different behaviors of data, se
rated by the solid lineaA of disorderW54.0. Below this
line, the data lie in the regime of strong disorder and
attracted towardsI—the insulating fixed point—at the lowe
right corner of the histogram. In contrast, the data aboveaA
tend to flow towards the left side of the histogram and s
on the dotted lineAB, a coalescence of fixed points. Clearl
this two-parameter picture has provided us a global view
determining the ultimate fate of the RMF system at lar
length scales. As a result, one only has to focus in the vic
ity of A, the end point of the critical regime, to distinguis
the behavior of the two corresponding phases. By the t
the system size reaches 240 lattice constants, while the
aA itself and that above it have come to termination, the l
right below it, after spending sometime in this vicinity, h

FIG. 4. Two-parameter plot of Hall system:f51/4f0 ,W
51.0 in the lowest Landau band. Fermi energy ranges fro
22.675 (d) down to 23.3 (h). Arrows show the flow direction
of data along the increment of system sizeM56, 8, 10, 16,
20, 40, 80, 160.I indicates the insulating fixed points, whileC is
the single critical point.
1-6
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already meandered to the insulating fixed point. We, the
fore, are on a solid ground to conclude that our RMF syst
undergoes a metal-insulator transition atWc54.0. In addi-
tion, the conductance at this critical disorder and at the la
est length scale~i.e., atA) is determined to be 1.26e2/h, of
the order of the quantum conductance, in justification for
genuine quantum-mechanical nature of this transition.

Also note that the two-parameter pictures in all four co
sidered situations share a common feature: their data fl
do not cross. We are thus able to make a general statem
The evolution of a system with respect to an increase in
only depends upon its current state. In other words, if o
attempts to construct a set of renormalization-group~RG!
equation~s! for the system, its analyticity will be, in effect
ensured. For the RMF model, in account for the evidence
the hidden degree of freedom and basing on our nume
data, we propose a RG flow diagram shown in Fig. 6. T
picture is in close resemblance to the RG diagram of
O(2)-spin model in which the conductance is replaced
the temperature inverse. The thick dotted line is the projec
sweep at the microscopic length scale. The shaded re
above line~a! is the critical phase with infinite correlatio
length. As one moves along the RG line in this region, o
always stays at criticality and the wave function there
looks self-similar at all length scale; or in other words, t
wave function has a power-law decay character at large
tance. The new degree of freedom—the ‘‘fugacity’’—
eventually renormalized to zero in this phase. Out of t

FIG. 5. Two-parameter plot of the random magnetic field mo
at energyE521.0, field parametersh051.0, s f55.0. Disorder
W53.0, 3.1, 3.2, 3.4, 3.6, 3.8 (s), 4.0 (d), and from 4.2 to 14.0
(h). Error bar is of size of symbols. Arrows indicate the flo
direction as system size is increasedM56, 10, 20, 40, 80,
160, 240. I is the insulating fixed point atLM50. Dotted lineAB
is the locus of putative critical points.aA is the separatrix betwee
the critical and insulating phases.
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region, the RG lines are driven along line~b! towards the
insulating fixed point where the ‘‘fugacity’’ is further en
hanced.

As our final point in this section, it is very interesting t
observe that in contrast to general assumption, the redu
localization length in the critical phase is also subjected t
slight size-dependence. As evident from Fig. 5, on the
boundary of the critical phase~line aA), LM endures a 12%
decrease from its initial value as the system size sweeps f
6 to 240 lattice spacings. In account for this size depende
the wave function must acquire an additional logarithm
spatial correction, apart from the power-law form. Aga
this situation has actually been well known in the Kosterli
Thouless transition in which the spin-spin correlation atTKT
is established to be25

^SW ~x! SW ~0!&;
ln1/8uxu

uxu1/4
.

In addition, the spin stiffness in its ordered phase is a
modified by a logarithmic correction.24 To our knowledge,
this is the first time a similar situation has been encounte
in the context of localization. The implication of this sligh
scale dependence is far reaching in both theoretical and
perimental sides. It, in fact, resolves a central issue in in
preting numerical data regarding the critical phase of
RMF model. Using the Landauer formula,26 the conductance
at the critical disorderWc54.0 is found to be:g(Wc ,M
56)' 1.58e2/h and g(Wc ,M5240)' 1.26e2/h. That
means the conduction has undergone a considerable re
tion, which is about 20– 25 %, as a function of the syst
size. We are confident that several numerical studies in
RMF model have mistakenly interpreted the decrease in c
ductance as a signature of an insulating state. In addit
due to this size dependence, any attempt to collapse

l

FIG. 6. Schematic renormalization-group flow diagram of t
random field model.X represents the hidden degree of freedom.g is
conductance and its critical value isgc . Shaded region above line
~a! is the critical phase. Dotted lines below line~b! are projected.
Arrowed thick dotted line is the projected sweep at microsco
length scale.
1-7
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points onto a scaling curve is no longer sensible. A sim
conclusion can apply equally well to experimental interp
tation, where the inverse of temperature plays the role of
length scale. A drop of conductance as temperature is
duced might not necessarily imply an insulating groundst
especially when the groundstate is critical in essence.
suggest that, if possible in such a case, another measu
quantity should be used together with the conductance
map out a two-parameter picture and identify the criti
phase with greater confidence.

IV. ANATOMY OF THE WAVE FUNCTION IN A RANDOM
FIELD: QUALITATIVE PICTURES

Our examination so far has evinced the evidence o
critical phase, by virtue of the percolation picture, and a h
den degree of freedom, inferred from the two-parame
analysis. Nevertheless, there is as yet no microscopic un
standing of these observations. The questions to answe
clude: What is the nature and origin of newly found deg
of freedom? What role does it play in governing the met
insulator transition? What is the mechanism of localization
a RMF, after all? We devote this section to addressing th
important issues by approaching the problem at its botto
most: the structure of its wave function.

We exploited the Lanczos diagonalization algorithm
compute the wave function of electrons on a square
3300 sample with periodic boundary condition~PBC! im-
posed in both directions. The sample was subjected t
smoothly varying magnetic field with zero total flux. No d
agonal disorder applied, otherwise. We adopted the choic
gauge suggested in Ref. 10. For the purpose of illustrat
the correlation length of the magnetic flux was chosen to
s f515 lattice constants, andh054.0, correponding to a
strong field. The wave function closest to a given energE

was obtained from the Lanczos diagonalization of theĤ
2E)21 matrix,27 that is to say, the eigenstate correspond
to its largest eigenvalue in modulus was selected.

Figure 7 presents our results at Fermi energyE523.0,
close to the band edge. The upper panel displays a typ
flux configuration, in which the magnetic boundaries sho
in black lines are percolating.~Note the PBC on all four
sides of the sample!. The lower panel shows the probabilit
density, i.e., the wave function squared, where the dark s
represent a high-density region. In comparing the two pan
our initial impression is that the electron wave function
clearly extended throughout the sample, following the frac
pattern of the zero-field contours of the magnetic field la
scape. Electrons favorably reside around these lines with
few lattice spacings, forming a quasi-one-dimensional tu
with finite length. We have checked that stronger field and
higher Fermi energy would broaden the width of the tub
but the overall picture remains unchanged. At the first sig
it is, therefore, sensible to describe the RMF system in
language of a one-dimensional network, similar to that p
posed by Chalker and Coddington28 to represent the intege
QHE. Given the inherent connection of the tubes at
saddle points of the field landscape, the scattering at
nodes of the network is symmetric,28 so the criticality of the
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system appears inevitable. Thus, the network picture just
our assertion in Sec. II regarding the relevant mechanism
delocalization in a RMF; it is the percolation of zero-fie
contours that is responsible for the extensiveness of the w
function and, hence, the existence of the conducting stat

As an interesting consequence of this picture, when
external magnetic field is applied atop the RMF, eviden
the percolation of magnetic boundaries is lifted. The RM
system is then expected to behave somewhat closer t
insulator, causing a positive magnetoresistance. This ex
tation is borne out by the results obtained by Kalmeyer a
co-workers in a numerical work10 which establishes that th
RMF magnetoresistance is positive in both conducting a
insulating phases. The result for the insulating phase is q
distinctive in comparison to the Anderson localization
which case magnetic field, by suppressing coherent ba

FIG. 7. Upper panel: Zero-field lines of a random field~de-
scribed in text!. Lower panel: Density plot of the square of a wav
function at energyE523.0 for the above field configuration.
1-8



te
R

as

t
ng
th
n
ls
m
io
s
tio
ly

a
v
o

f t
n
,

e
th

ive
si
be
s,
ha

s

al
a

in
o

m
e
n

os

, all
eir
y

ly a
has
el-

ir
of

cal
air
s at
that
k
thus

ther
rst

e
he
that

ates

on.
ag-
ture
s-
in
b-

er-
s of
et.
an
um-
? To
e of
is

ar

-
the
tum
lo-
ing
tion
ture

ave
m,

ice-
t is
ave

its

s,

ift

HIDDEN DEGREE OF FREEDOM AND CRITICAL PHASE . . . PHYSICAL REVIEW B 66, 144201 ~2002!
scattering, results in a negative magnetoresistance ins
These authors also related the magnetoresistance of the
model to a striking behavior of longitudinal conductancerxx
of the half filled quantum Hall system. In particular, it h
been observed in experiments29 that the quantum Hall system
develops a deep minimum inrxx as magnetic field is swep
through its half filling value. Theoretically, at such a stro
magnetic field, where the number of flux quanta is twice
number of electrons, each electron captures two flux qua
to form a fermionic electron-flux tube composite, which fee
no net magnetic field. It is argued, however, that the co
posites are still subjected to a static random flux distribut
induced from the presence of a random potential. That i
say, the RMF model is presumed to be the correct descrip
of the quantum Hall system close to half filling. Slight
away from half filling, the composite fermions experience
small magnetic field remainder after the flux quanta ha
been absorbed. In view of this picture, the deep minimum
rxx can be explained at once as a direct consequence o
percolation status of the zero-field contours. What we fi
appealing, by turning the above statement upside down
that the very observation of the minimum ofrxx in experi-
ments provides us an independent and complementary
dence for the extensiveness of the wave function along
lines of zero field. While we are cautioned that a posit
magnetoresistance is also shared by a Fermi gas, we con
this scenario unlikely as a Fermi gas would eventually
come localized with an infinitesimal amount of impuritie
thereby unable to account for the apparent conducting be
ior of half filled quantum Hall systems.

The physical role of theB50 lines mentioned above ha
indeed been clarified in detail by Mu¨ller,30 which studied the
electron motion in a linearly varying magnetic field. We sh
reproduce its main results in the Appendix, while giving
brief explanation of the ingredients necessary for our com
discussions. At the classical level, there are two types
trajectories sketched in Fig. 8. In the region far away fro
the B50 line, the particle follows a cyclotron orbit whos
guiding center drifts perpendicular to the field gradient alo
x̂ ~forward! direction. Following Müller, we shall call this
orbit a ‘‘drift state.’’ In the region of small fieldB.0, the
particle travels in a snakelike trajectory back and forth acr
theB50 line along, most of the time,2 x̂ ~backward! direc-

FIG. 8. Schematic illustration of classical trajectories of dr
states~d! and snake states~s! in a nonuniform magnetic field, which
flow in opposite directions, in most cases.
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tion. This trajectory has been named a ‘‘snake state,’’31 ap-
parently in deference to its snakelike shape. Sometimes
these trajectories are commonly called ‘‘edge states’’ for th
relative position to the zero-field line. As pointed out b
Müller,30 the finite transverse size of these states is actual
purely quantum-mechanical effect since a classical orbit
no constraint on its radius. In addition, the quantum tunn
ing between a pair of drift~snake! states results in a new pa
of symmetric/antisymmetric states, or equivalently, states
opposite parity pairwise. Detailed quantum mechani
treatments30 further confirm that, in most cases, in each p
of energy bands there are two snake and two drift state
the Fermi energy. Most prominent are the snake states
peak right on theB50 line; so in the context of the networ
model, they have a considerable chance to percolate and
carry extended wave functions. The drift states, on the o
hand, due to their position off the zero-field line, at the fi
sight, are less likely to contribute to the RMF transport. W
shall soon clarify their fundamental role, however. In t
meantime, we must note that there have been studies
attempted a different reasoning: the couple of snake st
would ultimately become localized due to the mixing~tun-
neling! between themselves.18,19 First, the RMF wave func-
tion demonstrated in Fig. 7 disagrees with this conclusi
Our careful examinations on the localization length and m
netoresistance, furthermore, depict a delocalization pic
instead. More importantly, we shall point out in the discu
sion that the version of the network model considered
those works was too restrictive to account for the RMF pro
lem, unless under two major revisions. Specifically, that v
sion assumed an incorrect scattering matrix at the node
the network, or the regions where the zero-field lines me

In view of the percolation pattern, how, then, could
electron gas in a RMF become localized under some circ
stances, say, at strong disorder or close to the band edge
answer this question, it is necessary to reconsider the cas
QHE, where the percolation also plays a key role. As
well-known,32 in this situation electrons at energyE reside
on the equipotential linesV5E2(n1 1

2 ) \ vc . We produce
in Fig. 9 a wave function of a potential configuration simil
to that in the upper panel of Fig. 7~a!, with h0 replaced by
V052.0. The magnetic flux per plaquette was1

4 f0, and the
Fermi energyE52.8, right at the center of the lowest Lan
dau level. Again we obtain a similar picture that supports
percolation of an extended state. In this sense, the quan
Hall and RMF systems share the common physics of de
calization. However, whereas the development of insulat
states in the former is achieved by destroying the percola
as one moves away from the Landau band center, this pic
offers little clue towards the localization in a RMF.

However, closer inspections of Fig. 7~b! versus Fig. 9
reveal a striking difference between the corresponding w
functions of the two cases. For the quantum Hall syste
aside from the percolation pattern, there is no other not
able feature in view: the wave function is characterless; i
everywhere monotonous. In startling contrast, the RMF w
function posseses a far more complex structure along
main frame. As is prominent in Fig. 7~b!, every segment in
its network is solidly filled with series of pearl-like object
1-9
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tiny spots of high- and low-density succesively arranged n
to one another. Apparently, this unusual feature implies so
form of singularity, which, at our first guess, is the existen
of zeros in the wave function. As a matter of fact, a defin
answer to our initial speculation can be found from the
amination of electron motion outlined in a previous pa
graph. Let us consider again the edge states in Fig. 8, as
travels along theB50 line. Two noticeable aspects can b
seen immediately. The snake and drift states are:~i! vastly
distinct in wave number by flowing in opposite direction
~ii ! widely far apart while maintaining a considerable ove
lap. It is these important differences that profoundly resul
zeros~or nodes! of the wave function when the two state
scatter against each other. Furthermore, it is an establi
fact33 that an isolated zero is necessarily the center of a v
tex current. As an illustration, we shall give in the Append
an explicit construction of a wave function with arrays
nodes and current circulating around them.

For the time being, to visualize the current vortices in o
Hall and RMF cases, we compute the curl of current flow
inside each plaquette: (¹W 3JW )'5(hJi j , where the summa
tion is around the plaquette andJi j ’s are current on its four
edges. Shown in Fig. 10 are the curl results for the w
functions in Figs. 9 and 7~b!, respectively. Once again,
salient contrast between the two cases is manifest. In
upper panel, currents within the links of the Hall network a
continuous, the flow is laminar. In fact, the simplicity an
regularity of current flows explain the spectacular succes
the network model in representing the QHE, most notably
critical exponent. In other words, the Chalker-Coddingt
model captures the relevant physics, indeed the most im
tant one, of the integer QHE: the scattering of currents at

FIG. 9. Density plot of the square of a wave function in t
quantum Hall system. Fermi energyE52.8 close to the center o
the lowest Landau band and 1/4 flux quantum is threaded thro
each plaquette. The diagonal disorder configuration is chosen
Fig. 7~a! with h0 replaced byV052.0.
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saddle regions of the potential landscape. In the lower pa
the RMF current pattern demonstrates a discontinous fl
the current is irregularly disrupted into arrays of vortices a
antivortices represented by bright and dark spots of s
about a few lattice spacings. While noticeable everywhe
one can easily find, e.g., on the segment at the lower
corner a series of such spots arranged in a consecutive
ion.

As is evident in Fig. 10, the pronounced difference b
tween the two systems therefore cannot be oversta
whereas the integer QHE is controlled by the scattering
the nodes of the network, it is the physics on the links of
network that plays the central role in the RMF.

It appears very likely that the newly found vortices a
intimately associated with the compelling evidence of t
hidden degree of freedom established in our scaling study

gh
in

FIG. 10. Curl of current, as described in text. Upper pan
quantum Hall system, using wave function in Fig. 9. Lower pan
RMF system, same wave function as in Fig. 7~b!.
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fact, both phenomema should be viewed as two sides of
same coin. On the one hand, the formation of vortices is
direct consequence of the mixing of drift and snake sta
which, on the other hand, the hidden degree of freedom c
acterizes. Accordingly, we are in a position to make the f
lowing conjecture. While coherent backscattering, i.e.,
interference between an electron close path and its time
verse, is the underlying physics of weak localization,34the
interference between snake and drift states is the driv
force of localization in systems subjected to a random m
netic field.As a result, the RMF system can only achieve
insulating phase, under some circumstances, through
coupling processes on the links of its network, as oppose
the node scattering in the QHE situation. We must empha
that our conclusion is not the same as those discusse
other previous work in two essential aspects. First, an e
tron gas in a RMF still manages to maintain its criticality,
its extended phase, if the scattering of the edge states is
sufficiently strong. There is an inherent competition betwe
two tendencies: the delocalization, inferred from the per
lation of the snake states, and the localization, induced f
the interference of the snakeand drift states. Second, earl
studies always neglected the profound role of the drift sta
which is important to be restated as follows. It is only due
the vast differences in wave number and spatial location
tween a pair of snake and drift states that vortices can
pronouncedly formed.

A successful microscopic theory for the RMF must, the
fore, involve a correct description of process occurring
the links of the network. This observation has, in fact, be
mentioned by Zhang and Arovas.11 Regardless of the techn
cal correctness of their formulation, we are certain that v
ous intuitive aspects of the picture drawn in their work a
corroborated in our present study. Specifically, the elem
tary excitations of an electron gas in a RMF are found to
the edge states; states that are produced by the peculia
terplay of quantum mechanics and magnetic field. Scatte
among these states gives rise to vortices, a new kind of
ondary excitations. Characterizing the vortices is th
‘‘fugacity,’’ the hidden degree of freedom independently o
served in our scaling analysis. Depending upon physical c
ditions, the vortices can unrestrictedly proliferate. In t
phase, where the scattering is irrelevant, or few vortices
present in each link of the network, the ‘‘fugacity’’ is sup
presed, the edge states remain gapless and carry curren
the phase where scattering is relevant, or there are too m
vortices involved, the ‘‘fugacity’’ is enhanced, a mass g
opens up driving the system into the localized phase.

Overall, we conclude that the correct RMF netwo
model must take into account the effect of vortices. Ev
link in the network is actually a quasi-one-dimensional tu
with vortices residing inside. Intuitively, one would expe
the presence of vortices to ‘‘block’’ the current flows, hen
driving the conduction on the contours, and ultimately,
metal-insulator transition~MIT !. As a matter of fact, the pos
sibility of such a scenario has been studied in great detai
the context of quantum wires and tubes. It has been es
lished that the formation of vortices critically affects the cu
rent flow in two-dimensional bent tubes.35
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V. ANATOMY OF THE WAVE FUNCTION IN A RANDOM
FIELD: QUANTITATIVE RESULTS

Having speculated about the possible connection betw
vortices and the MIT in a RMF, our task at hand is to se
out a characteristic measure to probe such a connec
Clearly, a suitable candidate is the average transmission
efficient through the links of the network. Also, what mak
it attractive is that it is a local property of the wave functio
rather than a global one such as the localization length
conductance.

Let us again consider anM3M square sample wrappe
on a torus and subjected to a RMF and a random sc
potential. For a finite sample, there is a nondissipative c
rent flowing around the torus in both of its directions.@Note
that there is no edge current in these samples.# The value of
this total current varies from sample to sample and vanis
on average since RMF configurations come in pairs that s
port currents of opposite signs. However, its root-me
squared~rms! fluctuation is still a sensible quantity to cha
acterize the conduction. Also in theM→` limit, with no net
magnetic field, the total current is of course vanishin
Therefore, we expect the finite-size current to scale asJM
;M 2n, wheren is a positive number. Our naive guess
that n52 because the total current reflects the overall c
duction in all the set of links and would suffer if any of the
is blocked by vortices and the number of links is propo
tional to M2. In other words, we may interpretM2A^JM

2 & as
the average local current in anM3M sample.

The calculation is the same as described in Sec. IV, exc
we switched back toh051.0 ands f55.0, and applied atop
a scalar potential randomly chosen within@2 1

2 W, 1
2 W#. The

sample size isM526, 36, 50, 70, 100, 140, and 200. Th
number of samples is typically 104 or higher to reach a pre
cision of 2 –3%. In the inset of Fig. 11 20 000 data points
shown, each dot representing the current (Jx ,Jy) of a con-
figuration of magnetic field and scalar potential withM
526, W54.0 and at Fermi energyE521.0. Much to our
expectation, the statistical distribution of currents is symm
ric around the originJW50 and appears to satisfy a Gaussi
distribution. From the data in the inset, the probability de
sity of finding a current at a given amplitudeuJMu
5AJMx

2 1JMy
2 is computed and shown in the main panel

Fig. 11. The solid line is the Gaussian distribution functio
plotted for comparison:

p~x!5
1

s2
x e2x2/2s2

,

wherex[uJMu ands[A^JM
2 &. With a very good agreemen

obtained in Fig. 11, the rms current is thus a self-averag
quantity; that is, its average overN independent sample
converges as 1/AN for large N. Therefore, in our following
computation, we shall actually takeA^JM

2 &5Ap/2 ^uJMu& for
convenience.

Figure 12 presents similarly obtained results atE521.0
for various sample sizes and disorders. The initial impress
of the picture is thatM2A^JM

2 & appears to be well behaved
1-11
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This justifies our use ofM2A^JM
2 & and, hence, our interpre

tation regarding it as a measure of local currents. Inter
ingly, its amplitude is also of ordert—the hopping element
exactly what is expected of a current. We thus have a le
basis to regardM2A^JM

2 & as the average local current, o
local conduction, from now on. In the region of weak diso
der, W&4.0, it endures a slight size-dependence then te
to saturate at a finite value of ordert at large system size
This means that the bulk conduction on the links of the n
work survives the thermodynamic limit. On the other han
in the region of strong disorder, it is strongly supressed as
system size is increased. The bulk local current is thus s

FIG. 11. Probability density of current distribution~columns! as
compared to the Gaussian distribution~solid line!. Inset: Scattering
histogram of currents for 20 000 independent samples withM
526, h051.0, s f55.0, E523.0, andW54.0.

FIG. 12. Root-mean-square of current.
14420
t-

al
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e

p-

posed to have undergone a transition from a finite value
zero as a function of disorder. The data in this computati
unfortunately, are not of good enough quality to locate
clear-cut transition point. Nonetheless, we see that the
ture does indicate a critical disorderWc'4.0, consistent with
our localization length study in Sec. III.

Sheng and Weng, and Yang and Bhatt shortly afterwar12

used the Chern number of a sample wrapped on a torus
criterion of delocalization. By studying the scaling behav
of the number of current-carrying states as a function
sample size, these authors indeed identified a metal-insu
transition at a finite energyEc , or equivalently a critical
disorderWc . Our results are compatible with their finding
However, there is a minor difference. While the Chern nu
ber is a global property of the wave function, we in fact de
with its local attribute. Of course, one might argue that t
local conduction is simply a reflection of the wave functio
as a whole, in that if the system is localized, the local curr
must be also small as a consequence. That is to say,
consideration ofM2A^JM

2 & delivers no new information as
does the localization length. Equipped with the justificati
of M2A^JM

2 & as a local conduction, we have looked at t
problem from below. In a RMF system, the metal-insula
transition observed at large length scale should be rega
as the manifestation of a transition of the conduction at
croscopic distances.

Interestingly, the local current used in our work turns o
to be analogous to the quantityM2DE proposed by Edwards
and Thouless,36 whereDE is the energy shift as one switche
from periodic to antiperiodic boundary condition. Their cr
terion of localization is to be adapted for the RMF case
what follows. Let us take anM3M square sample with
some configuration of random magnetic field and scalar
tential, and compute the currentJM flowing through the
sample at a given energyE. At the next step, we further pu
many copies of the sample together to form an infinite pe
odic system with the original sample as a unit cell. Clea
the current in the whole system is stillJM . We now allow
these large unit cells, instead of being identical, to pick
different field configurations within the same populatio
Clearly, the average quantityA^JM

2 & would play the role of
an ‘‘effective’’ hopping element, whereas the energy fluctu
tion among states aroundE is typically W/M2. The system is
then equivalent to the old system witht/W replaced by
M2A^JM

2 &/W. If this parameter is smaller than the origin
one, it should obviously become even smaller if the arg
ment is repeated one stage further, combining cells for big
cells, and so on. Therefore, we arrive at a tentative criter
for localization:

t

W
.

M2A^JM
2 &

W

or

M2A^JM
2 &,t51. ~5!

Although the coefficient in the right-hand side of Eq.~5!
should not be taken seriously, to our surprise, the numer
1-12
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results in Fig. 12 show a remarkable agreement: at the p
tive critical disorderWc54.0, M2A^JM

2 & is '1.0860.02.
It is worth noting that the above argument is a coar

graining one in essence. Literally, it was a precursor to la
developments of the scaling theory of localization. By t
same token, in the RMF problem, it elucidates the role of
new length scales f , the correlation length of the random
field, or roughly the average length of the links in its corr
sponding network. As one coarse-grains the system sta
from a microscopic length, if the links contain few vortice
by the time one reachess f , the vortices will have been
renormalized away, leaving the system in a critical state.
system will then look self-similar at all length scales. On t
other hand, if too many vortices are present, they will b
come dominant at large distances, driving the system into
insulating state.

VI. DISCUSSION

We are now in a position to discuss two existing analy
cal approaches to the RMF problem. The first of these is
field theoretical nonlinears model ~NLsM! originally de-
veloped in Ref. 17. It was concluded that an electron
subjected to ad-correlated RMF belongs to the unitary cla
of localization,17 thereby only sustaining an insulating phas
Although in two recent papers,21 it was argued that the sam
results should be reached for a RMF with long-range co
lation, we are confident that the visual pictures produc
throughout our study have told us something otherwise.
believe that it is almost a general rule of thumb that
presence of a magnetic field, uniform or nonuniform, ine
tably confers a profound influence upon the behavior
quantum particles. The electron wave function, as perfe
visible in Sec. IV, manifests a radical change in its struct
as the magnetic field quenches its kinetic energy. In part
lar, the electron wave function acquires a fractal chara
accompanied by a spontaneous formation of vortex curre
both of which should be considered asbuilt-in effects of the
magnetic field. Moreover, thes model undoubtedly fails to
account for the existence of the hidden degree of freed
pointed out and discussed throughout our work. The rea
for this failure is that thes model is a series expansion
1/g, whereg is the conductance, whereas interesting phys
established in our work occurs in the region of quant
conductance. It is worth noting thatin all numerical studies
available to date, a strong random magnetic field was u
as opposed to a weak field limit in thes-model approach. In
another recents-model study,15 the long-range effects o
magnetic fields were considered and claimed to have yie
a metal-insulator transition with a single node in theb func-
tion. However, our results have discordantly establishe
whole critical phase, in which theb function loses its puta-
tive meaning.

As mentioned in a previous section, it is sensible to
proximate the RMF problem by an effective network mod
Actually, such an attempt has been made in Refs. 18
However, in these studies, the possible role of drift state
localization was totally omitted. Rather, only the tunneli
14420
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within pairs of snake states of even and odd parities~with
respect to a reflection across their own zero-field line! was
considered. We produce schematically in Fig. 13 such a t
channel network model in which the tunneling between
pair of channels takes place within the links of the netwo
The big squares represent magnetic domains of consec
perpendicular directions. The arrows indicate the curr
flow along the boundaries between adjacent domains. W
the mixing between snake states on the links is character
by a U(2)-symmetric matrix

U5S eiw1 0

0 eiw2
D S cosf 2sinf

sinf cosf D S eiw3 0

0 eiw4
D . ~6!

In Ref. 18, the scattering at the nodes of the network, i.e.,
saddle points of the magnetic field landscape, was par
etrized as

S coshu1 0 sinhu1 0

0 coshu2 0 sinhu2

sinhu1 0 coshu1 0

0 sinhu2 0 coshu2

D . ~7!

In virtue of the percolation at the saddle points, bothu i ’s
( i 51,2) must be fixed equal touc[ ln(11A2), while their
fluctuations around uc has been determined to b
irrelevant.37 Using the above form of the scattering matrice
it was then asserted, by means of numerical simulation18

and a spin-representation mapping,19 that the model only

FIG. 13. Schematic illustration of the two-channel netwo
model. Clockwise and counterclockwise arrows indicate the cur
flows in boundaries of magnetic domains. Big shaded circles are
mixers where tunneling between two snake states~solid and dashed
lines! takes place. Note that Ref. 18 doesnot allow snake states o
different parities~even and odd! to mix at nodes~small solid and
open circles! of the network.
1-13
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supports an insulating phase. However, it is very importan
note that, by means of Eq.~7!, the node scattering wer
incorrectly assumed to beparity preserving. That is to say, as
illustrated in Fig. 13, snake states of even and odd par
were supposed to scatter independently at the nodes o
network. Without a parity-conservation rule at play, the sc
tering processes donot discriminate the two snake states. B
that, the formulation in these studies18,19 was too restrictive
to draw a reliable outcome. One has to introduce an e
parameter in matrix~7! to describe the mixing between cha
nels of opposite parities. In fact, the results obtained in R
18 can be understood as follows. For two snake states
equal energy living on a link, the tunneling between the
lifts their degeneracy, effectively producing an additional p
tential fluctuation from link to link. The states would thu
find it difficult to tunnel through the nodes due to the restr
tion in the node scaterring, whose effect is expected to
nullified once more freedom in scattering is added.@Obvi-
ously, such a model with too many phenomenological fi
tuned parameters is no longer tractable!#

Interestingly, we must note that even within the formu
tion of the two-channel network considered in Ref. 18
minor change in its U matrix, suggested by Kagalovsky a
collaborators,38 already leads to a totally different result th
supportsa critical phase atuc . Instead of using the U~2!-
symmetric mixing matrix as in Eq.~6!, these authors consid
ered a U(1)3SO(2) one, whose anglesw i ’s ( i 51,4) on
each link were all set equal~though still random from link to
link!. No level split was found, and the system remain
critical at u5uc . Although we do not expect the version
Ref. 38 to be the right description for a RMF, it does, ho
ever, indicate the sensitivity of the outcome, in favor or d
favor of critical states, depending upon the model formu
tion.

In closing our discussion, there are two comments
wish to make:

~i! The two-channel network model can apply equa
well to the problem of spin-unresolved QHE with the ele
tron spins playing the role of the two channels.18,39 In this
case,u i ’s are set equal to each other but can take an arbit
value otherwise. It has been concluded18,39 that the single
critical point within a Landau band is split into two, th
citical exponent at each point remaining unaffected, i.e.n
57/3. At a further stage, if one allows states of different s
to mix at the nodes of the network, it is interesting to a
whether the above picture would change, namely, whe
the system would belong to another universality class.

~ii ! One necessarily needs to introduce a parameter c
acterizing the ‘‘blocking’’ processes on the links of the ne
work. Note that the two-channel network model so far co
tained no adjustable parameter becauseu i ’s have already
been fixed at criticality. We have actually carried out a co
putation for the standard Chalker-Coddington network mo
at criticality with an additional blocking factor on its links
Interestingly, the criticality is observed to be stable agai
blocking and the system undergoes a metal-insulator t
stion of a new type. The results are to be repor
elsewhere.40
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VII. CONCLUSION

In this paper, we have carried out the most comprehen
investigation of the localization properties of the RMF sy
tem. Our main findings, strongly supported by compelli
evidences, are the existence of a finite region of exten
states~critical phase! and a hidden degree of freedom. Th
critical phase in a RMF is found to be as prominent a state
matter as the quantum Hall states. We devised a t
parameter procedure to analyze our extensive simula
data. Not only does it recover the results of other we
understood situations, our method also elucidates local
tion problems from a different standpoint by testing th
very basis: the single-parameter scaling hypothesis. For
RMF model, the hypothesis, which has withstood the tes
time, is found in our study to be invalidated by the presen
of the hidden degree of freedom. In exploring a possi
origin for this extra degree of freedom, we further esta
lished the dual role of the edge states that are formed a
the magnetic field boundaries. On one hand, extended s
are carried by edge states by virtue of their percolation
ture. On the other hand, specified by the hidden degree
freedom, the scattering among the edge states forms a d
ent set of vortices, which, in turn, influences the electr
transport in a fundamental way. Our proposed mechanism
localization in a RMF, that is, the tunneling between ed
states~not the same mechanism as in other previous wo
however!, should deservedly be viewed as a counterpar
the coherent backscattering of weak localization.

Insofar as the possibility of conducting phases in dis
dered systems is concerned, and given that quantum
states are the only ones known to sustain in two dimensio
the finding of a different conducting phase in our study
intriguing. In that vision, we hope that the RMF mod
would allow different theoretical perpectives to emerge,
pecially in light of tantalizing experimental evidences of
unexpected metallic groundstate in Si-MOSFET and ot
heterostructures.41 In particular, it would be a very interest
ing possibility if the RMF model would, arguably, turn out t
be a nontrivial fixed point of disordered interacting syste
under some circumstances.42
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APPENDIX: FORMATION OF VORTICES
IN A NONUNIFORM MAGNETIC FIELD

Consider a magnetic field perpendicular to thex2y plane
of the form B(y)5B0 y. Two types of classical orbits o
1-14
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electrons were shown in Fig. 8, but the orbit size and
energy spectrum have to be determined by quantum mec
ics. With the vector potential chosen asAW 52 1

2 B0 y2 x̂, thex
component of momentum is a good quantum number,px
5\kx . The wave function can thus be written in the for
c(x,y)5x(kx ,y)eikxx, wherex(kx ,y) is a solution to the
equation

2
\2

2m
x91@Ve f f~kx ,y!2E# x50. ~A1!

Figure 14 illustrates the effective potential

Ve f f~kx ,y!5
1

2m S \kx2
eB0

2
y2D 2

~A2!

For kx.0, Ve f f has the form of a double well that sup
ports symmetric and antisymmetric states about they axis.
These states have peaks around the potential minima6y0
56(2\kx /eB0)1/2. Obviously, they are thedrift statesthat
reside on the two sides of the zero-field line and flow f
wards in x̂ direction. Forkx<0, there are also symmetri
amd antisymmetric states, but the split in their energy
bigger. These are thesnake statesthat center on the zero
field line and, most of the time, flow backwards in2 x̂ di-
rection. A schematic plot of the energy bands is shown
Fig. 15. Besidekx , the band indexn is also a good quantum
number. It is identified as the parity ofx with respect to a
reflection about they axis. The energy bands appear to com
with odd and even parities pairwise. Within such a pair
bands, except at an energy close to their minima, there
always two drift states and two snake states, each pai
states being very close in wave number. Therefore, it is
ficient to consider the scattering between one drift state
one snake state at wave numberkx

1 and kx
2 , respectively,

which results in the following wave function:

c~x,y!5c1x1~y! eikx
1x1c2x2~y! eikx

2x. ~A3!

Without loss of generality, we setc15c251. Both x1(y)
and x2(y) are real function of y. While x1(y) has two
peaks at6y0 , x2(y) centers aroundy50. Obviously, the
wave function in Eq.~A3! has a series of isolated nodes a

FIG. 14. Effective potential for positive and negativekx’s.
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H x5
~2n11!p

kx
12kx

2

y5y1 wherex1~y1!5x2~y1!

and

H x5
2n p

kx
12kx

2

y5y2 where x1~y2!52x2~y2!.

The y component of the current is

j y}S dx1

dy
x22

dx2

dy
x1D sin@~kx

12kx
2! x#, ~A4!

which vanishes atx5n p/(kx
12kx

2). A schematic picture of
the wave function is shown in Fig. 16, where the direction
current flow is indicated by arrows. At the outer edges, th
are forward flows corresponding to the drift states; while
snake states flowing backward in the center. There are
arrays of nodes and vortices in the interior of the wave fu
tion.

It is worthy of note that the formation of vortices in
nonuniform magnetic field has not been mentioned before
our understanding. The reason might have been that one
considered the clean case, i.e., the coupling between
snake and drift states was omitted. However, several fac
in real situations could induce the coupling. For examp
they are finite length of theB50 contour, its imperfect ge-
ometry, effect of impurities, to name a few.

FIG. 15. Energy spectrum of electron gas in a linearly vary
magnetic field. Energy bands are formed pairwise with oppo
parity.

FIG. 16. Schematic pattern of vortices along the magne
boundary~the x axis!.
1-15
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