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Dielectric susceptibility measurements in a wide frequency spectrum were used to obtain the distribution of
relaxation times. This was performed by solving the integral equation for the susceptibility with the Tikhonov
regularization technique. This method allows to extract the distribution of the relaxation times and resolves
multiple dynamical processes. As an experimental example the investigation on mixed crystals of protonated
and deuterated BP,BPI, with x=0.85 are presented. The dipole-freezing phenomena results in a broad
asymmetrical distribution of the relaxation times. The parameters of the double-well potentials of the hydrogen
bonds, the local polarization distribution function and the glass order parameter have been extracted from the
dielectric measurements. The microscopic parameters obtained are in good agreement with magnetic resonance
data.
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I. INTRODUCTION priori assumptions have to be made. An alternative way to
describe a dielectric relaxation spectrum is that in terms of an
The dynamics of the dielectric response of ferroelectricensemble of Debye processes with a continuous relaxation
and related materials is of interest for applications in high{time distributionw(7). For the Debye dispersiow(r) re-
frequency electronic devices, such as static memories, sefuces to & function, while the superposition methods cor-
sors, microstrip lines, etc. Broadband dielectric spectroscoptespond to line shapes with several symmetrically or asym-
is widely used to study polarization dynamics in complexmetrically broadened peaks @f(7). Unfortunately, direct
systems such as glass-forming liquids and liquid crystallineextraction ofw(7) from * (v) is a mathematically ill-posed
materials(e.g., Ref. 1. The polarization of a sample in an problem? This difficulty may be one of the reasons why the
external electric field depends both on sample geometry angpectra are usually treated as superpositions of a few param-
on the mobility of molecular segments, molecules, or clus-etrized functions. Only few attempts were made to obtain the
ters of molecules. From the dielectric response one can ofslistribution of relaxation time3:> This method so far has
tain dipolar strengths, and relaxation processes present in th@t been applied for the dipolar glasses. Only in Ref. 4 au-
system. It is common to describe the dynamics in terms ofhors tried to obtain the distribution of the relaxation times,
the Debye model, where the exponential temporal decay dfut have used empirical functions, what narrowed the prob-
the fluctuation with some relaxation time is assumed. Howdem. If a direct calculation ofv(7) from ¢* could be reliably
ever, the dielectric properties of condensed matter do not iperformed, in a manner similar to the Fourier transformation
general follow the Debye model, thus in order to account folbetween time and frequency domains, then several problems
the actual behavior of solids, a distributions of relaxationarising from the use of empirical functions could be avoided.
times have been introduced. In practice, various predefinetlaving obtainedv(r) one could then seek a physical inter-
spectral functions have been used, i.e., single-paramet@retation in ther domain rather than in the frequency do-
Cole-Cole, Davidson-Cole, Williams-Wats, and two- main. Attempts to develop a suitable numerical algorithm
parameter Havriliak-Negami, Jonsher, Dissado Hill %etc. have been made previoudly (and therein
Typically, a superposition of several such functions provides Among the examples of materials with a broad distribu-
a satisfactory multiparameter fit to the experimental datation of relaxation times are dipolar glasses, such as rubidium
However, it is not always straightforward to relate the ob-ammonium dihydrogen phosphaté€RADP) or betaine
tained parameters to the intrinsic physical properties of th@hosphate-phosphit@®P/BP)) mixed crystal$®
material. A further drawback of such an approach is the in- Our purpose is to show that the information obtained from
herent difficulty of separating processes with comparable rethe distribution function of the relaxation times can give bet-
laxation times. A proper choice of the number of processeter insight into the dynamics of the glassy state.
used to fit the data is not always obvious, and additi@nal In this paper, we will concentrate on the BP/BPI mixed
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crystals. Betaine phosphaftBP: [ CHz)3sNCH,COOH;PQ,] ' '
and betaine phosphitBPI: [ CH;)3sNCH,COOH;PQ;] are
molecular crystals consisting of the amino-acid betaine as
the organic component, and phosphoric and phosphorous ac-
ids, respectively, as the inorganic component. In both com-
pounds, the inorganic components (Por PO; groups, .
linked by hydrogen bonds, form quasi-one-dimensional
chains® ! Betaine phosphate shows three phase transitions.
It undergoes the first phase transition from a paraelectric
high-temperature phagspace group BZm; Z=2) at 365

K into an antiferrodistortive phase (PZ;Z=4) and the
second one into an antiferroelectric phase at 86 K
(P2, /c;Z=8),'? the third occours at 81 K. In the high-
temperature phase the P@roups and betaine molecules are ~ FIG. 1. The frequency dependencesdfands” at several tem-
disordered. They both order in the antiferrodistortive phasePeratures of DBR1DBPly g5 Crystals. Lines are the best fits with
but the hydrogen atoms linking BQyroups remain disor- the obtained distribution of the relaxation times.

dered. Ordering of these hydrogen atoms induces the phase

transition at 86 K2 to the antiferroelectric phas8The ori-  DBPy1dDBPly g5 are presented, in Sec. IV the mathematical
gin of the third phase transition is not yet known. Deuteratedormalism of the extraction of the relaxation times is ex-
BP (DBP) shows only two phase transitions at 365 and 119Plained, in Sec. V the microscopic parameters are extracted.
K.'® The structure of BPI was determined from x-ray and

elastic neutron scattering experimehfBhe x-ray investiga- Il. EXPERIMENT
tion confirmed the structural affinity to BP. It was found that
BPI at room temperature is monoclirispace group PZc). BPy.18Plo gs and DBR 1PBPly g5, crystals were grown

BPI crystals show two phase transitions: from the paraelecdy controlled evaporation from f» and HO solutions con-

tric P2, /m high-temperature phase into an antiferrodistortivet@ining betaine with 85% of PO, and 15% of HPC,. By
P2, /c phase aT ¢; =355 K with a unit cell doubling along ~ analogy with DBPY® one expects that only the protons in the
axis and an order-disorder transition of the hydrogen bon@—H:--O bonds of the inorganic 0, and HPO;
system into the ferroelectric PPhase affc,=220 K.1*The  should be replaced t_>y deuterons. For the Q|electr|c spectros-
complex dielectric permittivity of BPI has been investigatedCOPY. gold plated single crystals were oriented along the
in a wide frequency range. Deuteration shifts the phaseonoclinich axis. The complex dielectric constant =’
transition temperature up to 300'RThe structural similar- —1¢&” was measured by a capacitance bridge HP4284A in the
ity of BP and BPI allows to grow mixed BP/BPI crystals in frequency range 20 Hz to 1 MHz. The typical sample size
the whole range of composition. The phase diagram ofvas 50 mm area and 0.7 mm thickness. The value of mea-
BP,BPI,_, has been investigatét’ by means of x-ray and surement voltage was 0.5 V. Further decrease of the measure-
pyroe|ectric methods. A very small amount of BP Changegnent VOItage does not Change the results for the dielectric
the ferroelectric phase transition temperature significantlyPermittivity. All measurements have been performed on heat-
The same effect has been observed in IBBPI, _, .8 With ing with .the rate Qf about 0.5 K/min in the diele_ctric disper-
substitution of BPI by BP already at the BP concentrationsion region. No differences in the value of the dielectric per-
x=0.15 the ferroelectric phase transition is suppressed andgittivity has been observed for cooling and heating due to
glass-like phase-transition occiir& Dielectric and ENDOR  the low value of the measurement field and the absence of
investigations of BR,8BPlygs and DBR;DBPl,gs have temperature gradients in the sample. The temperature was
been performe81% The freezing phenomena in Measured with a calibrated silicon diodeake Shore type
BP, 18Py g5 and DBR 12DBPI, g5 reveal the the characteris- DT-470-DI-13. For the temperature-dependent measure-
tics of a transition into a dipolar glass state with peculiaritiesTents & Leybold VSK-4-320 cryostat was used.

due to the quasi-one-dimensional structure. Using the Kut-

njak modef glass temperatures of 25 K and 10 K have been IIl. RESULTS
estimated for DBRsDBPIlygs protonated BR8Pl sgs,
respectively. For BR);BPlygs and DBR ;sDBPlygs, crystals no

In this paper, the results of dielectric investigation of anomaly ine’ indicating a polar phase transition can be de-
BP, 18Pl ssand DBR) ;sDBPI, g5, in the region of the low- tected down to the lowest temperatures. In the temperature
frequency dielectric dispersion are presented together with eegion below 100 K dispersion effects dominate the dielec-
different approach to the analysis of broad band dielectridric response in the frequency range under study. The tem-
spectra. The distribution function of the relaxation times hagperature behavior o’ and&” is typical for glasses: with
been extracted giving access to microscopic glass parametettscreasing measurement frequency the maximume 'of
which can be compared with magnetic resonance results. Ishifts to lower temperatures followed by the maximum of
the experimental section the experimental procedure is de2”. At fixed temperatures the frequency dependence’of
scribed, in Sec. Il the dielectric spectra of BEBPIj gs, and &” (e.g., see Fig. )Lprovides clear evidence that the
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TABLE |. Parameters from the Vogel-Fulcher analysis of the = w(r)d(In 7)
relaxation timesr for different BR ;sBPly g5 Crystals. ' (v)=¢e,+ —_— (2a)
—=1+(27w7)?
Crystal InGp,9) Ep/k(K) To(K)
BP,1:BPlygs -27.7 394.16 5.8 8//(V):J°° (2mvr)w(r)d(In T)_ 2b)
DBPy 1PBPlg g5 —235 311.6 26.5 = 1+(2mv7)?

Actually these two expressions are the first kind Fredholm
integral equations for the definition of the relaxation-time

frequency dependence of is much broader than for Debye distribution function w(7). Such integral equations are

dispersion. known to be an ill-posed problem. The most general method
First the experimental data were fitted with the Cole-Cole S po: pro ; - J 2
formula of considering them is the Tikhonov regularizatfon.

Treating the integral equatiori®) numerically one has to
perform the discretization which leads to a linear nonhomo-
Ae geneous algebraic equation set. In the matrix notation it can

e¥ =g+ Trionia @ be represented as

whereAe is the relaxator strength; is the relaxation time, AX=T. ®

agc is the distribution coefficients,, is the contribution of Here the componenis,(1<n=<N) of the vectorT represent

all higher-frequency modes to the dielectric permitivity, andthe dielectric spectrun{s{ ,e{} (1<i<N/2) recorded at

w=2mv is the measurement frequency.df.=0 this for- some frequency intervalg . We used equidistant frequency

mula reduces to the Debye formula. intervals in the logarithmic scaleA(n v,,=const). The vec-
The most probable relaxation time follows a Vogel- tor X componentsX,(1<=m<M) stand for the relaxation-

Fulcher lawr= moexp{E, /[k(T—To)]}, wherek is Boltzmann  time distributionw(r,) that we are looking for. We used

constant, with the parameters listed in Table I. equidistant time intervals in the logarithmic scale as well
As it is possible to see from Figs. 1 and 2 the distribution(AIn r,=const). The symbol stands for the kernel of the

of the relaxation times becomes very broad especially at lovabove matrix equation. It represents the matrix with elements

temperatures, as reaches the values of 0.8. &,,=0.5 obtained by the direct substitution of and 7, values into

the relaxation times are already distributed over three dethe kernels of the integral equatio(®. Usually the number

cades. As already mentioned in the introduction, each one aif data pointsN exceeds the number of spectrum poikts

the traditional models is strictly fixed with respect to the Due to the fact that Eq(3) cannot be solved directly, it is

shape of the relaxation-time distribution function. The Cole-replaced by the minimization of the following function

Cole formula assumes symmetrically shaped distribution of

the relaxation times, but the real distribution function can be ®o=|T—AX[*=min. (4)

different from this. In order to get more precise information H

about the real relaxation-time distribution function, a specialn

approach has been developed.

ere and further we shall use the following vector norm
otation ||V|?=VTV where the superscripl indicates the
transposed vector or matrix.
Due to the ill-posed nature of the integral Fredholm equa-
IV. RELAXATION-TIME DISTRIBUTION tions the above minimization problem is ill posed as well,
_ _ _and consequently, cannot be treated without some additional
We assume that the real and imaginary parts of the dieleGneans. Thus, following the Tikhonov regularization proce-

tric spectrume (v) =e'(») +ie"(v) can be represented as a qyre the functionatb, is replaced by the modified expres-
superposition of independent individual Debye-like relax-gjon

ation processes
O (a)=|T—AX|?+ &?|RX|?=min, (5)

osl ] where an additional regularization term is added. The symbol
h\%ﬁ% R stands for the regularization matrix, aandis the regular-
06l _ ization parameter. It plays the same role as a filter bandwidth
o LY g, when smoothing noisy data.
S04l LY j Usually there are many solutions satisfying Es). within
the experimentally recorded dielectric spectrum errors. Thus,
o2l % it is necessary to add as many additional conditions as pos-
. . . . sible. First, we know that all relaxation-time distribution
40 T(K?O 80 components have to be positiv&{>0). Next, sometimes
one knows rather reliable values of the static permittivity
FIG. 2. The temperature dependence of the Cole-Cole distribue (0) or the limit high-frequency dielectric permittivity., .
tion parametera,, for the BR;BPlygs (solid squares and  In this case it is worth to restrict the above minimization
DBP, ;:DBPI, g5 (0pen squargscrystals. problem fixing some of those values or both.
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FIG. 3. The frequency dependence of dielectric permittiay FIG. 4. The distribution function of the relaxation times at dif-

and corresponding relaxation-time distribution functits). The  ferent temperatures for BRBPly g5 (@) and DBR, ;DBPI, g5 (b).
solid lines in(a) are calculated with the corresponding initial distri- Lines are the best fits with Eqé6), (8)—(10).

bution of the relaxation times shown as open diamond®)nThe
open squares ife) are obtained by adding 3 percent random noise.ya|yes ofa result in artificial physically meaningless struc-
Thc_a ca_llculated diitribution_ with difft_arertt are prgsented ir@b}: tures inw(7), while too largea tends to oversmooth the
solid line a=10"% (e* Y‘”thom*”o's_é’ dotted line @=10""  ghane ofw(7) and suppress information. For the dipolar
dashed linex=1. (both with 3%e™ noise) glass BRBPl, g5 Wwe have performed the serious of calcu-
lations starting from the small value ef With « increasing

the deviation between experimental and fitted spectra in-
creases initially slowly and at certain point start to increase
more rapidly. We have considered this particular value as the
®est>23 This process revealed, that the bestalue is about

1 for our experiment.
©  The distribution of the relaxation-times of BRBPIy g5
and DBR 1DBPI, g5 calculated from the experimental di-

As we used rather uniform experimental ‘?'ata? we dIS'eIectric spectra at different temperatures are presented in Fig.
carded the automatic procedures of the regularization paran .o points

eter choice. Instead we performed some numerical simula-
tions with the artificial data in order to choose most suitable

parameter for our case. V. DISTRIBUTION OF DIELECTRIC RELAXATION-

Extensive simulation studies revealed that the algorithm is TIMES AND DIPOLAR GLASS MODEL

stable with respect to noise, provides excellent resolution of
multiple relaxation processes and extracts line shapes closetlg
approximating the true value af(7). An example is pre-
sented in Fig. 3. The selected starting distributior) is

Usually the minimization problengs) is solved numeri-
cally by means of the least squares problem technfig&el-
lowing the algorithm described by Provenctiewe devel-
oped the Debye program for the numerical solution of th
restricted minimization problengs) and the calculation of
the relaxation-time distribution. For the details see th
Appendix.

For the dipolar glasses it is usually assumed that the pro-
n motion in the double well ©-H- - - O potentials is ran-
domly frozenout at low temperatures, implying a static
quenched disordérBut due to the “built-in” disorder, al-

presented in the Fig.(B) with the open diamonds. From this . o ) . .

we have calculated the frequency dependence of the real aggys present n the off-stoichiometric solid solutions, there
imaginary parts of the dielectric permittivity shown as solid IS'a variety of environments for the-OH- - - O bonds, lead-
lines in Fig. 3a). The reverse calculation of(7) from the ing to a distribution of the microscopic parameters of the

dielectric data with the valuee=0.0001 gives exactly the bonds and, consequently, a distribution of dynamic proper-

same line shapfFig. 3b) solid linl. The added noise of 3 oo guﬂcgs the dipolar relaxation times when quenching
percent ofeq . [points in Fig. 3a)] changes the optimak place. N
: o . . We consider a proton or deuteron moving in an asymmet-

value dramatically. As it is possible to see from the Fidp)3 . doubl I ial. Th . fi
with the value ofa=0.0001 (dotted ling the spectrum is ric double-well potential. The movement consists of fast os-

hvsically meanin Iesé consisting of separate peaks Whecnlatlons in one of the minima with occasional thermally
P _yl (daéhed Iinbe%he s'ha e is ra?her cIoF;e o trl?e reai one Attivated jumps between the minima. Here we neglect quan-
a- ) Pe 1 ; . ‘tum tunneling, which is negligible for deuterons although
The main reason for the minimum value is the quality of

. ; .. might be significant for protons at low temperatures. The
the meas”uremedn;—c;;] thfe noise of dthe stdartmgl(c]iiatg. ,',Ml fItSoscillation frequency isy. The jump probability is governed
are equally good for the frequency dependence ande-. by the Boltzmann probability of overcoming the potential

rT;c(i/ noise level was chosen close to the experimental aCCarrier between the minima. An ensemble of similar-@l

. . . ---0 bonds has a relaxational dielectric response at lower
We must note, that this method fails for the monOdISper'frequencies. It was shown that the relaxation time of an in-

sive (Debye process, where the real distribution must be a.”. . . o
delta function. But with noisy data, one never gets a delta&jw'dual hydrogen bond dipole in such a systéis given by

distribution by means of the present formalism.
The regularization parameteris crucial for the shape of e exgEy/(T—To)] ®)
the distribution function of the relaxation times. Too small O 2 coshA/2kT)
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where 7,=1/27v,, with v, as the attempt frequency. This ' ' ' ' ' '
equation is similar to the Vogel-Fulcher one, except the do- I . A
nominator, which acounts for the asymme#yof the local LT S N
potential produced by the mean-field influence of all the _A00F e T
other dipoles. Thus, the local polarizatipn(time-averaged M o 4o
dipole moment of an individual 3—H- - - O bond is given = £ .
by the asymmetr} parameterd © o .

= 200 .

o A c, a
p=taniA/2kT). (7) BP;BPL, © *
| DBP, DBPL .. & o

We are assuming that the parameEgrdoes not change with . A A & . .
temperature, and we are introducing the Vogel-Fulcher tem- 0= 40 60 80
peratureT ; which should effectively account for the increase T(K)
of the barrier on approaching tfigy temperature. We further
consider that the asymmetfyand the potential barrie#, of FIG. 5. Temperature dependence of the mean valygopen

the local potential of the ©-H---O bonds both are ran- Symbols and standard deviatiom, (full symbols of BP, 18Pl gs
domly distributed around their mean valukg andE,, ac- (L, ®) and DBR1DBPlygs (A, 4).
cording to the Gaussian law resulting in the distribution

functions 2kT [atantip) —atantipy) ]
w(p)= S-exg — > >
, V2moa(1—p?) 202/(2KT)
E,—E 11
w(E,)= exp( - M) (8) , , -
2mog 20¢ which transforms in the form known for the random-bond

random field(RBRP modef® when substituting

oa=2I\eat A (12)

with

' 9) and

Ay p( (A=Ag)?
W(A)= exp —————
( 2mo 204

whereog and o, are the standard deviations Bf, and A,
respectively, from their mean values. The distribution func-
tion of relaxation-times is then given by

Here,J is the Gaussian variance adg the average of the
random interbond coupling} is the variance of the random

local electric fields, anathe average polarization. Knowing
the distribution functionw(p), both the averagémacro-

w(In r)=fio W(A)W[E,(A, T)]a(lﬁ )dA (10)  scopig polarization

whereE (A, 7) is the dependence &, on A for a givenr, P= fﬁlpw(p)dp (14
derived from Eq.(6).

Fits with the experimentally obtained relaxation-time dis-and the Edwards-Anderson glass order parameter
tributions were performed simultaneously for six different )
temperatures using the same parameter t=5.58 _ 2
x10712s (1.03<10 2s), To,=10K (24.4 K)S% Epo/K Gea ﬁlp w(p)dp 19
=392 K (353 K), o /k=49.9 K(43.6 K), for the protonated
and deuterated samples, respectively. The result is presentg

in Fig. 4 as solid lines. The average local potential asymme-
try Ag and the standard deviatian, are temperature depen- measurements of the protonated sanfpithe RBRF glass

dent as demonstrated in Fig. 5. One can recognize tharameters have been determined toJoke=30 K, Jo/k
relaxation-time distribution does significantly broaden to=160 K, andA=7 for temperatures above 90 K. Using the
lower temperatures. At low temperatures the relaxation-timealue A of the ENDOR results and the substitutions of Egs.
distribution is spread out in a very wide region as it is typical(12) and(13), the experimental parameters fitting the dielec-
for dipolar glasses. A very interesting point is that in contra-tric relaxation-time distribution delived/k=35 K, J,y/k
diction to usual proton glasses the average asymnigirgf =175 K for the protonated sample and are in good agree-
the local potentials of the hydrogen bonds is nonzero anthent with the ENDOR results. The temperature dependence
does disappear only for very low temperatures. From thef the Edwards-Anderson glass order parametey deter-
distribution functionw(A) of the local potential asymmetry mined from both measurements is presented in Fig. 6. This
the distribution functiorw(p) of the local polarizations of demonstrates that besides magnetic resonance techniques the
the hydrogen bonds can easily be deduced dielectric spectroscopy coupled with the data analysis pre-

an be calculated.
With former electron-nuclear double resonafE®&DOR)
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L0 = - - tracted from the dielectric measurements. The microscopic
%b parameters obtained are in good agreement with magnetic
= ENDOR resonance data. The dielectric results confirm that, in oppo-
o dielectric spectroscopy site to usual proton glasses, dipolar clusters must exist with a
nonzero electric average polarization in an intermediate
phase. The interesting result from dielectric spectroscopy is
the vanishing of this cluster polarization for very low-
temperatures taking place for the protonated and deuterated
at different temperatures, 30 K and 60 K, respectively. One
could suspect that this disappearance of the cluster polariza-
0.0 . - o i o
0 100 200 300 tion is related with the real glass transition into the low-
T(K) temperature nonergodic glassy phase.

05} 1

qEA

FIG. 6. Temperature dependence of the Edwards-Anderson or-
der parametegg 4 for the BR 1BPl, g5 crystals. Points above 70 K
are from ENDOR results, line is guide for eye. This work was supported by the Lithuanian State Science

foundation and Alexander von Humboldt foundation.
sented above is another appropriate tool to determine micro-
scopic glass parameters. Because there do not exist peculiari- APPENDIX: DEBYE PROGRAM
ties as such with the magnetic resonance line shape for short
relaxation times, dielectric spectroscopy gives interesting re- In this section we give some details of the numerical pro-
sults for low temperatures, especially. gram. Actually the program implements the simplified ver-

Let us go back once more to the above mentioned pecusion of Provencher algorithffiadapted to the integral equa-
liarity with the nonzero value of\, or J,. As there is no tion (2) case.
evidence for a finite spontaneous polarization of our sample As it was already mentioned in Sec. IV the equidistant
from hysteresis and pyroelectric measurements, the nonzegiscretization in the logarithmic scale with steps
average of the local potential asymmetry must be interpreted
to result from a finite average cluster polarization which is Alnv=h,, Alnr=h; (A1)
averaged out on a macroscopic scale. The cluster nature is .
unknown up to now. One can speculate that it is related tgvas used. The kernel matrix components are
the strong couplings within the quasi-one-dimensional o -1
phosphite-phosphate  chains- - -H—O(PO)O - -H—O A = hAL+ (2mv7m)7 n<N/2
(PO,)O—H- - -. Further indications for a special kind of an " 27 vprah {1+ (27T Y, n>N/2.
intermediate phase between the paraelectric and glassy state (A2)
from ENDOR and electron spin-lattice time measurement
have already been publish&dThe new interesting result
from dielectric spectroscopy is the vanishing of this cluste
polarization for very low temperatures taking place for the'™ ™ : "
protonated and deuterated samples at different temperaturd first component. In this case the additional firt. . . .1,
30 K and 60 K, respectively. One could suspect that thid: - -» O column is added to the kernel matrix.
disappearance of the cluster polarization is related with the "€ regularization matrix
real glass transition into the low-temperature nonergodic

ACKNOWLEDGMENT

%hen the shifte,. is known and fixed, it is subtracted from
I,da'[a vector replacing:{ —¢&{ —&... In the opposite case
when the shifte., is not fixed, it is added to th¥ vector as

glassy phase. hf 0 o 0 .- 0
1 -2 1 0 -~ O
o 1 -2 1 --- 0
VI. CONCLUSIONS R=Ry= . (A3)
We have presented a different approach to the interpreta- o
tion of dielectric spectra. The distribution of the relaxation- o .-~ 0 1 -2 1
times have been obtained. This was performed by solving 0O ... 0 0 0 h?

integral equation with the Tikhonov regularization technique.

ThIS me’[hOd a."OWS to extract the diStI’ibutiOI’] funCtion Of the Corresponding to the Ca|cu|ation of the Second_order deriva_
relaxation-times without any priori assumptions and re- tive was used. The first and last components proportional to
solves multiple dynamical processes. As an experimental €432 \yere adjusted during the simulation. In the case with not

ample the mixed crystals of protonated and deuteratedyoq shift ¢, , value the above regularization matrix was
BP; _,BPIl, with x=0.85 are presented. The dipole-freezing replaced by

phenomena result in a broad asymmetrical distribution of the

relaxation-times. The parameters of the double-well poten- h2 0o
tials of the hydrogen bonds, the local polarization distribu- R:( T ) (A4)
tion function and the glass order parameter have been ex- 0 Ro
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When the static permittivitye(0) is fixed there is the D (a)=|(T—AKF~te)— AK,XE|?+ a?|RK F e
additional equality condition
+ RI,X5|2=min, (Al4a)

8w+fW(T)d(|n 7)=¢(0) (A5)
(Ko X5)n=—(Kq)Fte. (A14b)
which the relaxation-time distribution has to obey. The dis-
crete version of this condition can be presented®¥=e  for shorter vectoiX5 [with (M —1) components
with The reduction of the above problem to LDP is based on
the QR decomposition
e=¢(0)—e., E'=h{1/2,1...,1,12 (A6)

in the case with fixed:.., and AK2=QoC (A15)
e=¢(0), E'=h{1h;'1/2,1...,1,1/2 (A7) followed by twofold singular value decompositions

in the opposite case. =UHZT Al6
Thus, we have to solve the minimization problem with RK=URZ ", (AL6d

linear equality and inequality constraints
CZH 1=QSWT. (A16b)
O (a)=|T—AX|?+ &?|RX||?=min, (A8a)
Here matricesQ,,U, 2,9,V are orthogonal Qggozl,

E™X=e, (A8b)  etc), matricesH and S are diagonal with diagonal matrix
elementsH, and S,, correspondingly, and the matrix is
X,=0. (A8c)  upper triangular.

The standard way of treating such problem is the exclusion The substitution

of the equality constrain, and reduction of the remaining £ o T .

minimization problem with inequality constraints to the LDP Xz=ZH {WA-U RK.F e} (A17)

(Least Distance Programmingroblem? o _ _
The exclusion of the equality constraint is performed asthanges the minimization problefA14) into the following

follows. First, the scalar constrairfd8a) is formally re-  One:

placed by its matrix analog

@ (@) =[ly— SN+ a?|N]|=min, (A18a)
E™X=e (A9)

with M XM matrix £=(E,0) and M-component vectoe' (DN)p=—d,, (A18b)

={e,0}. Next, the RQ decomposition is performed

where
F O
E=(Kik)| o o (A10) D=K,2ZH W, (A199
Here the symboK; stands foiM-component vector, ankl, d={K,ZH " UT—TIK,F e (A19b)
- 2 1 '

is the (M —1)XM matrix. Those two objects together form
the unitary matrix
y=QUQ T+ (CZH UT— QJAKF te}.

K (A190)
The main advantage of the obtained minimization prob-
HereZ is the unity matrix. lem is that both functiona® («) parts are composed of the
Now inserting Eq.(A10) into condition(A9), and denot-  diagonal components only. Thus, it can be easily rewritten in
ing the single diagonal form
xE -
X=(K1/C2)(XE) —KEFIXE,  (AL2) V=g =min, (A209
2
we obtain (DS 1)p=—(d+DS )y, (A20b)
XT=F'e, (A13)  where the symbab stands for diagonal matrix with the com-
and reduce the initial minimization problem to the problemPONENtsS,= VSi+a?, v is the vector with components,
with inequality constraints only =v.S,/S,, and

144113-7
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A=S Y &+7). (A21)

The final minimization problentA20) can be solved by LDP
technique. When the vectdris found the vectoX (actually
the relaxation-time distributionis obtained by means of Egs.
(A21), (A17), (A13), and(A12).
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In the case wher(0) is not fixed there is no EqA8a),
and the algorithm is more simple. It can easily be obtained
from the previous one formally assuming th&{=0 and
’CZZI.

The Debye program is written in'C" as a Single Docu-
ment Interface program for the Windows98 environment.
The LDP subroutine was rewritten from the fortran version
given27in,22 the matrix decomposition subroutines were taken
from.
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