
PHYSICAL REVIEW B 66, 144113 ~2002!
Dynamic dielectric susceptibility of the betaine phosphate„0.15… betaine phosphite„0.85…
dipolar glass
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Dielectric susceptibility measurements in a wide frequency spectrum were used to obtain the distribution of
relaxation times. This was performed by solving the integral equation for the susceptibility with the Tikhonov
regularization technique. This method allows to extract the distribution of the relaxation times and resolves
multiple dynamical processes. As an experimental example the investigation on mixed crystals of protonated
and deuterated BP12xBPIx with x50.85 are presented. The dipole-freezing phenomena results in a broad
asymmetrical distribution of the relaxation times. The parameters of the double-well potentials of the hydrogen
bonds, the local polarization distribution function and the glass order parameter have been extracted from the
dielectric measurements. The microscopic parameters obtained are in good agreement with magnetic resonance
data.
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I. INTRODUCTION

The dynamics of the dielectric response of ferroelectr
and related materials is of interest for applications in hig
frequency electronic devices, such as static memories,
sors, microstrip lines, etc. Broadband dielectric spectrosc
is widely used to study polarization dynamics in compl
systems such as glass-forming liquids and liquid crystal
materials~e.g., Ref. 1!. The polarization of a sample in a
external electric field depends both on sample geometry
on the mobility of molecular segments, molecules, or cl
ters of molecules. From the dielectric response one can
tain dipolar strengths, and relaxation processes present in
system. It is common to describe the dynamics in terms
the Debye model, where the exponential temporal deca
the fluctuation with some relaxation time is assumed. Ho
ever, the dielectric properties of condensed matter do no
general follow the Debye model, thus in order to account
the actual behavior of solids, a distributions of relaxati
times have been introduced. In practice, various predefi
spectral functions have been used, i.e., single-param
Cole-Cole, Davidson-Cole, Williams-Wats, and tw
parameter Havriliak-Negami, Jonsher, Dissado Hill et1

Typically, a superposition of several such functions provid
a satisfactory multiparameter fit to the experimental da
However, it is not always straightforward to relate the o
tained parameters to the intrinsic physical properties of
material. A further drawback of such an approach is the
herent difficulty of separating processes with comparable
laxation times. A proper choice of the number of proces
used to fit the data is not always obvious, and additionaa
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priori assumptions have to be made. An alternative way
describe a dielectric relaxation spectrum is that in terms o
ensemble of Debye processes with a continuous relaxa
time distributionw(t). For the Debye dispersionw(t) re-
duces to ad function, while the superposition methods co
respond to line shapes with several symmetrically or asy
metrically broadened peaks ofw(t). Unfortunately, direct
extraction ofw(t) from «* (n) is a mathematically ill-posed
problem.2 This difficulty may be one of the reasons why th
spectra are usually treated as superpositions of a few pa
etrized functions. Only few attempts were made to obtain
distribution of relaxation times.3–5 This method so far has
not been applied for the dipolar glasses. Only in Ref. 4
thors tried to obtain the distribution of the relaxation time
but have used empirical functions, what narrowed the pr
lem. If a direct calculation ofw(t) from «* could be reliably
performed, in a manner similar to the Fourier transformat
between time and frequency domains, then several probl
arising from the use of empirical functions could be avoide
Having obtainedw(t) one could then seek a physical inte
pretation in thet domain rather than in the frequency d
main. Attempts to develop a suitable numerical algorith
have been made previously3–5 ~and therein!.

Among the examples of materials with a broad distrib
tion of relaxation times are dipolar glasses, such as rubid
ammonium dihydrogen phosphate~RADP! or betaine
phosphate-phosphite~BP/BPI! mixed crystals.6–8

Our purpose is to show that the information obtained fro
the distribution function of the relaxation times can give b
ter insight into the dynamics of the glassy state.

In this paper, we will concentrate on the BP/BPI mixe
©2002 The American Physical Society13-1
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J. BANYS et al. PHYSICAL REVIEW B 66, 144113 ~2002!
crystals. Betaine phosphate@BP: @CH3)3NCH2COOH3PO4]
and betaine phosphite~BPI: @CH3)3NCH2COOH3PO3] are
molecular crystals consisting of the amino-acid betaine
the organic component, and phosphoric and phosphorou
ids, respectively, as the inorganic component. In both co
pounds, the inorganic components (PO4 or PO3 groups!,
linked by hydrogen bonds, form quasi-one-dimensio
chains.9–11 Betaine phosphate shows three phase transiti
It undergoes the first phase transition from a paraelec
high-temperature phase~space group P21 /m; Z52) at 365
K into an antiferrodistortive phase (P21 /c;Z54) and the
second one into an antiferroelectric phase at 86
(P21 /c;Z58),12 the third occours at 81 K. In the high
temperature phase the PO4 groups and betaine molecules a
disordered. They both order in the antiferrodistortive pha
but the hydrogen atoms linking PO4 groups remain disor-
dered. Ordering of these hydrogen atoms induces the p
transition at 86 K12 to the antiferroelectric phase.10 The ori-
gin of the third phase transition is not yet known. Deutera
BP ~DBP! shows only two phase transitions at 365 and 1
K.13 The structure of BPI was determined from x-ray a
elastic neutron scattering experiments.9 The x-ray investiga-
tion confirmed the structural affinity to BP. It was found th
BPI at room temperature is monoclinic~space group P21 /c).
BPI crystals show two phase transitions: from the parae
tric P21 /m high-temperature phase into an antiferrodistort
P21 /c phase atTC15355 K with a unit cell doubling alongc
axis and an order-disorder transition of the hydrogen b
system into the ferroelectric P21 phase atTC25220 K.14 The
complex dielectric permittivity of BPI has been investigat
in a wide frequency range. Deuteration shifts the pha
transition temperature up to 300 K.15 The structural similar-
ity of BP and BPI allows to grow mixed BP/BPI crystals
the whole range of composition. The phase diagram
BPxBPI12x has been investigated16,17 by means of x-ray and
pyroelectric methods. A very small amount of BP chang
the ferroelectric phase transition temperature significan
The same effect has been observed in DBPxDBPI12x .18 With
substitution of BPI by BP already at the BP concentrat
x50.15 the ferroelectric phase transition is suppressed a
glass-like phase-transition occurs.8,19 Dielectric and ENDOR
investigations of BP0.15BPI0.85 and DBP0.15DBPI0.85 have
been performed.8,19–21 The freezing phenomena i
BP0.15BPI0.85 and DBP0.15DBPI0.85 reveal the the characteris
tics of a transition into a dipolar glass state with peculiarit
due to the quasi-one-dimensional structure. Using the K
njak model7 glass temperatures of 25 K and 10 K have be
estimated for DBP0.15DBPI0.85 protonated BP0.15BPI0.85,
respectively.

In this paper, the results of dielectric investigation
BP0.15BPI0.85 and DBP0.15DBPI0.85, in the region of the low-
frequency dielectric dispersion are presented together wi
different approach to the analysis of broad band dielec
spectra. The distribution function of the relaxation times h
been extracted giving access to microscopic glass param
which can be compared with magnetic resonance results
the experimental section the experimental procedure is
scribed, in Sec. III the dielectric spectra of BP0.15BPI0.85,
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DBP0.15DBPI0.85 are presented, in Sec. IV the mathematic
formalism of the extraction of the relaxation times is e
plained, in Sec. V the microscopic parameters are extrac

II. EXPERIMENT

BP0.15BPI0.85 and DBP0.15DBPI0.85, crystals were grown
by controlled evaporation from D2O and H2O solutions con-
taining betaine with 85% of H3PO4 and 15% of H3PO3. By
analogy with DBPI15 one expects that only the protons in th
OuH•••O bonds of the inorganic H3PO4 and H3PO3
should be replaced by deuterons. For the dielectric spect
copy, gold plated single crystals were oriented along
monoclinic b axis. The complex dielectric constant«* 5«8
2 i«9 was measured by a capacitance bridge HP4284A in
frequency range 20 Hz to 1 MHz. The typical sample s
was 50 mm2 area and 0.7 mm thickness. The value of me
surement voltage was 0.5 V. Further decrease of the meas
ment voltage does not change the results for the dielec
permittivity. All measurements have been performed on he
ing with the rate of about 0.5 K/min in the dielectric dispe
sion region. No differences in the value of the dielectric p
mittivity has been observed for cooling and heating due
the low value of the measurement field and the absenc
temperature gradients in the sample. The temperature
measured with a calibrated silicon diode~Lake Shore type
DT-470-DI-13!. For the temperature-dependent measu
ments a Leybold VSK-4-320 cryostat was used.

III. RESULTS

For BP0.15BPI0.85 and DBP0.15DBPI0.85, crystals no
anomaly in«8 indicating a polar phase transition can be d
tected down to the lowest temperatures. In the tempera
region below 100 K dispersion effects dominate the diel
tric response in the frequency range under study. The t
perature behavior of«8 and «9 is typical for glasses: with
decreasing measurement frequency the maximum of«8
shifts to lower temperatures followed by the maximum
«9. At fixed temperatures the frequency dependence of«8
and «9 ~e.g., see Fig. 1! provides clear evidence that th

FIG. 1. The frequency dependence of«8 and«9 at several tem-
peratures of DBP0.15DBPI0.85 crystals. Lines are the best fits wit
the obtained distribution of the relaxation times.
3-2
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DYNAMIC DIELECTRIC SUSCEPTIBILITY OF THE . . . PHYSICAL REVIEW B 66, 144113 ~2002!
frequency dependence of«9 is much broader than for Deby
dispersion.

First the experimental data were fitted with the Cole-C
formula

«* 5«`1
D«

11~ ivt!12acc
, ~1!

whereD« is the relaxator strength,t is the relaxation time,
acc is the distribution coefficient,«` is the contribution of
all higher-frequency modes to the dielectric permitivity, a
v52pn is the measurement frequency. Ifacc50 this for-
mula reduces to the Debye formula.

The most probable relaxation time follows a Voge
Fulcher lawt5t0exp$Eb /@k(T2T0)#%, wherek is Boltzmann
constant, with the parameters listed in Table I.

As it is possible to see from Figs. 1 and 2 the distributi
of the relaxation times becomes very broad especially at
temperatures, asacc reaches the values of 0.8. Atacc50.5
the relaxation times are already distributed over three
cades. As already mentioned in the introduction, each on
the traditional models is strictly fixed with respect to t
shape of the relaxation-time distribution function. The Co
Cole formula assumes symmetrically shaped distribution
the relaxation times, but the real distribution function can
different from this. In order to get more precise informati
about the real relaxation-time distribution function, a spec
approach has been developed.

IV. RELAXATION-TIME DISTRIBUTION

We assume that the real and imaginary parts of the die
tric spectrum«(n)5«8(n)1 i«9(n) can be represented as
superposition of independent individual Debye-like rela
ation processes

TABLE I. Parameters from the Vogel-Fulcher analysis of t
relaxation timest for different BP0.15BPI0.85 crystals.

Crystal ln(t0,s) Eb /k(K) T0(K)

BP0.15BPI0.85 227.7 394.16 5.8
DBP0.15DBPI0.85 223.5 311.6 26.5

FIG. 2. The temperature dependence of the Cole-Cole distr
tion parameteracc for the BP0.15BPI0.85 ~solid squares! and
DBP0.15DBPI0.85 ~open squares! crystals.
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«8~n!5«`1E
2`

` w~t!d~ ln t!

11~2pnt!2
, ~2a!

«9~n!5E
2`

` ~2pnt!w~t!d~ ln t!

11~2pnt!2
. ~2b!

Actually these two expressions are the first kind Fredho
integral equations for the definition of the relaxation-tim
distribution function w(t). Such integral equations ar
known to be an ill-posed problem. The most general meth
of considering them is the Tikhonov regularization.2

Treating the integral equations~2! numerically one has to
perform the discretization which leads to a linear nonhom
geneous algebraic equation set. In the matrix notation it
be represented as

AX5T. ~3!

Here the componentsTn(1<n<N) of the vectorT represent
the dielectric spectrum$« i8 ,« i9% (1< i<N/2) recorded at
some frequency intervalsn i . We used equidistant frequenc
intervals in the logarithmic scale (D ln nm5const). The vec-
tor X componentsXm(1<m<M ) stand for the relaxation-
time distributionw(tm) that we are looking for. We used
equidistant time intervals in the logarithmic scale as w
(D ln tm5const). The symbolA stands for the kernel of the
above matrix equation. It represents the matrix with eleme
obtained by the direct substitution ofn i and tm values into
the kernels of the integral equations~2!. Usually the number
of data pointsN exceeds the number of spectrum pointsM.
Due to the fact that Eq.~3! cannot be solved directly, it is
replaced by the minimization of the following function

F05iT2AXi25min. ~4!

Here and further we shall use the following vector no
notation iVi25VTV where the superscriptT indicates the
transposed vector or matrix.

Due to the ill-posed nature of the integral Fredholm eq
tions the above minimization problem is ill posed as we
and consequently, cannot be treated without some additi
means. Thus, following the Tikhonov regularization proc
dure the functionalF0 is replaced by the modified expres
sion

F~a!5iT2AXi21a2iRXi25min, ~5!

where an additional regularization term is added. The sym
R stands for the regularization matrix, anda is the regular-
ization parameter. It plays the same role as a filter bandw
when smoothing noisy data.

Usually there are many solutions satisfying Eq.~5! within
the experimentally recorded dielectric spectrum errors. Th
it is necessary to add as many additional conditions as p
sible. First, we know that all relaxation-time distributio
components have to be positive (Xn.0). Next, sometimes
one knows rather reliable values of the static permittiv
«(0) or the limit high-frequency dielectric permittivity«` .
In this case it is worth to restrict the above minimizatio
problem fixing some of those values or both.

u-
3-3
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J. BANYS et al. PHYSICAL REVIEW B 66, 144113 ~2002!
Usually the minimization problem~5! is solved numeri-
cally by means of the least squares problem technique.22 Fol-
lowing the algorithm described by Provencher23 we devel-
oped the Debye program for the numerical solution of
restricted minimization problem~5! and the calculation of
the relaxation-time distribution. For the details see
Appendix.

As we used rather uniform experimental data we d
carded the automatic procedures of the regularization par
eter choice. Instead we performed some numerical sim
tions with the artificial data in order to choose most suita
parameter for our case.

Extensive simulation studies revealed that the algorithm
stable with respect to noise, provides excellent resolution
multiple relaxation processes and extracts line shapes clo
approximating the true value ofw(t). An example is pre-
sented in Fig. 3. The selected starting distributionw(t) is
presented in the Fig. 3~b! with the open diamonds. From thi
we have calculated the frequency dependence of the rea
imaginary parts of the dielectric permittivity shown as so
lines in Fig. 3~a!. The reverse calculation ofw(t) from the
dielectric data with the valuea50.0001 gives exactly the
same line shape@Fig. 3~b! solid line#. The added noise of 3
percent ofemax @points in Fig. 3~a!# changes the optimala
value dramatically. As it is possible to see from the Fig. 3~b!,
with the value ofa50.0001 ~dotted line! the spectrum is
physically meaningless, consisting of separate peaks. W
a51 ~dashed line! the shape is rather close to the real on
The main reason for thea minimum value is the quality of
the measurement—or the noise of the starting data. All
are equally good for the frequency dependence ofe8 ande9.
The noise level was chosen close to the experimental a
racy.

We must note, that this method fails for the monodisp
sive ~Debye! process, where the real distribution must be
delta function. But with noisy data, one never gets a de
distribution by means of the present formalism.

The regularization parametera is crucial for the shape o
the distribution function of the relaxation times. Too sm

FIG. 3. The frequency dependence of dielectric permittivity~a!
and corresponding relaxation-time distribution function~b!. The
solid lines in~a! are calculated with the corresponding initial dist
bution of the relaxation times shown as open diamonds in~b!. The
open squares in~a! are obtained by adding 3 percent random noi
The calculated distribution with differenta are presented in~b!:
solid line a51024 (e* without noise!, dotted line a51024,
dashed linea51. ~both with 3%e* noise.!
14411
e

e

-
m-
a-
e

is
of
ely

nd

en
.

ts

u-

-
a
a

l

values ofa result in artificial physically meaningless stru
tures in w(t), while too largea tends to oversmooth the
shape ofw(t) and suppress information. For the dipol
glass BP0.15BPI0.85 we have performed the serious of calc
lations starting from the small value ofa. With a increasing
the deviation between experimental and fitted spectra
creases initially slowly and at certain point start to increa
more rapidly. We have considered this particular value as
best.3,23 This process revealed, that the besta value is about
1 for our experiment.

The distribution of the relaxation-times of BP0.15BPI0.85
and DBP0.15DBPI0.85 calculated from the experimental d
electric spectra at different temperatures are presented in
4 as points.

V. DISTRIBUTION OF DIELECTRIC RELAXATION-
TIMES AND DIPOLAR GLASS MODEL

For the dipolar glasses it is usually assumed that the p
ton motion in the double well OuH•••O potentials is ran-
domly frozenout at low temperatures, implying a sta
quenched disorder.7 But due to the ‘‘built-in’’ disorder, al-
ways present in the off-stoichiometric solid solutions, the
is a variety of environments for the OuH•••O bonds, lead-
ing to a distribution of the microscopic parameters of t
bonds and, consequently, a distribution of dynamic prop
ties such as the dipolar relaxation times when quench
takes place.

We consider a proton or deuteron moving in an asymm
ric double-well potential. The movement consists of fast
cillations in one of the minima with occasional thermal
activated jumps between the minima. Here we neglect qu
tum tunneling, which is negligible for deuterons althou
might be significant for protons at low temperatures. T
oscillation frequency isn0. The jump probability is governed
by the Boltzmann probability of overcoming the potent
barrier between the minima. An ensemble of similar OuH
•••O bonds has a relaxational dielectric response at lo
frequencies. It was shown that the relaxation time of an
dividual hydrogen bond dipole in such a system24 is given by

t5t0

exp@Eb /~T2T0!#

2 cosh~A/2kT!
, ~6!

.

FIG. 4. The distribution function of the relaxation times at d
ferent temperatures for BP0.15BPI0.85 ~a! and DBP0.15DBPI0.85 ~b!.
Lines are the best fits with Eqs.~6!, ~8!–~10!.
3-4
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DYNAMIC DIELECTRIC SUSCEPTIBILITY OF THE . . . PHYSICAL REVIEW B 66, 144113 ~2002!
wheret051/2pn` with n` as the attempt frequency. Th
equation is similar to the Vogel-Fulcher one, except the
nominator, which acounts for the asymmetryA of the local
potential produced by the mean-field influence of all t
other dipoles. Thus, the local polarizationp ~time-averaged
dipole moment! of an individual OuH•••O bond is given
by the asymmetry24 parameterA

p5tanh~A/2kT!. ~7!

We are assuming that the parameterEb does not change with
temperature, and we are introducing the Vogel-Fulcher te
peratureT0 which should effectively account for the increa
of the barrier on approaching theT0 temperature. We furthe
consider that the asymmetryA and the potential barrierEb of
the local potential of the OuH•••O bonds both are ran
domly distributed around their mean valuesA0 andEb0 ac-
cording to the Gaussian law resulting in the distributi
functions

w~Eb!5
1

A2psE

expS 2
~Eb2Eb0!2

2sE
2 D ~8!

with

w~A!5
1

A2psA

expS 2
~A2A0!2

2sA
2 D , ~9!

wheresE and sA are the standard deviations ofEb and A,
respectively, from their mean values. The distribution fun
tion of relaxation-times is then given by

w~ ln t!5E
2`

`

w~A!w@Eb~A,t!#
]Eb

]~ ln t!
dA, ~10!

whereEb(A,t) is the dependence ofEb on A for a givent,
derived from Eq.~6!.

Fits with the experimentally obtained relaxation-time d
tributions were performed simultaneously for six differe
temperatures using the same parameter set:t055.58
310212 s (1.03310212 s), T0510 K ~24.4 K!, Eb0 /k
5392 K ~353 K!, sE /k549.9 K ~43.6 K!, for the protonated
and deuterated samples, respectively. The result is prese
in Fig. 4 as solid lines. The average local potential asymm
try A0 and the standard deviationsA are temperature depen
dent as demonstrated in Fig. 5. One can recognize
relaxation-time distribution does significantly broaden
lower temperatures. At low temperatures the relaxation-t
distribution is spread out in a very wide region as it is typic
for dipolar glasses. A very interesting point is that in cont
diction to usual proton glasses the average asymmetryA0 of
the local potentials of the hydrogen bonds is nonzero
does disappear only for very low temperatures. From
distribution functionw(A) of the local potential asymmetr
the distribution functionw(p) of the local polarizations of
the hydrogen bonds can easily be deduced
14411
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w~p!5
2kT

A2psA~12p2!
expF2

@atanh~p!2atanh~p0!#2

2sA
2/~2kT!2 G

~11!

which transforms in the form known for the random-bo
random field~RBRF! model25 when substituting

sA52JAqEA1D̃ ~12!

and

A052J0p̄. ~13!

Here,J is the Gaussian variance andJ0 the average of the
random interbond coupling,D̃ is the variance of the random
local electric fields, andp̄ the average polarization. Knowin
the distribution functionw(p), both the average~macro-
scopic! polarization

p̄5E
21

1

pw~p!dp ~14!

and the Edwards-Anderson glass order parameter

qEA5E
21

1

p2w~p!dp ~15!

can be calculated.
With former electron-nuclear double resonance~ENDOR!

measurements of the protonated sample,20 the RBRF glass
parameters have been determined to beJ/k530 K, J0 /k
5160 K, andD̃57 for temperatures above 90 K. Using th
value D̃ of the ENDOR results and the substitutions of Eq
~12! and~13!, the experimental parameters fitting the diele
tric relaxation-time distribution deliverJ/k535 K, J0 /k
5175 K for the protonated sample and are in good agr
ment with the ENDOR results. The temperature depende
of the Edwards-Anderson glass order parameterqEA deter-
mined from both measurements is presented in Fig. 6. T
demonstrates that besides magnetic resonance technique
dielectric spectroscopy coupled with the data analysis p

FIG. 5. Temperature dependence of the mean valueA0 ~open
symbols! and standard deviationsA ~full symbols! of BP0.15BPI0.85

(h,d) and DBP0.15DBPI0.85 (n,l).
3-5
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J. BANYS et al. PHYSICAL REVIEW B 66, 144113 ~2002!
sented above is another appropriate tool to determine mi
scopic glass parameters. Because there do not exist pecu
ties as such with the magnetic resonance line shape for s
relaxation times, dielectric spectroscopy gives interesting
sults for low temperatures, especially.

Let us go back once more to the above mentioned pe
liarity with the nonzero value ofA0 or J0. As there is no
evidence for a finite spontaneous polarization of our sam
from hysteresis and pyroelectric measurements, the non
average of the local potential asymmetry must be interpre
to result from a finite average cluster polarization which
averaged out on a macroscopic scale. The cluster natu
unknown up to now. One can speculate that it is related
the strong couplings within the quasi-one-dimensio
phosphite-phosphate chains•••HuO(PO)O•••HuO
(PO2)OuH•••. Further indications for a special kind of a
intermediate phase between the paraelectric and glassy
from ENDOR and electron spin-lattice time measureme
have already been published.26 The new interesting resul
from dielectric spectroscopy is the vanishing of this clus
polarization for very low temperatures taking place for t
protonated and deuterated samples at different temperat
30 K and 60 K, respectively. One could suspect that t
disappearance of the cluster polarization is related with
real glass transition into the low-temperature nonergo
glassy phase.

VI. CONCLUSIONS

We have presented a different approach to the interpr
tion of dielectric spectra. The distribution of the relaxatio
times have been obtained. This was performed by solv
integral equation with the Tikhonov regularization techniqu
This method allows to extract the distribution function of t
relaxation-times without anya priori assumptions and re
solves multiple dynamical processes. As an experimental
ample the mixed crystals of protonated and deutera
BP12xBPIx with x50.85 are presented. The dipole-freezi
phenomena result in a broad asymmetrical distribution of
relaxation-times. The parameters of the double-well pot
tials of the hydrogen bonds, the local polarization distrib
tion function and the glass order parameter have been

FIG. 6. Temperature dependence of the Edwards-Anderson
der parameterqEA for the BP0.15BPI0.85 crystals. Points above 70 K
are from ENDOR results, line is guide for eye.
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tracted from the dielectric measurements. The microsco
parameters obtained are in good agreement with magn
resonance data. The dielectric results confirm that, in op
site to usual proton glasses, dipolar clusters must exist wi
nonzero electric average polarization in an intermedi
phase. The interesting result from dielectric spectroscop
the vanishing of this cluster polarization for very low
temperatures taking place for the protonated and deuter
at different temperatures, 30 K and 60 K, respectively. O
could suspect that this disappearance of the cluster pola
tion is related with the real glass transition into the lo
temperature nonergodic glassy phase.
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APPENDIX: DEBYE PROGRAM

In this section we give some details of the numerical p
gram. Actually the program implements the simplified ve
sion of Provencher algorithm23 adapted to the integral equa
tion ~2! case.

As it was already mentioned in Sec. IV the equidista
discretization in the logarithmic scale with steps

D ln n5hn , D ln t5ht ~A1!

was used. The kernel matrix components are

Anm5H ht$11~2pnntm!2%21, n<N/2

2p nntmht$11~2pnntm!2%21, n.N/2.
~A2!

When the shift«` is known and fixed, it is subtracted from
data vector replacing« i8→« i82«` . In the opposite case
when the shift«` is not fixed, it is added to theX vector as
its first component. In this case the additional first$1, . . . ,1,
0, . . . , 0%T column is added to the kernel matrix.

The regularization matrix

R5R05S ht
2 0 0 0 ••• 0

1 22 1 0 ••• 0

0 1 22 1 ••• 0

•••

0 ••• 0 1 22 1

0 ••• 0 0 0 ht
2

D . ~A3!

corresponding to the calculation of the second-order der
tive was used. The first and last components proportiona
ht

2 were adjusted during the simulation. In the case with
fixed shift «` , value the above regularization matrix wa
replaced by

R5S ht
2 0

0 R0
D . ~A4!

r-
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When the static permittivity«(0) is fixed there is the
additional equality condition

«`1E w~t!d~ ln t!5«~0! ~A5!

which the relaxation-time distribution has to obey. The d
crete version of this condition can be presented asETX5e
with

e5«~0!2«` , ET5ht$1/2, 1, . . . ,1, 1/2% ~A6!

in the case with fixed«` , and

e5«~0!, ET5ht$1/ht
21,1/2, 1, . . . ,1, 1/2% ~A7!

in the opposite case.
Thus, we have to solve the minimization problem w

linear equality and inequality constraints

F~a!5iT2AXi21a2iRXi25min, ~A8a!

ETX5e, ~A8b!

Xn>0. ~A8c!

The standard way of treating such problem is the exclus
of the equality constrain, and reduction of the remain
minimization problem with inequality constraints to the LD
~Least Distance Programming! problem.22

The exclusion of the equality constraint is performed
follows. First, the scalar constraint~A8a! is formally re-
placed by its matrix analog

E TX5e ~A9!

with M3M matrix E5(E,0) and M-component vectoreT

5$e,0%. Next, the RQ decomposition is performed

E5~K1K2!S F 0

0 0D . ~A10!

Here the symbolK1 stands forM-component vector, andK2
is the (M21)3M matrix. Those two objects together form
the unitary matrix

S K1
T

K 2
TD ~K1K2!5I. ~A11!

HereI is the unity matrix.
Now inserting Eq.~A10! into condition~A9!, and denot-

ing

X5~K1K2!S X1
E

X2
ED 5K1X1

E1K2X2
E , ~A12!

we obtain

X1
E5F21e, ~A13!

and reduce the initial minimization problem to the proble
with inequality constraints only
14411
-

n
g

s

F~a!5i~T2AK1F21e!2AK2X2
Ei21a2iRK1F21e

1RK2X2
Ei25min, ~A14a!

~K2X2
E!n>2~K1! iF

21e. ~A14b!

for shorter vectorX2
E @with (M21) components#.

The reduction of the above problem to LDP is based
the QR decomposition

AK25Q0C ~A15!

followed by twofold singular value decompositions

RK25UHZ T, ~A16a!

CZH 215QSW T. ~A16b!

Here matricesQ0 ,U,Z,Q,W are orthogonal (Q 0
TQ05I,

etc.!, matricesH and S are diagonal with diagonal matrix
elementsHn and Sn , correspondingly, and the matrixC is
upper triangular.

The substitution

X2
E5ZH 21$Wl2U TRK1F21e% ~A17!

changes the minimization problem~A14! into the following
one:

F~a!5ig2Sli1a2ili5min, ~A18a!

~Dl!n>2dn , ~A18b!

where

D5K2ZH 21W, ~A19a!

d5$K2ZH 21U T2I%K1F21e, ~A19b!

g5Q T$Q 0
TT1~CZH 21U T2Q 0

TA!K1F21e%.
~A19c!

The main advantage of the obtained minimization pro
lem is that both functionalF(a) parts are composed of th
diagonal components only. Thus, it can be easily rewritten
the single diagonal form

C5iji5min, ~A20a!

~DS̃21!n>2~d1DS̃21g̃!n , ~A20b!

where the symbolS̃ stands for diagonal matrix with the com
ponentsS̃n5ASn

21a2, g̃ is the vector with componentsg̃n

5gnSn /S̃n , and
3-7
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l5S̃21~j1g̃!. ~A21!

The final minimization problem~A20! can be solved by LDP
technique. When the vectorj is found the vectorX ~actually
the relaxation-time distribution! is obtained by means of Eqs
~A21!, ~A17!, ~A13!, and~A12!.
er,

s

.

ys

ys

14411
In the case when«(0) is not fixed there is no Eq.~A8a!,
and the algorithm is more simple. It can easily be obtain
from the previous one formally assuming thatK150 and
K25I.

The Debye program is written in C11 as a Single Docu-
ment Interface program for the Windows98 environme
The LDP subroutine was rewritten from the fortran versi
given in,22 the matrix decomposition subroutines were tak
from.27
s
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