PHYSICAL REVIEW B 66, 144112 (2002

First-principles study of the rocksalt—cesium chloride relative phase stability in alkali halides
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We present a detailed investigation of observable properties associated with the relative stability of the
rocksalt 1) and cesium chlorideB2) phases in thé X (A=Li, Na, K, Rb, Cs;X=F, CI, Br, |) crystal
family. Thermodynamid1— B2 transition pressures amdy =Y (B2)—Y(B1) differences in total energies,
volumes, and bulk moduli at zero and transition pressures are computed following a localized Hartree-Fock
method. The arrangement of the data in clear trends is shown to be mainly dominated by the cation atomic
number. This behavior is well interpreted in terms of a variety of microscopic arguments that emerds from
the evaluation of the energy Hessian at Bie andB2 points and(ii) the decomposition of the energy and
pressure in anionic and cationic classical and quantum-mechanical contributions.
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[. INTRODUCTION cation dependence. A careful study of the physics underlying
the relative thermodynamic stability of thB1 and B2
Alkali halides have traditionally demanded attention tophases of CsCl has been reported by P3fderterms of the
validate new phenomenological models and first-principlesnergetic components involved in the ionic interactions. That
methodologies directed to describe the observable phenonanalysis relies on the many-body nature of the energy re-
ena in ionic crystals. A good deal of experimental informa-quired to convert a free anion into the anion-in-the-lattice
tion has also been collected for these systems. Specificalljorm, which is defined as the rearrangement energy. It is
the behavior under hydrostatic pressure of almost all of thghown that this energy changes with interionic separations
20 AX (A=Li, Na, K, Rb, Cs;X=F, CI, Br, |) crystals has and may be considered independent of the crystal structure.
been critically examined with comparisons between theoretThe conclusions might likely be extended to other alkali-
ical and experimental results. Cohesive and thermal propetalide crystals but no calculations have been carried out to
ties, equations of statdEOS, thermodynamic stability establish general behaviors.
ranges of the most common rocksa®1() and cesium chlo- It is our main goal in this work to perform a quantum-
ride (B2) phases, phase transition properties, and phase tramechanical analysis of the microscopic factors that deter-
sition mechanisms have been investigated for particular crysmine the relative thermodynamic stability of tB4 andB2
tals or groups of them within theAX family. See, for phases in thé&X crystal family. We apply thab initio per-
example, Refs. 1-21 and references therein. turbed ion @iPl) method®%*to evaluate thé81— B2 phase
Although variations of the above properties along#%  transition properties. A very useful feature of this method is
family are observed when changing either the cation or anthat it produces self-consistent crystalline wave functions for
ion, it is found that the cation atomic number is the keythe cation and anion components of the crystal, the total
parameter to systematize these data. For example, the expesirergy of which can be partitioned into anionic and cationic
mental pressure rand& GPag where theB1 is the thermo- terms. Classical and quantum-mechanical contributions to
dynamic equilibrium phase decreases from tens in th¥ Nathese quantities can also be identified. Our study also in-
series to zero in the Gsone (except Csk; passing through cludes the evaluation of the zero-pressure-energy Hessian ei-
units in KX and tenths in RK. The transition has not been genvalues of both phases. The energy curvature aBthe
reported for lithium halides. A change of the anion within andB2 points informs about the mechanical stability of the
each of these series has a weaker effect in the pressut@o structures and is seen to correlate also with the cation
ranges(see, for example, Ref.)7Other transition-related atomic number.
properties have not been considered in detail previously, but The aiPl method has been successfully applied previ-
are also expected to manifest a similar behavior. ously to the calculation of the thermodynamic properties of a
In spite of the amount of experimental and theoreticalgreat variety of nonmetallic crystals. See, for example, Refs.
work, attempts to elucidate the microscopic reasons behini5—-17, 25, and 26. In particular, static equilibrium cohesive
this systematic behavior are scarce, if we ignore those studigwoperties of the 20 alkali-halide crystals at their correspond-
based on the ionic model as illustrated by the pioneeringng experimental thermodynamic equilibrium phase at ambi-
work of Born and Huang.Among the quantum-mechanical ent conditions have been calculatédThe values obtained
contributions, Majewski and Voifl applied a semiempirical for the lattice parameters, lattice energies, and isothermal
tight-binding method to explain successfully the chemicalbulk moduli were found to have average relative errors of
trends of a variety of observable properties in I-VIl and 1I-VI 3.0%, 4.3%, and 14.2%, respectively, with respect to mostly
crystals in terms of the balance between attradtbevaleny  room-temperature  experimental values. The theory-
and repulsive(overlap energetic contributions. Neverthe- experiment agreement improved for the three properties
less, we notice that their report&lL— B2 stabilization en- when the computed values were compared with the available
ergies in theAX family do not show the expected strong zero-temperature extrapolated data. FurthermoreqitRere-
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sults on the phase transition properties of alkali chlorides areigenvalues corresponding to small periodic perturbations
found to agree with available experimental dat®®and the  from equilibrium within a primitive unit cell containing just
B1—B2 phase transition mechanism is also well describecbne AX molecule. This unit cell corresponds to a nine-
for the AX family with this methodology®*’ dimensional (9D) model @,b,c,a,B,7,x,y,z) of the B1

The rest of the paper is organized as follows. The next—B2 phase transition mechanisfi?® The cation is at the
section is devoted to presenting the computational model, therigin of the cell, the anion aix(y,z), and the space group is
basics of the analysis of the mechanical stability of Bfe  P1. Both theB1 andB2 phases lie at particular symmetry
andB2 phases, and the energy and energy derivative deconpoints on this 9D spaceBl is at @=b=c, a=8=y
positions. Section Il presents tH&l—B2 changes in the =60°,x=y=z=3), and B2 is at @=b=c, a=8=vy
thermodynamic properties and the effect of the cation and=90°, x=y=z=13).
the anion in the observed tendencies. In Sec. IV, we discuss Symmetry imposes the block structure in th& 9 Hes-
the results derived from the diagonalization of #& and  sian matrix of theB1 phase shown in Ref. 25. The indepen-
B2 energy Hessians. This section also includes an analysis dent elements of this matrix ardl,,, Hap, Hae Hag,
the relation between the internal stability of these phases and ,,,, H,z, Hyx, andH,,. The Hessian matrix of th&2
the possibility of obtaining th&1— B2 transition pressures phase is obtained from th&1 matrix by makingH,,
from zero-pressure data of both phases. Section V containsH,,=H ,;=H,,=0. Analytical expressions for the eigen-
the microscopic analysis based on the energetic decomposialues and eigenvectors of both matrices can be easily de-
tion of observables. Finally, the last section summarizes théived. Notice that in theB1 phase, the setsa(b,c) and

main conclusions of our work. (a,B,y) are coupled to each other but not witk,y,z),
whereas in thé82 phase there is no coupling at all between
Il. COMPUTATIONAL AND ALGEBRAIC ASPECTS these three sets.

OF THE MODEL

A. Computational details C. Energy and energy derivatives decomposition

In the aiPl methodology, the total energy of theX crys-
tal can be partitioned into anionic and cationic components
as follows:

The computational parameters chosen to perfornattird
calculations in theA X family are essentially the same as the
ones used in our previous studies of the E@&8f. 15 and
phase transition mechanisfRef. 1§ of particularAX crys-
tals, as well as in our analysis of the universal-binding-
energy relations across the phase transition in the alkali- [ o : :
halide family!’ The total energy of the crystéE) has been R/;lh_er:Eidd’.th; z;ddgnge ETerEyEf’f thf E|(|)n I|_||n tmE)f CTVS:]"“'
computed for all 20 alkali halides in a wide range ofvolumes( = A X), IS defined byEaqq=Enert 2Eini - HEreEg s the
for both theB1 and B2 structures. Numerical as well as >°M O.f all intra-atomic energy terms for_ldn|.e., the ex-
analytical equations of statirch?’ and Vinetet al?®) have pectation value of the free-ion Hamiltonian € valuated with
been fitted to the correspondirigversus volumgV) data, theal_PI crystal-like lonic wave function, anfij, is the in-
yielding information on the pressure effectsBrv, B (bulk  teraction energy of ionl with the rest of the crystal. The
modulug, andB’ (pressure derivative @&). Thermal effects difference between _the net energy .af?d free-ion energy 1S
are included through a quasiharmonic Debye model that onl alled the defprmatlon energy and it is due to the Iat_t|ce
needs the computed(V) curve as inpuf® ffec_ts on the ionic wave functlon_. It should be empha_S|zed

From theaiPl E(V) values of theB1 andB2 phases, we that in Fhe present_ version of_ tree Pl method only radial
have evaluated the pressure at which the respective Gibta?mmp:d deformations of the_|ons are aIIoweq. On the other
potentials are equalGBl=GB2, for each crystal. This de- and, E;,; can b.e fgrtherl divided into the point chargg or
fines the(thermodynamig transition pressure. Accordingly, Madelung contribution &, plus the quantum-mechanical
pressure ranges for which ti4 or theB2 are the thermo- interaction energyEe): Ej=Ey .+ Eq= — a/R+E,, where
dynamic equilibrium phases are obtained. At static condi< is the Madelung constant for the crystal, aRdis the
tions (0 K and no zero-point vibrational contribution§&  nearest-neighbor distance. In both structubes= Ej since
reduces to the enthalp§@ PV), whereas at finite tempera- the anionic and the cationic positions are equivalent.
tures G includes the vibrational energy and entropy, which  Alternatively,
are estimated from our quasiharmonic Debye model. We will

E: Egdd+ E;(dd, (1)

restrict our discussion to static conditions except in the 1 1 1

analysis of transition pressures. All the thermodynamic prop- E=Enect EE"“: Enert EEP6+ qu, @
erties at zero and transition pressures will be labeled, respec-

tively, by the subscripts “0” /o, Eo, Bo, Bg) and “tr” where each term is the sum of the cationic and anionic com-

(Vi) Ex, By, Bp). ponents. _ N
Moreover, this energetic partition can be transferred by

means of simple algebraic manipulations to other fundamen-
tal observables as the pressure and bulk modulus. For ex-

The mechanical stability of thB1 andB2 phases at zero ample, the static pressure of the crystal can be written as
pressure has been analyzed in terms of the energy Hessiéwllows:

B. Internal stability of B1 and B2 phases
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TABLE |. Static and 300 K transition pressurBg and P3%° and staticAY=Y(B2)— Y(B1) values for
some cohesive properties of the alkali-halide®at0 andP = Py, according tcaiPI calculationsP andB in
GPa,V in boh/molecule, ancE in kd/mol.

crystal Py p300 AV, AV, AE, AE, AB, ABy,
LiF 252.2 243.6 —4.39 —2.96 61.18 66.66 589 -83.14
LiCl 78.9 78.0 1.69 —10.75 74.07 75.69 —7.02 —10.52
LiBr 94.2 93.6 —2.12 —8.83 75.76 7426 —4.66 —9.99
Lil 112.6 110.7 —5.53 —10.83 75.32 10891 -—3.38 —53.37
NaF 12.1 12.4  —24.89 —19.57 23.66 21.18 11.93 15.45
NacCl 21.2 20.6 —22.39 —23.97 45.27 4540 —-3.02 —9.58
NaBr 15.9 15.8 —34.82 —29.39 45.89 41.86 —2.86 —-1.30
Nal 15.5 15.6 —39.19 —33.59 54.58 46.75 —4.07 3.04
KF 5.6 5.8 —31.59 —25.07 14.01 12.63 4.02 4.40
KCI 2.0 2.2 —68.34 —55.77 10.98 9.99 3.54 3.56
KBr 1.6 1.6 —77.55 —69.00 10.66 10.11 1.34 1.07
Kl 2.7 2.5 —82.72 —76.78 19.06 18.42 —-0.77 —1.48
RbF -0.8 -0.2 —40.94 —44.62 —2.86 —2.99 9.41 9.25
RbClI 0.1 0.3 —95.89 —-94.10 1.23 1.22 4.31 4.32
RbBr -0.0 0.1 —104.66 —104.99 —-0.24 —-0.24 2.74 2.75
Rbl 0.8 0.8 —115.83 —106.34 8.27 7.94 0.78 0.45
CsF —-4.9 <-2.6 —48.17 —98.58 —28.57 —43.36 27.32 21.03
CsCl —-1.8 <-13 —103.51 —182.96 —21.03 —29.16 2.58 4.63
CsBr —-1.8 =15 —119.33 —229.57 —24.38 —36.32 2.52 4.21
Csl —-0.9 -0.7 —147.00 —205.77 —13.21 —15.93 1.69 2.52
dE dEQdd dE;(dd A “ [AY=Y(B2)—-Y(B1)] for the energy, volume, and_bulk
= _(d_\/ = _<W - (W) =Plyqt Page» (3 modulus atP=0 andP=P,,. Overall, our results provide a

reasonable picture of the zero-pressure phase stability. In
with Pladd: PLet_l_ %P:m: PLeﬁ 1 F,|pCJr %P'q. agreement with experimental observations, Bie phase is

The necessary energy derivatives in both this and previpredicted to be the thermodynamically stable one for crystals

ous subsections have been numerically computed from thgontaining small cations, whereas it is 2 for the cesium

aiPl energy using a Richardson-iterated, finite—differenceha“des' Only two crystal¢RbF and Csfare erroneously
limit formula.2® found to have thé82 as the lowest-energy structure at am-

bient conditions. Moreover, the calculated transition pres-
sures show the two different trends along thA& family
lll. PHASE TRANSITION observed experimentally when changing either the cation or
THERMODYNAMIC PROPERTIES anion and, overall, are in reasonable agreement with the ex-
perimental values. In particular, our results agree better with
Experimental results show that the 16 halides of Li, Na,the experiment than those recently reported by Meeal.
K, and Rb plus CsF crystallize on tH&l structure under using a density-functional method based on localized
room conditions, whereas CsCl, CsBr, and Csl crystallize onlensities’
the B2 phase. The crystals thermodynamically stable in the The grouping of theP,, values by the cation also applies
B1 phase tend to undergoBil— B2 phase transition when to the computedE, AV, and to a less extent thB, both at
increasing the pressure. The equilibrilBii— B2 transition  zero and the transition pressures. For example, considering
pressure strongly depends on the cation but only slightly othe AV,, values for theACIl sequence, we see that the de-
the anion: it is about 23 and 27 GPa for NaF and NaClcrease on going from Li to Rb is monotonous and greater
respectively’' 2 and it ranges from 1.7 to 2.0 GPa for the than 80 boht/molecule. This result qualitatively agrees with
potassium halidegexcept KB and from 0.3 to 0.6 GPa for the experimental one, th&V, experimental valuegin
the rubidium halidegexcept RbF-*’ The transition pressure bohr/molecule) for these systems being abet® (NaCl),
seems to be about 4 GPa for KRyithin 1-3.5 GPa for —47 (KCI), and —70 (RbC)).2**3 On the other hand, the
RbF3*”and about 2 GPa for CSFThe B1— B2 transition  experimentalAV,, values (in bohf/molecule) are about
has not been observed in lithium halides, NaBr, and Nal. The- 28 (KF), —47 (KCl), —50 (KBr), and —51 (KI) for the
last two systems transform to an orthorhombic TIlI-typeKX series and about 21 (RbF), — 70 (RbCI), — 75 (RbBY),
structure at around 30 GPA. and — 85 (Rbl) for the RbX one®*8Aside from the fluoride,
Our computed static and 300 K transition pressuPgs a change of the anion within each of these series has a weak
and P3% are collected in Table | along withY values effect inAV,. We can
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TABLE II. Lowest eigenvalue oB1 andB2 Hessians and estimates of the static transition pressures for
the alkali halidesP{" (n=0,2,3) denotes the estimates obtained from the three formulas of lower(seger
text), by using theaiPI data of theB1 andB2 phases aP=0. Eigenvalues in Hartree and pressures in GPa.
(B1B2)=(mm) or(mM) refers to the 9D model: mlocal minimum, and M-local maximum. * means that
the system is more stable in tB2 phase than in thB1 phase.

AX €min(B1) €min(B2) (B1B2) P P& P&
LiF 0.1842 —0.0575 (mM) 156.57 85.30
LiCl 0.1990 —0.1408 (mM) —490.71 27.94 —17.50
LiBr 0.2062 —0.1350 (mM) 400.32 29.00 —16.34
Lil 0.2322 —0.1493 (mM) 152.58 16.39 —8.72
NaF 0.1179 0.1456 (mm) 10.65 13.06 11.86
NaCl 0.1359 —0.0233 (mM) 22.65 19.68 16.96
NaBr 0.1405 —0.0033 (mM) 14.77 14.38 —28.11
Nal 0.1542 —0.0615 (mM) 15.60 9.33 —8.97
KF 0.0804 0.1047 (mm) 4.97 6.09 5.43
KCI 0.0690 0.1197 (mm) 1.80 2.09 1.98
KBr 0.0694 0.1412 (mm) 1.54 1.67 1.63
Kl 0.0784 0.0755 (mm) 2.58 2.74 2.60
RbF 0.0565 0.2006 (mm?*) —0.78 —0.75 —0.75
RbCI 0.0616 0.2260 (mm) 0.14 0.14 0.14
RbBr 0.0591 0.2494 (mm?*) —0.03 —0.03 —0.03
Rbl 0.0638 0.1670 (mm) 0.80 0.85 0.83
CsF 0.0351 0.4928 (mm?*) —6.65 —5.39 —-5.14
CsCl 0.0367 0.3210 (mm?*) -2.28 -1.93 —-1.84
CsBr 0.0351 0.4007 (mm?*) —2.29 —1.97 —1.86
Csl 0.0467 0.2925 (mm*) -1.01 —0.90 —0.88

see that this i§ also the case with the theoretipal values iBation atomic number,,;, decreases steeply in passing from
Table 1. Experimentab E,, data for K and Rb halides move Lj to Cs crystals and, with some exceptions, increases
from around 8 to around 3 kJ/mdlOur results also show slightly with the anion size.

this cation dependence, the agreement being better inXhe K o the other handk .., (B2) increases as the cation size
crystals. _ _ increases, the effect of changing the anion being weaker with
. Flnally, the computed B increases 'from negative values 5 gomewhat erratic behavior in the fluorides, (B2) is

n th? LIX an_d N (E)Q/stalz(except in LIF anr(]j Nf}‘}:to negative for the lithium halides and also negative, though
positive ones in X, RbX, and CX (except K). T € €hangde  gmaller in absolute value, for the sodium halidescept

in the sign ofAB has been also obtained by Hofmeister from aP. However, it takes positive values for NaF and the po-
experimental vibrational frequencies using a semiempirica assiijm rubidi’um and cesium halides. Licl and Lil also

model,® although her positive values started with the Rb ave a second negative eigenvalue. Thus, at zero pressure the
halides. As a general result, we can conclude that the catioza 9 9 ) ' P

atomic number is the key parameter needed to systemati 2 phase is a true minimum for the systems containing big

theB1— B2 transition properties. A microscopic explanation cations.(K, ,Rb’ and C5 (these syst.ems are mechani'cglly
of this fact will be given in the next sections. stable in this phageand a saddle point for those containing

small cations(which are mechanically unstable in tiB32
phase¢. Consequently(i) it should be possible to quench
IV. MECHANICAL STABILITY.  DIAGONALIZATION metastabld32 potassium and rubidium halides at zero pres-
OF THE B1 AND B2 ENERGY HESSIANS sure from the corresponding stable high-pres@fecrystals

Here we discuss the results obtained from the diagonal@nd (i) this should not be the case for the lithium and so-
ization of the previously presented energy Hessians comdium halides. As far as we know there is no experimental
puted at static conditions and zero pressure. Table 1l showsvidence confirming statemefij or contradicting statement
the lowest eigenvalue,,, of both theB1 andB2 Hessians (ii).
in the 20 alkali halides. The lowest eigenvalue is positive for In the B1 phase, the eigenvector correspondingefe,
all B1 structures. Thus, at zero pressure this phase is a truasay be followed to constructBl— B2 transition path. This
minimum on the 9D surface and, consequently, all the cryseigenvector is ¢;,¢4,¢1,C»,C»,C,,0,0,0) in the
tals studied are mechanically stable in Bi& phasdinternal  (a,b,c,,8,v,X,y,z) basis for all the crystalsg; and c,
stability) within this model. We also notice that changes inbeing constants for a given system. Then, this eigenvector
€min(B1) along theAX family are again dominated by the has the directiona=b=c, a=pB=vy, x=y=z=3. The
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highest symmetry compatible with this movemeniR3m,  Where
and the path lies on a two-dimensionaldP surface corre-
sponding to a modified Buerger mechaniir? 1
On the other handg,;, is threefold degenerate in tiz2 a2:§
phase of all the systems, this eigenvalue being closely related

to the cyy, elastic constqnt of the phase. This eigenvec;tor IS The truncation of the expansion fAlE, and consequently
(0,0,0¢1,¢5,¢5,0,0,0) in the @,b,c,a,B,7.X,y,z) basis, o Ay |eads to a hierarchy of relations for the estimation of
€1, Cz, andcg being arbitrary constants. Then, the eigenvecp i, terms of theB1 andB2 data aP=0. Let us consider
tors associated withep, only involve angular &5,7)  the three lower-order model§) Zero order. By neglecting
changes and, due to their threefold d'ege'nerat[gm,njay b? all the expansion coefficients excegyf, we obtain the equa-
used to construct B2— B1 path starting in a direction with ion PO~ —AE,/AV,y." (ii) Second order. Considering
arbitrary angular changes. This kind of transition path is not ” C o o(2)
symmetry fixed. We think that this arbitrariness might bealsoazio, we obtain a formula that givei; in terms of

related to the experimentally observed breaking of the crys—A Eo. AVp andA(V,/By). (iii) Third order. By makinga,

tals upon successive compression-decompression cyties, ﬂl)’ azﬁoé,ano:aﬁ.o,bweh ot?]tam a formula that also in-
but we will leave a full discussion of these facts for a forth- V0!VeS theBg values in both phases.

coming paper devoted to the different mechanisms of the Table Il shows the transition pressure estimates for the
B1—B2 phase transition in alkali halides. Finally, the sec-alali halides obtained by using tiePI data of theB1 and

ond negative eigenvalue found in tB& phase of LiCl and B2 phases aP=0, as described above, to be compared to
Lil is (0,0,0,0,0,0c;,C,,Cq); that is, it is related to an addi- the static transition pressures obtained from the “fldiPI

tional instability of these systems with respect to changes if/culations Py in Table ). As a general result, we observe
the ionic internal positions. that, with the exception of the Ki crystals, the zero-order

Let us turn to the relation between the internal stability Ofgst|mat|onP§f)) reproduces qualitative and almost quantita-
the phases and the possibility of obtaining good estimates dfvely the trends oP; both as the cation size increasés a
the B1— B2 transition pressures from the zero-pressure datgiven anion and as the anion size increasésr a given
of both phases. This is a very relevant aspect, since the hy§ation. The effect of increasing the order of the model can
teresis exhibited by these transitions may result in large unb® described as follows. For those systems displaying only
certainties in the experimental determination of equilibriumPOsitive-energy Hessian eigenvalues in both BieandB2
values for the transition pressufed:*21°Besides the theo- Phases at zero pressurenm) or (mnt) in Table II], the
retical values, zero-pressure data for high-pressure phas@scuracy of theP, estimation increases with, the order of
could be faithfully obtained by fitting an adequate E(@&f. the model. This is the case for all the crystals but thé &nd
19) to P-V experimental data. NaX series, except NaF. Contrarily, in those systems having
As we commented above, the static thermodynamic tranPositive eigenvalues in thB1 phase but onéor two) nega-
sition pressureP, is defined throughAG(P,)=AE(P,) tive eigenvalues in thd2 phase[(mM) in Table II], the

Vo(By+1)
BS

Vo 1
’ 3:_

B, 3

+P,AV(P,)=0. Then, accuracy does not increase with
The above results can be interpreted as follows. First, we
AE(Py) AEy should bear in mind that the energy expansion is araend
T AV(P,) | AV, 4 —0 and, therefore, the performance of E6) is better for

those crystals with lowP,, values. Second, both thi#&l and
If we use the above equation along with the data collected2 points are minima in the 9D model Gibbs energy surface
in Table I, the steep decrease®f with the cation size can at P=P,,. If this is also the case @=0 (mm or mnt
be related to the steep decreaseAdE;, and the steep in- systemy then we have energy surfaces topologically equiva-
crease of|AV,| as the cation size increases. On the othelent for both phases at both pressures and, thus, we may
hand, the small dependence of the transition pressure on tlexpect that an expansion afE(P) as a power series iR
anion size is connected to a cancellation effect, since botaroundP=0 will work to obtain reasonable values AfE

AE; and|AV,] slightly increase with the anion size. and their pressure derivative &=P,,. On the contrary,
These data may be related to zero-pressure transitiowhen one or two second derivatives of tB& energy atP
properties. If we expand\E(P) as a power series i® =0 are negativdmM systemy we have topologically dif-
aroundP=0, ferent Gibbs energy surfacesRt=0 andP=P,, and, con-
sequently, it is to be expected that the expansion will not
AE(P)=ag+a;P+a,P?+agP®+a,P*+---,  (5)  work properly.

and integrate the T=0 K equation dAV(P)
=(—1/P)dAE(P) to relate AV at P to its zero-pressure V. MICROSCOPIC DECOMPOSITION OF PHASE
value, the equation foP, can be rewritten in this way TRANSITION MAGNITUDES

AE, AEo+azpt2r+a3Pt3r+ a4Pf}+ o We look for a general explanation of the relative stability

= - , of theB1 andB2 structures as due to one specific type of ion
AV AV,—2a,P,—3asP2—4a,P3—. .. and/or to a particular energetic component of the total en-
(6) ergy. The anionic and cationic contributionsA&, are col-
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TABLE 1ll. Energy decomposition at zero pressuiel/mol.

=AEL i+ AEX . | meansA or X.

PHYSICAL REVIEW B 66, 144112 (2002

AY=Y(B2)-Y(B1). Note thatAE,

AX AEA, AEX, 3AE,, FAESL SAE) AEA, AEX,

LiF ~1.96 5.23 38.38 —-21.73 2.89 14.69 46.49
LiCl ~0.54 -9.08 36.49 ~15.06 25.77 20.89 53.18
LiBr -0.36 —-2.16 32.39 ~14.96 28.46 17.07 58.69
Lil -0.16 1.89 28.06 —-11.53 28.99 16.37 58.95
NaF 0.10 15.84 10.88  —11.00 —3.04 -0.01 23.67
NaCl 0.40 2.82 2213  —15.84 13.63 6.69 38.58
NaBr 0.32 7.43 1759 1450 17.44 3.42 42.47
Nal 0.12 7.53 18.02 —12.48 23.37 5.66 48.92
KF —0.09 0.82 15.69 ~6.55 —~11.56 9.05 4.96
KCl 0.22 6.42 9.64 -10.19 475 -0.33 11.30
KBr 0.18 6.38 9.11 ~10.94 -3.16 ~1.66 12.33
KI 0.16 5.42 11.41 —-11.81 2.46 -0.24 19.29
RbF -1.17 1.87 11.55 -9.31 ~17.34 1.07 -3.93

RbCI 0.05 11.43 409  —10.40 -8.02 -6.27 7.50
RbBr 0.23 9.29 459 —-10.93 -8.01 -6.10 5.87
Rbl 0.52 8.09 7.15 —-11.16 —~3.50 —3.49 11.75
CsF 66.23 11.41 000 —61.79 —44.43 4.45 —33.02

CsCl 6.05 19.71 1.34 —29.69 -19.77 -22.31 1.27
CsBr 4.36 15.80 030 —28.14 —17.00 —23.48 ~0.90

Csl 1.56 13.45 271 —22.83 -10.80 -18.57 5.36

lected in Table Il along with the particular energetic com-values come from the quantum terms, since the Madelung

ponents of these ionic energies. contributions are always positiviesee Table Il). Note that
Both the cationic and anionic additive energies stabilizeAE:)C (I=A,X) is zero for r=R(B2)/R(B1)=1.0086,

theB1 phase in LX and N (except NaF, the contribution  hereR is the nearest-neighbor distance in each phase, and

of the anions to this stabilization being more important thanncreases withr. This explains that EA =AEX takes large

that of the cations. On the contrary, anions and cations CONy g positive values for 4 (r~1.08) z:nd pos‘i)tive and small
tribute with different sign to the final stability in most of the values for CX (r~1.01). BesidesAE” takes negative val-
KX, RbX, and CX systems, the anions favoring thzl o a 9

phase and the cations tB2 one. Note that the relative size ues in all Sys‘ims' larger in absolut_e va!ue .for the cesium

of Cs* and F (Cs" is bigger than F) inverts the role of hahdes, and&!E.q decreasefs as the cation size increases, pass-

the two ions in CsF, and probably the same happens in Rbi?d from positive values in IX and N& (except Naf to

The balance results in a more staBlé phase in K, RbCl large negative values in &s(though smaller in magnitude

and Rbl, and a more stab&® phase in RbF, RbBr, and &s  than those of\ES).

Then, whereas the anionic contributionA, is positive in From these results we can understand why the anions fa-

most of the systems, the cationic term changes from positiveor theB1 phase but the cations stabilize #2 one in RIX

to negative values when the size of the cation increases, thad CX. Whereas the positive values of the anionic (et

being responsible for the stabilization of tB2 structures deformation energies counteract their negative interaction

(except RbF and CsF components, the negligible cationic net terms give rise to
We now analyze the particular energetic components ofiegative cationic energies dominated by the interaction com-

the anionic, cationic, and total energies. It is seen in Table llhonent, thus stabilizing thB2 phase with respect to thzl

that the contribution oAE/., to theB1-B2 relative stability one. On the other hand, analysis of the particular energy

is negligible (smaller than 1 kJ/mo| the exceptions being components ofAE, shows that the quantum-mechanical in-

the crystals of the O¢ family and specially CsF, where teraction term(mainly the anionic onjeis the dominant fac-

AE} takes the greatest value among all the alkali halidestor in the increasing stability of thB2 phase with respect to

Moreover,AEffet takes positive valuegexcept for LiCl and the B1 phase as the cation size increases.

LiBr) and, generally, increases slightly with the cation size, Pyper has pointed out that the dispersion energy plays a

thus stabilizing thé81 phase with respect to ti2 one even  crucial role in making thé&2 phase more stable than tB&

in those crystals where the computations prediBRalower-  phase in CsCt? From our calculations, the quantum interac-

tion term is the responsible for this stabilization. Both the

energy phase.
On the other hand, bothEj, = AE,.+AE, (I=A,X) de-  cation and anion interaction quantum terms are negative, and
both are dominated by the quantum-mechanical exchange

q
crease with the cation sizenore steeply the anionic teym
term. TheaiPl method uses a nondiagonal spectral resolu-

AE;; becoming negative in Rband CX. These negative
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TABLE IV. lonic contributions to pressure @=0 and P  term) is mainly responsible for the negative valueRjf in
=Py Equililg(rium configurationsin GPa. Py~ —Paaat P=0  CsX. The strong dependence &, on the cation can be
and Paggt Pagq= Py at P=Py. roughly explained in terms of the decrease of the anionic net
contribution as the cation size increases. This is an energetic

x P=0 x « P=Py « consequence of the different magnitude of the isotropic de-
AX PaadB1) PaadB2) PaadB1) Pre(B1) formations suffered by a given anion AX crystals contain-
LiE 86 13.2 207.9 180.4 ing different cations. The anionic net energy term is less
Licl 52 6.0 69.0 64.8 repulsive as the size of the catidor the volume of the
LiBr 3.4 45 778 67.9 crysta) increases, giving rise to a less positive contribution
Lil 53 3.0 833 70.6 of ;his term to the total pressure. On the contrary, a given
NaF 47 6.9 13.7 16.4 cation remains nearly undeformed whqteyer the anion in the
NaCl 30 a4 205 219 crystal is, and, consequently, th_e_ cationic net energy a_md
NaBr 19 31 141 13.3 pressure terms are mostly_msensmve to the_S|ze of the anion.

'3 2'2 12 .0 9'2 The conclusions in both this and the preceding paragraph are
E?I i'g 1.6 5.6 7'0 approx.imately phase indepgndent thouﬁ&d'is somewhat
KCl 0'9 1l6 2'7 4'1 larger in theB2 phase than in thBl_ phase in _most of the
: ' : ' systemgsee Table 1V, due to the higher density of tH&2

KBr 0.7 1.3 2.0 3.2 structure.
Kl 0.5 1.0 2.4 2.8
e SV V1. coNCLUSIONS
RbBr 0.9 15 0.8 2.1 We have used a localized Hartree-Fock model to perform
Rbl 0.6 1.0 1.2 2.0 a microscopic study directed to the understanding of the sys-
CsF 4.0 1.2 0.1 3.8 tematic behavior exhibited by thH81-B2 phase stability in
CsCl 1.9 2.8 -0.4 0.7 the alkali-halide crystal family. We have focused on the ther-
CsBr 1.4 2.1 -0.5 0.8 modynamic B1—B2 transition pressures and thAY
Csl 0.8 1.4 0.0 1.1 =Y(B2)—-Y(B1) differences in total energies, volumes, and

bulk moduli at zero and transition pressures.

) ) ] The B2 phase is predicted to be more stable at zero pres-
tion approximation to the nonlocal exchange poterffi@nd  sre than the1 phase for the cesium halides and RbF. Fur-

it has been arguédithat this approximation to the exact ex- thermore, the calculated transition pressures decrease steeply
change may mimic part of the dynamical correlation energy,s the cation size increases, but are rather insensitive to

among the ions, which is associated with the dispersion enspanges in the anion. The classification of the transition pres-
ergy. This argument could then relate our result to that obg og by the cation is also found in tieY values. Our

tained by Pyper. _ _ _ theoretical results agree reasonably with the available experi-
The energetic analysis contributes to understanding thg,enta| data. This picture suggests that the nonisotropic de-

behavior exhibited by the alkaline halides at zero pressurg, mations suffered by the ions in these highly symmetric

and also, though only indirectly through estimations of thesystems play a minor role in the analysis of B&-B2 rela-

transition propertiefEq. (6)], the pressure ranges of stability stability?33

of the B1 andB2 phase;._A direct study is also possible by Analysis of the mechanicdinterna) stability of the B1
means of the decomposition Bf In Table IV, we collect the  54B> phases shows that the energy curvature of both struc-
ionic contributions to the pressure B&=0 and atP=Py. 165 also correlates with the cation atomic number. Accord-
These contributions are in general nonzero due to both thg,, 5 oyr results, it should be possible to obtain metastable
ionic environment and the external hydrostatic pressure. Nog, potassium and rubidium halides at zero pressure, but not
tice that a positive(negative contribution to the pressure |inium or sodium halides, by quenching the corresponding
implies that the corresponding energy term is repulsate e high-pressurB2 crystals. We have also found that it
tractivg. At P=0, the anionic pressurel?édd) IS positive s nossible to obtain good estimates BL—B2 transition
and, therefore, the cationic pressuf() is equal in abso- pressures from zero-pressure data, but only for compounds in
lute value but negative, for all the systems and in bothyhich both phases are mechanically stable at zero pressure.
phases. This is related to the fact that the sigrPgf is The different significance of the anionic and cationic de-
dominated by the point-charge interaction attractive energyormations in these crystals plays an essential role in the
term, whereas the n¢or deformation repulsive component  analysis of the underlying reasons that account for the rela-
dominates the sign d?;(dd. Here P;(dd= - Pﬁdd decreases in tive stability ofB1 andB2 phases. The anionic contribution
passing from LX to KX and increases slightly fromXto  to AE, favors theB1 phase in most of the systems, but the

CsX. cationic energy term changes from positive to negative val-
Let us now turn to discuss the partition of the static tran-ues when the size of the cation increases due to the negli-
sition pressure. The anigmainly its net pressure teri, gible net energy terms. As a consequence, the cations are the

is mainly responsible for the positive value Bf; in LiX, responsible for the stabilization of tlg2 structuregexcept
NaX, and KX, and the catiorimore precisely, its interaction RbF and Csk Our analysis also provides a nice explanation
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for the strong decrease @, as the cation size increases. we could contribute to the understanding of the microscopic
Roughly, this change is due to the different magnitude of thedrigin of the energy barriers that the systems must overcome
anionic deformations induced by different cations resultingin passing from one phase to another and, therefore, the hys-

in very different anionic contributions to the transition pres-teresis phenomena.

sure. Finally, whereas the anionic term domindgsn LiX,

NaX, and KX, the cation is the main responsible for the

negative values of this magnitude inXCs
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