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Dislocation image on x-ray topographs within kinematical theory
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X-ray topographs of perfect crystals and dislocated crystals have been calculated within kinematical theory.
The dislocation image on a x-ray topograph is found to be a circle, a ridge, or a trench depending on the type
of dislocation and diffraction condition. Its radius or width is comparable to the radius of the first Fresnel zone,
r{= \/)\_xo, where\ is the wavelength of the x rays amg is the distance from the crystal to the observation
point. The Fresnel model is applied to the x-ray topograph of solid heliyns. estimated to be 2.gm. The
different contrast of the subboundaries appearing on the x-ray topographs of solid helium is explained in terms
of the contrast of the dislocation images based on the calculation.
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[. INTRODUCTION zero-point vibration in the helium crystals amounts as much
as 30% of the interatomic distanteThe zero-point vibra-

The x-ray topography is a useful means for studying distion in turn reduces the intensity of the coherent diffraction
locations and other defective structures in crystalline materiof x rays drastically via the Debye-Waller factor. As a result,
als. The x-ray diffraction from high-quality crystals of ordi- the extinction distance of x rays in solid helium is estimated
nary materials such as metals and semiconductors, in whid® be as long as 2.5 mf,which is greater than the size of
the extinction distance is much shorter than the thickness dhe subgrains. Hence, the x-ray diffraction from helium crys-
the specimen and multiple diffraction of the incident x raystals is supposed to be described not by the dynamical theory
occurs, is described by the dynamical thebiy. this case, but by the kinematical theory, in which the incident beam is
dislocations can be observed in the x-ray topographs, beliffracted only once by the atoms and multiple diffraction is
cause the diffraction condition around a dislocation is differ-neglected.
ent from the other part of the crystal and multiple diffraction ~ The images of dislocations in the transmission electron
is reduced. microscope were theoretically calculated by Hirsehal.

Solid helium exists only under pressu@ove 2.5 MPa based on kinematical theol§.They used the columnar ap-
in the case ofHe) at low temperatures dowan 0 K because proximation, in which the amplitude of diffraction at a point
of the large zero-point energy, so that the density of a heliunf”> below the sample was calculated as a sum of the diffracted
crystal grown in a pressurized cell is expected to be almostaves from the atoms in a single column of unit cells in the
uniform with no macroscopic voids and cracks. Possible latdiffraction direction. In the case of x-ray diffraction, how-
tice defects in single crystals of solid helium are vacanciesgVver, the columnar approximation is not adequate. Diffracted
isotopic impurities, and dislocations. Formation energies an@vaves from the atoms in a wider region than a column must
activation energies of the vacancy in béele have been be taken into account, because the wavelength of x rays
determined by the specific-héapressuré, x-ray* and NMR  (typically 0.1 nm) is much longer than that of the electron
(Ref. 5 measurements. Existance of dislocations have beef9.0037 nm at 100 kel Therefore, we need to calculate the
indicated in the ultrasonic measurements on Refe,® bcc  dislocation images in the x-ray topographs based on kine-
and hcp®He,” and the experiments of plastic deformatfsh. matical theory more rigorously than the columnar approxi-
It has been poined out from the amplitude dependence dpation.
sound attenuation in bcéHe, (Ref. 10 that quantum me- The purpose of this paper is to calculate the amplitude and
chanical tunneling of dislocations may happen. Hence, diredptensity of the diffracted x rays from model crystals within
observation of dislocations in solid helium is desirable tothe kinematical theory and to estimate the dislocation image

understand the mechanical properties of solid helium mor&n the x-ray topograph. The model crystals and kinematical
deeply. theory are described in Secs. Il and Ill, respectively. We
Recently, synchrotron-radiation x-ray topographs of hcpstudy the x-ray diffraction from the perfect crystals in Sec.
“He crystals have revealed the existance of tilt subboundV and that from the crystals with a dislocation in Sec. V.
aries in solid heliunt! The size of the subgrains is of the Then the experimental results on the x-ray topography of
order of 1 mm. The subboundaries are found to be perperfolid helium are presented in Sec. VI. Finally we discuss the
dicular to the basal plane of the hexagonal crystal and té§mages of various dislocations on the topographs and com-
comprize basal edge dislocations. However, individual disloPare them with the x-ray topographs of solid helium in Sec.
cations have not been identified in the topographs of th&/Il.
helium crystals.
Heligm atoms are very _vveak X-ray scatterers. Th_e atomic Il. MODEL CRYSTALS
scattering factor is proportional to the number of orbital elec-
trons which is 2 for the helium atom. Moreover, solid helium  The model for the perfect crystal is of simple cubic struc-
is called a quantum crystal because the amplitude of the&ure with a lattice constara=1. The crystallographic axes
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FIG. 1. Geometry of the crystal and x rays for the calculation of{2

x-ray topographs.

are parallel to thex, y, and z directions of the Cartesian

coordinate system. The numbers of atoms inxhg, andz

directions areN,, N, andN,, respectively. The total num-

ber of the atoms is given by

N=N, XNy XN,. (1)

The center of the crystal is taken as the origin of the

coordinate system. The position of th atom is given by

r=rap,=(@a,pa,ya), 2)

wherea, B, andy are integers or half integers witi, , Ny,
and N, being odd or even, respectively. For exampleijs
given by

Ny—1  Ny—1 N,—1
a=- %" 1,...; 5 (3
The crystal occupies a region of
N,a N,a N,a
== M==- == @

as shown in Fig. 1.
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TABLE I. Model crystals with a dislocation line and their image
of dislocation on the x-ray topograph.

No. I b Disl. type Disl. image Width
1 X X screw circular 6.0
2 X —X screw circular 6.0
3 X y edge none -
4 X -y edge none -
5 X z edge none -
6 X -z edge none -
7 y X edge trench 5.5
8 y —X edge trench 55
9 y y screw none -
10 y -y screw none -
11 y z edge trench 6.0

y -z edge ridge 5.0
13 z X edge trench 5.5
14 z —-X edge trench 5.5
15 z y edge trench 6.0
16 z -y edge ridge 5.0
17 z z screw none -
18 z -z screw none -

b .,z
u—ﬁtan Y’ v=w=0. (5)

In Eq. (5), tan 1(z/y) is defined to vary from- 7 to 7 with
the discontinuity occurring ag<0 andz=0. The position
of each atom in the dislocated crystal is given by

ri=(ea+uBa+v,ya+w). (6)

The shape of the crystal with a screw dislocatifpx, bl|x is
shown schematically in Fig.(@).

In the case of a straight edge dislocation alongxlais
with the Burgers vector parallel to theaxis (|x, b|y; No.
3in Table ), the displacement of an atom at,¢,z) is given

by

u=0, (78

A crystal with a dislocation linghereatfter called a dislo-
cated crystalis formed from the perfect crystal by introduc-
ing a straight dislocation line along they, or z axis. The
direction of the Burgers vector is parallel or antiparallel to
the x, y, or z direction, and its magnitudk is equal to the
lattice constant. Altogether, 6 kinds of dislocated crystals
with screw dislocations and 12 kinds of dislocated crystals
with edge dislocations are considered as listed in Table I.

The displacements of the atomss (u,v,w), in the dis-
located crystals are calculated according to elasticity
theory?® Although the size of the model crystal is small, we
neglect the effect of image dislocations for simplicity.

In the case of a straight screw dislocation alongxlais
(1|x, b||x; No. 1 in Table ), wherel denotes the direction of
the dislocation line ant the direction of the Burgers vector,
the displacement of an atom at,y,z) is given by
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FIG. 2. Model crystals includinga) a screw dislocatior||x,

b||x and (b) an edge dislocatioh|x, b|y.



DISLOCATION IMAGE ON X-RAY TOPOGRAPHS . .. PHYSICAL REVIEW B 66, 144111 (2002

7 yz Perfect Crystal
—1 + ’ (7b) Nx=11, Ny=41, Nz=41

v=_-—|tan "—
2m Y 2(1-w)(y*~2?) 50
S| |
b | 1-2v y2—27? s A
=— 5 —In(y2+ ZZ) + VAT NE 5: 30 \ N?Jmerical calculation
2w 4(1-v) A4(1—v)(y*+2z2°) 5 20 | Laue function
o : 10 P
wherev is Poisson’s ratio. We assume= 1/3 in the numeri- 5 \
cal calculation. The shape of the crystal with the edge dislo- 0 0 5 10 p
cationl||x, by is shown in Fig. 2b). Incident Wave Vector
IIl. KINEMATICAL THEORY FIG. 3. Comparison of the numerically calculated amplitude of

x-ray diffraction from a perfect crystal with,=11 andN,=N,
In the kinematical theory of x-ray diffraction, the incident =41 with the Laue fucntiofiEq. (15)] and A, [Eg. (32)].
beam is diffracted only once by the atoms. We totally neglect
the effect of multiple diffraction. The incident beam is a explik|p—r;|]
plane wave with a wave vect&r, which lies in thexy plane A(k)= 2 exdik;- rj]ﬁ
as shown in Fig. 1. We consider the case of a reflection ! P=
topograph, where the principal diffraction planes &80  \ve will use Eq.(13) together with Eq.(2) or (6) for the

planes. The angle of incidence with respect to the diffraction, merical calculation of the amplitude and intensity of the
planes is denoted bg. Thenk; is given by diffracted x rays.

(13

ki=(—ksinf,—kcosb,0), (8)
IV. X-RAY DIFFRACTION FROM PERFECT CRYSTALS
wherek is the absolute value df; related to the wavelength

of X rays,\, by In this section, we calculate the x-ray diffraction from the
perfect crystal.
2 We examine reflection topographs in the case of normal
= ) incidence. The direction of the incident x rays is antiparallel

to thex axis, the diffraction planes af@00), and the angle of
As we consider only the elastic scattering, the wave numbeincidence is6=90°. The unit of position and length &

of the diffracted wave ik. =1.
We denote the coordinate of the observation p&iras The thick solid line in Fig. 3 shows the amplitude spec-
trum of diffracted x-ray beam from a perfect crystal calcu-
P=(Xp.Yp:Zp) (10 lated numerically withN,=11, Ny=41, andN,=41 atp

. . . . =(100,0,0). The spectrum of the incident beam is assumed
in calculating a reflection topograph. The standard formallsn}0 be white. Diffraction peaks appear ket 7, 2, and so

of the kinematical theory assumes thiat is much larger on. The height of the peaks increases with, while their

than the size of the crystal and the scattered wave is aPProXl-: i decreases With, .

mated by a plane wave. However, we take a more exact _. - : . .
. . . ; Figure 3 indicates that the diffraction peaks appear in ac-
formalism that the diffracted beam is a sum of spherical ; "
ordance with the Bragg condition

waves whose origins are each atom. The amplitude of thé
diffracted beam is given by M\ = 2asing, (14)
M, (11)  Wheremis an integer.

[p—rj] The line shape of the diffraction peaks in the kinematical
theory is usually given by the Laue function

A=A Qexdiki-r;]
J

whereA, is the amplitude of the incident beai®, the po-
larization factor, and the atomic scattering factor. The po-

sition of thejth atom,r;, in the perfect crystal is given by = S'r?(kaa) (15)

Eg. (2) and that in the dislocated crystal by E@). The sin(ka)

polarization factor is given by The line shape given by E@L5) is plotted in Fig. 3 as a thin
Qj=¢o- €, (12) solid line. The positions of the zero points and peaks calcu-

lated from Eqgs(13) and (15) agree quite well, but the am-
wheree, ande; are polarization vectors for the incident and plitudes of the diffraction peaks do not agree. The variation
scattered x rays, respectively. The effect@fis negligible  of the peak values will be discussed in Sec. VII.

in the case of the normal incidence. According to Eq.(15), the main peaks occur at sk&)
For simplicity we assumé;=1, Q;=1, andf=1in Eq.  =0. This is equivalent to the Bragg condition, E¢4). The
(12), so that Eq(11) is simplified to first main peak is located at
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Position Y FIG. 5. The widths of the crystal edgey and the dislocation

image on the x-ray topograpiW,. The solid line represents the

FIG. 4. X-ray topographs of a perfect crystal with=11 and radius of the first Fresnel zong.

N,=N,=81 at two distances,=20 and 100. The solid line rep-

resents the Fresnel diffraction from a knife edgexgt 100. . . .
g with increasingy, reaches a maximum gt,= 35.0, and then

decreases monotonically to zero. The oscillation is related to

ky=—. (16)  the edge of the crystal, whose position is defined by
a
The zero points nearest tq are located at Ye:¥ (22)
k=ky=ak, (17 from Eq.(4). For the crystal in Fig. 4 we hawg,=40.5. The
where edge width of the crystal in the x-ray topograph is character-
ized by
. T
Ak= N,a’ (18) AYy=Ye=Ym- (22)

For the x-ray topograph at,=20 we haveAy=5.5. The

x-ray topograph ak,=100 has a wider oscillating region

and a longer period of oscillation than that »g=20. Its
Ko+ Ak maximum occurs ay,,=28.5 and we havay=12.0.

I =f |A(K)|%dk. (19 Calculations for various values of,, N,, andN, indi-
1Ak cate thatAy depends orx, but not on the size of the crystal.

We expect that the value dfdepends on the position of the WhenNy is varied, for example, the oscillating part of the
observation point. x-ray topograph is shifted along wity, so thatAy is kept

The integrated diffraction intensity of a model crystal is Constant. Figure 5 shows the relation betwegnandx.
calculated at various observation points within a plane par-
allel to theyz plane, using Eq92), (13), and(19). We call V. X-RAY DIFFRACTION FROM DISLOCATED
the set of the integrated diffraction intensity as the x-ray CRYSTALS
topograph hereafter. As shown in Fig. 1, the center of the
x-ray topograph corresponding to the center of the crystal i?oc
located atPy=(Xg,Y0,20). The line OP, lies on thexy
plane as well as the incident x ray and makes an angk of
with the negative direction of thg axis. In the case of the
normal incidence, we havg,=z,=0, andx, becomes the
distance from the center of the crystalRg.

Figure 4 shows x-ray topographs of a perfect crystal wit
N,=11,N,=81, andN,=81. The observation points in Fig.
4 are taken along a line parallel to theaxis given by

The integrated intensity of the diffraction peak around
=k, is defined by

In this section, we calculate x-ray topographs of the dis-
ated crystals. We restrict ourselves to the case of normal
incidence,#=90°. The size of the crystals N,=11, N,
=81, andN,=81, unless specified otherwise.
Figure 6 shows the x-ray topograph of a dislocated crystal
with a screw dislocatioh|x, b||x which lies along thex axis
h(No. 1 in Table ). The diffraction intensity has been calcu-
lated in two directions parallel to theandz axes centering
at Po=(20,0,0), using Eqg6), (13), and(19). As the direc-
tion of the incident x rays is antiparallel to theaxis, the
p=(Xo,Y,0). (20) projection of the dislocation on the topograph is a point at
y=0 andz=0. There is a profound dip at the center of the
The triangles in Fig. 4 represent the x-ray topograph at aopograph in Fig. 6 accompanied by two peaks on both sides
distance ofxy=20, and the diamonds represent the x-rayof the dip. The positions of the peaks aré.0 and+6.0. As
topograph at a distance &f=100. In both cases the x-ray the feature is the same for bograndz directions, the dip is
topographs are symmetrical with respectyte 0. expected to be circular in shape with a radiug 6f6.0 on
In the x-ray topograph aty= 20, the diffraction intensity the two-dimensional x-ray topograph. The diffraction inten-
is almost constant for- 25<y<< 25, oscillates several times sity at the center of the dip is zero. The diffraction intensity
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FIG. 8. X-ray topographs of a crystal with an edge dislocation
lly, b|x at a distance ok,=20 in they andz directions.

dislocation on the topograph is a line along thexis. The
for y<—20 andy>20 is the same as that of the perfect topograph along the axis shows a dip az=0 and two
crystal, including the oscillation of the intensity at the edgepeaks az=—5.5 and 5.5. The topograph along thexis,
of the crystal. If the direction of the Burgers vector of the on the other hand, has a small but constant value-fao

screw dislocation is opposite to (I]|x, b|—x), we get a <y<20 which coincides with the dip value of the topograph
similar x-ray topograph. Therefore the image of the screwalong thez axis. Hence the image of the dislocation on the
dislocationd ||x, b|x andl||x, b||—x on the x-ray topograph two-dimensional x-ray topograph is a trench alongytaxis

is localized around the position of the dislocation, and thewhich is parallel to the dislocation direction. The depth of
effect of the screw dislocation is to reduce the diffractionthe trench is 46% of the perfect-crystal value. If the direction

intensity down to zero.
Figure 7 shows the x-ray topograph of a dislocated crystasimilar x-ray topograph.

with an edge dislocatioh|x, blly. The projected position of
the dislocation on the topograph is w&0 andz=0, but
except for a small dip at=—6 and a small peak &=6,

of the Burgers vector is opposite x|y, b|—x), we get a

We get similar dislocation image in the topographs of
crystals with an edge dislocatidfiz, b||x and with an edge
dislocationl||z, b||—x. The only difference lies in that the

the topograph is almost the same as that of the perfect crysteislocation image appears along thaxis.

and shows no clear sign of the dislocation. We get similar
results for dislocated crystals with an edge dislocatipn
b||—y, with an edge dislocatioh|x, b||z, and with an edge

dislocationl||x, b|—z. he trena
The x-ray topographs of dislocated crystals with a screwsimilar to the case df|y, b|x. If the direction of the Burgers

dislocation!|y, b|ly, with a screw dislocatior|y, b|—Yy,

Figure 9a) shows the x-ray topograph of a dislocated
crystal with an edge dislocatidiy, b|z. The projection of
the dislocation on the topograph is a line along yhaxis.
The image of the dislocation is a trench along thexis

vector is opposite ta (l||ly, b|—z), however, we get a dif-

with a screw dislocatiom||z, b[|z, and with a screw disloca- ferent image of the dislocation as shown in Figb)9 The
tion 1]z, b||—z are the same as that of the perfect crystal andopograph along the axis shows a peak a=0 accompa-
show no sign of the dislocation at all.

Figure 8 shows the x-ray topograph of a dislocated crystatation is a ridge along thg axis in this case. The depth of

with an edge dislocatior||y, bl|x. The projection of the

300

Edge Dislocation: I//x, b//y

along Y-axis
along Z—axis
Perfect Crystal

A

A

Diffraction Intensity

\_

-20 0 20
Position (Y or Z)

40

60

nied by two dips az=—5 and 4.5. The image of the dislo-

the trench in Fig. @) is 61% of the perfect-crystal value,
while the height of the ridge in Fig.(B) is 146% of the
perfect-crystal value.

We get similar dislocation image in the topographs for a
pair of crystals with an edge dislocatitifz, b|ly and with an
edge dislocationH|z, b||—y. The only difference lies in that
the dislocation image appears along thaxis.

The results of calculations for the dislocated crystals are
summarized in Table I.

VI. X-RAY TOPOGRAPHS OF SOLID HELIUM

The x-ray topographs of solid helium have been taken
using the synchrotron radiatidi$R) x-ray beam at the Pho-
ton Factory of the National Laboratory of High Energy
Physics'! The geometry of the SR x-ray topography for solid

FIG. 7. X-ray topographs of a crystal with an edge dislocationhelium is shown in Fig. 10. As it is a transmission geometry

I|x, blly at a distance oky=20 in they andz directions.

and the window behind the sample chamber containing the
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200 Edge Dislocation: I//y, b//z TABLE II. Diffraction spots from the hcp helium crystal.
long Y-axi
250 (a) ----- Zliﬂi z—Zi:z 1 Miller index Lattice spacingnm) Multiplicity
> Perfect Crystal —
-*é 200 ow, 1100 0.312 6
£ 150 A ST i 0002 0.294 2
s “KZ\MWMWW\}X 1101 0.275 12
e = :
| J k 1%?)03 0:166 12
0
-60  -40  -20 0 20 40 60
Position (Y or Z)
condition with /g=10° andd=0.275 nm, the typical wave-
200 2388 Dislocation: I//y, b//~2 length of diffracted x rays is determined to be
along Y-axis
250 (b) A e along Z—axis A
> I\ . Perfect Crystal . I\ A=0.096 nm. (23
B 200 \~~ o
G V T V
£ 150 A\/\*' i ‘J\/\ Figure 11 shows three x-ray topographs of an Hefe
2 100 TV crystal taken simultaneously on a nuclear plate. The Miller
s . indices are assigned to be 01, 0110, and 011. The over-
% %0 20, all parallelogram shape of the topographs assures that the
0 observed region of the sample is a single crystal. White and
0 o 0 0 20 20 50 black bands represent the subboundaries in the crystal. A

remarkable feature is that the contrast and width of the sub-

boundaries appear differently in each topograph. Their
FIG. 9. X-ray topographs ofa) a crystal with an edge disloca- widths range between 30 and 20@ on the topographs. The

tion l|ly, bllz and (b) a crystal with an edge dislocatidty, b]| subboundarie®, Q, andR are planes perpendicular to the

—z at a distance ok,= 20 in they andz directions. basal plane of the hcfHe crystal and approximately making

an angle of 60° with each oth&rThe regionSis bright in
helium crystal has an aperture of approximated0°, the all the topographs.
angle of incidence is limited tdg=<10°. The distance from

Position (Y or Z)

the center of the sample chamber to the nuclear plate, which 1mm
takes the topograph, i8,=80 mm. The hcp*He crystal —
grown at a constant pressure of 4.0 MPa has a molar volume p - »S

of 20.5 cni/mol. The lattice constants age=0.360 nm and E
¢=0.588 nm. The spacingd, of a few diffraction planes of Q A ———) -
the hcp “He crystal are listed in Table {f The most fre- p

quently observed diffraction spot is of 01 type, because it~ (a) R - — T TN
has a relatively large spacing and the biggest multiplicity

(i.e., the number of equivalent spptsf 12. From the Bragg Pa »S
Sample Chamber Nuclear Plate T
Incident (b)
X-rays - Window
- F 40°

[/
77 z (e)
Radiation Shields
X J FIG. 11. X-ray topographs of an hcfHe crystal.(a) 0111
diffraction, #3=9.8°, (b) 0110 diffraction, #g=10.1°, and(c)
FIG. 10. The geometry of synchrotron-radiation x-ray topogra—OTll diffraction, g=8.0°. P, Q, and R indicate subboundaries,
phy for solild helium. Topographs are taken on the nuclear plate. and S indicates a region of bright contrast.
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Tmm X

B Ay
FIG. 13. The definition of the radius of the first Fresnel zope

An enlarged x-ray topograph of Fig. (Hl is shown in ~ and that of the second Fresnel zane
Fig. 12. Apart from the subboundaries there are uniformly
dark regionsD and spotty bright regionk andS. r{=+vAXgp. (28

FIG. 12. Enlarged x-ray topograph of 01 diffraction.

Equation(26) means that the spherical x-ray waves which
emerge from the points within the ring of radiusgiven by

The origin of the oscillation of intensity near the edge of Eq. (28) are in phase at the observation poitwith the
the crystal is the same as the Fresnel diffraction of light wavephase shift being less than. On the other hand, the x-ray
from a knife edgé’ Let us calculate the Fresnel diffraction waves from outside the first Fresnel zone have a phase shift
of monochromatic X =2) and parallel light wave incidnt on bigger thans.

VII. DISCUSSION

a knife edge located at=y,. The incident direction is par- The solid line in Fig. 5 represents. By comparingAy
allel to thex axis. The intensity of light ap=(x,,y,0) is andry, the edge width in the x-ray topograph is approxi-
given by mately given by
2 2 =
I =E 5 y=ye| 1 Ly y=ye| 1 ” Ay=0.86;. (29
F2 N WX 20 | We regard , as a representative of the resolution of the x-ray

_ . topograph, because it is proportional to the width of the crys-
whereU(x) andV(x) are the Fresnel integrals defined by tal edge on the x-ray topograph and it is an increasing func-
5 tion of N andx, via Eq. (28).

_ mu- In the following we call the phenomena related to the

V0= fo cos?( 2 )du, (253 radius of the first Fresnel zone as the Fresnel model. The

distance between the crystal and observation point and the

U2 wavelength of x rays play an important role in the Fresnel

T du (25b) model.

The number of atoms in the first Fresnel zone of the

Equation(24) is calculated forx,=100 andy,=40.5, mul- Model crystal is given by
tiplied by a factor ofN,>=121, and plotted in Fig. 4 as a
solid line, which agrees with the x-ray topograph gt Nymry (30)
=100 very well except for the center region<(10). a2
We next introduce the radius of the first Fresnel zane, o ) )
In Fig. 13, the pointP is on thex axis atOP=x, and the  This is a measure of how many atoms are involved in the
point A is on they axis withOA=r,, wherer, is defined to diffraction intensity at the observation point because the
be the radius of the first Fresnel zone when spherical waves from inside the first Fresnel zone interfere
constructively. By replacingp—r;| in Eq. (13) with x, and
Y restricting the summation to thé; atoms in the first Fresnel
AP—OP=3. (26)  zone, we obtain the contribution of tiNy atoms to the dif-
fraction amplitude to be

V(x)= foxsinz

The distanceAP is given by
2\ N,

a2

2 |A1|:

(31

r

AP=JOP?+0OAZ= }Z+12~xo+ i (27)
0

The spherical waves from inside the second Fresnel zone
The last equality is valid whery>r,. From Egs.(26) and  interfere destructively, those of the third Fresnel zone con-
(27) we obtain structively, and so on. Because the contributions from the
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second and higher-order Fresnel zones cancel with each X-ray Topograph
other, the net effect is that the diffraction amplitude is re- o~
duced approximately to a half value Af, &'Y”&
|A;] AN P
Al == (32 I A
Equation(32) is shown as a dotted line in Fig. 3. Note that \TJ'—L Crystal

Eq. (32) does not depend on the distange The reason is

that the amplitude of a spherical wave from an atom is de- (100) Planes

creased as 4§ but the number of atoms in the first Fresnel (a) ¥//z,b//~y )1/ /2, b/ 7y
zone is increased proportionaltg because of Eq$28) and
(30) and both ef-fects Cancel each other FIG. 14. Dislocation image on the X-ray tOpOgraph based on the

The width of a dislocation line image is increased as thé:resnel model(100) planes around a dislocation line are shown in
distance from the crystal to the observation point is increase§yStals with(a an edge dislocatioh]z, bj—y and (b) an edge
according to Eq(28). Assuming the dislocation width to be disiocationi|jz, blly.
2r, and the width of the crystal edge to bg the distance
Xm at which the size of the crystdl, is equal to 4, is given  when the sign of the Burgers vector is changed, the image of

by the dislocation becomes from an ridge to an trench.
) ) Let us consider the case of the crystal with an edge dis-
. :(Nya) _ L (33) locationl||z, b]|—y (No. 16 in Table J in more detail based
™16\ 16\’

on the Fresnel model. Both sides of t{00 plane of the
crystal projected on they plane, ABOCD, are bent up-

where wards atO as shown in Fig. 14) with the distanceOP
L=Nya (34) being the same as for the perfect crystal. The first Fresnel

zone corresponding to the poiRton the topograph iBOC,
for the model crystal. at the center of which the dislocation is present. The phase

The dislocation image can be spacially resolved on thgjigterence between the diffracted x-ray waves from the at-
x-ray topograph when oms in the regiorBOC is decreased & on the topograph
(35) compared with the perfect crystal because the distaBées

andCP are shorter than the corresponding distances of the
In the case oh=1, Ny=81, and\ =2, we havex,,=205.  perfect crystal. As a result the amplitude of the diffracted x

X-ray topographs for 18 dislocated crystals have been cakays atP on the topograph is increased. Po@ton the to-
culated as listed in Table I, out of which 10 cases show q:)ograph is distant fronf by ry. The first Fresnel zone cor-
dislocation image and 8 cases show no dislocation imaggesponding taQ is ABO. As the lineABO is almost straight,
There is a common feature .in thg cases of_no dislocatiog,q amplitude of the diffracted x rays &on the topograph
image that the displacement in thelirection, u, is zero. On 5 essentially the same as that for the perfect crystal. The
the other hand,_ln those cases in which the dislocation image \ation is the same for poifR. Hence we expect that the
appears, the dlsplaceme_mtls not zero. In the topographs igraction intensity atP is stronger than that @ or R and
S'FUd'ed. in Sec. V the diffraction p'af‘es aE00 and the that a positive image of the dislocation appears aroBnd
diffraction vector isg=[100]. Hence,u is the component of whose width is approximately given by 2
the displacement which is parallel to the diffraction vector. In the crystal with an edge dislocation withz, b|ly (No.

We can generalize the condition that the dislocation image iiS in Table ), on the other hand, both sides, of tHEDD)

observed to be plane,ABOCD, are bent downwards & as shown in Fig.
14(b) with the distanceD P being the same as for the perfect
crystal. Then we expect that the diffraction intensityPaits
whereu is the displacement vector. weaker than that & or R and that a negative image of the
Out of 10 cases in which the dislocation image appearsgislocation appears arourii
the diffraction intensity decreases in 8 cases and increases in It is evident from the discussion above that the width of
2 cases. As a consequence, the diffraction intensity is exthe dislocation image in the Fresnel model is closely related
pected to be lower on average in the region of the crystalo r,;. We define the half width of the dislocation imade,,
with high dislocation density if different types of dislocations to be the distance from the minimum to the peak of the x-ray
are equally populated. topograph as indicated in Fig. 6. Figure 5 showsg for a
The two cases with increasing diffraction intensity, Nos.crystal consisting oN,=11, N,=161, andN,=161 atoms
12 and 16 in Table |, are characterized as followly:the  with a screw dislocatiorb||x, Iﬁx as a function ofx,. The
crystal involves an edge dislocatiof2) the slip plane(i.e.,  width of the image of the crystal edge andare also shown
the plane which contains the Burgers vector and the dislocan the figure. There is a good correlation betw&®gnandr ;
tion line) is perpendicular to the diffraction vector, aK®) as expected.

Xo<€Xm -

g-u#0, (36)
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¢ Incident X-rays 300 (Sc)rew Dislocation: I//x, b/ /x .
a — 30 de
PrA T30 e
N \ X-ray\'l':pograph o / \ / \ S
= 200
ﬁ 150 A‘:"WM Aw W w/\,‘ {
-é 100
: / Y
£ 50 /
[a]
0
60 40 20 0 20 40 60
Position Y
350 Screw Dislocation: 1//x, b/ /x
FIG. 15. A crystal with a subboundary consisting of an array of (b) p | ——30dee
edge dislocations]|z, b|ly and a corresponding x-ray topograph. 300 \ I —gg geg.
_— eg.
- 250 'A‘A A
The width of the dislocation image depends somewhat on ¢ 200 ”“’U
the type of the dislocation as shown in Table 1. £ A\ '
A subboundary may appear as a dark or bright band on g 150 anv “AU Ww"w
the x-ray topograph. Let us consider a subboundary formed *§ 100 ‘
by an array of edge dislocatiomgz, b|ly which are equally £ 5 I /[
spaced in thex direction as shown in Fig. 15. Thel00) e ‘A
plane in one of the subgrains is inclined with respect to the O—==1— ) ) ) )
(100 plane in the other subgrain. The angle between the -60  -40  -20 0 20 40 60
(100 planes of the subgrains is given by Position Z
b FIG. 16. Dislocation image of a screw dislocatibjx, b|x at
b= = (37)  different angles of incidence.

whereD is the spacing between the dislocations. The inci-by Eq.(35). Namely, the distance in the calculation is limited
dent x rays are antiparallel to theaxis. The Bragg condition by the size of the model crystal. On the other hand, when we
for one subgrain is different from that of the other subgrain@assumeL=1 mm (typical size of a subgrajnand \

so that the direction of the topograph of one subgrain is=0.1 nm for the experiment, we get,=2.5x 10* m which
shifted from that of the other subgrain by an angle ¢fand  is much larger tham,=80 mm. The full width of a disloca-
the subboundary becomes visible on the topograph. tion image in the x-ray topographs of solid helium is esti-

Consequently, the subboundary appears as a band withated to be
lower diffraction intensity parallel to the direction on the
topograph similar to the image of the edge dislocatifm 2Wy=2r;=5.5 um (39)
blly. The width of the band is given by by puttingA=0.1 nm andx,=80 mm in Eq.(29).

_ The calculations in Sec. V are performed in the backre-
W=2xotan+24y, (38) flection geometry ¢g=90°) because of the simplicity of
wherexg is the distancé®® P and Ay is given by Eq.(22). calculation, while the experiment is done in the transmission

On the other hand, a subboundary formed by an arrray ofeometry. Figure 16 shows the x-ray topographs of a dislo-
edge dislocations|z, b||—y appears as a band with higher cated crystal with an screw dislocatibx, b||x, at different
diffraction intensity similar to the image of the edge disloca-angles of incidence. A8y is decreased from 90° to 30°, the
tion 1|z, b||—y. In this sense, an individual dislocation and a width of the dislocation image along theaxis is increased
subboundary cannot be distinguished. However, the width ofnd the minimum amplitute at=0 is increased, while the
a subboundary can be much larger than that of a single disvidth of the dislocation image along ttedirection is not
location. changed. The variations are interpreted as the projection of

Next we consider the x-ray topographs of solid helium.the dislocation line on thgz plane is changed from a point
There are differences in the experimental and calculationdbr 83=90° to a line elongated in thedirection for smaller
conditions, such as the size of the crystal, the distagcéhe 65 . Thus the dislocation image can be observed in the trans-
Bragg angle, and the crystal structure, which will be dis-mission topographs as well as in the reflection topograph
cussed below. with a slight change in contrast.

The size of the crystal and distance from the crystal to the The crystal structure affects both the types of dislocations
observation point are different between the experiment andhich are formed in the crystal and the types of diffraction
calculation. However, the essential condition that a dislocaspots which can be observed in the x-ray diffraction experi-
tion image can be observed in the x-ray topograph is givements. The experimentally observed diffraction spots from
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the hcp *He crystals are of 0002, DD, 1101, and 1D2 We compare finally the electron diffraction described by
types. Dislocations with Burgers vectora are more easily the columnar approximatioh with the x-ray diffraction
formed than dislocations witb=c in the hcp“He crystal, ~based on the Fresnel model. o
because of the lower formation energy. Basal dislocations The diffraction amplitude in the columnar approximation
havingb=a and lying in the basal plane may split into par- iS given by

tial dislocations and form a stacking fault between them.

However, it can be seen without going into such details why _ ; oot

the dislocation image is observed in the x-ray topographs A FEJ: exH2m(g+s)- (1 + )], 42
within the kinematical theory(1) The amplitudeA(k) at the ) ] ) )
observation poinP in the x-ray topograph is approximately Wh_ereF is the_ atomic scattering factor for the unit c_:egla
given by a sum of the amplitudes of diffracted x rays fromre_mprocal lattice vectors a small \{ector representing the
the atoms within the first Fresnel zori@) The atoms around difference betweeg and the diffraction vectoK/2r,

a dislocation core is displaced from the atomic positions in )

the perfect crystal as much as the lattice spacing. As a con- K=2mi(g+s), (43)
sequence, the phase of the diffracted X rays is shifted up tp o

. . . J
2m and the amplitudé\(k) at the observation point may be jisnjacement of unit cells from due to the dislocation. The

considerably changed from the value of the perfect crystal.q;mmation is taken over a column in the direction of diffrac-
Now the image of subboundaries in Fig. 11 is explained;, with the width of one unit cell. Using

based on the results of the calculations. The subboundaries

IZ, Q. andR are perpendicular to the basal plane of the hcp g-ry=n, (44)
He crystal and consist of basal dislocatidh#n particular,

the subboundar consists of an array of basal dislocations wheren is an integer, we obtain

with an averaged Burgers vector

position of unit cells in the perfect crystal, andthe

3b;+b,
b= 4

A=FZ exg 2mi(s-rj+g-u))]. (45
(40) :

_ . Here the higher-order terra-u; is neglected. Dislocations
andl making an angle of 14° with0110] direction, where  can be observed wheg u; is not zero, which is equivalent
b,=(a/3)[2110] andb,= —(a/3)[ 1210]. to Eq. (36).

We consider a basal edge dislocation wi{fi0110] and There are differences ir} the .experimental conditions of
b=b; here. When the diffraction vector [©110] and the electron-beam anc! x-ray ‘ﬂ'frac“o'(‘l) The Wavglength of
dislocation isl||[0110] andb=b,, case No. 3 in Table I is the electron beam is 3710 * nm (at 100 kV), while that of

lied and no dislocation i 1 = .t d. When th d.fthe X rays is typically 0.1 nm(2) The electron beam can be
applied and no dislocation Image 1s expected. When In€ Al ,sed on the screen, while no focusing lenses are available
fraction vector ig0111] or [0111], the diffraction vectors for x rays. (3) The electron beam is monochromatic, while

can be decomposed to the x-ray beam of synchrotron radiation has a broad spec-
S — — trum.
[0111]=[0110]+[0001], (413 One of the consequenses is a small value of the radius of
_ _ the first Fresnel zone, for the elcetron beam. As the elec-
[0111]=[0110]+[000T. (41b  tron beam can be focused, the distance between the sample

— . . . ._and observation point in the electron diffraction is effectively
The [0110] component gives no image of the dislocation . ihickness of the sample, which is about 100 nm. The

1I[0110] and b=b;. The[0001] and[0001] components, radius of the first Fresnel zone for electron is estimated to be
on the other hand, correspond to Nos. 11 and 12 in Table . = 0.6 nm, by substitutingh=3.7x10"3 nm and X,

giving a dislocgtion image of trench and ridge, respectiyel){.z 100 nm into Eq.(28). Because this value of; is compa-
Hence, the white and black contrast of the subboundaries ifyp|e to the lattice constant, the columnar approximation is
Figs. 11a) and 11c) is caused by the0001] component of  yajid for electron diffraction. The radius of the first Fresnel
the diffraction. The thin white image of the subboundary inzgne in the x-ray topography of solid helium, on the other
Fig. 11(b) is probably due to thé, component of the dislo- hand, is 2.7zm, which is 10000 times as big as the lattice
cations. constant. Hence the columnar approximation is not valid for
Apart from the subboundaries there are uniformly darky_ray diffraction and the summation in E4L3) should be
regionsD and spotty bright regionk andS. The former are  taken not merely on a column but at least over a region
the regions of low dislocation density and the latter are th&ynich includes the first Fresnel zone.
regions with high dislocation density, because the diffraction | the electron diffraction, the columnar approximation
intensity is decreased in a region with high dislocation denyegylts in stronger contrast on one side of the dislocation line
sity as we have discussed in this section. The bright contraghan in the perfect region of the crystal. The position of the
in region S is caused by the dislocation image from the syrong contrast is approximately given by the condition
[0110] component, because it is commonly observed in
Figs. 11a), 11(b), and 11c). S rj+g-u;=0, (46)
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becauses#0 for the perfect region of the crystal and the topograph was derived that the displacement vectors of at-
strain field around the dislocation line leadsgay;<<0 on  oms around the dislocation line had a component parallel to
one side andy-u;>0 on the other side of the dislocation the diffraction vector. The diffraction intensity of the dislo-
line. In the x-ray diffraction with broad spectrum, on the cation image was in most cases smaller than that of the per-
other hand, there is always a wavelength in the spectrum dect region in contrast to the columnar theory in which the
which s=0. Hence the condition, Eq46), does not cause dislocation image was always a region with higher diffrac-
any change in contrast. Rather the curvature of the latticion intensity.
planes in the first Fresnel zone changes the phase of dif- The Fresnel model was applied to the experiments of the
fracted x rays from different atoms, and the contrast is inX-ray topography of solid helium and the width of the dislo-
creased only when the phase difference between them is deation image was estimated to be 8. The white and
creased. black contrast of the subboundaries appearing on the x-ray
As discussed already there are only two cases of detopographs of solid helium with different Miller indices were
creased phase difference. In other cases the phase differerexplained in terms of the trench and ridge images of the edge
is increased and the contrast around the dislocation is weakdislocations based on the calculation. Thus some of the prop-
than the perfect crystal. erties of dislocations in solid helium can be extracted from
observation of the subboundaries in the x-ray topographs of
solid helium. For example, change of the configuration of

) subboundaries would give us information on the motion of
X-ray topographs of perfect crystals and dislocated crysgisjocations. When individual dislocations are identified in

tals have been calculated within the kinematical theory. Itthe X-ray topographs’ we will be able to investigate their

turned out from the calculations for perfect crystals that thejensity, distribution, shape, motion, and many other proper-
calculation of x-ray topographs was closely related to thgjes.

Fresnel diffraction in the theory of optics. The calculated
edge profile of the crystal was the same as the knife edge
profile of the Fresnel diffraction and its width was propor-
tional to the radius of the first Fresnel zone.

The dislocation image on the x-ray topograph was found The author thanks Professor Hideji Suzuki, Professor
to be a circle, a ridge, or a trench depending on the type ofakayoshi Suzuki, Professor Tetsuo Nakajima, and Professor
dislocation and diffraction condition. Its radius or width was Ichiro Yonenaga for valuable discussions. The experimental
comparable to the radius of the first Fresnel zone. A necespart of this work has been carried out at the Photon Factory
sary condition for a dislocation image to appear on the x-rayf the National Laboratory of High Energy Physics.
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