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Dislocation image on x-ray topographs within kinematical theory

Izumi Iwasa*
Fuji Xerox Co., Ltd., Nakai-machi, Kanagawa 259-0157, Japan

~Received 6 December 2001; revised manuscript received 17 June 2002; published 31 October 2002!

X-ray topographs of perfect crystals and dislocated crystals have been calculated within kinematical theory.
The dislocation image on a x-ray topograph is found to be a circle, a ridge, or a trench depending on the type
of dislocation and diffraction condition. Its radius or width is comparable to the radius of the first Fresnel zone,
r 15Alx0, wherel is the wavelength of the x rays andx0 is the distance from the crystal to the observation
point. The Fresnel model is applied to the x-ray topograph of solid helium.r 1 is estimated to be 2.8mm. The
different contrast of the subboundaries appearing on the x-ray topographs of solid helium is explained in terms
of the contrast of the dislocation images based on the calculation.

DOI: 10.1103/PhysRevB.66.144111 PACS number~s!: 61.10.Dp, 67.80.2s, 61.72.Ff
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I. INTRODUCTION

The x-ray topography is a useful means for studying d
locations and other defective structures in crystalline mat
als. The x-ray diffraction from high-quality crystals of ord
nary materials such as metals and semiconductors, in w
the extinction distance is much shorter than the thicknes
the specimen and multiple diffraction of the incident x ra
occurs, is described by the dynamical theory.1 In this case,
dislocations can be observed in the x-ray topographs,
cause the diffraction condition around a dislocation is diff
ent from the other part of the crystal and multiple diffracti
is reduced.

Solid helium exists only under pressure~above 2.5 MPa
in the case of4He) at low temperatures down to 0 K because
of the large zero-point energy, so that the density of a hel
crystal grown in a pressurized cell is expected to be alm
uniform with no macroscopic voids and cracks. Possible
tice defects in single crystals of solid helium are vacanc
isotopic impurities, and dislocations. Formation energies
activation energies of the vacancy in bcc3He have been
determined by the specific-heat,2 pressure,3 x-ray4 and NMR
~Ref. 5! measurements. Existance of dislocations have b
indicated in the ultrasonic measurements on hcp4He,6 bcc
and hcp3He,7 and the experiments of plastic deformation.8,9

It has been poined out from the amplitude dependence
sound attenuation in bcc3He, ~Ref. 10! that quantum me-
chanical tunneling of dislocations may happen. Hence, di
observation of dislocations in solid helium is desirable
understand the mechanical properties of solid helium m
deeply.

Recently, synchrotron-radiation x-ray topographs of h
4He crystals have revealed the existance of tilt subbou
aries in solid helium.11 The size of the subgrains is of th
order of 1 mm. The subboundaries are found to be perp
dicular to the basal plane of the hexagonal crystal and
comprize basal edge dislocations. However, individual dis
cations have not been identified in the topographs of
helium crystals.

Helium atoms are very weak x-ray scatterers. The ato
scattering factor is proportional to the number of orbital el
trons which is 2 for the helium atom. Moreover, solid heliu
is called a quantum crystal because the amplitude of
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zero-point vibration in the helium crystals amounts as mu
as 30% of the interatomic distance.12 The zero-point vibra-
tion in turn reduces the intensity of the coherent diffracti
of x rays drastically via the Debye-Waller factor. As a resu
the extinction distance of x rays in solid helium is estimat
to be as long as 2.5 mm,13 which is greater than the size o
the subgrains. Hence, the x-ray diffraction from helium cry
tals is supposed to be described not by the dynamical the
but by the kinematical theory, in which the incident beam
diffracted only once by the atoms and multiple diffraction
neglected.

The images of dislocations in the transmission elect
microscope were theoretically calculated by Hirschet al.
based on kinematical theory.14 They used the columnar ap
proximation, in which the amplitude of diffraction at a poin
P below the sample was calculated as a sum of the diffrac
waves from the atoms in a single column of unit cells in t
diffraction direction. In the case of x-ray diffraction, how
ever, the columnar approximation is not adequate. Diffrac
waves from the atoms in a wider region than a column m
be taken into account, because the wavelength of x r
~typically 0.1 nm! is much longer than that of the electro
~0.0037 nm at 100 keV!. Therefore, we need to calculate th
dislocation images in the x-ray topographs based on k
matical theory more rigorously than the columnar appro
mation.

The purpose of this paper is to calculate the amplitude
intensity of the diffracted x rays from model crystals with
the kinematical theory and to estimate the dislocation im
on the x-ray topograph. The model crystals and kinemat
theory are described in Secs. II and III, respectively. W
study the x-ray diffraction from the perfect crystals in Se
IV and that from the crystals with a dislocation in Sec.
Then the experimental results on the x-ray topography
solid helium are presented in Sec. VI. Finally we discuss
images of various dislocations on the topographs and c
pare them with the x-ray topographs of solid helium in S
VII.

II. MODEL CRYSTALS

The model for the perfect crystal is of simple cubic stru
ture with a lattice constanta51. The crystallographic axe
©2002 The American Physical Society11-1
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are parallel to thex, y, and z directions of the Cartesian
coordinate system. The numbers of atoms in thex, y, andz
directions areNx , Ny , andNz , respectively. The total num
ber of the atoms is given by

N5Nx3Ny3Nz . ~1!

The center of the crystal is taken as the origin of t
coordinate system. The position of thej th atom is given by

r j5rabg5~aa,ba,ga!, ~2!

wherea, b, andg are integers or half integers withNx , Ny ,
and Nz being odd or even, respectively. For example,a is
given by

a52
Nx21

2
,2

Nx21

2
11, . . . ,

Nx21

2
. ~3!

The crystal occupies a region of

uxu<
Nxa

2
, uyu<

Nya

2
, uzu<

Nza

2
, ~4!

as shown in Fig. 1.
A crystal with a dislocation line~hereafter called a dislo

cated crystal! is formed from the perfect crystal by introduc
ing a straight dislocation line along thex, y, or z axis. The
direction of the Burgers vector is parallel or antiparallel
the x, y, or z direction, and its magnitudeb is equal to the
lattice constanta. Altogether, 6 kinds of dislocated crysta
with screw dislocations and 12 kinds of dislocated cryst
with edge dislocations are considered as listed in Table

The displacements of the atoms,u5(u,v,w), in the dis-
located crystals are calculated according to elasti
theory.15 Although the size of the model crystal is small, w
neglect the effect of image dislocations for simplicity.

In the case of a straight screw dislocation along thex axis
( l ix, bix; No. 1 in Table I!, wherel denotes the direction o
the dislocation line andb the direction of the Burgers vecto
the displacement of an atom at (x,y,z) is given by

FIG. 1. Geometry of the crystal and x rays for the calculation
x-ray topographs.
14411
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u5
b

2p
tan21

z

y
, v5w50. ~5!

In Eq. ~5!, tan21(z/y) is defined to vary from2p to p with
the discontinuity occurring aty,0 andz50. The position
of each atom in the dislocated crystal is given by

r j5~aa1u,ba1v,ga1w!. ~6!

The shape of the crystal with a screw dislocationl ix, bix is
shown schematically in Fig. 2~a!.

In the case of a straight edge dislocation along thex axis
with the Burgers vector parallel to they axis (l ix, biy; No.
3 in Table I!, the displacement of an atom at (x,y,z) is given
by

u50, ~7a!

f

TABLE I. Model crystals with a dislocation line and their imag
of dislocation on the x-ray topograph.

No. l b Disl. type Disl. image Width

1 x x screw circular 6.0
2 x 2x screw circular 6.0
3 x y edge none 2

4 x 2y edge none 2

5 x z edge none 2

6 x 2z edge none 2

7 y x edge trench 5.5
8 y 2x edge trench 5.5
9 y y screw none 2

10 y 2y screw none 2

11 y z edge trench 6.0
12 y 2z edge ridge 5.0
13 z x edge trench 5.5
14 z 2x edge trench 5.5
15 z y edge trench 6.0
16 z 2y edge ridge 5.0
17 z z screw none 2

18 z 2z screw none 2

FIG. 2. Model crystals including~a! a screw dislocationl ix,
bix and ~b! an edge dislocationl ix, biy.
1-2
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v5
b

2p F tan21
z

y
1

yz

2~12n!~y22z2!
G , ~7b!

w52
b

2p F 122n

4~12n!
ln~y21z2!1

y22z2

4~12n!~y21z2!
G ,

~7c!

wheren is Poisson’s ratio. We assumen51/3 in the numeri-
cal calculation. The shape of the crystal with the edge dis
cation l ix, biy is shown in Fig. 2~b!.

III. KINEMATICAL THEORY

In the kinematical theory of x-ray diffraction, the incide
beam is diffracted only once by the atoms. We totally negl
the effect of multiple diffraction. The incident beam is
plane wave with a wave vectork i , which lies in thexy plane
as shown in Fig. 1. We consider the case of a reflec
topograph, where the principal diffraction planes are~100!
planes. The angle of incidence with respect to the diffract
planes is denoted byu. Thenk i is given by

k i5~2k sinu,2k cosu,0!, ~8!

wherek is the absolute value ofk i related to the wavelength
of x rays,l, by

l5
2p

k
. ~9!

As we consider only the elastic scattering, the wave num
of the diffracted wave isk.

We denote the coordinate of the observation pointP as

p5~xp ,yp ,zp! ~10!

in calculating a reflection topograph. The standard formal
of the kinematical theory assumes thatupu is much larger
than the size of the crystal and the scattered wave is app
mated by a plane wave. However, we take a more ex
formalism that the diffracted beam is a sum of spheri
waves whose origins are each atom. The amplitude of
diffracted beam is given by

A5Ai• f(
j

Qjexp@ ik i•r j #
exp@ ikup2r j u#

up2r j u
, ~11!

whereAi is the amplitude of the incident beam,Qj the po-
larization factor, andf the atomic scattering factor. The po
sition of the j th atom,r j , in the perfect crystal is given by
Eq. ~2! and that in the dislocated crystal by Eq.~6!. The
polarization factor is given by

Qj5e0•e j , ~12!

wheree0 ande j are polarization vectors for the incident an
scattered x rays, respectively. The effect ofQj is negligible
in the case of the normal incidence.

For simplicity we assumeAi51, Qj51, andf 51 in Eq.
~11!, so that Eq.~11! is simplified to
14411
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A~k!5(
j

exp@ ik i•r j #
exp@ ikup2r j u#

up2r j u
. ~13!

We will use Eq.~13! together with Eq.~2! or ~6! for the
numerical calculation of the amplitude and intensity of t
diffracted x rays.

IV. X-RAY DIFFRACTION FROM PERFECT CRYSTALS

In this section, we calculate the x-ray diffraction from th
perfect crystal.

We examine reflection topographs in the case of norm
incidence. The direction of the incident x rays is antipara
to thex axis, the diffraction planes are~100!, and the angle of
incidence isu590°. The unit of position and length isa
51.

The thick solid line in Fig. 3 shows the amplitude spe
trum of diffracted x-ray beam from a perfect crystal calc
lated numerically withNx511, Ny541, andNz541 at p
5(100,0,0). The spectrum of the incident beam is assum
to be white. Diffraction peaks appear atk5p, 2p, and so
on. The height of the peaks increases withNx , while their
width decreases withNx .

Figure 3 indicates that the diffraction peaks appear in
cordance with the Bragg condition

ml52a sinu, ~14!

wherem is an integer.
The line shape of the diffraction peaks in the kinemati

theory is usually given by the Laue function

Lx5Usin~Nxka!

sin~ka!
U. ~15!

The line shape given by Eq.~15! is plotted in Fig. 3 as a thin
solid line. The positions of the zero points and peaks cal
lated from Eqs.~13! and ~15! agree quite well, but the am
plitudes of the diffraction peaks do not agree. The variat
of the peak values will be discussed in Sec. VII.

According to Eq.~15!, the main peaks occur at sin(ka)
50. This is equivalent to the Bragg condition, Eq.~14!. The
first main peak is located at

FIG. 3. Comparison of the numerically calculated amplitude
x-ray diffraction from a perfect crystal withNx511 andNy5Nz

541 with the Laue fucntion@Eq. ~15!# andA0 @Eq. ~32!#.
1-3
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k15
p

a
. ~16!

The zero points nearest tok1 are located at

k5k16Dk, ~17!

where

Dk5
p

Nxa
. ~18!

The integrated intensity of the diffraction peak aroundk
5k1 is defined by

I 5E
k12Dk

k11Dk

uA~k!u2dk. ~19!

We expect that the value ofI depends on the position of th
observation point.

The integrated diffraction intensity of a model crystal
calculated at various observation points within a plane p
allel to theyz plane, using Eqs.~2!, ~13!, and~19!. We call
the set of the integrated diffraction intensity as the x-r
topograph hereafter. As shown in Fig. 1, the center of
x-ray topograph corresponding to the center of the crysta
located atP05(x0 ,y0 ,z0). The line OP0 lies on thexy
plane as well as the incident x ray and makes an angleu
with the negative direction of they axis. In the case of the
normal incidence, we havey05z050, andx0 becomes the
distance from the center of the crystal toP0.

Figure 4 shows x-ray topographs of a perfect crystal w
Nx511, Ny581, andNz581. The observation points in Fig
4 are taken along a line parallel to they axis given by

p5~x0 ,y,0!. ~20!

The triangles in Fig. 4 represent the x-ray topograph a
distance ofx0520, and the diamonds represent the x-r
topograph at a distance ofx05100. In both cases the x-ra
topographs are symmetrical with respect toy50.

In the x-ray topograph atx0520, the diffraction intensity
is almost constant for225,y,25, oscillates several time

FIG. 4. X-ray topographs of a perfect crystal withNx511 and
Ny5Nz581 at two distancesx0520 and 100. The solid line rep
resents the Fresnel diffraction from a knife edge atx05100.
14411
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with increasingy, reaches a maximum atym535.0, and then
decreases monotonically to zero. The oscillation is relate
the edge of the crystal, whose position is defined by

ye5
Nya

2
~21!

from Eq.~4!. For the crystal in Fig. 4 we haveye540.5. The
edge width of the crystal in the x-ray topograph is charac
ized by

Dy5ye2ym . ~22!

For the x-ray topograph atx0520 we haveDy55.5. The
x-ray topograph atx05100 has a wider oscillating regio
and a longer period of oscillation than that atx0520. Its
maximum occurs atym528.5 and we haveDy512.0.

Calculations for various values ofNx , Ny , andNz indi-
cate thatDy depends onx0 but not on the size of the crysta
When Ny is varied, for example, the oscillating part of th
x-ray topograph is shifted along withye so thatDy is kept
constant. Figure 5 shows the relation betweenDy andx0.

V. X-RAY DIFFRACTION FROM DISLOCATED
CRYSTALS

In this section, we calculate x-ray topographs of the d
located crystals. We restrict ourselves to the case of nor
incidence,u590°. The size of the crystals isNx511, Ny
581, andNz581, unless specified otherwise.

Figure 6 shows the x-ray topograph of a dislocated cry
with a screw dislocationl ix, bix which lies along thex axis
~No. 1 in Table I!. The diffraction intensity has been calcu
lated in two directions parallel to they andz axes centering
at P05(20,0,0), using Eqs.~6!, ~13!, and~19!. As the direc-
tion of the incident x rays is antiparallel to thex axis, the
projection of the dislocation on the topograph is a point
y50 andz50. There is a profound dip at the center of th
topograph in Fig. 6 accompanied by two peaks on both si
of the dip. The positions of the peaks are26.0 and16.0. As
the feature is the same for bothy andz directions, the dip is
expected to be circular in shape with a radius ofr 56.0 on
the two-dimensional x-ray topograph. The diffraction inte
sity at the center of the dip is zero. The diffraction intens

FIG. 5. The widths of the crystal edgeDy and the dislocation
image on the x-ray topographsWd . The solid line represents th
radius of the first Fresnel zoner 1.
1-4
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for y,220 andy.20 is the same as that of the perfe
crystal, including the oscillation of the intensity at the ed
of the crystal. If the direction of the Burgers vector of th
screw dislocation is opposite tox ( l ix, bi2x), we get a
similar x-ray topograph. Therefore the image of the scr
dislocationsl ix, bix and l ix, bi2x on the x-ray topograph
is localized around the position of the dislocation, and
effect of the screw dislocation is to reduce the diffracti
intensity down to zero.

Figure 7 shows the x-ray topograph of a dislocated cry
with an edge dislocationl ix, biy. The projected position o
the dislocation on the topograph is aty50 and z50, but
except for a small dip atz526 and a small peak atz56,
the topograph is almost the same as that of the perfect cr
and shows no clear sign of the dislocation. We get sim
results for dislocated crystals with an edge dislocationl ix,
bi2y, with an edge dislocationl ix, biz, and with an edge
dislocationl ix, bi2z.

The x-ray topographs of dislocated crystals with a scr
dislocation l iy, biy, with a screw dislocationl iy, bi2y,
with a screw dislocationl iz, biz, and with a screw disloca
tion l iz, bi2z are the same as that of the perfect crystal a
show no sign of the dislocation at all.

Figure 8 shows the x-ray topograph of a dislocated cry
with an edge dislocationl iy, bix. The projection of the

FIG. 6. X-ray topographs of a crystal with a screw dislocati
l ix, bix at a distance ofx0520 in y andz directions. The full width
of the dislocation image is indicated by 2Wd .

FIG. 7. X-ray topographs of a crystal with an edge dislocat
l ix, biy at a distance ofx0520 in they andz directions.
14411
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dislocation on the topograph is a line along they axis. The
topograph along thez axis shows a dip atz50 and two
peaks atz525.5 and 5.5. The topograph along they axis,
on the other hand, has a small but constant value for220
,y,20 which coincides with the dip value of the topogra
along thez axis. Hence the image of the dislocation on t
two-dimensional x-ray topograph is a trench along they axis
which is parallel to the dislocation direction. The depth
the trench is 46% of the perfect-crystal value. If the directi
of the Burgers vector is opposite tox ( l iy, bi2x), we get a
similar x-ray topograph.

We get similar dislocation image in the topographs
crystals with an edge dislocationl iz, bix and with an edge
dislocation l iz, bi2x. The only difference lies in that the
dislocation image appears along thez axis.

Figure 9~a! shows the x-ray topograph of a dislocate
crystal with an edge dislocationl iy, biz. The projection of
the dislocation on the topograph is a line along they axis.
The image of the dislocation is a trench along they axis
similar to the case ofl iy, bix. If the direction of the Burgers
vector is opposite toz ( l iy, bi2z), however, we get a dif-
ferent image of the dislocation as shown in Fig. 9~b!. The
topograph along thez axis shows a peak atz50 accompa-
nied by two dips atz525 and 4.5. The image of the dislo
cation is a ridge along they axis in this case. The depth o
the trench in Fig. 9~a! is 61% of the perfect-crystal value
while the height of the ridge in Fig. 9~b! is 146% of the
perfect-crystal value.

We get similar dislocation image in the topographs fo
pair of crystals with an edge dislocationl iz, biy and with an
edge dislocationsl iz, bi2y. The only difference lies in tha
the dislocation image appears along thez axis.

The results of calculations for the dislocated crystals
summarized in Table I.

VI. X-RAY TOPOGRAPHS OF SOLID HELIUM

The x-ray topographs of solid helium have been tak
using the synchrotron radiation~SR! x-ray beam at the Pho
ton Factory of the National Laboratory of High Energ
Physics.11 The geometry of the SR x-ray topography for so
helium is shown in Fig. 10. As it is a transmission geome
and the window behind the sample chamber containing

FIG. 8. X-ray topographs of a crystal with an edge dislocat
l iy, bix at a distance ofx0520 in they andz directions.
1-5
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helium crystal has an aperture of approximately620°, the
angle of incidence is limited touB<10°. The distance from
the center of the sample chamber to the nuclear plate, w
takes the topograph, isx0580 mm. The hcp4He crystal
grown at a constant pressure of 4.0 MPa has a molar vol
of 20.5 cm3/mol. The lattice constants area50.360 nm and
c50.588 nm. The spacings,d, of a few diffraction planes of
the hcp 4He crystal are listed in Table II.16 The most fre-
quently observed diffraction spot is of 110̄1 type, because i
has a relatively large spacing and the biggest multiplic
~i.e., the number of equivalent spots! of 12. From the Bragg

FIG. 9. X-ray topographs of~a! a crystal with an edge disloca
tion l iy, biz and ~b! a crystal with an edge dislocationl iy, bi
2z at a distance ofx0520 in they andz directions.

FIG. 10. The geometry of synchrotron-radiation x-ray topog
phy for solild helium. Topographs are taken on the nuclear plat
14411
ch
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condition withuB510° andd50.275 nm, the typical wave
length of diffracted x rays is determined to be

l50.096 nm. ~23!

Figure 11 shows three x-ray topographs of an hcp4He
crystal taken simultaneously on a nuclear plate. The Mi
indices are assigned to be 011̄1̄, 01̄10, and 01̄11. The over-
all parallelogram shape of the topographs assures that
observed region of the sample is a single crystal. White
black bands represent the subboundaries in the crysta
remarkable feature is that the contrast and width of the s
boundaries appear differently in each topograph. Th
widths range between 30 and 200mm on the topographs. The
subboundariesP, Q, and R are planes perpendicular to th
basal plane of the hcp4He crystal and approximately makin
an angle of 60° with each other.11 The regionS is bright in
all the topographs.

-

TABLE II. Diffraction spots from the hcp helium crystal.

Miller index Lattice spacing~nm! Multiplicity

11̄00 0.312 6

0002 0.294 2

11̄01 0.275 12

11̄02 0.214 12

112̄0 0.180 6

11̄03 0.166 12

FIG. 11. X-ray topographs of an hcp4He crystal. ~a! 01̄11̄

diffraction, uB59.8°, ~b! 01̄10 diffraction, uB510.1°, and ~c!

01̄11 diffraction, uB58.0°. P, Q, and R indicate subboundaries
andS indicates a region of bright contrast.
1-6
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An enlarged x-ray topograph of Fig. 11~a! is shown in
Fig. 12. Apart from the subboundaries there are uniform
dark regionsD and spotty bright regionsL andS.

VII. DISCUSSION

The origin of the oscillation of intensity near the edge
the crystal is the same as the Fresnel diffraction of light w
from a knife edge.17 Let us calculate the Fresnel diffractio
of monochromatic (l52) and parallel light wave incidnt on
a knife edge located aty5ye . The incident direction is par
allel to thex axis. The intensity of light atp5(x0 ,y,0) is
given by

I F5
1

2 F H US y2ye

Ax0
D 2

1

2J 2

1H VS y2ye

Ax0
D 2

1

2J 2G , ~24!

whereU(x) andV(x) are the Fresnel integrals defined by

U~x!5E
0

x

cos2S pu2

2 Ddu, ~25a!

V~x!5E
0

x

sin2S pu2

2 Ddu. ~25b!

Equation~24! is calculated forx05100 andye540.5, mul-
tiplied by a factor ofNx

25121, and plotted in Fig. 4 as
solid line, which agrees with the x-ray topograph atx0
5100 very well except for the center region (y,10).

We next introduce the radius of the first Fresnel zone,r 1.
In Fig. 13, the pointP is on thex axis atOP5x0 and the
point A is on they axis withOA5r 1, wherer 1 is defined to
be the radius of the first Fresnel zone when

AP2OP5
l

2
. ~26!

The distanceAP is given by

AP5AOP21OA25Ax0
21r 1

2'x01
r 1

2

2x0
. ~27!

The last equality is valid whenx0@r 1. From Eqs.~26! and
~27! we obtain

FIG. 12. Enlarged x-ray topograph of 011̄1̄ diffraction.
14411
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Equation~26! means that the spherical x-ray waves whi
emerge from the points within the ring of radiusr 1 given by
Eq. ~28! are in phase at the observation pointP with the
phase shift being less thanp. On the other hand, the x-ra
waves from outside the first Fresnel zone have a phase
bigger thanp.

The solid line in Fig. 5 representsr 1. By comparingDy
and r 1, the edge width in the x-ray topograph is approx
mately given by

Dy50.86r 1 . ~29!

We regardr 1 as a representative of the resolution of the x-r
topograph, because it is proportional to the width of the cr
tal edge on the x-ray topograph and it is an increasing fu
tion of l andx0 via Eq. ~28!.

In the following we call the phenomena related to t
radius of the first Fresnel zone as the Fresnel model.
distance between the crystal and observation point and
wavelength of x rays play an important role in the Fres
model.

The number of atoms in the first Fresnel zone of t
model crystal is given by

N15
Nxpr 1

2

a2
. ~30!

This is a measure of how many atoms are involved in
diffraction intensity at the observation point because
spherical waves from inside the first Fresnel zone interf
constructively. By replacingup2r j u in Eq. ~13! with x0 and
restricting the summation to theN1 atoms in the first Fresne
zone, we obtain the contribution of theN1 atoms to the dif-
fraction amplitude to be

uA1u5
2lNx

a2
. ~31!

The spherical waves from inside the second Fresnel z
interfere destructively, those of the third Fresnel zone c
structively, and so on. Because the contributions from

FIG. 13. The definition of the radius of the first Fresnel zoner 1

and that of the second Fresnel zoner 2.
1-7
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second and higher-order Fresnel zones cancel with e
other, the net effect is that the diffraction amplitude is
duced approximately to a half value ofA1,

uA0u5
uA1u

2
5

lNx

a2
. ~32!

Equation~32! is shown as a dotted line in Fig. 3. Note th
Eq. ~32! does not depend on the distancex0. The reason is
that the amplitude of a spherical wave from an atom is
creased as 1/x0 but the number of atoms in the first Fresn
zone is increased proportional tox0 because of Eqs.~28! and
~30! and both effects cancel each other.

The width of a dislocation line image is increased as
distance from the crystal to the observation point is increa
according to Eq.~28!. Assuming the dislocation width to b
2r 1 and the width of the crystal edge to ber 1, the distance
xm at which the size of the crystal,L, is equal to 4r 1 is given
by

xm5
~Nya!2

16l
5

L2

16l
, ~33!

where

L5Nya ~34!

for the model crystal.
The dislocation image can be spacially resolved on

x-ray topograph when

x0!xm . ~35!

In the case ofa51, Ny581, andl52, we havexm5205.
X-ray topographs for 18 dislocated crystals have been

culated as listed in Table I, out of which 10 cases show
dislocation image and 8 cases show no dislocation ima
There is a common feature in the cases of no disloca
image that the displacement in thex direction,u, is zero. On
the other hand, in those cases in which the dislocation im
appears, the displacementu is not zero. In the topograph
studied in Sec. V, the diffraction planes are~100! and the
diffraction vector isg5@100#. Hence,u is the component of
the displacement which is parallel to the diffraction vect
We can generalize the condition that the dislocation imag
observed to be

g•uÞ0, ~36!

whereu is the displacement vector.
Out of 10 cases in which the dislocation image appe

the diffraction intensity decreases in 8 cases and increas
2 cases. As a consequence, the diffraction intensity is
pected to be lower on average in the region of the cry
with high dislocation density if different types of dislocation
are equally populated.

The two cases with increasing diffraction intensity, No
12 and 16 in Table I, are characterized as follows:~1! the
crystal involves an edge dislocation,~2! the slip plane~i.e.,
the plane which contains the Burgers vector and the dislo
tion line! is perpendicular to the diffraction vector, and~3!
14411
ch
-

-
l

e
d

e

l-
a
e.
n

ge

.
is

s,
in

x-
al

.

a-

when the sign of the Burgers vector is changed, the imag
the dislocation becomes from an ridge to an trench.

Let us consider the case of the crystal with an edge
location l iz, bi2y ~No. 16 in Table I! in more detail based
on the Fresnel model. Both sides of the~100! plane of the
crystal projected on thexy plane, ABOCD, are bent up-
wards atO as shown in Fig. 14~a! with the distanceOP
being the same as for the perfect crystal. The first Fres
zone corresponding to the pointP on the topograph isBOC,
at the center of which the dislocation is present. The ph
difference between the diffracted x-ray waves from the
oms in the regionBOC is decreased atP on the topograph
compared with the perfect crystal because the distancesBP
and CP are shorter than the corresponding distances of
perfect crystal. As a result the amplitude of the diffracted
rays atP on the topograph is increased. PointQ on the to-
pograph is distant fromP by r 1. The first Fresnel zone cor
responding toQ is ABO. As the lineABO is almost straight,
the amplitude of the diffracted x rays atQ on the topograph
is essentially the same as that for the perfect crystal.
situation is the same for pointR. Hence we expect that th
diffraction intensity atP is stronger than that atQ or R and
that a positive image of the dislocation appears aroundP,
whose width is approximately given by 2r 1.

In the crystal with an edge dislocation withl iz, biy ~No.
15 in Table I!, on the other hand, both sides of the~100!
plane,ABOCD, are bent downwards atO as shown in Fig.
14~b! with the distanceOP being the same as for the perfe
crystal. Then we expect that the diffraction intensity atP is
weaker than that atQ or R and that a negative image of th
dislocation appears aroundP.

It is evident from the discussion above that the width
the dislocation image in the Fresnel model is closely rela
to r 1. We define the half width of the dislocation image,Wd ,
to be the distance from the minimum to the peak of the x-
topograph as indicated in Fig. 6. Figure 5 showsWd for a
crystal consisting ofNx511, Ny5161, andNz5161 atoms
with a screw dislocationbix, l ix as a function ofx0. The
width of the image of the crystal edge andr 1 are also shown
in the figure. There is a good correlation betweenWd andr 1
as expected.

FIG. 14. Dislocation image on the x-ray topograph based on
Fresnel model.~100! planes around a dislocation line are shown
crystals with~a! an edge dislocationl iz, bi2y and ~b! an edge
dislocationl iz, biy.
1-8
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The width of the dislocation image depends somewha
the type of the dislocation as shown in Table I.

A subboundary may appear as a dark or bright band
the x-ray topograph. Let us consider a subboundary form
by an array of edge dislocationsl iz, biy which are equally
spaced in thex direction as shown in Fig. 15. The~100!
plane in one of the subgrains is inclined with respect to
~100! plane in the other subgrain. The angle between
~100! planes of the subgrains is given by

f5
b

D
, ~37!

whereD is the spacing between the dislocations. The in
dent x rays are antiparallel to thex axis. The Bragg condition
for one subgrain is different from that of the other subgra
so that the direction of the topograph of one subgrain
shifted from that of the other subgrain by an angle of 2f and
the subboundary becomes visible on the topograph.

Consequently, the subboundary appears as a band
lower diffraction intensity parallel to thez direction on the
topograph similar to the image of the edge dislocationl iz,
biy. The width of the band is given by

W52x0tanf12Dy, ~38!

wherex0 is the distanceOP andDy is given by Eq.~22!.
On the other hand, a subboundary formed by an arrra

edge dislocationsl iz, bi2y appears as a band with high
diffraction intensity similar to the image of the edge disloc
tion l iz, bi2y. In this sense, an individual dislocation and
subboundary cannot be distinguished. However, the widt
a subboundary can be much larger than that of a single
location.

Next we consider the x-ray topographs of solid heliu
There are differences in the experimental and calculatio
conditions, such as the size of the crystal, the distancex0, the
Bragg angle, and the crystal structure, which will be d
cussed below.

The size of the crystal and distance from the crystal to
observation point are different between the experiment
calculation. However, the essential condition that a dislo
tion image can be observed in the x-ray topograph is gi

FIG. 15. A crystal with a subboundary consisting of an array
edge dislocationsl iz, biy and a corresponding x-ray topograph.
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by Eq.~35!. Namely, the distance in the calculation is limite
by the size of the model crystal. On the other hand, when
assume L51 mm ~typical size of a subgrain! and l
50.1 nm for the experiment, we getxm52.53103 m which
is much larger thanx0580 mm. The full width of a disloca-
tion image in the x-ray topographs of solid helium is es
mated to be

2Wd'2r 155.5 mm ~39!

by puttingl50.1 nm andx0580 mm in Eq.~28!.
The calculations in Sec. V are performed in the back

flection geometry (uB590°) because of the simplicity o
calculation, while the experiment is done in the transmiss
geometry. Figure 16 shows the x-ray topographs of a dis
cated crystal with an screw dislocationl ix, bix, at different
angles of incidence. AsuB is decreased from 90° to 30°, th
width of the dislocation image along they axis is increased
and the minimum amplitute aty50 is increased, while the
width of the dislocation image along thez direction is not
changed. The variations are interpreted as the projectio
the dislocation line on theyz plane is changed from a poin
for uB590° to a line elongated in they direction for smaller
uB . Thus the dislocation image can be observed in the tra
mission topographs as well as in the reflection topogra
with a slight change in contrast.

The crystal structure affects both the types of dislocatio
which are formed in the crystal and the types of diffracti
spots which can be observed in the x-ray diffraction expe
ments. The experimentally observed diffraction spots fr

f

FIG. 16. Dislocation image of a screw dislocationl ix, bix at
different angles of incidence.
1-9
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the hcp 4He crystals are of 0002, 110̄0, 11̄01, and 11̄02
types. Dislocations with Burgers vectorb5a are more easily
formed than dislocations withb5c in the hcp 4He crystal,
because of the lower formation energy. Basal dislocati
havingb5a and lying in the basal plane may split into pa
tial dislocations and form a stacking fault between the
However, it can be seen without going into such details w
the dislocation image is observed in the x-ray topogra
within the kinematical theory:~1! The amplitudeA(k) at the
observation pointP in the x-ray topograph is approximate
given by a sum of the amplitudes of diffracted x rays fro
the atoms within the first Fresnel zone.~2! The atoms around
a dislocation core is displaced from the atomic positions
the perfect crystal as much as the lattice spacing. As a c
sequence, the phase of the diffracted x rays is shifted u
2p and the amplitudeA(k) at the observation point may b
considerably changed from the value of the perfect cryst

Now the image of subboundaries in Fig. 11 is explain
based on the results of the calculations. The subbounda
P, Q, andR are perpendicular to the basal plane of the h
4He crystal and consist of basal dislocations.11 In particular,
the subboundaryP consists of an array of basal dislocatio
with an averaged Burgers vector

b5
3b11b2

4
~40!

and l making an angle of 14° with@011̄0# direction, where
b15(a/3)@21̄1̄0# andb252(a/3)@ 1̄21̄0#.

We consider a basal edge dislocation withl i@011̄0# and
b5b1 here. When the diffraction vector is@01̄10# and the
dislocation isl i@011̄0# andb5b1, case No. 3 in Table I is
applied and no dislocation image is expected. When the
fraction vector is@01̄11̄# or @01̄11#, the diffraction vectors
can be decomposed to

@01̄11̄#5@01̄10#1@0001̄#, ~41a!

@01̄11#5@01̄10#1@0001#. ~41b!

The @01̄10# component gives no image of the dislocati
l i@011̄0# and b5b1. The @0001̄# and @0001# components,
on the other hand, correspond to Nos. 11 and 12 in Tab
giving a dislocation image of trench and ridge, respective
Hence, the white and black contrast of the subboundarie
Figs. 11~a! and 11~c! is caused by the@0001# component of
the diffraction. The thin white image of the subboundary
Fig. 11~b! is probably due to theb2 component of the dislo-
cations.

Apart from the subboundaries there are uniformly da
regionsD and spotty bright regionsL andS. The former are
the regions of low dislocation density and the latter are
regions with high dislocation density, because the diffract
intensity is decreased in a region with high dislocation d
sity as we have discussed in this section. The bright cont
in region S is caused by the dislocation image from t

@01̄10# component, because it is commonly observed
Figs. 11~a!, 11~b!, and 11~c!.
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We compare finally the electron diffraction described
the columnar approximation14 with the x-ray diffraction
based on the Fresnel model.

The diffraction amplitude in the columnar approximatio
is given by

A5F(
j

exp@2p i ~g1s!•~r j1uj !#, ~42!

whereF is the atomic scattering factor for the unit cell,g a
reciprocal lattice vector,s a small vector representing th
difference betweeng and the diffraction vectorK /2p,

K52p i ~g1s!, ~43!

r j the position of unit cells in the perfect crystal, anduj the
displacement of unit cells fromr j due to the dislocation. The
summation is taken over a column in the direction of diffra
tion with the width of one unit cell. Using

g•r j5n, ~44!

wheren is an integer, we obtain

A5F(
j

exp@2p i ~s•r j1g•uj !#. ~45!

Here the higher-order terms•uj is neglected. Dislocations
can be observed wheng•uj is not zero, which is equivalen
to Eq. ~36!.

There are differences in the experimental conditions
electron-beam and x-ray diffraction:~1! The wavelength of
the electron beam is 3.731023 nm ~at 100 kV!, while that of
the x rays is typically 0.1 nm.~2! The electron beam can b
focused on the screen, while no focusing lenses are avail
for x rays. ~3! The electron beam is monochromatic, whi
the x-ray beam of synchrotron radiation has a broad sp
trum.

One of the consequenses is a small value of the radiu
the first Fresnel zoner 1 for the elcetron beam. As the elec
tron beam can be focused, the distance between the sa
and observation point in the electron diffraction is effective
the thickness of the sample, which is about 100 nm. T
radius of the first Fresnel zone for electron is estimated to
r 150.6 nm, by substitutingl53.731023 nm and x0
5100 nm into Eq.~28!. Because this value ofr 1 is compa-
rable to the lattice constant, the columnar approximation
valid for electron diffraction. The radius of the first Fresn
zone in the x-ray topography of solid helium, on the oth
hand, is 2.77mm, which is 10 000 times as big as the lattic
constant. Hence the columnar approximation is not valid
x-ray diffraction and the summation in Eq.~13! should be
taken not merely on a column but at least over a reg
which includes the first Fresnel zone.

In the electron diffraction, the columnar approximatio
results in stronger contrast on one side of the dislocation
than in the perfect region of the crystal. The position of t
strong contrast is approximately given by the condition

s•r j1g•uj50, ~46!
1-10
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becausesÞ0 for the perfect region of the crystal and th
strain field around the dislocation line leads tog•uj,0 on
one side andg•uj.0 on the other side of the dislocatio
line. In the x-ray diffraction with broad spectrum, on th
other hand, there is always a wavelength in the spectrum
which s50. Hence the condition, Eq.~46!, does not cause
any change in contrast. Rather the curvature of the lat
planes in the first Fresnel zone changes the phase of
fracted x rays from different atoms, and the contrast is
creased only when the phase difference between them is
creased.

As discussed already there are only two cases of
creased phase difference. In other cases the phase diffe
is increased and the contrast around the dislocation is we
than the perfect crystal.

VIII. CONCLUSION

X-ray topographs of perfect crystals and dislocated cr
tals have been calculated within the kinematical theory
turned out from the calculations for perfect crystals that
calculation of x-ray topographs was closely related to
Fresnel diffraction in the theory of optics. The calculat
edge profile of the crystal was the same as the knife e
profile of the Fresnel diffraction and its width was propo
tional to the radius of the first Fresnel zone.

The dislocation image on the x-ray topograph was fou
to be a circle, a ridge, or a trench depending on the type
dislocation and diffraction condition. Its radius or width w
comparable to the radius of the first Fresnel zone. A nec
sary condition for a dislocation image to appear on the x-
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