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Complete mapping of the anisotropic free energy of the crystal-melt interface in Al
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We have calculated the complete anisotropic crystal-melt interfacial free energy of aluminum, using mo-

lecular dynamics simulations of the interfaces in equilibrium. The interfacial free energy,g(n̂), can be ex-
pressed in terms of two anisotropic parameters,e51.2% andd521.2%, as well as an average free energy of
g05149 mJ/m2 in reasonable agreement with current experimental results. The expansion of the free energy in
terms of these parameters is consistent with six different orientations, including the~111! interfacial plane,
which is found to be rough despite its large stiffness.
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I. INTRODUCTION

The study of solidification microstructure has a long h
tory, with interest being driven both by the importance of t
microstructure in determining material properties, and by
fundamental interest in the dynamics and pattern forma
that occurs.1–3 Despite many years of effort, fundament
understanding of the dynamics of microstructural devel
ment during solidification is still lacking. This is true no
only for alloys, but even for the simpler case of pure ma
rials. Without understanding the basic principles that con
the dynamics, controlling solidification microstructure r
mains more of an art than a science.

In the last few years, the importance of anisotropy h
been recognized as a necessary factor in determining
form and stability of the interfacial dynamics.4–6 Both the
interfacial free energy and mobilities have importa
anisotropies that must be determined in order to predict
dynamics. Even a small anisotropy in the free energy on
order of 1% is important, as anisotropy is required for
stable steady-state solution for tip growth in three dim
sions. Also, the dynamics of fluctuations, even at very sm
length scales, play an important role in the ultimate dendr
microstructure.7 While the importance of this may be unde
stood using phase-field and related continuum models, th
approaches neither allow us to evaluate the anisotropies
to explore the nature of the fluctuations at the atomistic le

The interfacial free energies for model systems have b
calculated for model systems for some time, using a num
of techniques: an artificial ‘‘cleaving’’ approach, combine
with energy integration,8,9 density functional theory,10–15

and, most recently, examining the equilibrium fluctuati
spectrum of the interface.16 In the current work, we utilize
this last method. We have performed large-scale molec
dynamic ~MD! simulations of the solid-liquid interfaces o
Al using the embedded-atom method~EAM! with the poten-
tial of Ercolessi and Adams.17 The solid-liquid interfaces are
rough, and the magnitude of the fluctuations of the interf
depends upon the stiffness of the interface. By examin
these fluctuations for various interfaces, we have obtai
the interfacial stiffness, which was then used to calculate
interfacial free energy. We describe this approach in the
lowing section. We then describe our simulations in mo
detail, and present the results from the simulations. Th
0163-1829/2002/66~14!/144104~7!/$20.00 66 1441
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results are discussed in the final section.

II. THEORY AND APPROACH

The approach that we are using to find the interfacial f
energy is based upon the fact that for metallic systems, m
solid-liquid interfaces of interest will be rough, rather tha
faceted. For a macroscopically flat interface, we may de
the deviation of the height from the average by h(x), where
x denotes the~two-dimensional! position of the interface. In
this work, as we describe below, we treat a discrete desc
tion of the heights,hi j , defined on a grid over the cros
section of the system, with grid points separated by distan
Dx andDy . We define the Fourier transform ofhi j by

hq5
DxDy

AA
(
i j

hi j exp~ iq•r i j !, ~1!

wherer i j 5 iDxx̂1 j Dyŷ, andA is the cross-sectional area o
the system. With this definition, the height-height correlati
function becomes

^uhq
2u&5

1

4
kBTF gx

Dx
2
sin2S qxDx

2 D1
gy

Dy
2
sin2S qyDy

2 D G21

, ~2!

wheregx andgy are the local stiffness coefficients governin
fluctuations in the height in thex̂ and ŷ, directions, respec-
tively. In the continuum limit ofqy50, qxDx!1, this re-
duces to

^uhq
2u&5

kBT

g̃q2
, ~3!

whereg̃(n̂) is the interfacial stiffness for the interface wit
normal n̂, andg(n̂) is the interfacial free energy as a fun
tion of orientation~see, e.g., Ref. 7!. These results assum
that the height changes slowly as a function of position alo
the interface. Under these conditions, if the fluctuations
the interface are allowed only about a single angleu from the
nominal orientationn̂, then we may write

g̃~u!5g~u!1g9~u!, ~4!
©2002 The American Physical Society04-1
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JAMES R. MORRIS PHYSICAL REVIEW B66, 144104 ~2002!
where the primes indicate differentiation with respect tou.
From this relation, it can be readily shown that the equil
rium fluctuations in the height grow as a function of syste
size, indicating that these fluctuations are not small de
tions from the average height. We note that Eq.~3! differs
from that given in Ref. 16 by a factor of the cross-sectio
area, presumably due to a different convention for the F
rier transform.

Equation ~1! also provides a means for calculating t
interfacial stiffness. By simulating the system in equilibriu
we can calculate this correlation function, and thereby de
the interfacial stiffness. Moreover, the stiffness is sign
cantly more anisotropic than the free energy, and therefor
anisotropy is more easily calculated from simulations. Fo
fourfold symmetry~i.e., rotations about the@100# axis! the
simplest form for the interfacial free energy is

g~u!5g0~11e4cos 4u!. ~5!

In this case, the stiffness is

g̃~u!5g0~1215e4cos 4u!. ~6!

This shows that the anisotropy in the interfacial stiffness
larger than that of the free energy by a factor of 15. Wh
simulations probably could not directly resolve a 1% ani
tropy, this larger anisotropy in the stiffness is evident in t
simulations, as we demonstrate in this paper.

The full surfaceg(n̂) can not be specified in the form o
Eq. ~5!, even for weak anisotropy, as it only describes flu
tuations about a single angle around a given orientation.
thermore, while such an expansion may be valid for the
terfacial free energy, the interfacial stiffnessg̃(n̂) is
considerably more anisotropic, and the expansion in Eq.~4!
may not be sufficient as higher-order terms in the anisotr
may be required. These problems have been addre
recently16 by using ‘‘Kubic harmonics’’18 to characterize the
interfacial free energy in terms of two anisotropy paramete
The leading terms of the Kubic expansion of the free ene
are

g~ n̂!5g0F123e14e(
i

ni
41d(

i
ni

6230dn1
2n2

2n3
2G ,

~7!

where we have written the interface normal asn̂
5(n1 ,n2 ,n3). For sufficiently small anisotropy, this param
etrization of the interfacial free energy in terms ofg0 , e, and
d completely determines the anisotropic free energy for
orientations.

In order to utilize Eq.~3!, we must first define a heigh
function derived from atomic configurations. We proceed
defining a local order parameter for each atom, characte
ing its environment. For this, we choose a set ofNq wave
vectors$qi% such that

exp~ iq•r !51 ~8!

for any vectorr connecting near neighbors in a perfect f
lattice. We omit one of each pair of antiparallel wave vecto
thus,Nq56 . We then define the local order parameter a
14410
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c5U 1

Nq

1

Z (
r

(
q

exp~ iq•r !U2

, ~9!

where the sum onr runs over each ofZ neighbors found
within a distancer c of the atom, chosen to be between t
first- and second-neighbor shells in the perfect lattice. T
order parameter will equal one for a perfect fcc lattice, a
less than one otherwise.

While Eq. ~9! is reasonably good at producing an ord
parameter that is small for the liquid phase and close to
for the solid phase, we have found a couple of methods
improve how well we can discriminate between these pha
First of all, instantaneous atomic positions include signific
amounts of fast atomic vibrations that reduce the order of
solid phase. To overcome this, we average the atomic p
tions over short periods of time (;50 fs), producing signifi-
cantly more order in the solid phase. Second, we calculat
averageorder parameterc̄ for each atom, by averaging ove
the neighboring values:

c̄ i5
1

Z11 S c i1(
j

c j D , ~10!

wherej runs over allZ neighbors of atomi. This helps elimi-
nate isolated atoms~or small clusters of atoms! where the
local order parameter deviates significantly from its s
roundings.

In Fig. 1, we show a snapshot of the system with tw
~111! interfaces. We have colored the atoms according
their order parameter, as calculated using Eq.~10!. As is

FIG. 1. A snapshot of the system with two~111! interfaces.
Atoms have been shaded according to the order parameter de
in Eq. ~10!, with light atoms having a large value and dark atom
having small values. The order parameter clearly separates th
dered solid region from the disordered, liquid region. The axes

top indicate the crystallographic directions. In the@11̄0# direction
~normal to the figure!, the periodic repeat distance is significant
shorter than in the other directions.
4-2
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COMPLETE MAPPING OF THE ANISOTROPIC FREE . . . PHYSICAL REVIEW B 66, 144104 ~2002!
clear in the figure, we can discriminate between solid a
liquid atoms quite well. To make this more quantitative, F

2 shows the values ofc̄ for each atom in a system wit
coexisting solid and liquid phases, as a function of dista
along an axis oriented perpendicular to the interface. As s

in the figure, the liquid region has order parameters withc̄

,0.05, while the solid region has order parameters withc̄

.0.2, with an average value of^c̄&'0.4. The two regions
are clearly identifiable, and there are very few atoms aw

from the interface that have values satisfying 0.05,c̄
,0.2.

This gives a direct method of calculating the avera
height around a given region: we separate out those at

that have a value ofc̄ that is distinct from either the solid o
liquid ranges, and define those as ‘‘interface’’ atoms. T
positions of those atoms are then used to define the heighhi j

of the interface at discrete positions, separated by dista

Dx and Dy in the x̂ and ŷ directions. We have chose
Dx ,Dy'a0 in order to get good spatial resolution while al
ensuring that there are sufficient interfacial atoms to de
the height function. Clearly, attempting to define the hei
function at a resolution finer than typical neighbor distan
is artificial. We demonstrate this approach using the confi
ration shown in Fig. 1. In Fig. 3, the atoms satisfying 0.

,c̄,0.1 have been plotted as open circles. These at
have been separated into bins along thex axis ~along the

@112̄# axis!, and their positions averaged. The resulti
height functions for each interface have been plotted as d
lines. Clearly, we have been able to map out the interf
height accurately.

FIG. 2. The order parameter vs position for each atom in
instantaneous configuration of two~111! interfaces~shown in Fig.
1!, as a function of atomic position measured along the interf

normal. The center region, where the order parameterc̄ is small, is

the liquid region, while the regions wherec̄ is large correspond to

the crystal region. The atoms having 0.05&c̄&0.15 are along the
interface.
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An alternate approach to identifying the interface is
characterize each atom by its potential energy. The solid
gion is clearly then lower in energy than the liquid region.
practice, we found that there was significantly more variat
within one phase than with the above order parameter, e
with time averaging over short time periods. As a result
was more difficult to identify the interfacial height using th
approach.

III. SIMULATIONS AND INTERFACIAL
STIFFNESS CALCULATIONS

We have performed molecular dynamics simulations
ing the Adams and Ercolessi aluminum potential.17 This po-
tential has been widely used, and was developed by exp
itly fitting the energy and forces in liquid configurations.
has a melting temperature close to the actual melting t
perature ofTm5933 K; in our simulations, the average tem
perature was approximatelyTm5910 K.

We chose a simulation that is periodic in all direction
creating two solid-liquid interfaces. We chose our simu
tions to have a short repeat distance along either the@001#

direction~repeat distance of 4a0) or the@11̄0# direction~re-
peat distance of 2A2a0), and a long unit cell in the remain
ing direction. The geometries are summarized in Table I. T
choice of a quasi-two-dimensional geometry, shown for
~100! interface in Fig. 1, enhances fluctuations in the int
face, making the analysis easier. Furthermore, Eq.~3! only
applies in the long-wavelength limit~compared with inter-
atomic spacings!, and this geometry allows us to examin
this limit while minimizing the system size. We demonstra
that the results do not depend on the repeat distance th
ness at the end of this section.

For these geometries, we can express the stiffness f
Eq. ~4! in terms of the parameters of the Kubic harmon
expansion in Eq.~7!. For the interfaces with a short directio

n

e

FIG. 3. A demonstration of the calculation of the interfa
height. The open circles represent the atoms from Fig. 1 wh

order parameters satisfy 0.05,c̄,0.10. They are clearly localized
to the interface. The solid line shows the corresponding height fu
tion found using these atomic positions.
4-3
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TABLE I. Summary of interfaces simulated, including the short direction for the simulation, the number of atoms, and the perio
geometry~with thex direction taken to be the long direction in the interface, they direction to be normal to the interface, and thez direction
along the short direction!. We also provide the expression for the stiffness for each interface derived from Eq.~7!, and the interfacial stiffness
found from fitting the fluctuation spectrum according to Eq.~3!. In parentheses, the value of the stiffnesses calculated using Eq.~7! with our
values ofg0 , e, andd are given.

Interface Short direction Number of atoms System geometry (Å) Stiffness g̃ (mJ/m2)

~100! @001# 32 768 261.093138.91316.32 g0(1215e25d) 131 ~131!
~110! @001# 49 152 369.233148.34316.32 g0(1115e1

25
4 d) 172 ~165!

~210! @001# 40 960 291.943153.15316.32 g0(11
21
5 e1

11
5 d) 153 ~153!

~110! @11̄0# 24 576 129.613297.70311.49 g0(129e1
55
4 d) 110 ~108!

~111! @11̄0# 19 200 202.563148.27311.54 g0(119e2
85
9 d) 174 ~182!

~112! @11̄0# 19 200 143.293208.66311.61 g0(117e1
205
36 d) 151 ~151!
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of @001#, we take the angleu to be the angle between th
interface normal and the@100# direction. In this case, the
stiffness is

g̃~u!/g05123e212e~cos4u28 cos2u sin2u1sin4u!

25d~cos6u26 cos4u sin2u

26 sin4u cos2u1sin6u!. ~11!

For the geometries where the short direction is@11̄0#, the
angle is taken between the interface normal and the@110#
direction. The corresponding expression for the stiffness

g̃~u!/g05123e16e~12 cos2u sin2u2cos4u22 sin4u!

1
5

4
d~11 cos6u2120 cos4u sin2u

196 sin4u cos2u24 sin6u!. ~12!

The specific expression for the stiffness for each geometr
listed in Table I.

Our simulations extend for 23106 time steps beyond the
equilibration stage~500 000 time steps!, with each time step
being 0.53 fs. The system naturally evolves toward the e
librium melting temperature.19,20 In our simulations, we are
integrating Newton’s equations, and therefore conserve
total energy. If the temperature~calculated from the kinetic
energy! is above the melting temperature, then some of
solid region will melt. This process converts thermal ene
to potential energy, through the latent heat of melting.
lowering the thermal energy, the temperature drops towa
the melting temperature. Similarly, if the temperature is
low the melting temperature, the solid region grows, and
temperature rises towards the melting temperature. As i
cated earlier, the average equilibrium temperature in th
simulations was close to the real melting point of aluminu
As noted earlier, the average temperature in the simulat
was Tm5910 K, somewhat lower than the value ofTm
593965 K given in Ref. 17. This is due to the fact th
during the simulations, the pressure also equilibrates.
average pressure wasP522.5 kbar; the negative pressu
has the effect of lowering the melting temperature~by favor-
ing the less dense liquid phase!.
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The geometries and numbers of atoms for each interf
are given in Table I. During the simulation, we store t
atomic positions every 500 time steps, and use these con
rations for calculating the height-height correlation functio
For each atom, we calculate an order parameter as define
Eq. ~10!.

The results for the height-height correlation function a
shown in Fig. 4. Error bars indicate the root-mean-squ
fluctuations of the values. Included in Fig. 4 is a fit to t
form given in Eq.~3! for each of the different orientations
Each fit produces a value ofg̃(u), whereu is taken to be
around the ‘‘short’’ direction of the simulation. In Table I w
list the short direction, as well as the expression for the s
ness in terms of the Kubic harmonic expansion given in E
~7!. The values for the stiffnesses given in Table I, fou
from the fitting, are not extremely accurate; we estimate
rors on the order of 10%. As can be seen in this figure,
results are consistent with a 1/q2 dependence, except perha
at the smallest value ofq ~longest wavelength!. We believe
that this deviation for large wavelengths is due to the lo
equilibration and sampling time associated with the lon
wavelength modes. These are precisely the modes wh
fluctuations will extend over the longest times, and who
average values will take the longest time to converge. If
continue the simulations significantly longer, these d
should also agree with the trend. Even for these modes,
fits are generally within the error bars shown~which are
quite large for the smallest values ofq). At largerq, there is
a suppression of the fluctuations below the 1/q2 behavior,
which depends on the details of how the height function
calculated. This behavior only occurs at wavelengths
proaching that of the lattice constant, where the continu
description@which leads to Eq.~3!# breaks down.

The 1/q2 behavior demonstrates that all of the interfac
were indeed rough. This confirms expectations obtained fr
a visual inspection of instantaneous configurations such
those shown in Fig. 1. The interfaces are not confined t
single atomic layer, although local regions lying close to o
layer could often be observed. Such alignments were tr
sient, however, and are eventually destroyed by fluctuatio
The case shown in the figure is an extreme case: the~111!
interfaces lie along close-packed planes, and could be
pected to be faceted instead of rough. Our results given
4-4
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COMPLETE MAPPING OF THE ANISOTROPIC FREE . . . PHYSICAL REVIEW B 66, 144104 ~2002!
low confirm that the stiffness of this interface is the high
of all of the considered geometries. However, the 1/q2 be-
havior of this interface is clearly shown in Fig. 4.

In Table I, we give the expressions for the stiffnesses
each interface, derived from Eqs.~11! and ~12!. From these
expressions, plus the stiffnesses calculated from the fluc
tion spectrum, we found the parametersg0 , e, andd by least
squares optimization. This gives results ofg05149 mJ/m2,
e51.2%, andd521.2%. We estimate errors in these num
bers to be of order 5%. These numbers are in good ag
ment with grain boundary groove measurements21 that give a
solid Al, liquid Al-Cu interfacial free energy of 163
621 mJ/m2, and also with the expected low anisotropy
Al. The stiffnesses for all orientations calculated using th
parameters are given in parentheses in Table I; as ca
seen, the results are very consistent with the fits, with
deviation greater than 5% and usually significantly less. T
is smaller than our estimate of the accuracy of th
numbers.

In Fig. 5, we show the anisotropic stiffness and free
ergy as a function of orientation, in both the~100! and~110!
plane using these parameters and Eqs.~7!, ~11!, and ~12!.

FIG. 4. Power spectrum of the height function, for differe
interfaces. The interfaces are specified both by the crystallogra
of the interface, as well as the ‘‘short’’ direction of the simulatio
~either@001# or @11̄0#). Note that Ref. 16 uses the ‘‘long’’ direction
in their notation instead of the convention used here. The error
~calculated using the rms deviation of the value! are shown only for
the ~110! interface. Fits to the form given in Eq.~3! are also shown.
14410
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The data points for the stiffness from the fitting of the heig
fluctuation spectrum are also shown. As is made clear in
figure, the most significant deviations of the simulation
sults from the forms given in Eqs.~11! and ~12! are where
the stiffness is at a local maximum as a function ofu, and
therefore where the fluctuations are likely to be the smal
and therefore most difficult to determine. Overall, the d
points appear to be very consistent with the forms deriv
from the Kubic expansion.

Recent experiments22 have recently determined a value
the anisotropy parametere4, defined in Eq.~5!, of 0.98%.
Note that this parameter is different than the parametee
defined in Eq.~7!. We obtain a value of this parameter usin
the equation for the stiffness given in Eq.~6!, and the stiff-
ness data for the~100!, ~110!, and~210! interfaces. In Fig. 6,
we plot the stiffness values for these interfaces as a func
of cos(u). Linear regression then gives the valuesg05150
62 mJ/m2 ande450.00960.001. The value ofg0 is consis-

hy

rs

FIG. 5. Interfacial stiffness~solid line! and interfacial free en-
ergy ~dashed line! vs orientation, for interfaces with normals in~a!

the ~001! plane and~b! the (11̄0) plane. In~a!, the orientation is
characterized by the rotation angle about the@001# direction, with
the ~100! interface definingu50. For ~b!, the ~110! interface de-

finesu50. Points indicate the values of the stiffnessg̃ found from
the height fluctuations. The dotted line lying close to the free ene

curve is the contour defined byg(n̂)5g0.
4-5
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JAMES R. MORRIS PHYSICAL REVIEW B66, 144104 ~2002!
tent with our results above, while the value ofe4 is about
10% lower than the experimental value, which is within t
error bars of our calculation.

All of the previous simulations use a geometry that h
one ‘‘short’’ repeat direction. It is not immediately clear th
this choice does not limit the possible fluctuations in t
system, and thereby affect the results. We have chose
examine the effects of the system size by explicitly calcu
ing the fluctuations for differently sized systems. We ha
specifically chosen the (112)@11̄0# system, and calculate
the fluctuations with simulation cells kept fixed in thex̂ and
ẑ directions, while multiplying the repeat distance in theŷ
direction by factors of 2, 4, and 8. The results are shown
Fig. 7. As can be seen in the figure, the results are consis
independent of the system size within the scatter of the d

IV. DISCUSSION

We have presented a calculation of the full anisotro
crystal-melt interfacial free energy for Al. Similar work ha
been performed16 for Ni. These calculations represent th
first attempts to evaluate these quantities directly from sim
lations for real materials. As they are based upon equilibri
properties, they minimize the common problem of the sh
time scales available to molecular dynamic simulations. O
issue in comparing the results to those of real materials is
accuracy of the empirical potential used in the simulatio
While the potential used here17 is widely recognized as bein
quite reliable for most purposes, it is certainly not co
pletely accurate. We believe that anisotropies that result f
these calculations are reasonable.

The calculations rely on the form of the expansion of t
free energy in terms of the Kubic harmonics, given in E
~7!. We calculated the interfacial stiffness for six differe

FIG. 6. Stiffness for interfaces perpendicular to the@001# direc-
tion, as a function of cos 4u. The error bars assume an error of 5%
The linear fit is to the form given in Eq.~6!, producing values of
g0515062 mJ/m2 ande450.00960.001.
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interfaces and orientations, which overdetermines the par
etersg0 , e, andd appearing in this expansion. Our value
for these parameters provide a good comparison with al
our results, justifying the use of this expansion.

In order to compare our value ofg05149 mJ/m2 with
experiment, we note that there have been repea
discussions23–26 indicating that the interfacial free energy
proportional to the latent heatL. We write this as

g5CTLr21/3, ~13!

where the Turnbull coefficient CT was originally
estimated23,24 to be 0.45 for metals. For aluminum, Turnbu
found a value ofg593 mJ/m2 using nucleation experiments
somewhat lower than our value. However, the
experiments1,24 found that this value was low compared wi
what is expected from Eq.~13!. We find, for the values of the
density and latent heat for the aluminum potential used h
g050.58Lr21/3, which is somewhat higher than the tren
that Turnbull observed, but in good agreement with mo
recent estimates25,26 of this coefficient. We finally note tha
our value is close to the value of 163621 mJ/m2 found from
grain boundary groove measurements for Al in liquid Al-C
~Ref. 21! and to the value of 160 mJ/m2 given by Kurz and
Fisher.27

Another quantity of interest includes the mobilities of th
solid-liquid interfaces. These quantities can be examined
manner similar to the approaches presented here. Just a
height-height correlation function depends upon the inte
cial stiffness, the time-dependent fluctuations of the hei
function are related to the mobility of the interface.7 Other

FIG. 7. Height-height correlation functions for the~112! inter-

face, with varying cell sizes along the@11̄0# direction. Results for
the original size~diamonds! are compared with those from system

whose size in the@11̄0# direction have been multiplied by factor
of 2 ~triangles!, 4 ~squares!, and 8~circles!. All results are consis-
tent with the data shown in Fig. 4, including the fit to the stiffne
value.
4-6
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approaches, similar in spirit, have been suggested,28,29 and
we are currently examining these approaches.

Finally, we note that all of these calculations are a nec
sary test before going to the more complicated case of a
systems. Clearly, the applications of these approaches l
this area: an approach that allowed us to calculate how
loying elements affect the anisotropic interfacial propert
would permit accurate continuum level modeling. Th
would bridge the gap between the a˚ngstrom/picosecond time
scale available to molecular dynamic simulations, and
continuum level modeling that reaches experimental ti
and length scales. Such calculations would allow much m
understanding of the alloy effects, and would permit a m
systematic exploration of alloy compositions for real app
cations.
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