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Complete mapping of the anisotropic free energy of the crystal-melt interface in Al
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We have calculated the complete anisotropic crystal-melt interfacial free energy of aluminum, using mo-
lecular dynamics simulations of the interfaces in equilibrium. The interfacial free enya(rf;)/, can be ex-
pressed in terms of two anisotropic parameters1.2% ands= —1.2%, as well as an average free energy of
vo=149 mJ/n in reasonable agreement with current experimental results. The expansion of the free energy in
terms of these parameters is consistent with six different orientations, includind tbeinterfacial plane,
which is found to be rough despite its large stiffness.
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I. INTRODUCTION results are discussed in the final section.
The study of solidification microstructure has a long his- Il. THEORY AND APPROACH

tory, with interest being driven both by the importance of the ) ] ) .
microstructure in determining material properties, and by the The approach that we are using to find the interfacial free
fundamental interest in the dynamics and pattern formatio€nergy is based upon the fact that for metallic systems, most
that occuré__?’ Despite many years of effort’ fundamental SOlld-lquld interfaces of interest will be rOUgh, rather than
understanding of the dynamics of microstructural developfaceted. For a macroscopically flat interface, we may define
ment during solidification is still lacking. This is true not the deviation of the height from the average by)h(where
only for alloys, but even for the simpler case of pure mateX denotes thétwo-dimensional position of the interface. In
rials. Without understanding the basic principles that controfhis work, as we describe below, we treat a discrete descrip-
the dynamics, controlling solidification microstructure re-tion of the heightsh;;, defined on a grid over the cross
mains more of an art than a science. section of the system, with grid points separated by distances
In the last few years, the importance of anisotropy hasdx andA, . We define the Fourier transform bf; by
been recognized as a necessary factor in determining the
form and stability of the interfacial dynamiés® Both the A,
interfacial free energy and mobilities have important hq= JA
anisotropies that must be determined in order to predict the

dynamics. Even a small anisotropy in the free energy on th?vhererij =iAx>2+JAy§/, andA is the cross-sectional area of

order of 1% is important, as anisotropy is required for apne system. With this definition, the height-height correlation
stable steady-state solution for tip growth in three dimens,nction becomes

sions. Also, the dynamics of fluctuations, even at very small

length scales, play an important role in the ultimate dendritic 1

microstructure’. While the importance of this may be under- (|h§|)= —kgT

stood using phase-field and related continuum models, these 4

approaches neither allow us to evaluate the anisotropies nor , . ,

to explore the nature of the fluctuations at the atomistic levelVNereyx andy, are the local stiffiness coefficients governing
The interfacial free energies for model systems have beefiuctuations in the height in the andy, directions, respec-

calculated for model systems for some time, using a numbelively. In the continuum limit ofq,=0, q,A,<1, this re-

of techniques: an artificial “cleaving” approach, combined duces to

with energy integratioft? density functional theor}f~*°

and, most recently, examining the equilibrium fluctuation ) kgT

spectrum of the interfac€.In the current work, we utilize (Ihgh ===, 3

this last method. We have performed large-scale molecular va

dynamic (MD) simulations of the solid-liquid interfaces of

Al using the embedded-atom meth@AM) with the poten-

tial of Ercolessi and Adam¥.The solid-liquid interfaces are

rough, and the magnitude of the fluctuations of the interfac

depends upon the stiffness of the interface. By examinin

EJ hijexp(ig-ri)), 1)

-1

(2

A A
lzsinz(qx X)+ﬂsin2<—qy y)
A 2 ] A 2

where"ix(ﬁ) is the interfacial stiffness for the interface with

normaln, and y(n) is the interfacial free energy as a func-
éion of orientation(see, e.g., Ref.)7 These results assume
hat the height changes slowly as a function of position along

these fluctuations for various interfaces, we have obtainel'® _mterface. Under these COHdItIOI’]S,.If the fluctuations of
the interfacial stiffness, which was then used to calculate thd'® interface are all9wed only about a single arigfeom the
interfacial free energy. We describe this approach in the folnominal orientatiom, then we may write

lowing section. We then describe our simulations in more 5

detail, and present the results from the simulations. These v(0)=y(0)++"(6), (4)
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where the primes indicate differentiation with respectto [111]

From this relation, it can be readily shown that the equilib-

rium fluctuations in the height grow as a function of system [1172]
size, indicating that these fluctuations are not small devia-

tions from the average height. We note that E3). differs SISISESY

from that given in Ref. 16 by a factor of the cross-sectional [
area, presumably due to a different convention for the Fou-:::
rier transform. ;

Equation (1) also provides a means for calculating the
interfacial stiffness. By simulating the system in equilibrium, §
we can calculate this correlation function, and thereby derive}
the interfacial stiffness. Moreover, the stiffness is signifi-
cantly more anisotropic than the free energy, and therefore it:

fourfold symmetry(i.e., rotations about thELOQ] axis) the
simplest form for the interfacial free energy is

Y(0)=yo(1+ €4c0s 49). 5

In this case, the stiffness is

3/( 0)=vyo(1—15¢,c0s 46). (6) FIG. 1. A snapshot of the system with tw@11) interfaces.
. Atoms have been shaded according to the order parameter defined

This shows that the anisotropy in the interfacial stiffness is Eq. (10), with light atoms having a large value and dark atoms

Ia_lrger t_han that of the free energy by a factor of 15. Wherehaving small values. The order parameter clearly separates the or-
S'mUIat'an probabl_y could r_]Ot dlrec_tly reso_lve a 1% aniSO-ygreq solid region from the disordered, liquid region. The axes on
tropy, this larger anisotropy in the stiffness is evident in the, . . o —
. - . - top indicate the crystallographic directions. In {tiel0] direction
simulations, as we d?monStrate in this paper. (normal to the figurg the periodic repeat distance is significantly
The fu” SurfaCEy(n) can not be SpeCified in the form Of shorter than in the other directions.
Eq. (5), even for weak anisotropy, as it only describes fluc-
tuations about a single angle around a given orientation. Fur- 11 2
thermore, while such an expansion may be valid for the in- Y= N7 E E explig-r)| , 9
terfacial free energy, the interfacial stiffnesg(n) is b
considerably more anisotropic, and the expansion in(Bq. where the sum om runs over each oZ neighbors found
may not be sufficient as higher-order terms in the anisotropwithin a distancer, of the atom, chosen to be between the
may be required. These problems have been addressfigst- and second-neighbor shells in the perfect lattice. This
recently® by using “Kubic harmonics®® to characterize the order parameter will equal one for a perfect fcc lattice, and
interfacial free energy in terms of two anisotropy parametersless than one otherwise.
The leading terms of the Kubic expansion of the free energy While Eq. (9) is reasonably good at producing an order
are parameter that is small for the liquid phase and close to one
for the solid phase, we have found a couple of methods that
Y(N)= 7| 1—3e+4e>, n*+ 5>, n®—308n2n2n2|, improve how well we can discriminate between these phases.
i i First of all, instantaneous atomic positions include significant
(7)  amounts of fast atomic vibrations that reduce the order of the
solid phase. To overcome this, we average the atomic posi-
tions over short periods of time<(50 fs), producing signifi-
cantly more order in the solid phase. Second, we calculate an

retverageorder parameteE for each atom, by averaging over
the neighboring values:

where we have written the interface normal as
=(nq,n,,n3). For sufficiently small anisotropy, this param-
etrization of the interfacial free energy in termsygf, €, and

6 completely determines the anisotropic free energy for al
orientations.

In order to utilize Eq.(3), we must first define a height
function derived from atomic configurations. We proceed by
defining a local order parameter for each atom, characteriz-
ing its environment. For this, we choose a seth\yf wave
vectors{q;} such that

V=gl it w;), (10

wherej runs over allZ neighbors of atonn. This helps elimi-

nate isolated atom&r small clusters of atomswhere the
explig-r)=1 ®) local prder parameter deviates significantly from its sur-

roundings.

for any vectorr connecting near neighbors in a perfect fcc In Fig. 1, we show a snapshot of the system with two

lattice. We omit one of each pair of antiparallel wave vectors111) interfaces. We have colored the atoms according to

thus,N,=6 . We then define the local order parameter as their order parameter, as calculated using Bd). As is
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0 350 0 50 FIG. 3. A demonstration of the calculation of the interface

height. The open circles represent the atoms from Fig. 1 whose

order parameters satisfy 0.«@5_b< 0.10. They are clearly localized
FIG. 2. The order parameter vs position for each atom in ario the interface. The solid line shows the corresponding height func-

instantaneous configuration of twa11) interfaces(shown in Fig.  tion found using these atomic positions.

1), as a function of atomic position measured along the interface

normal. The center region, where the order paramgtisrsmall, is An alternate approach to identifying the interface is to
the liquid region, while the regions wheteis large correspond to  characterize each atom by its potential energy. The solid re-
the crystal region. The atoms having 0:08=<0.15 are along the gion is clearly then lower in energy than the liquid region. In
interface. practice, we found that there was significantly more variation
within one phase than with the above order parameter, even
clear in the figure, we can discriminate between solid andvith time averaging over short time periods. As a result, it
liquid atoms quite well. To make this more quantitative, Fig. was more difficult to identify the interfacial height using this

2 shows the values ofs for each atom in a system with aPProach.
coexisting solid and liquid phases, as a function of distance
along an axis oriented perpendicular to the interface. As seen

in the figure, the liquid region has order parameters \Aﬁth
<0.05, while the solid region has order parameters with

>0.2, with an average value Q%%oﬁf_ The two regions We have performed molecular dynamics simulations us-
are clearly identifiable, and there are very few atoms awajd the Adams and Ercolessi aluminum potertfaThis po-
from the interface that have values satisfying G0b _tent|gll has been widely used, anq vv.as.develolped py explic-
<02 itly fitting the energy and forces in liquid configurations. It

This gives a direct method of calculating the averagehas a melting tempera_ture clqse to_the actual melting tem-
erature oflT ,=933 K; in our simulations, the average tem-

height around a given region: we separate out those atonis )
g give g . P ) ) perature was approximately,,=910 K.
that have a value aof that is distinct from either the solid or

iqui f h winterface” h We chose a simulation that is periodic in all directions,
iquid ranges, and define those as “interface” atoms. They eating two solid-liquid interfaces. We chose our simula-

positions of those atoms are then used to define the hieight 1i;ns to have a short repeat distance along eithe@0d]
of the interface at discrete positions, separated by distance

i ~ . dslrection(repeat distance ofa}) or the[lTO] direction(re-
Ay and Ay in the x and y directions. We have chosen

A A~arinord d ial luti hile al peat distance of g2a,), and a long unit cell in the remain-
x,Ay~ag In order to get good spatial resolution while also ing direction. The geometries are summarized in Table |. The

ensuring that there are sufficient interfacial atoms to define, . ¢ o quasi-two-dimensional geometry, shown for the
the height function. Clearly, attempting to define the height(100) interface in Fig. 1, enhances fluctuatio'ns in the inter-

function at a resolution finer than typical neighbor distance§ace making the analysis easier. Furthermore, (Bfonly
is artificial. We demonstrate this approach using the Conﬂguépplies in the long-wavelength limitompared with inter-

ration shown in Fig. 1. In Fig. 3, the atoms satisfying O'05atomic spacings and this geometry allows us to examine
<¢<0.1 have been plotted as open circles. These atomgis limit while minimizing the system size. We demonstrate
have been separated into bins along thexis (along the  that the results do not depend on the repeat distance thick-
[112] axig), and their positions averaged. The resultingness at the end of this section.

height functions for each interface have been plotted as dark For these geometries, we can express the stiffness from
lines. Clearly, we have been able to map out the interfac&q. (4) in terms of the parameters of the Kubic harmonic
height accurately. expansion in Eq(7). For the interfaces with a short direction

position along interface normal (A)

I1l. SIMULATIONS AND INTERFACIAL
STIFFNESS CALCULATIONS
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TABLE I. Summary of interfaces simulated, including the short direction for the simulation, the number of atoms, and the periodic cell
geometry(with the x direction taken to be the long direction in the interface,tliirection to be normal to the interface, and theirection
along the short directionWe also provide the expression for the stiffness for each interface derived frof) Eapd the interfacial stiffness
found from fitting the fluctuation spectrum according to B). In parentheses, the value of the stiffnesses calculated usin@)Bmith our
values ofy,, €, and§ are given.

Interface Short direction Number of atoms System geometry (A) Stiffness Yy (mJd/nt)
(100 [001] 32768 261.0%138.91x 16.32 ¥o(1—156—50) 131(131)
(110 [001] 49152 369.2%148.34x 16.32 yo(1+15e+ 22 5) 172 (165
(210 [0071] 40960 291.9%153.15<16.32 yo(1+&e+15) 153 (153
(110 [110] 24576 129.6% 297.70< 11.49 yo(1—9e+225) 110 (108
(111 [110] 19200 202.56148.27x 11.54 yo(1+9e—25) 174(182)
(112 [110] 19 200 143.2%208.66< 11.61 yo(1+7e+ 32 5) 151 (151)

of [001], we take the angl® to be the angle between the = The geometries and numbers of atoms for each interface
interface normal and thgl00Q] direction. In this case, the are given in Table |. During the simulation, we store the

stiffness is atomic positions every 500 time steps, and use these configu-
_ rations for calculating the height-height correlation function.
()] yo=1—3€e— 12¢(cos' 60— 8 cog 4 sirf o+ sin* ) For each atom, we calculate an order parameter as defined in
. Eq. (10).
—58(co$9—6 cosfsinto The results for the height-height correlation function are
— 6 sirf0 co20+sirf ). (12) shown in Fig. 4. Error bars indicate the root-mean-square

. fluctuations of the values. Included in Fig. 4 is a fit to the
For the geometries where the short directiof 140], the  form given in Eq.(3) for each of the different orientations.
angle is taken between the interface normal and[®#)]  Each fit produces a value af(6), where 6 is taken to be
direction. The corresponding expression for the stiffness is around the “short” direction of the simulation. In Table | we
list the short direction, as well as the expression for the stiff-

¥(60)/ yo=1—3e+6€(12 cod g sin’§—cos' - 2 sirf'0) ness in terms of the Kubic harmonic expansion given in Eq.
5 (7). The values for the stiffnesses given in Table I, found

+ = 8(11 cos6—120 coéd siro from the fitting, are not extremely accurate; we estimate er-

4 rors on the order of 10%. As can be seen in this figure, the
+96 sirf 0 co20— 4 sirf6). (12) results are consistent with agf/dependence, except perhaps

at the smallest value af (longest wavelengbh We believe

The specific expression for the stiffness for each geometry ithat this deviation for large wavelengths is due to the long
listed in Table I. equilibration and sampling time associated with the long-

Our simulations extend for 2 10° time steps beyond the wavelength modes. These are precisely the modes whose
equilibration stag€500 000 time stepswith each time step fluctuations will extend over the longest times, and whose
being 0.53 fs. The system naturally evolves toward the equiaverage values will take the longest time to converge. If we
librium melting temperatur&>?® In our simulations, we are continue the simulations significantly longer, these data
integrating Newton’s equations, and therefore conserve thehould also agree with the trend. Even for these modes, our
total energy. If the temperaturgalculated from the kinetic fits are generally within the error bars showvhich are
energy is above the melting temperature, then some of thejuite large for the smallest values @f. At largerq, there is
solid region will melt. This process converts thermal energya suppression of the fluctuations below thg?1behavior,
to potential energy, through the latent heat of melting. Bywhich depends on the details of how the height function is
lowering the thermal energy, the temperature drops towardsalculated. This behavior only occurs at wavelengths ap-
the melting temperature. Similarly, if the temperature is beproaching that of the lattice constant, where the continuum
low the melting temperature, the solid region grows, and thelescription[which leads to Eq(3)] breaks down.
temperature rises towards the melting temperature. As indi- The 142 behavior demonstrates that all of the interfaces
cated earlier, the average equilibrium temperature in thesere indeed rough. This confirms expectations obtained from
simulations was close to the real melting point of aluminum.a visual inspection of instantaneous configurations such as
As noted earlier, the average temperature in the simulationghose shown in Fig. 1. The interfaces are not confined to a
was T,=910 K, somewhat lower than the value @f, single atomic layer, although local regions lying close to one
=939+5 K given in Ref. 17. This is due to the fact that layer could often be observed. Such alignments were tran-
during the simulations, the pressure also equilibrates. Ousient, however, and are eventually destroyed by fluctuations.
average pressure was= — 2.5 kbar; the negative pressure The case shown in the figure is an extreme casei(1h#
has the effect of lowering the melting temperat(vg favor-  interfaces lie along close-packed planes, and could be ex-
ing the less dense liquid phase pected to be faceted instead of rough. Our results given be-
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FIG. 4. Power spectrum of the height function, for different 110)

interfaces. The interfaces are specified both by the crystallography

of the interface, as well as the “short” direction of the simulation ~ FIG. 5. Interfacial stiffnesgsolid line) and interfacial free en-

(either[001] or [110]). Note that Ref. 16 uses the “long” direction €9y (dashed lingvs orientati@, for interfaces with normals (a)

in their notation instead of the convention used here. The error barée (001) plane and(b) the (110) plane. In(a), the orientation is

(calculated using the rms deviation of the valaee shown only for ~ characterized by the rotation angle about [B@1] direction, with

the (110 interface. Fits to the form given in E(B) are also shown. the (100 interface definingd=0. For (b), the (110 interface de-
fines9=0. Points indicate the values of the stiffnessound from

] ) o ) ) the height fluctuations. The dotted line lying close to the free energy
low confirm that the stiffness of this interface is the highest

: X 5 curve is the contour defined by(n) = Yo-
of all of the considered geometries. However, thg-1e-
havior of this interface is clearly shown in Fig. 4.

In Table I, we give the expressions for the stiffnesses for , ) . .
each interface, derived from Eg4.1) and(12). From these 1 he data points for the stiffness from the fitting of the height

expressions, plus the stiffnesses calculated from the fluctudlictuation spectrum are also shown. As is made clear in this
tion spectrum, we found the parametefs €, ands by least ~ figure, the most significant deviations of the simulation re-
squares optimization. This gives results pf=149 mJ/mi,  sults from the forms given in Eq¢1l) and(12) are where
e=1.2%, andd= —1.2%. We estimate errors in these num- the stiffness is at a local maximum as a functionfpfand
bers to be of order 5%. These numbers are in good agreéierefore where the fluctuations are likely to be the smallest
ment with grain boundary groove measuremértsat give a  and therefore most difficult to determine. Overall, the data
solid Al, liquid Al-Cu interfacial free energy of 163 points appear to be very consistent with the forms derived
+21 mJ/nt, and also with the expected low anisotropy of from the Kubic expansion.
Al. The stiffnesses for all orientations calculated using these Recent experimertéhave recently determined a value of
parameters are given in parentheses in Table I; as can like anisotropy parametet;, defined in Eq.(5), of 0.98%.
seen, the results are very consistent with the fits, with ndNote that this parameter is different than the parameter
deviation greater than 5% and usually significantly less. Thislefined in Eq(7). We obtain a value of this parameter using
is smaller than our estimate of the accuracy of thesdéhe equation for the stiffness given in E&), and the stiff-
numbers. ness data for th€l00), (110, and(210) interfaces. In Fig. 6,

In Fig. 5, we show the anisotropic stiffness and free enwe plot the stiffness values for these interfaces as a function
ergy as a function of orientation, in both thE00) and (110 of cos(). Linear regression then gives the valugs=150
plane using these parameters and E@s. (11), and (12). +2 mJ/nf ande,=0.009+0.001. The value of is consis-
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FIG. 6. Stiffness for interfaces perpendicular to [p81] direc- FIG. 7. Height-height correlation functions for tii&12) inter-
tion, "?‘S a fungtion of cosé Thg errqr bars assume .an error of 5%. face, with varying cell sizes along tﬂj&TO] direction. Results for
The linear fit is to the form given in EdB), producing values of the original sizediamond$ are compared with those from systems
¥o=150+2 mJ/nf and e,=0.008+0.001. whose size in th¢110] direction have been multiplied by factors

. . . of 2 (triangles, 4 (squarey and 8(circles. All results are consis-
tent with our results above, while the value f is about ot with the data shown in Fig. 4, including the fit to the stiffness
10% lower than the experimental value, which is within the, g e.

error bars of our calculation.

AI‘I‘ of th”e previous sw_nulathns use a geometry that ha%nterfaces and orientations, which overdetermines the param-
one “short” repeat direction. It is not immediately clear that

. : T ) i . etersyy, €, and § appearing in this expansion. Our values
this choice does not limit the possible fluctuations in the Yo, € bp 9 P

for these parameters provide a good comparison with all of
system, and thereby affect the results. We have chosen Qur resultsp justifying trr)1e use of ?his expanpsion
examine the effects of the system size by explicitly calculat- In order’ to compare our value ofy=149 mj/n% with
0=

ing the fluctuations for differently sized systems. We haveexperiment, we note that there have been repeated

specifically chosen the (11)10] system, and calculated giscussion®~?®indicating that the interfacial free energy is
the fluctuations with simulation cells kept fixed in tkeand  proportional to the latent heat We write this as

z directions, while multiplying the repeat distance in the
direction by factors of 2, 4, and 8. The results are shown in
Fig. 7. As can be seen in the figure, the results are consistent,
independent of the system size within the scatter of the datavhere the Turnbull coefficient C;y was originally
estimate@?*to be 0.45 for metals. For aluminum, Turnbull
found a value ofy=93 mJ/nt using nucleation experiments,
somewhat lower than our value. However, these
We have presented a calculation of the full anisotropicexperiments?*found that this value was low compared with
crystal-melt interfacial free energy for Al. Similar work has what is expected from E13). We find, for the values of the
been performel§ for Ni. These calculations represent the density and latent heat for the aluminum potential used here,
first attempts to evaluate these quantities directly from simuyo=0.58_p~ 3, which is somewhat higher than the trend
lations for real materials. As they are based upon equilibriunthat Turnbull observed, but in good agreement with more
properties, they minimize the common problem of the shorrecent estimaté$2° of this coefficient. We finally note that
time scales available to molecular dynamic simulations. Oneur value is close to the value of 1621 mJ/nt found from
issue in comparing the results to those of real materials is thgrain boundary groove measurements for Al in liquid Al-Cu
accuracy of the empirical potential used in the simulations(Ref. 21) and to the value of 160 mJfgiven by Kurz and
While the potential used helféis widely recognized as being  Fisher?’
quite reliable for most purposes, it is certainly not com- Another quantity of interest includes the mobilities of the
pletely accurate. We believe that anisotropies that result frorsolid-liquid interfaces. These quantities can be examined in a
these calculations are reasonable. manner similar to the approaches presented here. Just as the
The calculations rely on the form of the expansion of theheight-height correlation function depends upon the interfa-
free energy in terms of the Kubic harmonics, given in Eq.cial stiffness, the time-dependent fluctuations of the height
(7). We calculated the interfacial stiffness for six different function are related to the mobility of the interfac@ther

y=CqLp™*%, (13

IV. DISCUSSION
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approaches, similar in spirit, have been sugge$tédand ACKNOWLEDGMENTS
we are currently examining these approaches.

Finally, we note that all of these calculations are a neces- . - .
sary tes%/before going to the more complicated case of alloy 9-R-M- would like to thank Kai-Ming Ho, Alain Karma,
systems. Clearly, the applications of these approaches lie i32/Ph Napolitano, Xueyu Song, Rohit Trivedi, and Cai-
this area: an approach that allowed us to calculate how a¢huang Wang for useful input and discussions. This work
loying elements affect the anisotropic interfacial propertieshvas funded in part by a Department of Energy Computa-
would permit accurate continuum level modeling. Thistional Materials Science Network on “Microstructural Evo-
would bridge the gap between thegstrom/picosecond time lution Based on Fundamental Interfacial Properties.” Com-
scale available to molecular dynamic simulations, and th¢uter time was provided by the Scalable Computer
continuum level modeling that reaches experimental timd-aboratory, Ames Laboratory, and by a grant from NERSC.
and length scales. Such calculations would allow much moréhis research was sponsored by the Division of Materials
understanding of the alloy effects, and would permit a moreSciences and Engineering, Office of Basic Energy Sciences,
systematic exploration of alloy compositions for real appli-U.S. Department of Energy, under Contract No. W-7405-
cations. ENG-82 with lowa State University.
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