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We study the three-dimension@D) attractive Hubbard model by means of the determinant quantum Monte
Carlo method. This model is a prototype for the description of the smooth crossover between BCS supercon-
ductivity and Bose-Einstein condensation. By detailed finite-size scaling we extract the finite-temperature
phase diagram of the model. In particular, we interpret the observed behavior according to a scenario of two
fundamental temperature scal@s; associated with Cooper pair formation afdwith condensatiorigiving
rise to long-range superconducting ondedur results also indicate the presence of a recently conjectured
phase transition hidden by the superconducting state. A comparison with the 2D case is briefly discussed, given
its relevance for the physics of highs cuprate superconductors.
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The existence of a smooth crossover between the twstrength. These results complete recent calculations which
paradigms of quantum superfluidity, the Bardeen-Cooperhave postulated the existence of such a transition in the
Schrieffer (BCS) superconductivity and the Bose-Einstein infinite-dimension version of the mod&f.
condensationBEC) is firmly established:? In this context, Model and method-The attractive Hubbard model is de-
the attractive Hubbard modéAHM) has appeared as an fined by the following Hamiltonian,
ideal presentati%n of the whole evolution between the BCS
and BEC physicS A concrete property of this Hamiltonian is
the existence of twanot always distinct energy scales: one ~ H=—t E (CiJrona"_ H.c)— UZ nm”u—ME Ni g
associated with the formation of Cooper paifi§‘{ and an- (e ' " )
other with the onset of long-range order in the systdi) (

Although their qualitative behavior is well known, a quanti- \yhere(i,j) denotes a pair of nearest neighbors on a cubic
tative determination is still missing, due to the fact that it is|yice \with N= L3 sites,c! (c;,) is a fermion creatioran-
hard to access the intermediate regime by a controlled ap- f e We

%ihilation) operator of spinc=1] and n; ,=c;

i i i I T lo

proximation scheme. In this respect the determmantquantumtaket>0, U>0 and the chemical potential is tuned to
ield a fixed density 82n<<2. Outside half-filling 6#1)

Monte Carlo(DQMC) method®is a powerful tool as it pro-
his model presents a finite-temperature transition into a

vides results free of systematic errors. A detailed finite-siz
analysis is, however, necessary in order to extract the the Shase characterized by long-ransevave superconductin
modynamic limit properties, which can then be compareof)rder associated with t¥1e b?eakir?wof thél)g auge s m_g
with the outputs of other methods recently applied to themetr 9 gauge sy
same problent® At this point we should stress the role of Tg.stud the finite-temperature properties of this system
dimensionality that determines the nature of the supercon- y ! P > Prop: >y

. e _ . . : we use the conventional DQME simulation method. Since
ducting phase transition at; the strictly (two dimensional the attractive interaction does not lead to a minus-sign prob-
2D realization of the model is characterized by a Berezinskii m. the wholdJ-n-T phase diagram can be reliabl sgtjudri)ed
Kosterlitz-Thouless-type phase transition, whereas the 3 ’ P ag y st )

ecause of the grand-canonical nature of DQMC, it is nec-

case displays a “normal” second-order one, which is more ssary to estimate the function=(T,n,U.L) in order to

easily accessible by DQMC. Since the intermediate reglm§vork at a fixed density. This presents a considerable load

of the AHM constitutes the simplest model for a short-. this work compared to similar DOMC. simulations at
coherence-length superconductor, the considerations pr%1 P Q

sented hereafter may as well help to clarify the influence o alf-filling.” Typically we taken=0.5 (quarter filling for

the dimensionality on some properties exhibited by the 3 hich resglts using other methods haye; already been
strongly anisotropic high-, superconductors presented:® We also restrict ourselves to finite-temperature
. .

In this paper, we present the results of extensive DQMC,Stati(.: correlat.ion function$such as.thes-.wave pair-.pfa.ir cor-
simulations for the finite-temperature properties of the AHM"?Iatlon functionC, and the Pauli spin susceptibilitye,
in three dimensions. In spite of finite-size effects, we showd!Ven by
that it is possible by a scaling analysis to quantitatively es-
tablish the phase diagram a@%.(U,n) as a function of the
interaction strength and density of a model that exhibits a
genuine second-order phase transitiomlike its 2D ver-
sion). Furthermore, the pair formation temperaturé is 11
studied in detall, r.evealmg the.exustence of a transition in t.he Yo(T,N)== — 2 (S-S)- @)
nonsuperconducting state taking place at a critical coupling TN 7]

cA<T,N>=%i2j (Aiaf+ A7), @
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FIG. 1. Main. t N d size d d fth ir-oair FIG. 2. DQMC results for the critical temperatufg(U,n) and
- -~ viain, temperature and size dependences ot the pairpait, ., o icon with other methodd®Main, dependence on the cou-
correlation function(2) for the casdJ =6t andn=0.5. Inset linear

. R . ling U, n=0.5.1 d d n the densityU = 6t.
extrapolation to the thermodynamic limit of the sme-dependentloIngj : nset dependence o y

i th
critical temperature3 o(N) andT¢(N), sameU andn. firmed by the evaluation of the specific heaf(T) whose

well-defined peak can be used to define another size-

Here Aj=c;;c;, and S=3,,_; ¢!, 0,,Ci,, o being the dependent critical temperatufe(N). cy(T) is obtained by
vector of Pauli matricesC, allows to determine the super- the numerical derivative of the expectation value of the
conducting transition temperaturg,, since it signals the energy'! A linear fit of the values fothCh(N) versus (1{N)
breaking of the WU1) gauge symmetry. We recall that this (deduced from the functional formTC(OO)=TtCh(N)
approach is not applicable to the strictly 2D case where more- ©(1/\/N) corresponding to a superconducting phase tran-
sophisticated quantities have to be calculdfe@n the other  sjtion in the universality class of the 3RY model?13 is
hand xp indicates the presence of pairing in the system, reshown in the inset of Fig. 1. It reveals that the finite-size
lated to the temperature scalé as discussed below. corrections tol; are very weak and, in particular, not larger

Regarding the DQMC simulations, the imaginary timethan the statistical errors resulting from the DQMC method.
discretization isA7=0.128"* and lattices of sizN=4%  Thus both approaches presented above are fully compatible

—10° (with periodic boundary conditiopsre considered in  and yield an uncertainty on the extrapolated valueTgf
order to keep the CPU time into reasonable limits. Two typesyhich is typically of the order of 5%.

of finite-size effects are present: first, the discreteness of the The critical temperature J(U,n).—The above proce-
spectrum introduces artificial features at low temperaturegure, applied to a range of parametérsand n, determines
T=0.1t and weak coupling¥) <2t (signaled by §u/dT),  quantitatively theU-n-T. phase diagram of the AHM. First
>0); second, the superconducting phase transition isve consider half-filling(i.e., n=1) which provides a useful
rounded and corresponds to the point where the correlatiopheck for our method. This case is equivalent to the repulsive
length £(T) becomes larger than the linear system dize  model that has been recently studied by Statdil. using
Determination of T.—Extracted by finite-size analysis the same methoThe agreement on the values Bf(U,n
of very good quality data, the value @f is in principle free  =1) is almost perfect! a small difference €3%) appear-
of systematic errors, except a small uncertaints®o) due ing systematically is due to the extrapolatianr—0 per-
to the statistical error and to the finite imaginary time dis-formed by these authors and not done here due to calculation
cretizationA 7>0. GivenU andn, the pair-pair correlation time restrictions. Turning now to quarter-filing, we obtain
functionC, [EQq.(2)] is evaluated for various temperatufes the results presented in Fig. 2. Before discussing the inter-
and sizes\. This shows clearly that, is characterized by a mediateU regime, we observe that, as long as the DMQC
low- and a high-temperature regime, related by a transitiommethod works properly (2<U<12t), the extreme values of
region that becomes sharper and sharped axreases. The T (U) are joining progressively the corresponding
latter observation agrees well with the behavior expected imsymptotic curves, given by the BCS gap equation for small
the thermodynamic limit, wher€, displays a discontinuous U and by the 3D-BEC formula for large. Their respective
derivative at the phase transition and becomes nonzero onfependences it follow essentially T <exp(1U) and T,
belowT, . This behavior, typical for all the parameter values «1/U, with the assumption that in the latter case the bosons
used in our calculations, is shown in Fig. 1 for the specialare noninteracting and have an effective hopping amplitude
caseU =6t andn=0.5. Although it does not correspond to a tg=2t?/U. In the crossover region we observe, as expected,
genuine phase transition, it allows to define a size-dependeat smooth interpolation between the BCS and BEC regimes,
transition temperaturg;(N) which we can use to deduce the with a maximal value off ;=0.3% situated atU=8t. It is
value of T;=T(>). A convenient choice fof ;(N) is given  now interesting to compare our results with those proposed
by the inflexion point of the curv&,(T,N) versusT ob-  in recent works. In Fig. 2 the data obtained using the dy-
tained by astablg Lagrange polynomial interpolation of the namical mean-field theoryDMFT) and a k-independent
DQMC data. Plotting the obtaineB.(N) versus (1{N), we  T-matrix approximatioh(TMA) are also plotted, rescaled by
extrapolate tdN—o using a linear fit of the data, as shown a factor~2 so that the dimensionless produgttimes the
in the inset of Fig. 1. The validity of this procedure is con- density of states at the Fermi level is the same as in our
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FIG. 3. Pauli susceptibilityp . Top T dependence for various
values ofU (sizeN=6%). Bottom T andN dependence close to the
transition temperature and separationifgfand T*, same symbols

as in Fig. 1 6=0.5 for both cases

model*** Similarly to the half-filling casé, we observe a
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FIG. 4. U-T phase diagram of the 3D attractive Hubbard model
at quarter filling. The error bars correspond to the temperature in-
terval aroundT* where xp(T) is less than 1% smaller than its
maximal value, giving thereby an idea of the temperature range

associated witi* .

tive to analyze these DQMC results by considering the sen-
sitivity of T* to finite-size effects. For the “weak-coupling”
caseU=4t, one observes that the shape @f(T) in the

region around its maximal value depends strongly on the
system sizeN, becoming sharper ds increases. In this case
the extracted value of* turns out to be nearly equal I,

given the accuracy on the numerical resuks5®%). On the
other hand, a “strong-coupling” behavior appears fdr

=5t, characterized by a much smoother susceptibility

good overall agreement with DMFT results, the discrepancyaround its maximum. In this region finite-size effects have
at strong couplingy > 6t) being attributed to the mean-field disappeared, indicative of an effect characterized by a short-
character of DMFT; on the other hand TMA clearly fails coherence length. Her&} is definitely different fronil .. In
outside the BCS regime. We also mention a recenthe interval[T.,T*] the interesting phenomenon pfecur-

k-dependent-matrix calculationk TMA) for U =4t giving
T.=0.20%,*? in quantitative agreement with our results.

In addition toU, T also depends upon the densityOur
results show that the functiom.(U=const.n) is not
monotonid® in 0<n<1(1<n<2) unlike it was previously
assumed.The maximal transition temperature for a given
is situated around=0.75(1.25). This feature, shown in Fig.
2 for the particular choic& = 6t, is reminiscent of the two-

sor pairing takes place, a point which will be further dis-
cussed below. We can thus present the complete phase dia-
gram in Fig. 4 by adding the functioR* (U,n=const.) that
clearly displays the two different regimes described above.
In the weak coupling regime one observes thatdoes not
correspond to a BCS critical temperature extrapolated at
=2t. On the strong-coupling sid@* defines an energy
scale, which is approximately quantified by the error bars in

dimensional case where the higher symmetry of the HamilFig. 4, and resembles to a straight line situated below the

tonian(1) at half-filling [ SO(3) instead olU(1)] reducesT,

to zero, as discussed rece

diagonal, in qualitative agreement with the asymptotic ex-
The appearance of an addi- pression given above.

tional charge-density wave ordering has been studied by Discussion—A first remark concerns the recent observa-

means of the corresponding correlation functibn.

the Pauli susceptibilityyp [Eq. (3)]. Although T* may not

tion of a (first-orde) phase transition in th@onsupercon-
The pairing temperature scale*TU,n).—As mentioned  ductingsolution of the AHM?® Since this state is metastable

previously, T* is besidesT, another temperature scale that belowT,, it cannot be accessed by DQM&pplying a mag-
characterizes the BCS-BEC crossover. In the case of theetic field would cause a minus-sign probleddowever, the
AHM, T* can be interpreted within a pairing scenario asmanifestations of this transition may be present abdye
signaling a rearrangement of fermionic quasiparticles intealso and the previous analysis of the Pauli spin susceptibility
swave singlet pairs. As a consequence, the spectral weigltonstitutes an ideal illustration. Indeed, it turns out that the
of low-energy spin excitations is reduced and the spin rehigh-temperature behavior ofp(T), observed forU=4t
sponse weakens. This process can be studied by consideringd characterized by monotonicdecrease witfT, may cor-

respond to a Fermi-liquid normal state, where the interaction

always correspond to a single point, but to an extended eramounts only to a renormalization of parameters. On the
ergy scale, it can nevertheless be identified with the positiomther hand, the regimg=5t, which displays the phenom-
of the maximum ofyp(T).® This definition has the advan- enon of precursor pairing faf,.<T=<T*, fits well to a phase

tage of satisfying the expected asymptotic behavioll bf
i.e., T*=T_ in the BCS case and@* «U/In(U/ex)*? for the

"8

containing “incoherent pairs
coupling strengthU, may be situated around)=(4.3

Consequently a “critical”

BEC limit.> The way the Pauli spin susceptibility evolves +0.1)t, as it can be deduced by extrapolatioTat0 in Fig.
between these two regimes is shown in Fig. 3. It is instruc4. This value argrees very well with theescaletd DMFT
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contains a transition between a Fermi liquid and a state of

bandwidth’*4 One also remarks that, does not correspond “incoherent pairs” may be of interest in the context of the

to the point where the chemical potentjal (including the

high-T. superconductors phase diagram, where the scenario

Hartree shift—U/2) becomes lower than the bottom of the of a hidden quantum phase transition has been progdsed.

noninteracting ban¢for n=0.5, we would getJ .~ 10t). In

Of course the driving parameter in this case is the doping and

fact, to our knowledge, there exists no criterion that yields gahe symmetry of the superconducting phasé isave.

good estimate obJ in three dimensions.

In contrast to 3D where the effects of the thermal pairing The numerical calculations presented in this work were

fluctuations are rather wedk!® in 2D they are very
important® leading apparently to &* joining smoothly
T..'°This confirms the observation by Moukoeti al >° that

performed on the Eridan server of the Ecole Polytechnique
Federale de LausannéEPFL). This work was supported by
the Swiss National Science Foundation, IRRMA project, the

precursor phenomena in the AHM have two origins: en-University of Fribourg and the University of Neudea We

hanced thermal pairing fluctuatiois 2D only) and a strong
pairing interaction(in both cases The fact that the AHM
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