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Quantum Monte Carlo study of the three-dimensional attractive Hubbard model
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We study the three-dimensional~3D! attractive Hubbard model by means of the determinant quantum Monte
Carlo method. This model is a prototype for the description of the smooth crossover between BCS supercon-
ductivity and Bose-Einstein condensation. By detailed finite-size scaling we extract the finite-temperature
phase diagram of the model. In particular, we interpret the observed behavior according to a scenario of two
fundamental temperature scales;T* associated with Cooper pair formation andTc with condensation~giving
rise to long-range superconducting order!. Our results also indicate the presence of a recently conjectured
phase transition hidden by the superconducting state. A comparison with the 2D case is briefly discussed, given
its relevance for the physics of high-Tc cuprate superconductors.
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The existence of a smooth crossover between the
paradigms of quantum superfluidity, the Bardeen-Coop
Schrieffer ~BCS! superconductivity and the Bose-Einste
condensation~BEC! is firmly established.1,2 In this context,
the attractive Hubbard model~AHM ! has appeared as a
ideal presentation of the whole evolution between the B
and BEC physics.3 A concrete property of this Hamiltonian i
the existence of two~not always! distinct energy scales: on
associated with the formation of Cooper pairs (T* ) and an-
other with the onset of long-range order in the system (Tc).

4

Although their qualitative behavior is well known, a quan
tative determination is still missing, due to the fact that it
hard to access the intermediate regime by a controlled
proximation scheme. In this respect the determinant quan
Monte Carlo~DQMC! method5,6 is a powerful tool as it pro-
vides results free of systematic errors. A detailed finite-s
analysis is, however, necessary in order to extract the t
modynamic limit properties, which can then be compa
with the outputs of other methods recently applied to
same problem.7,8 At this point we should stress the role o
dimensionality that determines the nature of the superc
ducting phase transition atTc ; the strictly~two dimensional!
2D realization of the model is characterized by a Berezins
Kosterlitz-Thouless-type phase transition, whereas the
case displays a ‘‘normal’’ second-order one, which is mo
easily accessible by DQMC. Since the intermediate reg
of the AHM constitutes the simplest model for a sho
coherence-length superconductor, the considerations
sented hereafter may as well help to clarify the influence
the dimensionality on some properties exhibited by the
strongly anisotropic high-Tc superconductors.

In this paper, we present the results of extensive DQM
simulations for the finite-temperature properties of the AH
in three dimensions. In spite of finite-size effects, we sh
that it is possible by a scaling analysis to quantitatively
tablish the phase diagram ofTc(U,n) as a function of the
interaction strength and density of a model that exhibit
genuine second-order phase transition~unlike its 2D ver-
sion!. Furthermore, the pair formation temperatureT* is
studied in detail, revealing the existence of a transition in
nonsuperconducting state taking place at a critical coup
0163-1829/2002/66~14!/140504~4!/$20.00 66 1405
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strength. These results complete recent calculations w
have postulated the existence of such a transition in
infinite-dimension version of the model.7,8

Model and method.—The attractive Hubbard model is de
fined by the following Hamiltonian,

H52t (
^ i , j &,s

~cis
† cj s1H.c.!2U(

i
ni↑ni↓2m(

i ,s
ni ,s ,

~1!

where ^ i , j & denotes a pair of nearest neighbors on a cu
lattice with N5L3 sites,cis

† (cis) is a fermion creation~an-
nihilation! operator of spins5↑↓ and ni ,s5cis

† cis . We
take t.0, U.0 and the chemical potentialm is tuned to
yield a fixed density 0,n,2. Outside half-filling (nÞ1)
this model presents a finite-temperature transition into
phase characterized by long-ranges-wave superconducting
order associated with the breaking of the U~1! gauge sym-
metry.

To study the finite-temperature properties of this syst
we use the conventional DQMC5,6 simulation method. Since
the attractive interaction does not lead to a minus-sign pr
lem, the wholeU-n-T phase diagram can be reliably studie
Because of the grand-canonical nature of DQMC, it is n
essary to estimate the functionm5m(T,n,U,L) in order to
work at a fixed densityn. This presents a considerable loa
in this work compared to similar DQMC simulations
half-filling.9 Typically we taken50.5 ~quarter filling! for
which results using other methods have already b
presented.7,8 We also restrict ourselves to finite-temperatu
static correlation functions,6 such as thes-wave pair-pair cor-
relation functionCD and the Pauli spin susceptibilityxP ,
given by

CD~T,N!5
1

N (
i , j

^D iD j
†1D jD i

†&, ~2!

xP~T,N!5
1

T

1

N (
i , j

^Si•Sj&. ~3!
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Here D i5ci↑ci↓ and Si5(m,n5↑,↓cim
† smncin , s being the

vector of Pauli matrices.CD allows to determine the supe
conducting transition temperatureTc , since it signals the
breaking of the U~1! gauge symmetry. We recall that th
approach is not applicable to the strictly 2D case where m
sophisticated quantities have to be calculated.10 On the other
handxP indicates the presence of pairing in the system,
lated to the temperature scaleT* as discussed below.

Regarding the DQMC simulations, the imaginary tim
discretization isDt50.125t21 and lattices of sizeN543

2103 ~with periodic boundary conditions! are considered in
order to keep the CPU time into reasonable limits. Two typ
of finite-size effects are present: first, the discreteness of
spectrum introduces artificial features at low temperatu
T&0.1t and weak couplingsU&2t ~signaled by (]m/]T)n
.0); second, the superconducting phase transition
rounded and corresponds to the point where the correla
lengthj(T) becomes larger than the linear system sizeL.

Determination of Tc .—Extracted by finite-size analysi
of very good quality data, the value ofTc is in principle free
of systematic errors, except a small uncertainty (&5%) due
to the statistical error and to the finite imaginary time d
cretizationDt.0. GivenU and n, the pair-pair correlation
functionCD @Eq. ~2!# is evaluated for various temperaturesT
and sizesN. This shows clearly thatCD is characterized by a
low- and a high-temperature regime, related by a transi
region that becomes sharper and sharper asN increases. The
latter observation agrees well with the behavior expecte
the thermodynamic limit, whereCD displays a discontinuou
derivative at the phase transition and becomes nonzero
belowTc . This behavior, typical for all the parameter valu
used in our calculations, is shown in Fig. 1 for the spec
caseU56t andn50.5. Although it does not correspond to
genuine phase transition, it allows to define a size-depen
transition temperatureTc(N) which we can use to deduce th
value ofTc[Tc(`). A convenient choice forTc(N) is given
by the inflexion point of the curveCD(T,N) versusT ob-
tained by a~stable! Lagrange polynomial interpolation of th
DQMC data. Plotting the obtainedTc(N) versus (1/AN), we
extrapolate toN→` using a linear fit of the data, as show
in the inset of Fig. 1. The validity of this procedure is co

FIG. 1. Main, temperature and size dependences of the pair-
correlation function~2! for the caseU56t andn50.5. Inset, linear
extrapolation to the thermodynamic limit of the size-depend
critical temperaturesTc(N) andTc

th(N), sameU andn.
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firmed by the evaluation of the specific heatcV(T) whose
well-defined peak can be used to define another s
dependent critical temperatureTc

th(N). cV(T) is obtained by
the numerical derivative of the expectation value of t
energy.11 A linear fit of the values forTc

th(N) versus (1/AN)
~deduced from the functional formTc(`)5Tc

th(N)
1O(1/AN) corresponding to a superconducting phase tr
sition in the universality class of the 3D-XY model12,13! is
shown in the inset of Fig. 1. It reveals that the finite-si
corrections toTc are very weak and, in particular, not larg
than the statistical errors resulting from the DQMC metho
Thus both approaches presented above are fully compa
and yield an uncertainty on the extrapolated value ofTc
which is typically of the order of 5%.

The critical temperature Tc(U,n).—The above proce-
dure, applied to a range of parametersU and n, determines
quantitatively theU-n-Tc phase diagram of the AHM. Firs
we consider half-filling~i.e., n51) which provides a usefu
check for our method. This case is equivalent to the repuls
model that has been recently studied by Staudtet al. using
the same method.9 The agreement on the values ofTc(U,n
51) is almost perfect;11 a small difference (,3%) appear-
ing systematically is due to the extrapolationDt→0 per-
formed by these authors and not done here due to calcula
time restrictions. Turning now to quarter-filling, we obta
the results presented in Fig. 2. Before discussing the in
mediateU regime, we observe that, as long as the DMQ
method works properly (2t<U<12t), the extreme values o
Tc(U) are joining progressively the correspondin
asymptotic curves, given by the BCS gap equation for sm
U and by the 3D-BEC formula for largeU. Their respective
dependences inU follow essentiallyTc}exp(1/U) and Tc
}1/U, with the assumption that in the latter case the bos
are noninteracting and have an effective hopping amplit
tB52t2/U. In the crossover region we observe, as expec
a smooth interpolation between the BCS and BEC regim
with a maximal value ofTc50.35t situated atU.8t. It is
now interesting to compare our results with those propo
in recent works. In Fig. 2 the data obtained using the
namical mean-field theory~DMFT! and a k-independent
T-matrix approximation7 ~TMA ! are also plotted, rescaled b
a factor;2 so that the dimensionless productU times the
density of states at the Fermi level is the same as in

ir

t

FIG. 2. DQMC results for the critical temperatureTc(U,n) and
comparison with other methods.7,12Main, dependence on the cou
pling U, n50.5. Inset, dependence on the densityn, U56t.
4-2
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model.11,14 Similarly to the half-filling case,9 we observe a
good overall agreement with DMFT results, the discrepa
at strong coupling (U.6t) being attributed to the mean-fiel
character of DMFT; on the other hand TMA clearly fai
outside the BCS regime. We also mention a rec
k-dependentT-matrix calculation~kTMA ! for U54t giving
Tc50.207t,12 in quantitative agreement with our results.

In addition toU, Tc also depends upon the densityn. Our
results show that the functionTc(U5const.,n) is not
monotonic15 in 0<n<1(1<n<2) unlike it was previously
assumed.4 The maximal transition temperature for a givenU
is situated aroundn50.75(1.25). This feature, shown in Fig
2 for the particular choiceU56t, is reminiscent of the two-
dimensional case where the higher symmetry of the Ham
tonian~1! at half-filling @SO(3) instead ofU(1)] reducesTc
to zero, as discussed recently.16 The appearance of an add
tional charge-density wave ordering has been studied
means of the corresponding correlation function.11

The pairing temperature scale T* (U,n).—As mentioned
previously,T* is besidesTc another temperature scale th
characterizes the BCS-BEC crossover. In the case of
AHM, T* can be interpreted within a pairing scenario
signaling a rearrangement of fermionic quasiparticles i
s-wave singlet pairs. As a consequence, the spectral we
of low-energy spin excitations is reduced and the spin
sponse weakens. This process can be studied by consid
the Pauli susceptibilityxP @Eq. ~3!#. Although T* may not
always correspond to a single point, but to an extended
ergy scale, it can nevertheless be identified with the posi
of the maximum ofxP(T).15 This definition has the advan
tage of satisfying the expected asymptotic behavior ofT* ,
i.e., T* 5Tc in the BCS case andT* }U/ ln(U/eF)3/2 for the
BEC limit.3 The way the Pauli spin susceptibility evolve
between these two regimes is shown in Fig. 3. It is instr

FIG. 3. Pauli susceptibilityxP . Top, T dependence for variou
values ofU ~sizeN563). Bottom, T andN dependence close to th
transition temperature and separation ofTc andT* , same symbols
as in Fig. 1 (n50.5 for both cases!.
14050
y

t

l-

y

he

o
ht
-
ing

n-
n

-

tive to analyze these DQMC results by considering the s
sitivity of T* to finite-size effects. For the ‘‘weak-coupling
caseU<4t, one observes that the shape ofxP(T) in the
region around its maximal value depends strongly on
system sizeN, becoming sharper asN increases. In this cas
the extracted value ofT* turns out to be nearly equal toTc ,
given the accuracy on the numerical results (&5%). On the
other hand, a ‘‘strong-coupling’’ behavior appears forU
>5t, characterized by a much smoother susceptibi
around its maximum. In this region finite-size effects ha
disappeared, indicative of an effect characterized by a sh
coherence length. Here,T* is definitely different fromTc . In
the interval@Tc ,T* # the interesting phenomenon ofprecur-
sor pairing takes place, a point which will be further dis
cussed below. We can thus present the complete phase
gram in Fig. 4 by adding the functionT* (U,n5const.) that
clearly displays the two different regimes described abo
In the weak coupling regime one observes thatT* does not
correspond to a BCS critical temperature extrapolated aU
>2t. On the strong-coupling sideT* defines an energy
scale, which is approximately quantified by the error bars
Fig. 4, and resembles to a straight line situated below
diagonal, in qualitative agreement with the asymptotic e
pression given above.

Discussion.—A first remark concerns the recent observ
tion of a ~first-order! phase transition in thenonsupercon-
ductingsolution of the AHM.7,8 Since this state is metastab
belowTc , it cannot be accessed by DQMC~applying a mag-
netic field would cause a minus-sign problem!. However, the
manifestations of this transition may be present aboveTc
also and the previous analysis of the Pauli spin susceptib
constitutes an ideal illustration. Indeed, it turns out that
high-temperature behavior ofxP(T), observed forU<4t
and characterized by amonotonicdecrease withT, may cor-
respond to a Fermi-liquid normal state, where the interact
amounts only to a renormalization of parameters. On
other hand, the regimeU>5t, which displays the phenom
enon of precursor pairing forTc,T&T* , fits well to a phase
containing ‘‘incoherent pairs.’’7,8 Consequently a ‘‘critical’’
coupling strengthUc may be situated aroundU5(4.3
60.1)t, as it can be deduced by extrapolation atT50 in Fig.
4. This value argrees very well with the~rescaled! DMFT

FIG. 4. U-T phase diagram of the 3D attractive Hubbard mod
at quarter filling. The error bars correspond to the temperature
terval aroundT* where xP(T) is less than 1% smaller than it
maximal value, giving thereby an idea of the temperature ra
associated withT* .
4-3
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result 0.563WDMFT32'4.5t, WDMFT54t being the
bandwidth.7,14 One also remarks thatUc does not correspond
to the point where the chemical potentialm ~including the
Hartree shift2U/2) becomes lower than the bottom of th
noninteracting band~for n50.5, we would getUc'10t). In
fact, to our knowledge, there exists no criterion that yield
good estimate ofUc in three dimensions.

In contrast to 3D where the effects of the thermal pair
fluctuations are rather weak,17,18 in 2D they are very
important13 leading apparently to aT* joining smoothly
Tc .19 This confirms the observation by Moukouriet al.20 that
precursor phenomena in the AHM have two origins: e
hanced thermal pairing fluctuations~in 2D only! and a strong
pairing interaction~in both cases!. The fact that the AHM
at

-

hy

-

14050
a

-

contains a transition between a Fermi liquid and a state
‘‘incoherent pairs’’ may be of interest in the context of th
high-Tc superconductors phase diagram, where the scen
of a hidden quantum phase transition has been propos21

Of course the driving parameter in this case is the doping
the symmetry of the superconducting phase isd wave.

The numerical calculations presented in this work we
performed on the Eridan server of the Ecole Polytechniq
Fédérale de Lausanne~EPFL!. This work was supported by
the Swiss National Science Foundation, IRRMA project,
University of Fribourg and the University of Neuchaˆtel. We
thank F. Gebhard, F. Assaad, and T. Schneider for interes
discussions.
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