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Chiral domain walls in frustrated magnetoelastic materials
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We analyze domain walls on a two-dimensional triangular lattice with magnetoelastic coupling and find
three phases: high symmetry~H! triangular, low symmetry rectangular, and spiral. TheH-phase domains
correspond to spin configurations of different chirality with local lattice rotation. We discuss the consequences
of the interplay between chirality and magnetoelastic frustration, specifically how the latter is relieved.
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An antiferromagnetic spin configuration on a rigid tw
dimensional~2D! triangular lattice is a frustrated system.
the lattice is deformable then this frustration can be relie
by the lattice adopting a~generally! lower symmetry via the
magnetoelastic coupling. In addition, it is known that fru
trated magnetic systems with a continuous spin symm
may possess~an Isinglike! discrete degeneracy, namely, th
right- and left-hand or chiral degeneracy. Here we illustr
these features by considering two-componentXY spins on a
triangular lattice and analyze various domain walls conne
ing domains with different chirality arising from the magn
toelastic interaction. An emerging theme here is that
magnetic frustration can be relieved by coupling to oth
degrees of freedom in a material, including elastic deform
tion as in the present case. Magnetoelastic interaction o
triangular lattice exists in materials such as solid oxygen1,2

AM(SO4)2 with M5Ti, Fe belonging to the Yavapaiite3,4

family, and magnetic materials with face-centered cu
structure~with the @111# planes corresponding to the triang
lar lattice!.

Chirality for the elementary triangle, with spinsSW 1 , SW 2,
andSW 3 on the three vertices, is determined by the quanti5

KW 1235SW 13SW 21SW 23SW 31SW 33SW 1 . ~1!

Two different phases that correspond to right- and le
handed spin structure are characterized by different sign
the parameter~1!. In crystals with a center of inversion, th
two ground states are degenerate. The chiral degenera
removed by applying either an electric6 or a magnetic7 field.
Quite recently the possibility to control the sense of chira
by applying an elastic torsion was demonstrated.8 The
Hamiltonian of the spin subsystem on a triangular latti
interacting with the displacements of the magnetic atoms

H5
1

2 (
nW ,dW

JnW ,nW 1dW SW nWSW nW 1dW . ~2!

HereSW nW is the spin of the atom located in thenW th site of the
lattice: nW 5n1cW11n2cW2 (n1 ,n250,61,62, . . . ), where cW1

5(1,0), cW25(1/2,A3/2) are the basic vectors of the triang
lar lattice,JnW ,nW 1dW [J(udW 1uW nW 1dW 2uW nW u) is the exchange integra
with uW nW being the atom displacements from their equilibriu
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positions~i.e., without magnetic interaction!. dW denotes the
vector that connects a site with nearest neighbors.

We will consider a small spatially smooth deformatio
and assume that (uW nW 1dW 2uW nW ) i5ui , j d j , i , j 5x,y, where the
notationui , j5]ui /] j is used. In this way the exchange int
gral JnW ,nW 1dW can be written asJnW ,nW 1dW 5J(12hd iui , jd j ), where
J[J(udW u) (J.0) is the exchange constant, the parame
h52dlnJ(urWu)/durWu is a measure of the inverse radius of t
exchange interaction and summation over repeated indic
assumed. The elastic energy density of the two-dimensio
triangular lattice in the continuum approximation coincid
with the elastic energy of the isotropic plane,

F5
1

2E $A1e1
21A2~e2

21e3
2!%drW, ~3!

where e15ux,x1uy,y is the dilatation ande25ux,x2uy,y ,
e35ux,y1uy,x are shear strains. HereA1 is the bulk modulus
andA2 is the shear modulus of the triangular material.9 By
using the spin variables in the formSW n5(cosfn ,sinfn,0),
we obtain the~spin! energy for Eq.~2! as

Es5JS2(
nW ,dW

~12hd iui , jd j !cos~fnW 2dW 2fnW !, ~4!

which contains both the magnetic~spin only! and magneto-
elastic~spin coupled to strain! contributions to the energy.

There is anadditional magnetoelastic contribution to th
energy due to the interaction between spin chirality and
tice deformation, and satisfies both time-reversal as wel
space-group symmetry operations. In the case of a triang
lattice, the simplest form of this energy is~see also Ref. 8!

Fx5(
nW ,dW

CdW ~SW nW 3SW nW 2dW !zd j] jv

5S2(
nW ,dW

CdW sin~fnW 2dW 2fnW !d j] jv. ~5!

Here the parameterCdW determines the strength of the inte
action, andv5ux,y2uy,x is the z component of rotation.9

Note that the chirality in Eq.~5! does not couple to strain bu
couples only to the gradient of local rotation (v).
©2002 The American Physical Society03-1
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The spin distribution and lattice structure of the syst
are determined by the minima of the energy~without the
chiral part Fx) E5F1Es with respect to the variationa
parameters, namely, the components of the deformation
sor ui , j and the anglefnW . The case of the spatially uniform
states of the system, when the strain tensorsea are spatially
uniform andfnW 5qW •nW without regard for dilatation deforma
tions, was considered in Ref. 10. The case of a triang
lattice subject to unidirectional strain was studied in Ref.
Here we consider the general case when the energy o
system can be represented in the formE5NJS2(Fm1Fel).
The first termFm5(12h1e1)W12h2(e2 W21e3 W3) is the
magnetic~and magnetoelastic! energy per atom without the
chiral part, with the notationsW15cosqx12 cos(qx/2)
3cos@(A3/2)qy#, W25cosqx2cos(qx/2)cos@(A3/2)qy#, and
W35A3 sin(qx/2)sin@(A3/2)qy#.

The second termFel5(a1/2)e1
21(a2/2)(e2

21e3
2) is the

elastic energy per atom.N is the number of sites in the lat
tice. The constantsaj5Aj s/(JS2)( j 51,2) are the relative
strengths of elastic interactions in terms of exchange ene
(s is the area of the unit cell in the lattice!. We also intro-
duced phenomenological parametersh1 and h2. The first
one (h1) characterizes magnetoelastic interaction caused
the dilatation of the lattice, while the second one (h2) de-
scribes the coupling with shear deformations. Note tha
the nearest-neighbor approximation,h15h2. The wave vec-
tor qW and the strain tensor componentsea (a51,2,3) are the
variational parameters. They are determined by the equat
]Fm /]qW 50 and](Fm1Fel)/]ea50, where the latter equa
tion represents the absence of internal stresses in the b
These equations have three types of solutions.

Triangular H phase.

qW H5
4p

3 S 6
1

2
,
A3

2 D , e25e350, e152
3h1

2a1
. ~6!

The spin structure corresponding to eachqW H is a three-
sublattice antiferromagnet. The antiferromagnetic doma
that correspond to two wave vectorsqW H are distinguished by
their chirality, i.e., they are characterized by different sig
of the parameter~1!. The lattice structure is a homoge
neously compressed triangular lattice~with no shear! due to
magnetoelastic interaction and has the space-group sym
try D6h ~p6mm!.

Rectangular L-phase.

qW L5
2p

A3
~0,1!, e152

h1

a1
, e25

2h2

a2
, e350. ~7!

The spin structure is a two-sublattice antiferromagnet. T
triangular lattice is compressed as well as sheared to gi
centered rectangular lattice. It is characterized by the sp
group symmetryD2h (c2mm). Note that the spin frustration
~in the parent triangular phase! is relieved by magnetoelas
ticity via transition to a phase of lower symmetry.

Spiral S phase.The wave vector is given byqW S

5(qs,2p/A3), with dilatation e15(h1 /a1)@cosqs
22 cos(qs/2)#, and sheare25(h2 /a2)@cosqs1cos(qs/2)#,
e350, where cos(qs/2)[z is the root of the equation 4(e1
14040
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1e2)z
22(4e125e2)z12e11e22250, with e j5h j

2/aj being
the dimensionless magnetoelastic energy shift due to dil
tion ( j 51) and shear (j 52). The spin structure is a spira
antiferromagnet.

Two more vectorsqW L andqW s and deformation tensorse2
ande3 can be obtained from the above equations by rotati
of 6p/3 since there are three orientation states for both
centered rectangular and spiral phases.

We consider the stability of the obtained solutions for t
case whene2>0, e350, 0<qx<2p/3, qy52p/A3. In this
subspace we obtain the following results.

~1! theL phase is stable and theH phase is unstable whe
e2.(416e1)/9.

~2! Both H and L phases are stable when (11e1/5),e2
,(416e1/9). Fore25(41e1/16) theH andL phases have
the same energy while fore2.(41e1/16) theL phase be-
comes energetically more favorable.

~3! TheH phase is stable whene2,(11e1/5). The spiral
phase does not correspond to a minimum of the ground-s
energy. In the above subspace the spiral phase in the inte
(11e1/5),e2,(416e1/9) corresponds to a saddle poi
that separates the two stable phasesH andL.

Domain walls.To study spatiallynonuniformstates, in the
quasicontinuum approach, regardingnW as a continuum vari-
able: nW→rW, fnW→f(rW), we assume that the wave vect
qW (rW)[¹f(rW) is a smooth function of the spatial coordinaterW
and the differencefnW 1dW 2fnW in Eq. ~4! can be approximated
as fnW 1dW 2fnW'qid i1

1
2 d iqi , jd j and cos(fnW1dW 2fnW)'@1

2 1
8(diqi,jdj)

2#cos(qW•dW), where we have taken into account th
the gradient terms are small. Inserting the latter equation
Eq. ~4! and neglecting small terms (d iui , jd j ), (d iqi , jd j )

2 we
find that the magnetic and magnetoelastic energy of the
tem ~without chiral interaction! has the formFm5*(Fm
1Fg)drW, whereFm is given above and the second term~gra-
dient energy! Fg5(b1/2) (“•qW )21 (b2/2) @(qx,x2qy,y)

2

1(qx,y1qy,x)
2# penalizes spatial inhomogeneities in th

high-symmetryH phase. Here the positive inhomogeneo
exchange interaction~or gradient! constantsb1 andb2 are

b152
1

32 (
dW

dW 4cos~qW H•dW !5
3

64
, b25

1

2
b1 .

Thus thetotal magnetic and magnetoelastic energy de
sity of the triangular lattice~with chiral interaction!, which
we consider here to study domain walls, has the form

F5~12h1e1!W12h2~e2W21e3W3!

1 1
2 @a1e1

21a2~e2
21e3

2!#1Fg1Fx , ~8!

where the functionsWa (a51,2,3) are given above with a
space dependent vectorqW (rW). The spatial structure of the
system is determined by the Euler-Lagrange equations
the wave vectorqW and the displacementsuW :
3-2
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~b11b2!¹2~“•qW !2“•

]

]qW
$~12h1e1!W12h2@e2W2

1e3W3#1Fx%50, a2¹2uW 1a1“~“•uW !2 fW50, ~9!

with the body forcefW given by

f x5]x~h1W11h2W2!1h2]yW32x~]xy
2 W41]y

2W5!,

f y5]y~h1W12h2W2!1h2]xW31x~]x
2W41]xy

2 W5!,

where W45sin(qx)1sin(qx/2)cos(A3qy/2) and W5

5cos(qx/2)sin(A3qy/2). The energy density of the spi
chirality-lattice deformation interactionFx is

Fx5xH sin~qx!]xv1sinS qx

2 D cosSA3qy

2 D ]xv

1A3 cosS qx

2 D sinSA3qy

2 D ]yvJ , ~10!

where the parameterx5C/J represents the strength of th
interaction in terms of the spin-exchange integral. We n
analyze the domain walls linking two variant phases. In w
follows we neglect, for simplicity, the spin-dilatation inte
action and assumeh150. This interaction is responsible fo
the unit-cell area change and does not influence qualita
behavior of the system.

We assume that the domain wall is oriented along thy
axis and in this way we are interested in solutions to Eqs.~9!,
which depend on one spatial variablex. With the domain
walls present in the system there exist spontaneous non
form elastic stresses which are determined by the express
sxx5(a11a2)]xux2h2W2 , syy5(a12a2)]xux1h2W2,
andsxy5a22h2W3.

Let us consider a domain wall that links the variantsH6

with qW H54p/3(61/2,A3/2). This means that we look fo
solutions under boundary conditions

qx→6
2p

3
, qy→

2p

A3
, ]xuW→0, x→6`. ~11!

We consider separately the cases without and with s
chirality-lattice deformation interaction.

x50. Under the boundary conditions~11! we find qy

52p/A3, ]xux5(h2 /a)W2 , ]xuy50, and

b]x
2qx2

]

]qx
H cos~qx!22 cosS qx

2 D
2

e

2 Fcos~qx!1cosS qx

2 D G2J 50, ~12!

where the parametere5h2
2/a characterizes the intensity o

~non-chiral! magnetoelastic coupling for the case of on
dimensional longitudinal deformations anda5a11a2 , b
5b11b2. For e,1/4, the solution of Eq.~12! under the
boundary condition~11! is given by the expression
14040
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x~827m!

A8~22m!b
5$mF~cum!18m1P~n,cum!%, ~13!

whereF(cum) @P(n,cum)# is the incomplete elliptic inte-
gral of the first~third! kind12 with the argumentc and modu-
lus m given by

tan
qx

4
5A2~12m!

22m
tanc, n5

827m

22m
, m5

4Ae

112Ae
,

m1512m. For e,1/5 the function~13! gives a single do-
main wall that links two variants of theH phase@Fig. 1~a!#.
For 1/5,e,1/4 it represents a sandwichlike structur
H1-L-H2 @see Fig. 1~b!#. Note that wheneP(1/5, 1/4) the
low symmetryL phase is metastable: its energy is high
than the energy of theH phase. The spatial extension of th
intermediateL phase depends one: it increases whene
→1/4. The corresponding lattice structure is determined

ux5
2h2Ab

ea H FS p

2
1

qx

4 U4e D2ES p

2
1

qx

4 U4e D
2FS p

3 U4e D2ES p

3 U4e D J
and uy50. For eP(1/4, 4/9) when bothH and L phases
exist but theL phase has lower energy than theH phase, the
solution to Eq.~12! under the boundary conditions~11! rep-
resents a pulse solution@Fig. 2~a!# with an amplitude which
depends on the strength of the magnetoelastic couplinge.

xÞ0, h250. Assuming no shear magnetoelastic co
pling (h250) for simplicity, under the boundary condition
~11! we obtain]xux50 and]xuy5(x/a2)]xW4. We define a
parameterj5x2/a2 which gives the strength of the couplin
between the spin chirality and lattice deformation. The
sulting Euler-Lagrange equation is similar to a double si
Gordon equation13 but with a wave-vector-dependent grad

FIG. 1. Schematic representation of domain walls for no int
action between spin chirality and lattice deformation (x50)). ~a!
Spin configuration for a domain connecting two triangular varia
(H1 , H2). ~b! Spin structure@chirality variationk, see Eq.~1!# and
strain e for a domain with the rectangular~L! phase sandwiched
between two triangular (H1 , H2) variants.
3-3
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ent coefficient. It has the associated free energyf
5 1

2 L2(qx)(]xqx)
21cosqx22 cos(qx/2), where

L~qx!5Ab2jFcosqx2
1

2
cosS qx

2 D G2

~14!

is an effective correlation length. It is seen from this expr
sion that when the coupling between spin chirality and latt
deformation is sufficiently strong (j is large! the system is
unstable with respect to the creation of spatially inhomo
neous excitations. To stabilize the system the higher der
tives of the wave vectorqx and/or the strain gradient
(“ei)

2( i 51,2,3) should be taken into account.14 In what
follows we restrict ourselves to the case of weak s
chirality-lattice deformation interactionj,b, when the ef-
fective correlation length is real@L2(qx).0 #.

Using the boundary conditions~11! for qx we get
(]xqx)

2L2(qx)22@cosqx22 cos(qx/2)#53. The solution to
this equation describes a domain wall that links the two v

FIG. 2. ~a! Spin structure and strain for a domain containing t
triangular~H! phase sandwiched between the rectangular~L! phase.
~b! For xÞ0 spin structure is similar to Fig. 1~a! but with a local
lattice rotation (v) in the region of the chiral domain wall.
ity

14040
-
e

-
a-

n
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ants with different chiralities@see Fig. 2~b!#. The z compo-
nent of local lattice rotation given by

v5
x

a2

„122 cos~qx/2!…@2 cos~qx!2cos~qx/2!#

2 L~qx!
, ~15!

is a pulselike distribution@Fig. 2~b!#. Thus, within the do-
main wall the lattice experiences two kinds of rotatio
clockwise and counterclockwise. The structure of the latt
in the domain wall region is determined by the relationsux
50 anduy5(x/a2)@sin(qx)2sin(qx/2)#. The corresponding
lattice and spin structures~not shown! are similar to Fig.
1~a!. For h2Þ0 the solutions must be obtaine
numerically.

In summary, we have investigated spatially inhomog
neous ground states of quasi-two-dimensional magnetoe
tic materials such as solid oxygen. We found three differ
ground states—high symmetry~triangular!, low symmetry
~rectangular!, and spiral phases—for magnetoelastica
coupledXY spins on a triangular lattice. In addition to find
ing chiral antiferromagnetic domain wall solutions~spin ori-
entation and lattice deformation!, we found that the magnetic
frustration can be relieved by coupling magnetism to elas
ity. We anticipate that similar effects will be obtained mo
generally by coupling to other degrees of freedom such
shuffles, out-of-plane distortions and external fields~stress,
magnetic field!. Finally, we note that an antiferromagnet
Heisenberg model was also used to describe triang
monolayer adsorption on a surface.15 Removal of frustration
on a compressible Ising antiferromagnet on a triangular
tice has been studied previously.16 An understanding of mag
netoelastic domains in the antiferromagnetic phase is
important in many materials.17
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