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We analyze domain walls on a two-dimensional triangular lattice with magnetoelastic coupling and find
three phases: high symmettid) triangular, low symmetry rectangular, and spiral. THehase domains
correspond to spin configurations of different chirality with local lattice rotation. We discuss the consequences
of the interplay between chirality and magnetoelastic frustration, specifically how the latter is relieved.
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An antiferromagnetic spin configuration on a rigid two- positions(i.e., without magnetic interactions denotes the
dimensional(2D) triangular lattice is a frustrated system. If vector that connects a site with nearest neighbors.
the lattice is deformable then this frustration can be relieved We will consider a small spatially smooth deformation
by the lattice adopting é&generally lower symmetry via the and assume thatuf, 5— G‘rbi:Ui,j 6;, 1,j=x,y, where the
magnetoelastic coupling. In addition, it is known that frus-notationu; ;= Ju; /Jj is used. In this way the exchange inte-
trated magnetic systems with a continuous spin symmetryral J; -, ; can be written ash;,, 5=J(1— néu; ;5;), where
may possesgan Isinglike discrete degeneracy, namely, the J=J( §|) (J>0) is the exchange constant, the parameter
right- and left-hand or phirgl degeneracy. Here we illustrate, —dInJ(r)/d|r] is a measure of the inverse radius of the
these features by considering two-compon€tspins on &  aychange interaction and summation over repeated indices is
triangular lattice and analyze various domain walls connectzssumed. The elastic energy density of the two-dimensional

ing domains with different chirality arising from the magne- yjangular lattice in the continuum approximation coincides
toelastic interaction. An emerging theme here is that th€iih the elastic energy of the isotropic plane

magnetic frustration can be relieved by coupling to other

degrees of freedom in a material, including elastic deforma- 1

tion as in the present case. Magnetoelastic interaction on a b= —f {Are2+ A (e5+ed)}dr, (3
triangular lattice exists in materials such as solid oxyben, 2

AM(SQ,), with M=Ti, Fe belonging to the Yavapaiité where e.=U. -+ u. . is the dilatation ande.=u. .—u
family, and magnetic materials with face-centered cubic 1 Txx Yy 2 XX Yy

) ) ! €3= U, T U, , are shear strains. Herg is the bulk modulus
structuree(wnh the[111] planes corresponding to the triangu- - 4 A, is the shear modulus of the triangular mate¥igy
lar lattice). -

-~ . . S22 ing th [ iables in the f = ,Sin¢,,0),
Chirality for the elementary triangle, with spirg, S,, \lljvsem(?btaﬁ fﬁ;sg%nins%;nfor?ch_zrz?qas(cosd)” Sin¢n,0)
andS; on the three vertices, is determined by the quanhtity

|2123:§1><§2+§2><§3+§3><§1_ (1) Es:JSZ% (1=néu; ;6j)cod dp 5= dn), (4)
Two different phases that correspond to right- and left-
handed spin structure are characterized by different signs
the paramete(l). In crystals with a center of inversion, the
two ground states are degenerate. The chiral degeneracy(;}1
removed by applying either an elecfrior a magnetitfield.
Quite recently the possibility to control the sense of chirality
by applying an elastic torsion was demonstréte@ihe
Hamiltonian of the spin subsystem on a triangular lattice,
interacting with the displacements of the magnetic atoms, is

hich contains both the magnetispin only) and magneto-
lastic(spin coupled to strajncontributions to the energy.
There is amadditional magnetoelastic contribution to the
ergy due to the interaction between spin chirality and lat-
tice deformation, and satisfies both time-reversal as well as
space-group symmetry operations. In the case of a triangular
lattice, the simplest form of this energy (see also Ref.)8

Fr=2 Cs(SiXSi9.800
1 o Ao
H=3 2 Jans SiShe s @
no =S, Cjsin( i 5 ¢ 5jdj 0. (5)
HereS; is the spin of the atom located in ti¢h site of the no

lattice: A=n;C,+nyCy (N1,n;=0=1,%2,...), where C;  Here the parameteE; determines the strength of the inter-
=(1,0), C,=(1/2,/3/2) are the basic vectors of the triangu- action, andw= Uyy— Uy i the z component of rotatiof.
lar lattice,Jq7. 5 =J(] 8+ U, 5~ Ugl) is the exchange integral Note that the chirality in EqQ’5) does not couple to strain but
with Uy, being the atom displacements from their equilibrium couples only to the gradient of local rotatiom)
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The spin distribution and lattice structure of the system+ e,)2—(4e;—5e,)z+2¢,+€,—2=0, with €= 7]]-2/a]- being
are determined by the minima of the energyithout the  the dimensionless magnetoelastic energy shift due to dilata-
chiral partF,) E=®+Eg with respect to the variational tion (j=1) and shearj(=2). The spin structure is a spiral
parameters, namely, the components of the deformation temmntiferromagnet.
soru;; and the anglep,. The case of the spatially uniform Two more vectors), andds and deformation tensos,
states of the system, when the strain tensgrare spatially ~ande; can be obtained from the above equations by rotations
uniform and¢=q- n without regard for dilatation deforma- of + /3 since there are three orientation states for both the
tions, was considered in Ref. 10. The case of a triangulagentered rectangular and spiral phases.
lattice subject to unidirectional strain was studied in Ref. 11. \We consider the stability of the obtained solutions for the
Here we consider the general case when the energy of thease where,=0, e;=0, 0<q,<27/3, qy=2w/\/§. In this
system can be represented in the fdfm NJS(F,+ Fe).  subspace we obtain the following resulits.

The first termF, = (1— 7,1€1) W1 — n2(€2 Wo+e3 Wa) s the (1) theL phase is stable and th&phase is unstable when
magnetic(and magnetoelasfienergy per atom without the ¢,>(4+6¢,)/9.

chiral part, with the notationsW;=cosay+2 cosfy/2) (2) Both H andL phases are stable when{%,/5)<e,

X cog(v3/2)ay], W,=cosg,—cos@/2)co$(y3/2)a,], and < (4+6e,/9). Fore,=(4+ €,/16) theH andL phases have
Ws= /3 sin@,/2)sir (v3/2)a,]. the same energy while for,> (4+ €,/16) theL phase be-

The second termiF, = (a,/2)e+ (a,/2)(e3+e3) is the  comes energetically more favorable.
elastic energy per atonN is the number of sites in the lat- (3) TheH phase is stable whesy<(1+ €,/5). The spiral
tice. The constanta;=A; o/(J $)(j=1,2) are the relative phase does not correspond to a minimum of the ground-state
strengths of elastic interactions in terms of exchange energgnergy. In the above subspace the spiral phase in the interval
(o is the area of the unit cell in the latticeWe also intro-  (1+€1/5)<e,<(4+6€41/9) corresponds to a saddle point
duced phenomenological parametefs and 7,. The first  that separates the two stable phalseandL.
one (n;) characterizes magnetoelastic interaction caused by
the dilatation of the lattice, while the second ong,) de-
scribes the coupling with shear deformations. Note that i
the nearest-neighbor approximatiop,= 7,. The wave vec-

Domain walls.To study spatiallynonuniformstates, in the
rguasic»ontiﬁnuum apgroach, regardingas a continuum vari-
able: n—r, ¢y— ¢(r), we assume that the wave vector
tor § and the strain tensor componests(a=1,2,3) are the q(r)=V ¢(r) is a smooth function of the spatial coordinate

variational parameters. They are determined by the equatiori'd the Ejifferejc@m;sl— ¢nin Eq.(4) can be ap)proxinlated
9Fml 9G=0 andd(F+ Fe)/9e,=0, where the latter equa- 35, bire 5 $i=9idi+260;9 and cosfys—dy~[1
tion represents the absence of internal stresses in the body.3(4di;§)1cos@- d), where we have taken into account that

These equations have three types of solutions. the gradient terms are small. Inserting the latter equation into
. i 2
Triangular H phase. Ed. (4) and neglecting small termss(u; ;6;), (80 j0;)° we
find that the magnetic and magnetoelastic energy of the sys-

. 4w 143 37 tem (without chiral interactiop has the formF .= [(F,
G="73| 5.5 | €2=€3=0, er=—-~. (6)  +F)dr, whereF,is given above and the second tefuna-
1 . >
_ _ o dient energy Fy=(b1/2) (V-q)*+ (b2/2)[(dxx—Cy.y)?
The spin structure corresponding to eagh is a three- +(qx’y+qux)2] penalizes spatial inhomogeneities in the
sublattice antiferromagnet. The antiferromagnetic domainﬁigh-symmetryH phase. Here the positive inhomogeneous
that correspond to two wave vectdjg are distinguished by exchange interactiofor gradient constantd; andb, are
their chirality, i.e., they are characterized by different signs
of the parameterl). The lattice structure is a homoge-
neously compressed triangular latticgith no shear due to 1 - . - 1
magnetoelastic interaction and has the space-group symme-  B1=— 32 2 'cody- 8)= 62’ b2:§bl-
try Dgp, (P6MM). 0
Rectangular kphase.

Thus thetotal magnetic and magnetoelastic energy den-

2 2 . . . . o ; .
ci,_=—77(0,1), e,=— ﬂ, ezzﬂ, e;=0. (7) sity of the triangular latticéwith chiral interaction, which
V3 a a we consider here to study domain walls, has the form
The spin structure is a two-sublattice antiferromagnet. The
triangular lattice is compressed as well as sheared to give a _
. - . =(1—nme1)W,— e,W,+e;W
centered rectangular lattice. It is characterized by the space- F= (1= 18 Wi = 72(€Wo €5 Ws)
group symmetnD,y, (c2mm). Note that the spin frustration + %[a1e§+a2(e§+e§)]+Fg+fX, 8

(in the parent triangular phases relieved by magnetoelas-
ticity via transition to a phase of lower symmetry.

Spiral S phase.The wave vector is given byjs  where the function®V, («=1,2,3) are given above with a
=(0s27/\3), with dilatation e;=(7,/a;)[cosqs space dependent vectq(r). The spatial structure of the
—2cos@/2)], and sheare,=(7,/a,)[cosqs+cos@d2)], system is determined by the Euler-Lagrange equations for
e;=0, where cos(/2)=z is the root of the equation 4(  the wave vectoq and the displacements
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5 . J
(b1+by)VA(V-q)—-V- a_d{(l_ 7181) Wi — m[ €W, O<e<tls "
2
N k
+e3Ws]+F,}=0, a,V2u+a,V(V-4)—f=0, (9 y .
1 X =
with the body forcef given by
fy= 0x( 7 W1+ 72W5) + 720y W3 — x (5, Wy + 95 W), ®) X . Vo<e<it "
2 5 K
fy=dy(n1W1— 7,Wo) + 1729, W5+ X(ORW,+ a>2<yW5), % ! 4 =01
HoL
where W4=sin(qx)+sin(qX/2)cos(\/§qy/2) and  Wg > ! R 1
=cos(i/2)sin(y/3a,/2). The energy density of the spin ol ¢
chirality-lattice deformation interaction, is Hy L Fe He L He

FIG. 1. Schematic representation of domain walls for no inter-
)a o action between spin chirality and lattice deformatign=0)). (a)
X Spin configuration for a domain connecting two triangular variants

V3q
Fa=x 2 2

Sin(dy) 9w+ Sin O cos{

\/§ (Hy, Hy). (b) Spin structurdchirality variationk, see Eq(1)] and
L3 co< %) sin( Qy) ayw]’ (10) strain e for a domain with the rectanguldt) phase sandwiched

2 2 between two triangularH,, H,) variants.
where the parametey=C/J represents the strength of the X(8—7m)
interaction in terms of the spin-exchange integral. We now ————=={mF(y|m)+8myIl(n,4|m)}, (13
analyze the domain walls linking two variant phases. In what 8(2—m)b

follows we neglect, for simplicity, the spin-dilatation inter-
action and assumg,=0. This interaction is responsible for
the unit-cell area change and does not influence qualitativ8

where F(g|m) [TI(n,y|m)] is the incomplete elliptic inte-
ral of the first(third) kind'2 with the argument and modu-

behavior of the system. lus m given by

We assume that the domain wall is oriented alongythe
axis and in this way we are interested in solutions to E9js. . Ox _ 2(1- m)tanw n— 8—7m m= 4\e
which depend on one spatial variabte With the domain 4 2—m ' 2-m’ 1+24e’

walls present in the system there exist spontaneous nonuni-

form elastic stresses which are determined by the expressiofid,=1—m. For e<1/5 the function(13) gives a single do-

= (a1+ ) Uy — 7o Wy, oy, = (81— ap) dylx+ 7, Ws, main wall that Iink_s two variants of thel ph_ase_[Fig. 1@].

and oy = a,— 7,Ws. For 1/5<e<1/4 it represents a sandwichlike structure:
Let us consider a domain wall that links the variadts ~ Hi-L-H> [see Fig. 1b)]. Note that whenee (1/5, 1/4) the

with Gy =4m/3(+1/2,/3/2). This means that we look for oW symmetryL phase is metastable: its energy is higher

solutions under boundary conditions than the energy of thel phase. The spatial extension of the
intermediateL phase depends oa: it increases whenre
20 2 —1/4. The corresponding lattice structure is determined by

=3 qyﬂﬁ, 3,0—0, X— oo, (11)

ux=27§6[F(5+% 4e> ~E g+% 45)
We consider separately the cases without and with spin
chirality-lattice deformation interaction. T T
x=0. Under the boundary conditiond1) we find g, -Fl3 46) _E<§ 45)]
=2m//3, d,u=(n2/a)W,, d,u,=0, and
and u,=0. For ee(1/4, 4/9) when botH and L phases
) d Oy exist but thel. phase has lower energy than tHephase, the
b5y — &_qx[ cogq,) —2 COS( 5) solution to Eq.(12) under the boundary conditiori§1) rep-

resents a pulse solutidirig. 2(a)] with an amplitude which
2 depends on the strength of the magnetoelastic coupling
=0, (12) x#0, 7,=0. Assuming no shear magnetoelastic cou-
pling (7,=0) for simplicity, under the boundary conditions
where the parameter= 73/a characterizes the intensity of (11) we obtaind,u,=0 andd,u, = (x/a,) ,W,. We define a
(non-chira) magnetoelastic coupling for the case of one-parameteg= y?/a, which gives the strength of the coupling
dimensional longitudinal deformations arek=a;+a,, b between the spin chirality and lattice deformation. The re-
=b,+b,. For e<1/4, the solution of Eq(12) under the sulting Euler-Lagrange equation is similar to a double sine-
boundary conditior{11) is given by the expression Gordon equatiolf but with a wave-vector-dependent gradi-

€

2

cogqy,) + cos{ %)
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(@ 14 <& < 4/9 ants with different chiralitie§see Fig. 2b)]. The z compo-
: 0 1 (1=0) nent of local lattice rotation given by
4L L A
=k oo X (17200%0,/2))[2 codqy) ~ o8 qx/2)] 15
0 SN S N a, 2L(q0 !
(4]
L H L is a pulselike distributiofFig. 2(b)]. Thus, within the do-

main wall the lattice experiences two kinds of rotation:
clockwise and counterclockwise. The structure of the lattice

®) H, (x2) in the domain wall region is determined by the relatiags
=0 anduy=(x/a,)[sin(@)—sin@¢2)]. The corresponding
Hy (x1) lattice and spin structuregot shown are similar to Fig.
1(a). For #,#0 the solutions must be obtained
® numerically.
Hy Hy In summary, we have investigated spatially inhomoge-

neous ground states of quasi-two-dimensional magnetoelas-
tic materials such as solid oxygen. We found three different
ground states—high symmetrgriangulay, low symmetry
(rectangular, and spiral phases—for magnetoelastically
coupledXY spins on a triangular lattice. In addition to find-
ing chiral antiferromagnetic domain wall solutiofspin ori-
entation and lattice deformatiprwe found that the magnetic
frustration can be relieved by coupling magnetism to elastic-
)r ity. We anticipate that similar effects will be obtained more

FIG. 2. (a) Spin structure and strain for a domain containing the
triangular(H) phase sandwiched between the rectangillaphase.
(b) For x#0 spin structure is similar to Fig.(d@ but with a local
lattice rotation ) in the region of the chiral domain wall.

ent coefficient. It has the associated free enerfly

=212(q,) (d40y) %+ cosag,—2 cosfL,/2), where
L(g,) = \/b—§ COSQ,— lcos<% (14)  generally by coupling to other degrees of freedom such as
2 2 shuffles, out-of-plane distortions and external fie{gisess,
. . . . . magnetic fielgl Finally, we note that an antiferromagnetic
is an effective correlation length. It is seen from this expres—Heisenberg model was also used to describe triangular

def tion | Hiciently st is large th e | emonolayer adsorption on a surfateRemoval of frustration
eformation is sufficiently strongg(is larg e System1s = o, 5 compressible Ising antiferromagnet on a triangular lat-

unstable vy|th respect to the creation of spatially mhomoge;[ice has been studied previoushaAn understanding of mag-

Fetoelastic domains in the antiferromagnetic phase is also
important in many materiafs.

tives of the wave vector, and/or the strain gradients
(Ve)?(i=1,2,3) should be taken into accodfitin what
follows we restrict ourselves to the case of weak spin Yu.B.G. is grateful for the hospitality of LANL and the
chirality-lattice deformation interactio§<<b, when the ef-  University of Bayreuth and acknowledges the support pro-
fective correlation length is refl?(qg,)>0 ]. vided by the DLR Project No. UKR-002-99. A.R.B. appre-

Using the boundary conditiongll) for q, we get ciates the financial support at the University of Bayreuth.
(9x05)?L?(qy) — 2[ cosg,—2 cos@,/2)]=3. The solution to Work at Los Alamos was performed under the auspices of
this equation describes a domain wall that links the two varithe U.S. Department of Energy.
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