
PHYSICAL REVIEW B 66, 134529 ~2002!
Superfluidity in dilute trapped Bose gases
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A commonly used theoretical definition of superfluidity in the ground state of a Bose gas is based on the
response of the system to an imposed velocity field or, equivalently, to twisted boundary conditions in a box.
We are able to carry out this program in the case of a dilute interacting Bose gas in a trap, and we prove that
a gas with repulsive interactions is 100% superfluid in the dilute limit in which the Gross-Pitaevskii equation
is exact. This is the first example in an experimentally realistic continuum model in which superfluidity is
rigorously verified.
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I. INTRODUCTION

The phenomenological two-fluid model of superfluidi
~see, e.g., Ref. 1! is based on the idea that the particle dens
r is composed of two parts, the densityrs of the inviscid
superfluid and the normal fluid densityrn . If an external
velocity field is imposed on the fluid~for instance by moving
the walls of the container! only the viscous normal compo
nent responds to the velocity field, while the superfluid co
ponent stays at rest. In accord with these ideas the super
density in the ground state is often defined as follows2: Let
E0 denote the ground state energy of the system in the
frame andE08 the ground state energy, measured in the m
ing frame, when a velocity fieldv is imposed. Then, for
small v,

E08

N
5

E0

N
1~rs/r!

1

2
mv21O~ uvu4!, ~1!

whereN is the particle number andm the particle mass. At
positive temperatures the ground state energy should be
placed by the free energy.@Remark: It is important here tha
Eq. ~1! holds uniformly for all largeN, i.e., that the error
term O(uvu4) can be bounded independently ofN. For fixed
N and a finite box, Eq.~1! with rs/r51 always holds for a
Bose gas with an arbitrary interaction ifv is small enough,
owing to the discreteness of the energy spectrum.3# There are
other definitions of the superfluid density that may lead
slightly different results,4 but this is the one we shall use i
this paper. We shall not dwell on this issue here, since i
not clear that there is a ‘‘one-size-fits-all’’ definition of su
perfluidity. For instance, in the definition we use here
ideal Bose gas is a perfect superfluid in its ground st
whereas the definition of Landau in terms of a linear disp
sion relation of elementary excitations would indicate oth
wise. We emphasize that we are not advocating any part
lar approach to the superfluidity question; our contribut
here consists of taking one standard definition and making
consequences explicit.

One of the unresolved issues in the theory of superfluid
is its relation to Bose-Einstein condensation~BEC!. It has
been argued that in general neither condition is necessar
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y

-
id

st
-

re-

o

is

e
e,
r-
-
u-

ts

y

for

the other~cf., e.g., Refs. 5–7!. A simple example illustrating
the fact that BEC is not necessary for superfluidity is t
one-dimensional hard-core Bose gas. This system is w
known to have a spectrum like that of an ideal Fermi ga8

and it is easy to see that it is superfluid in its ground state
the sense of Eq.~1!. On the other hand, it has no BEC.9,10

The definition of the superfluid velocity as the gradient of t
phase of the condensate wave function2,11 is clearly not ap-
plicable in such cases.

We do not give a historical overview of superfluidity b
cause excellent review articles are available.11,12 While the
early investigations of superfluidity and Bose-Einstein co
densation were mostly concerned with liquid Helium 4,
has become possible in recent years to study these phe
ena in dilute trapped gases of alkali atoms.13 The experimen-
tal success in realizing BEC in such gases has led to a l
number of theoretical papers on this subject. Most of th
works take BEC for granted, and start off with the Gros
Pitaevskii ~GP! equation to describe the condensate wa
function. A rigorous justification of these assumptions
however a difficult task, and only very recently BEC h
been rigorously proved for a physically realistic many-bo
Hamiltonian.14 It is clearly of interest to show that superflu
idity also holds in this model, and this is what we accompl
here. We prove that the ground state of a Bose gas with s
range, repulsive interaction is 100% superfluid in the dilu
limit in which the Gross-Pitaevskii description of the gas
exact. This is the limit in which the particle number tends
infinity, but the ratioNa/L, wherea is the scattering length
of the interaction potential andL the box size, is kept fixed
~The significance of the parameterNa/L is that it is the ratio
of the ground state energy per particle,;Na/L3, to the low-
est excitation energy in the box,;1/L2.! In addition we
show that the gas remains 100% Bose-Einstein condense
this limit, also for a finite velocityv. Both results can be
generalized from periodic boxes to~nonconstant! velocity
fields in a cylindrical geometry.

The results of this paper have been conjectured for m
years, and it is gratifying that they can be proved from fi
principles. To our knowledge they represent the first exam
of a rigorous verification of superfluidity in an experime
tally realistic continuum model.
©2002 The American Physical Society29-1
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We wish to emphasize that in this GP limit the fact th
there is 100% condensation does not mean that no signifi
interactions occur. The kinetic and potential energies can
fer markedly from that obtained with a simple variation
function that is anN-fold product of one-body condensa
wave functions. This assertion might seem paradoxical,
the explanation is that near the GP limit the region in wh
the wave function differs from the condensate function ha
tiny volume that goes to zero asN→`. Nevertheless, the
interaction energy, which is proportional toN, resides in this
tiny volume.

II. SETTING AND MAIN RESULTS

We consider a Bose gas with the Hamiltonian

HN52m(
j 51

N

¹ j
21 (

1< i , j <N
v~ ur i2r j u!, ~2!

wherem5\2/(2m) and the interaction potentialv is non-
negative and of finite range. The two-body scattering len
of v is denoted bya. The Hamiltonian acts on totally sym
metric functionsC of N variablesr i5(xi ,yi ,zi)PK,R3,
whereK denotes the cube@0,L#3 of side lengthL. ~We could
easily use a cuboid of sidesL1 ,L2 ,L3 instead.! We assume
periodic boundary conditions in all three coordinate dire
tions.

Imposing an external velocity fieldv5(0,0,6uvu) means
that the momentum operatorp52 i\¹ is replaced byp
2mv, retaining the periodic boundary conditions. T
Hamiltonian in the moving frame is thus

HN8 52m(
j 51

N

~¹j1 iw/L !21 (
1< i , j <N

v~ ur i2r j u!, ~3!

where w5(0,0,w) and the dimensionless phasew is con-
nected to the velocityv by

w5
6uvuLm

\
. ~4!

Let E0(N,a,w) denote the ground state energy of Eq.~3!
with periodic boundary conditions. Obviously it is no restri
tion to consider only the case2p<w<p, sinceE0 is peri-
odic in w with period 2p. For C0 the ground state ofHN8 ,
let gN be its one-particle reduced density matrix

gN~r ,r 8!5NE
K N21

C0~r ,r2 , . . . ,rN!

3C0* ~r 8,r2 , . . . ,rN!dr2•••drN . ~5!

We are interested in the GP limitN→` with Na/L fixed. We
also fix the box sizeL. This means thata should vary like
1/N which can be achieved by writingv(r )5a22v1(r /a),
wherev1 is a fixed potential with scattering length 1, whilea
changes withN.

THEOREM 1 (Superfluidity of homogeneous gas). For
uwu<p
13452
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lim
N→`

E0~N,a,w!

N
54pmar1m

w2

L2
~6!

in the limit N→` with Na/L and L fixed. Herer5N/L3, so
ar is fixed too. In the same limit, for uwu,p,

lim
N→`

1

N
gN~r ,r 8!5

1

L3
~7!

in trace class norm, i.e.,

limN→`Tr@ ugN /N2uL23/2&^L23/2uu#50.

Note that, by definition~1! of rs and Eq. ~4!, Eq. ~6!
means thatrs5r, i.e., there is 100% superfluidity. Forw
50, Eq.~6! was first proved in Ref. 15. Eq.~7! for w50 is
the BEC proved in Ref. 14.

Remarks. ~1! By a unitary gauge transformation,

~UC!~r1 , . . . ,rN!5eiw((
i

zi )/LC~r1 , . . . ,rN!, ~8!

the passage from Eq.~2! to Eq.~3! is equivalent to replacing
periodic boundary conditions in a box by thetwisted bound-
ary condition

C~r11~0,0,L !,r2 , . . . ,rN!5eiwC~r1 ,r2 , . . . ,rN! ~9!

in the direction of the velocity field, while retaining the orig
nal Hamiltonian@Eq. ~2!#.

~2! The criterionuwu<p means thatuvu<p\/(mL). The
corresponding energy12 m@p\/(mL)#2 is the gap in the ex-
citation spectrum of the one-particle Hamiltonian in t
finite-size system.

~3! The reason that we have to restrict ourselves touwu
,p in the second part of theorem 1 is that foruwu5p there
are two ground states of the operator (¹1 iw/L)2 with peri-
odic boundary conditions. All we can say in this case is t
there is a subsequence ofgN that converges to a densit
matrix of rank <2, whose range is spanned by these t
functions.

Theorem 1 can be generalized in various ways to a ph
cally more realistic setting. As an example, letC be a finite
cylinder based on an annulus centered at the origin. Give
bounded, real functiona(r ,z) let A be the vector field~in
polar coordinates! A(r ,u,z)5wa(r ,z)êu , where êu is the
unit vector in theu direction. We also allow for a bounde
external potentialV(r ,z) that does not depend onu.

Using the methods of Appendix A in Ref. 16, it is no
difficult to see that there exists aw0.0, depending only on
C and a(r ,z), such that for alluwu,w0 there is a unique
minimizer fGP of the Gross-Pitaevskii functional

E GP@f#5E
C
$mu@¹1 iA~r !#f~r !u21V~r !uf~r !u2

14pmNauf~r !u4%d3r ~10!

under the normalization condition* ufu251. This minimizer
does not depend onu, and can be chosen to be positive, f
the following reason: The relevant term in the kinetic ener
is T52r 22@]/]u1 iwra(r ,z)#2. If uwra(r ,z)u,1/2, it is
9-2
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SUPERFLUIDITY IN DILUTE TRAPPED BOSE GASES PHYSICAL REVIEW B66, 134529 ~2002!
easy to see thatT>w2a(r ,z)2, in which case, without rais
ing the energy, we can replacef by the square root of the
u-average ofufu2. This can only lower the kinetic energy17

and, by convexity ofx→x2, this also lowers thef4 term.
We denote the ground state energy ofE GP by EGP, de-

pending onNa andw. The following theorem 2 concerns th
ground state energyE0 of

HN
A5(

j 51

N

$2m@¹j1 iA~r j !#
21V~r j !%1 (

1< i , j <N
v~ ur i2r j u!,

~11!

with Neumann boundary conditions onC, and the one-
particle reduced density matrixgN of the ground state, re
spectively. Different boundary conditions can be treated
the same manner, if they are also used in Eq.~10!.

Remark. As a special case, consider a uniformly rotati
system. In this caseA(r )5wrêu , where 2w is the angular
velocity. HN

A is the Hamiltonian in the rotating frame, bu
with external potentialV(r )1mA(r )2 @see, e.g., Ref. 11~p.
131!#.

THEOREM 2 (Superfluidity in a cylinder). For uwu,w0

lim
N→`

E0~N,a,w!

N
5EGP~Na,w! ~12!

in the limit N→` with Na fixed. In the same limit,

lim
N→`

1

N
gN~r ,r 8!5fGP~r !fGP~r 8! ~13!

in trace class norm, i.e., limN→`Tr@ ugN /N2ufGP&^fGPuu#
50.

In the case of a uniformly rotating system, where 2w is
the angular velocity, the conditionuwu,w0 in particular
means that the angular velocity is smaller than the crit
velocity for creating vortices.18

Remark. In the special case of the curl-free vector pote
tial A(r ,u)5wr 21êu , i.e., a(r ,z)5r 21, one can say more
about the role ofw0. In this case, there is a unique GP min
mizer for allw¹Z1 1

2 , whereas there are two minimizers fo
wPZ1 1

2 . Part two of theorem 2 holds in this special case
all w¹Z1 1

2 , and~12! is true even for allw.

III. PROOFS

In the following, we will present only a proof of theorem
1 for simplicity. Theorem 2 can be proved using the sa
methods, and additionally the methods of Ref. 14 to d
with the inhomogeneity of the system.

Before giving the formal proofs, we outline the ma
ideas. The strategy is related to the one in Ref. 14, but
quires substantial generalizations of the techniques. A cru
element of the proof, stated in lemma 1 below, is the fact t
the interaction energy can be localized in small balls aro
each particle. This part uses a lemma of Dyson,19 and its
generalization in Ref. 15, which converts a strong sh
range potential into a soft potential. This lemma can be a
be applied to the case of an external velocity field, i.e.
13452
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U(1) gauge field in the kinetic term of the Hamiltonia
owing to the ‘‘diamagnetic inequality.’’17 This inequality
says that the additional gauge field increases the kinetic
ergy density.

The second main part of the proof is the generalized Po
caréinequality given in lemma 2. We recall that an essen
ingredient of the proof of Bose-Einstein condensation in R
14 was showing that the fact that the kinetic energy den
is small in most of the configuration space implies that
one-body reduced density matrix is essentially constant.
difficulty comes from the fact that the region in which th
kinetic energy is small can, in principle, be broken up in
disjoint subregions, thereby permitting different constants
different subregions. The fact that this does not happen is
content of the generalized Poincare´ inequality. In the presen
case we have an additional complication coming from
imposed gauge field. The old Poincare´ inequality does not
suffice; one now has to measure the kinetic energy den
relative to the lowest energy of a free particle in the gau
field rather than to zero. This is an essential complicati
While the previous~generalized! Poincare´ inequality could,
after some argumentation, be related to the standard Poin´
inequality,17 this one, with the gauge field, requires a diffe
ent proof.

Proof of Theorem 1. As in Ref. 15 we defineY
5(4p/3)ra3. Note that in the limit considered,Y;N22.
We first consider the upper bound toE0. Using the ground
stateC0 for w50 as a trial function, we immediately obtai

E0~N,a,w!<^C0 ,HN8 C0&5E0~N,a,0!1Nm
w2

L2
, ~14!

since ^C0 ,¹iC0&50. From Ref. 16 we know tha
E0(N,a,0)<4pmNra@11(const)Y1/3#, which has the right
form asN→`.

For the lower bound to the ground state energy we n
the following lemma.LEMMA 1 (Localization of energy).
For all symmetric, normalized wave functions
C(r1 , . . . ,rN) with periodic boundary conditions onK, and
for N>Y21/17,

1

N
^C,HN8C&>@12~const!Y1/17#S 4pmra

1mE
K N21

dXE
VX

dr1u~¹11 iw/L !C~r1 ,X!u2D ,

~15!

whereX5(r2 , . . . ,rN), dX5) j 52
N dr j , and

VX5$r1 :min
j >2

ur12r j u>R% ~16!

with R5aY25/17.
Proof. SinceC is symmetric, the left side of Eq.~15! can

be written as
9-3
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E
K N21

dXE
K

dr1Fmu~¹11 iw/L !C~r1 ,X!u2

1
1

2 (
j >2

v~ ur12r j u!uC~r1 ,X!u2G . ~17!

For any«.0 andR.0 this is

>«T1~12«!~Tin1I !1~12«!Tw
out, ~18!

with

T5mE
K N21

dXE
K

dr1u¹1uC~r1 ,X!uu2, ~19!

Tin5mE
K N21

dXE
VX

c
dr1u¹1uC~r1 ,X!uu2, ~20!

Tw
out5mE

K N21
dXE

VX

dr1u~¹11 iw/L !C~r1 ,X!u2, ~21!

and

I 5
1

2EK N21
dXE

K
dr1(

j >2
v~ ur12r j u!uC~r1 ,X!u2. ~22!

Here

VX
c 5$r1 :ur12r j u,R for some j >2% ~23!

is the complement ofVX , and the diamagnetic inequalit
u(¹1 iw/L) f (r )u2>u¹u f (r )uu2 has been used. The proof
completed by using the results of Refs. 15 and 14~also see
Ref. 20! which tell us that for«5Y1/17 andR5aY25/17,

«T1~12«!~Tin1I !>@12~const!Y1/17#4pmra ~24!

as long asN>Y21/17. ~This estimate is highly nontrivial
Among several other things it uses a generalization
Dyson’s lemma.19! Q.E.D.

The following lemma 2 is needed for a lower bound
the second term in Eq.~15!. It is stated for K the
L3L3L-cube with periodic boundary conditions, but it ca
be generalized to arbitrary connected setsK that are suffi-
ciently nice so that the Rellich-Kondrashov theorem@see
Ref. 17~Thm. 8.9!# holds onK. In particular, this is the cas
if K has the ‘‘cone property.’’17 Another possible generaliza
tion is to include general bounded vector fields replacingw;
see Ref. 21.

If V is any subset ofK we shall denote*V f * (r )g(r )dr
by ^ f ,g&V and ^ f , f &V

1/2 by i f iL2(V) . We also denote¹1 iw
by ¹w for short.

LEMMA 2 (Generalized Poincare´ inequality). For any
uwu,p there are constants c.0 and C,` such that for all
subsetsV,K and all functions f on the torusK the follow-
ing estimate holds:
13452
f

i¹w f iL2(V)
2 >

w2

L2
i f iL2(K)

2
1

c

L2
i f 2L23^1,f &KiL2(K)

2

2CS i¹w f iL2(K)
2

1
1

L2
i f iL2(K)

2 D S uVuc

uKu D 1/2

.

~25!

Here uVcu is the volume ofVc5K\V, the complement ofV
in K.

Proof. We shall derive Eq.~25! from a special form of this
inequality that holds for all functions that are orthogonal
the constant function. That is, for any positivea,2/3 and
some constantsc.0 andC̃,` ~depending only ona and
uwu,p) we claim that

i¹whiL2(V)
2 >

w21c

L2
ihiL2(K)

2
2C̃S uVcu

uKu D a

i¹whiL2(K)
2 ,

~26!

provided ^1,h&K50. @Remark: Eq.~26! holds also fora
52/3, but the proof is slightly more complicated in that ca
See Ref. 21# If ~26! is known the derivation of Eq.~25! is
easy: For anyf, the functionh5 f 2L23^1,f &K is orthogonal
to 1. Moreover,

i¹whiL2(V)
2

5i¹whiL2(K)
2

2i¹whiL2(Vc)
2

5i¹w f iL2(V)
2

2
w2

L2
u^L23/2, f &Ku2S 11

uVcu
uKu D

12
w

L
Rê L23/2, f &K^¹w f ,L23/2&Vc

<i¹w f iL2(V)
2

2
w2

L2
u^L23/2, f &Ku2

1
uwu
L S Li¹w f iL2(K)

2
1

1

L
i f iL2(K)

2 D S uVcu
uKu D 1/2

~27!

and

w21c

L2
ihiL2(K)

2
5

w2

L2
~ i f iL2(K)

2
2u^L23/2, f &Ku2!

1
c

L2
i f 2L23^1,f &KiL2(K)

2 . ~28!

Settinga5 1
2 , usingi¹whiL2(K)<i¹w f iL2(K) in the last term

in Eq. ~26! and combining Eqs.~26!, ~27!, and~28! gives Eq.
~25! with C5uwu1C̃.

We now turn to the proof of Eq.~26!. For simplicity we
setL51. The general case follows by scaling. Assume t
Eq. ~26! is false. Then there exist sequences of consta
Cn→`, functionshn with ihniL2(K)51 and^1,hn&K50, and
domainsVn,K such that

lim
n→`

$i¹whniL2(Vn)
2

1CnuVn
cuai¹whniL2(K)

2 %<w2. ~29!

We shall show that this leads to a contradiction.
Since the sequencehn is bounded inL2(K) it has a sub-

sequence, denoted again byhn , that converges weakly to
9-4
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SUPERFLUIDITY IN DILUTE TRAPPED BOSE GASES PHYSICAL REVIEW B66, 134529 ~2002!
somehPL2(K) @i.e., ^g,hn&K→^g,h&K for all gPL2(K)].
Moreover, by Ho¨lder’s inequality the Lp(Vn

c) norm
i¹whniLp(V

n
c)5(*V

n
cuh(r )updr )1/p is bounded by

uVn
cua/2i¹whniL2(K) for p52/(a11). From Eq.~29! we con-

clude that i¹whniLp(V
n
c) is bounded and also tha

i¹whniLp(Vn)<i¹whniL2(Vn) is bounded. Altogether,¹whn is

bounded inLp(K), and by passing to a further subsequen
if necessary, we can therefore assume that¹whn converges
weakly in Lp(K). The same applies to¹hn . Since p
52/(a11) with a,2/3 the hypotheses of the Rellich
Kondrashov Theorem@see Ref. 17~Thm 8.9!# are fulfilled
and consequentlyhn convergesstrongly in L2(K) to h ~i.e.,
ih2hniL2(K)→0). We shall now show that

liminfn→`i¹whniL2(Vn)
2 >i¹whiL2(K)

2 . ~30!

This will complete the proof because thehn are normalized
and orthogonal to 1 and the same holds forh by strong
convergence. Hence the right side of Eq.~30! is necessarily
.w2, since foruwu,p the lowest eigenvalue of2¹w

2 , with
constant eigenfunction, is non-degenerate. This contrad
Eq. ~29!.

Equation ~30! is essentially a consequence of the we
lower semicontinuity of theL2 norm, but the dependence o
Vn leads to a slight complication. First, Eq.~29! and Cn

→` clearly imply thatuVn
cu→0, becausei¹whniL2(K)

2
.w2.

By choosing a subsequence we may assume that(nuVn
cu

,`. For some fixedN let ṼN5K\øn>NVn
c . ThenṼN,Vn

for n>N. Since i¹whniL2(Vn)
2 is bounded,¹whn is also

bounded in L2(ṼN) and a subsequence of it converg
weakly in L2(ṼN) to ¹wh. Hence

liminfn→`i¹whniL2(Vn)
2 > liminfn→`i¹whniL2(ṼN)

2

>i¹whiL2(ṼN)
2 . ~31!

Since ṼN,ṼN11 and øNṼN5K ~up to a set of measur
zero!, we can now letN→` on the right side of Eq.~31!. By
monotone convergence this converges toi¹whiL2(K)

2 . This
proves Eq. ~30! which, as remarked above, contradic
Eq. ~29!. Q.E.D.

We now are able to finish the proof of theorem 1. Fro
lemmas 1 and 2 we infer that, for any symmetricC with
^C,C&51 and forN large enough,

1

N
^C,HN8 C&@12~const!Y1/17#21

>4pmra1m
w2

L2

2CY1/17S 1

L2
1

1

N K C,(
j

~¹j1 iw!CL D
1

c

L2EK N21
dXE

K
dr1UC~r1 ,X!

2L23F EK
drC~r ,X!GU2

, ~32!
13452
e

ts

k

where we used thatuVcu<(4p/3)NR35(const)L3Y2/17.
From this we can infer two things. First, since the kine
energy, divided byN, is certainly bounded independent ofN,
as the upper bound shows, we obtain that

liminfN→`

E0~N,a,w!

N
>4pmra1m

w2

L2
~33!

for any uwu,p. By continuity this holds also foruwu5p,
proving Eq.~6!. ~To be precise,E0 /N2mw2L22 is concave
in w, and therefore stays concave, and in particular conti
ous, in the limitN→`.! Second, since the upper and th
lower bound toE0 agree in the limit considered, the positiv
last term in Eq.~32! has to vanish in the limit. That is, we
obtain that for the ground state wave functionC0 of HN8 ,

lim
N→`

E
K N21

dXE
K

dr1UC0~r1 ,X!

2L23F EK
drC0~r ,X!GU2

50. ~34!

This proves Eq.~7!, since

E
K N21

dXE
K

dr1UC0~r1 ,X!2L23F EK
drC0~r ,X!GU2

512
1

NL3EK3K
g~r ,r 8!drdr 8, ~35!

and thereforeN21^L23/2ugNuL23/2&→1. As explained in
Refs. 14 and 20 this suffices for the convergenceN21gN
→uL23/2&^L23/2u in trace class norm. Q.E.D.

IV. CONCLUSIONS

We have shown that a Bose gas with short range, re
sive interactions is both a 100% superfluid and also 10
Bose-Einstein condensed in its ground state in the Gro
Pitaevskii limit where the parameterNa/L is kept fixed as
N→`. This is a simultaneous largeN and low density limit,
because the dimensionless density parameterra3 is here pro-
portional to 1/N2. If ra3 is not zero, but small, a depletion o
the Bose-Einstein condensate of the order (ra3)1/2 is ex-
pected~see, e.g., Ref. 22!. Nevertheless, complete superfl
idity in the ground state, e.g., of Helium 4, is experimenta
observed. It is an interesting open problem to deduce
property rigorously from first principles. In the case of
one-dimensional hard-core Bose gas superfluidity in
ground state is easy to show, but nevertheless there is
Bose-Einstein condensation at all, not even in the grou
state.9,10
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