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Superfluidity in dilute trapped Bose gases
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A commonly used theoretical definition of superfluidity in the ground state of a Bose gas is based on the
response of the system to an imposed velocity field or, equivalently, to twisted boundary conditions in a box.
We are able to carry out this program in the case of a dilute interacting Bose gas in a trap, and we prove that
a gas with repulsive interactions is 100% superfluid in the dilute limit in which the Gross-Pitaevskii equation
is exact. This is the first example in an experimentally realistic continuum model in which superfluidity is
rigorously verified.
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[. INTRODUCTION the other(cf., e.g., Refs. 557 A simple example illustrating
the fact that BEC is not necessary for superfluidity is the
The phenomenological two-fluid model of superfluidity one-dimensional hard-core Bose gas. This system is well
(see, e.g., Ref.)lis based on the idea that the particle densityknown to have a spectrum like that of an ideal Fermi Yas,
p is composed of two parts, the densjy of the inviscid  and it is easy to see that it is superfluid in its ground state in
superfluid and the normal fluid densipy,. If an external  the sense of Eqil). On the other hand, it has no BEE°
velocity field is imposed on the fluifor instance by moving  The definition of the superfluid velocity as the gradient of the
the walls of the containgronly the viscous normal compo- phase of the condensate wave functithis clearly not ap-
nent responds to the velocity field, while the superfluid com-licable in such cases.
ponent stays at rest. In accord with these ideas the superfluid We do not give a historical overview of superfluidity be-
density in the ground state is often defined as folfow®t  cause excellent review articles are availdBiE While the
E, denote the ground state energy of the system in the resarly investigations of superfluidity and Bose-Einstein con-
frame andE; the ground state energy, measured in the movdensation were mostly concerned with liquid Helium 4, it
ing frame, when a velocity field/ is imposed. Then, for has become possible in recent years to study these phenom-
smallv, ena in dilute trapped gases of alkali atom3he experimen-
tal success in realizing BEC in such gases has led to a large
Ey¢ Ep 1, . number of theoretical papers on this subject. Most of these
N =N Hleslp) 5 mvE+O(|v]h), (1) works take BEC for granted, and start off with the Gross-
Pitaevskii (GP) equation to describe the condensate wave
whereN is the particle number aneh the particle mass. At function. A rigorous justification of these assumptions is
positive temperatures the ground state energy should be reowever a difficult task, and only very recently BEC has
placed by the free energhRemark: It is important here that been rigorously proved for a physically realistic many-body
Eq. (1) holds uniformly for all largeN, i.e., that the error Hamiltonian'* It is clearly of interest to show that superflu-
term O(|v|*) can be bounded independently Nf For fixed idity also holds in this model, and this is what we accomplish
N and a finite box, Eq(1) with ps/p=1 always holds for a here. We prove that the ground state of a Bose gas with short
Bose gas with an arbitrary interactionvifis small enough, range, repulsive interaction is 100% superfluid in the dilute
owing to the discreteness of the energy specttiifhere are  limit in which the Gross-Pitaevskii description of the gas is
other definitions of the superfluid density that may lead toexact. This is the limit in which the particle number tends to
slightly different result$, but this is the one we shall use in infinity, but the ratioNa/L, wherea is the scattering length
this paper. We shall not dwell on this issue here, since it i©f the interaction potential and the box size, is kept fixed.
not clear that there is a “one-size-fits-all” definition of su- (The significance of the parametdg/L is that it is the ratio
perfluidity. For instance, in the definition we use here theof the ground state energy per particteNa/L3, to the low-
ideal Bose gas is a perfect superfluid in its ground stateest excitation energy in the box;1/L2.) In addition we
whereas the definition of Landau in terms of a linear dispershow that the gas remains 100% Bose-Einstein condensed in
sion relation of elementary excitations would indicate otherthis limit, also for a finite velocityv. Both results can be
wise. We emphasize that we are not advocating any particigeneralized from periodic boxes t{monconstant velocity
lar approach to the superfluidity question; our contributionfields in a cylindrical geometry.
here consists of taking one standard definition and making its The results of this paper have been conjectured for many
consequences explicit. years, and it is gratifying that they can be proved from first
One of the unresolved issues in the theory of superfluidityprinciples. To our knowledge they represent the first example
is its relation to Bose-Einstein condensati®EC). It has  of a rigorous verification of superfluidity in an experimen-
been argued that in general neither condition is necessary faally realistic continuum model.
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We wish to emphasize that in this GP limit the fact that Eo(N,a,¢) 02
there is 100% condensation does not mean that no significant lim ————=4wmpap+u—; (6)
interactions occur. The kinetic and potential energies can dif- N—ce N L
fer markedly from that obtained with a simple variational ;| 1o jimit N— o with Na/L and L fixed. Here=N/L3, so
function that is anN-fold product of one-body condensate
wave functions. This assertion might seem paradoxical, an
the explanation is that near the GP limit the region in which

gp is fixed too. In the same limifor | ¢|<r,

1 1
the wave function differs from the condensate function has a lim — N y(r,r )— (7)
tiny volume that goes to zero d¢— . Nevertheless, the N—e
interaction energy, which is proportional i resides in this i, trace class normi.e.

tiny volume.
limy o Tr [y /N=[L=¥2(L~%4]]=0.

Il. SETTING AND MAIN RESULTS Note that, by definition(1) of p, and Eq.(4), Eq. (6)

We consider a Bose gas with the Hamiltonian means thaips=p, i.e., there is 100% superfluidity. Far
=0, Eq.(6) was first proved in Ref. 15. Eq7) for ¢=0 is
the BEC proved in Ref. 14.

Hy= —,uzl Vj2+l > | v(|ri—riD, 2 Remarks (1) By a unitary gauge transformation,
i= <i<j<
where u=7%2/(2m) and the interaction potential is non- (UW)(ryq, ... JN)=E‘i‘P(Ei W (ry, .o rn, (®)

negative and of finite range. The two-body scattering length
of v is denoted bya. The Hamiltonian acts on totally sym- € passage from E) to Eq.(3) is equivalent to replacing
metric functions¥ of N variablesr;=(x;,V;,z) e KC RS, periodic boundary conditions in a box by theisted bound-

wherek denotes the cubjed,L ]2 of side length_. (We could ary condition

easily use a cuboid of sidds;,L,,L instead. We assume W(ry+(0,0L),rp, ... IN)=€W(ry,1y, ... 1y (9)

periodic boundary conditions in all three coordinate direc-,

tions. in the direction of the velocity field, while retaining the origi-
Imposing an external velocity field=(0,0+|v|) means nal Hamiltonian[Eq. (2)].

that the momentum operatqr= —i%V is replaced byp (2) The criterion|¢| < means tggtv|swh/(mL). The

—mv, retaining the periodic boundary conditions. The corresponding energymlwh/(mL)]* is the gap in the ex-

Hamiltonian in the moving frame is thus citation spectrum of the one-particle Hamiltonian in the

finite-size system.

N (3) The reason that we have to restrict ourselvesgtp
E Vi +iglL)? > v([ri=r;]), (3  <minthe second part of theorem 1 is that fgif = 7 there
= 1<‘<J<N are two ground states of the operat&ri¢/L)? with peri-

odic boundary conditions. All we can say in this case is that
there is a subsequence ¢f; that converges to a density
matrix of rank <2, whose range is spanned by these two
+|v|Lm functions.
p=—7 (4) Theorem 1 can be generalized in various ways to a physi-
cally more realistic setting. As an example, (ebe a finite
cylinder based on an annulus centered at the origin. Given a
bounded, real functioma(r,z) let A be the vector fieldin
polar coordinatésA(r,6,z)=pa(r,z)e,, wheree, is the
unit vector in thed direction. We also allow for a bounded
external potentiaV(r,z) that does not depend ah
Using the methods of Appendix A in Ref. 16, it is not
difficult to see that there exists¢gy>0, depending only on
yN(r,r’)sz Wolr,ro, ... In) C and a(r,z), such that for all¢|<¢, there is a unique
KN minimizer ¢CF of the Gross-Pitaevskii functional

where ¢=(0,0) and the dimensionless phageis con-
nected to the velocity by

Let Eq(N,a,¢) denote the ground state energy of Eg).
with periodic boundary conditions. Obviously it is no restric-
tion to consider only the case m< ¢=<r, sinceky is peri-
odic in ¢ with period 2r. For ¥, the ground state ofiy,
let yy be its one-particle reduced density matrix

XWE(r',ry, ... ry)dry---dry. (5)

G _ ; 2 2
We are interested in the GP limit—c with Na/L fixed. We € P[d)] L{M|[V+|A(r)]¢(r)| FVOl(n)]

also fix the box size.. This means thaa should vary like PR
1/N which can be achieved by writing(r)=a2v,(r/a), +4muNa $(r)|dr (10
wherev, is a fixed potential with scattering length 1, while under the normalization conditiofi ¢|?=1. This minimizer

changes with\. does not depend o#, and can be chosen to be positive, for
THEOREM 1 (Superfluidity of homogeneous gd)r  the following reason: The relevant term in the kinetic energy
lo|l<m is T=—r"2[alob+iera(r,z)]?. If |era(r,z)|<1/2, it is
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easy to see thal= ¢?a(r,z)?, in which case, without rais-
ing the energy, we can replaeg by the square root of the
9-average of ¢|%. This can only lower the kinetic enertfy
and, by convexity ok—x?, this also lowers they* term.
We denote the ground state energy&- by E€P, de-

pending orNa and¢. The following theorem 2 concerns the

ground state energlf, of
N
HR= 2 (=G HAM)PHVODY D o(lr—ry)),
j=1 1<i<j=N
11

with Neumann boundary conditions ofy and the one-
particle reduced density matriyy of the ground state, re-
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U(1) gauge field in the kinetic term of the Hamiltonian,
owing to the “diamagnetic inequality’” This inequality
says that the additional gauge field increases the kinetic en-
ergy density.

The second main part of the proof is the generalized Poin-
careinequality given in lemma 2. We recall that an essential
ingredient of the proof of Bose-Einstein condensation in Ref.
14 was showing that the fact that the kinetic energy density
is small in most of the configuration space implies that the
one-body reduced density matrix is essentially constant. The
difficulty comes from the fact that the region in which the
kinetic energy is small can, in principle, be broken up into
disjoint subregions, thereby permitting different constants in
different subregions. The fact that this does not happen is the

the same manner, if they are also used in @Q).

case we have an additional complication coming from the

Remark As a special case, consider a uniformly rotatingjmposed gauge field. The old Poincdrequality does not

system. In this cas@(r)=¢re,, where 2 is the angular

velocity. H’Q is the Hamiltonian in the rotating frame, but

with external potentiaV(r)+ uA(r)? [see, e.g., Ref. 1{p.
13D)].
THEOREM 2 (Superfluidity in a cylinderyror |¢|< g

Ey(N,a,
jim 22N 2®)  era ) (12
N—o® N
in the limit N—c with Na fixed. In the same limit
1
lim NyN(r,r’)=¢GP(r)¢GP(r’) (13

N— o0

in trace class normi.e., limy_.Tr{|yn/N—|3( 7]
=0.

In the case of a uniformly rotating system, where B
the angular velocity, the conditiofyp|<¢, in particular

suffice; one now has to measure the kinetic energy density
relative to the lowest energy of a free particle in the gauge
field rather than to zero. This is an essential complication.
While the previouggeneralizell Poincareinequality could,
after some argumentation, be related to the standard Poincare
inequality!” this one, with the gauge field, requires a differ-
ent proof.

Proof of Theorem 1 As in Ref. 15 we defineY
=(4m/3)pas. Note that in the limit consideredy~N"2,
We first consider the upper bound Ep. Using the ground
stateW for ¢ =0 as a trial function, we immediately obtain

2
/ ¢
EO(N,a,qo)S<\I’O,HN‘IfO)=EO(N,a,O)-I-NME, (14)

since (V,,ViWo)=0. From Ref. 16 we know that
Eo(N,a,0)<4muNpa[1+ (const)y*®], which has the right

means that the angular velocity is smaller than the criticaform asN— .

velocity for creating vortice®

For the lower bound to the ground state energy we need

Remark In the special case of the curl-free vector poten-the following lemma.LEMMA 1 (Localization of energy)

1

tial A(r,0)=gor‘1é9, i.e.,,a(r,z)=r "+, one can say more

about the role ofpg. In this case, there is a unique GP mini- W(rq, ..

For all symmetric normalized wave functions

. ) with periodic boundary conditions o, and

mizer for all ¢ ¢ Z+ £, whereas there are two minimizers for for N=Y 17,
¢ e+ 3. Part two of theorem 2 holds in this special case for

all p¢Z+ 3, and(12) is true even for alkp.

lll. PROOFS

In the following, we will present only a proof of theorem
1 for simplicity. Theorem 2 can be proved using the same
methods, and additionally the methods of Ref. 14 to deal

with the inhomogeneity of the system.

Before giving the formal proofs, we outline the main
ideas. The strategy is related to the one in Ref. 14, but r

ewhereX=(r2, .

1 ’ 1/17
N(\II,HN\P>>[1—(consDY 1| 47 upa

+“J dxf dry|(Vi+ie@/L)W(ry,X)|?],
N1 Qy
(15)

-rn), dX=TIIL,dr;, and

quires substantial generalizations of the techniques. A crucial

element of the proof, stated in lemma 1 below, is the fact that
the interaction energy can be localized in small balls around

each particle. This part uses a lemma of DySband its

Qy={ry:minjr;—r;|=R} (16)

j=2

generalization in Ref. 15, which converts a strong shorwith R=aY 57,
range potential into a soft potential. This lemma can be also Proof. SinceV is symmetric, the left side of E415) can
be applied to the case of an external velocity field, i.e., ée written as
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wl(Vi+i@/L)W(ry,X)[?

f dxj drq
eN-1 K

1

EZ l)(|r1 |\I’(|’1 )| } (17)
For anye>0 andR>0 this is
=eT+(1—e)(TN+1)+(1—e) T, (18
with
T-u| x| anmiee ol a9
KN_l K
Tin:l“f de dr o Vi W (ry,X)]]?, (20)
]CNfl Q;
TZ“t:Mf,CNfldfo dry|(Vi+i@/L)W(ry,X)|?, (21)
X
and
':‘f N 1dxf dr12 v(lri=rDIW(ry, X% (22
K
Here
Q5={ry:[r;—r;|<R forsome j=2} (23

is the complement of)y, and the diamagnetic inequality
[(V+ig/L)f(r)|2=|V|f(r)||?> has been used. The proof is
completed by using the results of Refs. 15 and(di4o see
Ref. 20 which tell us that fore = YY" andR=aY %17

eT+(1—e)(T"+1)=[1—(constYY|4mupa (24)

as long asN=Y YY" (This estimate is highly nontrivial.

PHYSICAL REVIEW B56, 134529 (2002

— 2
L 3<l1f>/C|||_2(}c)

|Q|c 1/2
ITI)

2
® C
||V(pf||EZ(Q)> F”f”EZ(K) + PHf -

2
Cl 19, F1Z20+

2
F”f”LZ(K)

(25)
Here |Q°| is the volume of)°= K\, the complement df
in K.
Proof. We shall derive Eq(25) from a special form of this
inequality that holds for all functions that are orthogonal to
the constant function. That is, for any positiue<2/3 and

some constants>0 andC<x (depending only orw and
|o| <) we claim that

qDZ+C

2 2 =
19,120y = & T2

(26)
provided (1,h),=0. [Remark: Eq.(26) holds also fora
=2/3, but the proof is slightly more complicated in that case.
See Ref. 21If (26) is known the derivation of Eq25) is
easy: For any, the functionh=f—L3(1,f) is orthogonal
to 1. Moreover,

|Q°|)
K|

2 2 2
”chh”l_z((),) = ”V(ph”l_z(]c) - ”V(th LZ(QC)

2
2 () _
:||V<pf|||_2(n)_§|<|- 287 1+

+ 2% Re(L 32 £),(V, f,L ) g

2
2 (2 _
S||V<pf|||_2(n)_F|<L 2 8) |2

Among several other things it uses a generalization of

Dyson’s lemma?®) Q.E.D.

The following lemma 2 is needed for a lower bound on

the second term in Eq(15). It is stated for K the

|GD| 2 2 |Qc| V2
+T L||V¢fHL2(K)+E”f”LZ(;Q |/C|
(27
and
2 2
p°tcC @ 2 _
2 ” HLz(K):E(”f”LZ(}C)_KL 3/2'f>/C|2)
C _3 P
L R E I T C

L X L X L-cube with periodic boundary conditions, but it can Settinge:= 3, using||V,hl| 2(=<||V, [l 2(x) in the last term

be generalized to arbitrary connected sgtshat are suffi-
ciently nice so that the Rellich-Kondrashov theoré¢see
Ref. 17(Thm. 8.9] holds onKC. In particular, this is the case
if C has the “cone property?” Another possible generaliza-
tion is to include general bounded vector fields replaging
see Ref. 21.

If Q is any subset o we shall denotd f* (r)g(r)dr
by (f,g)q and(f,f)&? by |f[l_2q). We also denotd +ie
by V,, for short.

LEMMA 2 (Generalized Poincarénequality) For any
| | <7 there are constants®e0 and C<c such that for all
subsetd) C K and all functions f on the toruk the follow-
ing estimate holds

in Eq.(26) and combmmg Eqg26), (27) and(298) gives Eq.
(25) with C=|¢|+C.

We now turn to the proof of Eq.26). For simplicity we
setL=1. The general case follows by scaling. Assume that
Eqg. (26) is false. Then there exist sequences of constants
C,—, functionsh,, with [|hy[ 2(=1 and(1h,),=0, and
domains(),,C K such that

“m {”V hn|||_2(Q )"”Cn|Q |Dl||V hn|||_2()c)} QD (29)
We shall show that this leads to a contradiction.

Since the sequendg, is bounded inL?(K) it has a sub-

sequence, denoted again hy, that converges weakly to
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somehe L4(K) [i.e., (g.h,)c—(g,h)x for all geL2(K)].  where we used tha{Q°|<(4m/3)NR*=(const) 3y
Moreover, by Hider's inequality the LP(QS) norm  From this we can infer two things. First, since the kinetic
IV, hallLecaey= (f aclh(r)|Pdr) 2P is bounded by energy, divided by, is certainly bounded independentof

|Qﬁ|a/2HV¢hnHL2(m for p=2/(a+1). From Eq.(29) we con- as the upper bound shows, we obtain that

clude that [V halliecac) is bounded and also .that - Eg(N.2,¢) p:
[Vehallea,y=<[VehnlL2(a,) is bounded. Altogethei¥,h,, is liminfy .. —S—— /47TMPa+MF (33
bounded inLP(K), and by passing to a further subsequence o )

if necessary, we can therefore assume Wgt, converges for any |@[<m. By continuity this h0|d523|§(23 fofe|=,
weakly in LP(K). The same applies t&h,. Since p  Proving Eq.(6). (To be preciseEq/N—pne°L™ " is concave
=2/(a+1) with a<2/3 the hypotheses of the Rellich- in ¢, and therefore stays concave, and in particular continu-
Kondrashov Theorerfisee Ref. 17Thm 8.9] are fulfilled ~ ©0us, in the limitN—c.) Second, since the upper and the

and Consequenﬂyn ConvergestrongWin LZ(]C) toh (i_e_, lower bound tdEO agree in the limit considered, the pOSitive

lh=hgl200—0). We shall now show that last term in Eq.(32) has to vanish in the limit. That is, we
o 5 ) obtain that for the ground state wave functidn of Hy,
I|m|nfnﬁx||V¢hn||L2(Qn)> IVehl Lz - (30)

This will complete the proof because thg are normalized lim f Nﬂde drq|Wo(rq,X)

and orthogonal to 1 and the same holds foby strong N—o0 K

convergence. Hence the right side of E8Q) is necessarily 2

> @2, since for|¢| <7 the lowest eigenvalue ofVi, with _|_3{f dr\Po(r,X)} =0. (34)

constant eigenfunction, is non-degenerate. This contradicts K

Eq.(29). _ _ This proves Eq(7), since
Equation(30) is essentially a consequence of the weak

lower semicontinuity of thé.? norm, but the dependence on
Q, leads to a slight complication. First, EQR9) and C, fKNfldXJdel
— clearly imply that| QF|—0, becausdV,hy|F2 > ©2.
By choosing a subsequence we may assume ha® (| 1

. ~ c ~ =1-— y(r,r’)drdr’, (35
<. For some fixedN let Qn=K\U ,=n Q. ThenQCQ, NL3) cxx
for n=N. Since ||V¢hn||fzm) is bounded,V,h, is also

n

2

‘Po(rl,X)—L“’{ f}cdr\Po(r,X)}

. . and thereforeN™ (L 33y |L %% —~1. As explained in
boundeq |r12L~(QN) and a subsequence of it CONVETGESRefs. 14 and 20 this suffices for the convergehte! yy
weakly inL*(€dy) to V,h. Hence —|L~¥2(L"%7 in trace class norm. Q.E.D.

.. 2 . 2
I|m|nfném||V¢hn||L2(Qn)> I|m|nfn_m||V¢hn||L2(ﬁN)

IV. CONCLUSIONS

2
2HV«DhHLZ(ﬁN)' (31) We have shown that a Bose gas with short range, repul-

sive interactions is both a 100% superfluid and also 100%

Since AyC .,y and UnQy=K (up to a set of measure g rincoin condensed in its ground state in the Gross-

Zerg, we can now leN— c_m the right side onEq(.31). B_y Pitaevskii limit where the paramet&fa/L is kept fixed as
monotone convergence this converges|®h| iz . This N . This is a simultaneous lardéand low density limit,

proves Eq.(30) which, as remarked above, contradicts hecqyse the dimensionless density paramegis here pro-

Eq.(29. QE.D. » portional to 1N2. If pa® is not zero, but small, a depletion of
We now are able to finish the proof of theorem 1. Fromihe Bose-Einstein condensate of the ordea¥) 12 is ex-

lemmas 1 and 2 we infer that, for any symmetiicwith  pected(see, e.g., Ref. 22Nevertheless, complete superflu-
(¥, ¥)=1 and forN large enough, idity in the ground state, e.g., of Helium 4, is experimentally

1 ) — observed. It is an interesting open problem to deduce this
N<‘1’,HN*P>[1—(const ] property rigorously from first principles. In the case of a
) one-dimensional hard-core Bose gas superfluidity in the

>4wﬂpa+#ﬂ2 ground state is easy to show, but nevertheless there is no

L Bose-Einstein condensation at all, not even in the ground
state?10
1/17| 1 1 H .
—CYH Sy v, (Vi+ie)W
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