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Effect of on-site Coulomb repulsion on superconductivity in the boson-fermion model

T. Domański
Institute of Physics, Maria Curie Skłodowska University, 20-031 Lublin, Poland

~Received 22 February 2002; published 10 October 2002!

We study the influence of the repulsive Coulomb interactions on the thermodynamic properties of the
boson-fermion model with an anisotropic (d-wave and extendeds-wave! order parameter. Superconductivity is
induced in this model from the anisotropic charge exchange interaction between the conduction-band fermions
~electrons or holes! and the immobile hard-core bosons~the localized electron pairs!. The on-site Coulomb
repulsion competes with this pairing interaction and hence is expected to have a detrimental influence on
superconductivity. We analyze this effect in some detail, considering the two opposite limits of the weak and
strong repulsion. A possible crossover between both these regimes is also discussed.

DOI: 10.1103/PhysRevB.66.134512 PACS number~s!: 74.20.2z, 74.20.Mn, 74.20.Rp, 74.25.Dw
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I. INTRODUCTION

The boson-fermion~BF! model describes a mixture of th
narrow-band fermions coupled to a system of the compo
hard-core bosons. Initially, this type of an effective Ham
tonian was invented for a system of itinerant electrons in
acting with local lattice deformations in the crossover regi
between adiabatic and antiadiabatic limits.1 Later, the same
model was independently considered by a number
authors2–5 as a possible scenario for a mechanism of hi
temperature superconductivity~HTSC!. There have also
been attempts to apply a similar BF model to explain cert
aspects of the Bose-condensed atoms of alkali metals.6

This model reveals a rich physics both in its normal ph
and the broken symmetry superconducting-superfluid sta
As shown in mean-field-type studies3,5 there is a characteris
tic temperatureTc below which fermions are driven to th
superconducting phase and simultaneously bosons sta
Bose condense. This result has been confirmed~neglecting
the hard-core nature of bosons! by means of the shielde
potential approximation7 and with the help of the renorma
ization group approach.8 Moreover, when approaching th
critical temperature from above, the pairingwise correlatio
start to manifest themselves strongly. In particular, they m
give rise to the formation of a pseudogap in the ferm
spectrum. This effect, known experimentally from a varie
of measurements~see, e.g., the review in Ref. 9!, provides a
firm argument for the application of this model to descri
HTSC materials.

Pseudogap formation and its variation with a loweri
temperature have been carefully investigated for the
model using~a! the self-consistent perturbative treatment
the boson-fermion coupling,10,11 ~b! the perturbative treat
ment of the kinetic processes~in the manner of Hubbard I fo
the fermion hopping! with respect to the exact solution o
this model in its atomic limit,12 ~c! the dynamical mean-field
theory ~DMFT! equations which have been self-consisten
solved within the noncrossing approximation for the aux
iary impurity problem,13 and ~d! the renormalization group
technique.8

Many experimental data, especially angle-resolved pho
emission spectroscopy,14 seem to suggest the anisotrop
d-wave type structure of both: the pseudogap and true su
0163-1829/2002/66~13!/134512~6!/$20.00 66 1345
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conducting gap. However, there are also known so
measurements—for instance thec-axis Josephson
tunneling15 and the photoemission spectroscopy
Bi2Sr2CaCu2O81d ~Ref. 16!—which provide strong argu-
ments for a nonzeros-wave ingredient of the order param
eter. In a most realistic situation one can expect that the o
parameter of the HTSC cuprates acquires a mixeds1d or
s1 id symmetry. The possibility for the appearance of t
mixed symmetry superconducting phase has been theo
cally explored on quite general grounds using a tw
dimensional electron system with anisotropic potentialV
5Vs1Vd of arbitrary ~from weak to strong! attraction
strength.17 So far, most studies of the superconductiv
within the BF model have been performed for the isotro
pairing interaction. Some attempts to analyze thed-pairing
superconductivity together with a microscopic justificati
for introducing the BF-type Hamiltonian can be found in t
paper by Geshkenbeinet al.18 Very recently, a more forma
way has been explored by Micnaset al.19

In this paper we shall investigate various kinds of sup
conducting phases induced by an anisotropic potential of
BF model in the presence of Coulomb interactions betw
fermions. For simplicity we shall concentrate only on t
case of on-site repulsionU.0, whereU5„i i u(e2/ur u)u i i … in
the Wannier representation. In general, one expects tha
on-site repulsion~which prevents fermions from forming lo
cal pairs! would compete with the correlations induced b
the boson-fermion coupling~this interaction is a driving
force for the pairing in the BF model and is responsible
inducing the pseudogap at temperaturesT* .T.Tc and the
true superconducting gap whenT<Tc). We shall address the
following question: what is the extent of the detrimental i
fluence ofU on the pairing correlations?

The above-mentioned competition has been already s
ied in a normal phase of the BF model using the nonper
bative approach of the DMFT.20 In our paper we shall inves
tigate the anisotropic superconducting phase. To make
study feasible we assume that the pairing interactions
relatively weak~the meaning of this assumption is explain
in the next section! and we try to estimate the influence o
the Coulomb repulsion varying its intensity from the wea
to strong-interaction limit.
©2002 The American Physical Society12-1
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II. MODEL

The Hamiltonian of the system under consideration c
sists of the two partsH5HBF1HCoul. The first of them
refers to the standard BF model Hamiltonian5

HBF5(
k,s

~«k2m!ck,s
† ck,s1~DB22m!(

i
bi

†bi

1
1

AN
(
k,q

~vk,qbq
†c2k1q/2,↓ck1q/2,↑1H.c.!, ~1!

and the second part denotes the on-site interaction betw
fermionsHCoul5U( ini↓ni↑ . We use here the standard not
tion for the annihilation~creation! operators of fermions,ci ,s

(ci ,s
† ), with spins and for the hard-core bosonbi (bi

†) at site
i of the two-dimensional square lattice. The indicesk andq
in Eq. ~1! denote the coordinates of momentum space.
assume the tight-binding dispersion for fermions,«k
522t(coskx1cosky), and set the bandwidthD58t as a
unit (D[1).

It is important to remark now that we let the boso
fermion exchange potentialvk,q to be anisotropic. As ex-
plained in Ref. 18 the low-energy physics of this model
dominated by bosons of small momentauqu.0. Usually, the
magnitudes of the superconducting gap in HTSC mater
are of the order of several meV~which is ;1023 of the
bandwidthD). It is thus reasonable to assume that the p
ing potentialvk,q , which establishes the energy scale forTc
andDsc(T50), is small as compared toD. In such a case the
following mean-field decoupling is justified:

(
q

vk,qbq
†c2k1q/2,↓ck1q/2,↑.vk,q50~^bq50&* c2k,↓ck,↑

1bq50
† ^c2k,↓ck,↑&!. ~2!

We further write down the anisotropic potentialvk,0 as a
product:19

vk,0[g fk , ~3!

whereg characterizes the interaction strength andfk stands
for the dimensionless factor which has to reflect the fourf
symmetry of CuO2 planes of the HTSC cuprates. In gene
the anisotropy factorfk can be represented as

fk5a01as~coskx1cosky!1ad~coskx2cosky! ~4!

and the coefficientsa0,s,d denote a relative contribution o
the isotropic, the extendeds-wave, and thed-wave parts into
the order parameter of the superconducting phase. T
should be adjusted depending on the specific material. If,
example,a0Þ0 andadÞ0, we would have the order param
eter of a mixeds1d or s1 id symmetry. Since our main
interest is focused on the competition between the Coulo
interaction and the superconductivity, we further consider
clarity only the pure extendeds- or d-wave symmetries when
fk5coskx6cosky .
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After the mean-field decoupling for the boson-fermion i
teraction~2! we are left with an effective Hamiltonian com
posed of the separated fermion and boson contributions1 H
.HF1HB:

HF5(
k,s

jkck,s
† ck,s1U(

i
ni ,↓ni ,↑1(

k
~g r fkck,↑

† c2k,↓
†

1H.c.!, ~5!

HB5(
i

~E0bi
†bi1g x bi

†1g x* bi !. ~6!

We introduced here the abbreviations for energies meas
from the chemical potentialjk5«k2m, E05DB22m and
for the two order parametersx5(kfk^c2k,↓ck,↑&, r
5^bq50&/AN5^bi&.

We can easily solve the hard-core boson part of the pr
lem. For a given sitei one finds the true eigenstates using t
unitary transformation

uA& i5cos~a!u0& i1sin~a!u1& i , ~7!

uB& i52sin~a!u0& i1cos~a!u1& i , ~8!

such that tan(2a)5(22gx)/E0, where u0& i and u1& i refer
correspondingly to the empty and singly occupied~by the
hard-core boson! site i. In a straightforward calculation we
can determine the expectation values for the number oper
nB5( i^bi

†bi& and for the order parameterr,5,19

nB5
1

2
2

E0

4g
tanhS g

kBTD , ~9!

r52
gx

2g
tanhS g

kBTD , ~10!

where g5A(E0/2)21ugxu2 and kB is the Boltzmann
constant.

III. WEAK-INTERACTION LIMIT

First, we consider the weak-coupling limit whenU is
fairly smaller than D. We are in a position to utilize
then the Hartree-Fock-Gorkov linearization for the on-s
interaction ni ,↓ni ,↑.ni ,↓^ni ,↑&1^ni ,↓&ni ,↑1^ci↑

† ci ,↓
† &ci ,↓ci ,↑

1ci↑
† ci ,↓

† ^ci ,↓ci ,↑&. The Hamiltonian of the fermion sub
system ~5! reduces then simply to the BCS structureHF

.(k,sj̃kck,s
† ck,s1(k(Dk

(e f f)ck,↑
† c2k,↓

† 1H.c.) with j̃k5jk
1UnF/2 ~we assume a paramagnetic state^ni ,↑&5^ni ,↓&
[nF/2). A role of the effective gap parameter is played he
by

Dk
(e f f)5D01g r fk , ~11!

where the isotropic part is given byD05U^ci ,↓ci ,↑&. Stan-
dard methods of the solid-state theory give the followi
equations for expectation values:
2-2
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nF512(
k

j̃k

Ek
tanhS Ek

2kBTD , ~12!

^c2k,↓ck,↑&5
2Dk

(e f f)

2Ek
tanhS Ek

2kBTD , ~13!

with a typical gapped spectrumEk5Aj̃k
21uDk

(e f f)u2 in the
superconducting phase.

It is worth mentioning that in a case ofd pairing ~i.e., for
fk5coskx2cosky[hk) the isotropic componentD0 of the
gap parameter~11! does identically vanish. To prove this le
us substitute Eq. ~13! into the definition of D0
5U(k^c2k,↓ck,↑& to obtain

D052U(
k

D01g r hk

2Ek
tanhS Ek

2kBTD . ~14!

Since integration over the Brillouin zone of the part conta
ing hk gives zero, so, forU.0, Eq. ~14! has the only pos-
sible solutionD050. It is not surprising because the repu
sive interactions by themselves are not able to induce
on-site fermion pairs.

If the boson fermion potential~3! is isotropic or takes a
form of thes wave (fk5coskx1cosky), then in generalD0
Þ0. From a consideration similar to the one discussed ab
@Eq. ~14! is valid except thathk should be replaced byfk]
we can determine a relative ratioD0 /gr. The extended
s-wave gap parameter is now given by

Dk
(e f f)5g rS fk2

(
k

~Ufk/2Ek!tanh~Ek/2kBT!

11(
k

~U/2Ek!tanh~Ek/2kBT!
D .

~15!

For the isotropic boson fermion potential (fk51), Eq. ~15!
simplifies further to give ak-independent gapD (e f f)5gr@1
1(k(U/2Ek)tanh(Ek/2kBT)#21,gr. This expression ex-
plicitly shows a detrimental role of the on-site repulsion
the isotropic superconducting phase. Such a problem
been previously addressed7,21 neglecting the hard-core natur
of bosons and using the random phase approximation~RPA!
treatment for the Coulomb repulsion.

IV. STRONG-INTERACTION LIMIT

In a case of the strong interactions (U.D) we make use
of the slave-boson technique proposed by Kotliar a
Ruckenstein.22 For simplicity we shall consider here only th
extreme limitU→`.

We represent the fermion operators asci ,s5ai
†f i ,s and

ci ,s
† 5 f i ,s

† ai , where the auxiliary boson operatorai (ai
†) re-

fers to the annihilation~creation! of the empty state at sitei
and fermion operatorf i ,s ( f i ,s

† ) corresponds to annihilation
~creation! of the singly occupied sitei with spin s. No
double occupancy is allowed and this can be formally
pressed via the local constraintai

†ai1(s f i ,s
† f i ,s51.

Using the real-space~Wannier states! representation we
13451
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can rewrite the Hamiltonian~5! in terms of the new operator
as

HF5 (
i , j ,s

t i , j f i ,s
† aiaj

†f j ,s2m(
i ,s

f i ,s
† f i ,s

1S r(
i , j

Vi , j f i ,↑
† aiaj f j ,↓

† 1H.c.D
1(

i
l i S ai

†ai1(
s

f i ,s
† f i ,s21D . ~16!

We used here the identityaiai
†51,22 and the last term take

account of the local constraint (l i stands for the Lagrange
multiplier!. Vi , j is the exchange potential whose Fouri
transform is given by Eq.~3! and, as usual,t i , j denotes the
hopping integral.

Next, we approximate Eq.~16! by ~i! replacing the slave-
boson operators by their expectation values which are
sumed to be site independentai.^ai&.r and ~ii ! replacing
the local multipliers by the global onel i.l. In this ~mean-
field! approximation for the slave bosons one obtains

HF.(
k,s

~r 2«k2m1l! f k,s
† f k,s

1(
k

~r 2g r fk f k,↑
† f 2k,↓

† 1H.c.!. ~17!

The global parametersl, r are determined from a minimiza
tion of the total energŷH&. This criterion leads to

r 2512nF, ~18!

l52(
k,s

«k^ f k,s
† f k,s&22ReH gr* (

k
fk^ f 2k,↓ f k,↑&J .

~19!

As can be noticed from Eq.~17!, the Hamiltonian of the
fermion subsystemHF is again reduced to the BCS structur
We thus have the same solution for the expectation value
given in Eqs.~12! and ~13! with a difference that now

j̃k5r 2«k2m1l, ~20!

Dk5r 2g r fk . ~21!

Both the effective fermion bandwidthD (e f f)5r 2D and the
effective pairing potentialVk

(e f f)5r 2gfk reduce down to
zero when fermion occupation approaches the half-fillin
Under such circumstances the system is driven into the M
insulating state.

V. CROSSOVER

Finally we consider here a regime of the intermediateU
for which we adopt the procedure used earlier by us23 in the
context of the extended Hubbard model. We introduce
Nambu representationCk

†5(ck,↑
† c2k,↓), Ck5(Ck

†)† and, as
a first step, determine the unperturbed Green’s funct
2-3
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T. DOMAŃSKI PHYSICAL REVIEW B 66, 134512 ~2002!
G0(k,v)5^^Ck ;Ck
†&&v neglecting the interactionU in the

fermion Hamiltonian~5!:

F ivn2jk 2gr* fk

2grfk ivn2jk
GG0~k,ivn!51. ~22!

Next, we compute the dressed Green’s function using
matrix Dyson equation

G21~k,ivn!5G0
21~k,ivn!2S~k,ivn!. ~23!

In order to proceed we simplify the self-energy matrix by t
following ansatz:23

S~k,ivn!.FSN~k,ivn! U^ci↑
† ci↓

† &

U^ci↓ci↑& 2SN~k,2 ivn!
G . ~24!

Without specifying the diagonal elements of Eq.~24! we
denoteS11(k,ivn) by SN(k,ivn) and make use of the iden
tity S22(k,ivn)52S11(k,2 ivn). The off-diagonal ele-
ments are approximated by us by a contribution correspo
ing to the result deduced from the mean-field-type the
discussed in Sec. III. The channel of the superconduc
correlations is treated by us in Eq.~24! approximately.

If one knewSN(k,ivn), then the needed expectation va
ues can be found according to the standard field theore
relation ^AB&5b21(n5`

` ^^B;A&& ivn
, where b51/kBT. In

particular, we obtain23

^ck↑
† ck↑&5b21(

n

ivn1jk1SN~2 ivn!

u ivn2jk2SN~ ivn!u21uDk
(e f f)u2

,

~25!

^c2k↓ck↑&5b21(
n

Dk
(e f f)

u ivn2jk2SN~ ivn!u21uDk
(e f f)u2

,

~26!

where againDk
(e f f) is given by Eq.~11!.

It is worth noticing thatSN(k,ivn) has the meaning o
the normal phase self-energy for the standard Hubb
model. Of course there is no exact solution forSN available
so far except maybe from numerical exact diagonalization
quantum Monte Carlo studies. However, depending on
magnitude of the on-site interaction, one can use vari
approximate estimations. Let us point out a few possibiliti

Starting from the weak-interaction limit the simplest su
stitution for SN is the mean-field valueUnF/2 as discussed
in Sec. III. With an increase ofU one can proceed by includ
ing some higher-order corrections, like, for example, of
second order inU.24 Going toward the Mott transition regim
U5Ucr;D ~for the half-filled fermion system! one could
work, for example, with the so-called alloy analogy appro
mation ~AAA !.23 In a more subtle way one could estima
the momentum-independent self-energySN(v) by adopting
the dynamical mean-field theory~which becomes exact in
the limit of infinite spatial dimensions!. The strong interac-
tion case can be described in a satisfactory way either w
13451
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the AAA, DMFT, or simple Hubbard I approximation. Her
we apply the AAA procedure to study a regime near the M
transition.

VI. NUMERICAL RESULTS

As far as the Coulomb repulsion is concerned we exp
that its effectiveness should strongly depend on the conc
tration of fermions. In the regime of small fermion conce
tration ~dilute limit! this interaction should not be very effi
cient and, in particular, it would not affect the supe
conducting-type correlations induced by the boson-ferm
exchange. On the other hand, we expect that the stron
effects of the on-site Coulomb repulsion might appear fo
system with a nearly half-filled fermion systemnF51.

In absence of the Coulomb interactions, the supercond
ing phase~isotropic or anisotropic one! of the BF model is
formed when the fermion concentration is properly adjust
The Fermi energy«F must be close enough to the boso
level because only then can the charge exchange betwee
hard-core bosons and fermion pairs induce long-ra
coherence.25 So the needed concentration of fermions
roughly given bynF52*

2D/2
«F5DB/2

r0(«)d«, wherer0(«) de-
notes the density of states of the free~noninteracting! fer-
mion system.

In this section we present results obtained numerically
the BF model in the two distinct cases when the critic
fermion concentration is~a! small, which takes place whe
DB/2 lies fair aside the center of fermion band, and~b! close
to half-filling, whenDB/2 is located in the center of fermio
band. We thus choose the two valuesDB/2520.3 and 0; see
Fig. 1.

We take the boson fermion potentialg50.1 in all the

FIG. 1. A schematic illustration of the two distinct critical fe
mion concentrations:~top! nF.0.4 when the boson energyDB/2
520.3 and~bottom! nF51 whenDB/250. The shaded areas sho
the occupied fermion states at zero temperature.
2-4
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EFFECT OF ON-SITE COULOMB REPULSION ON . . . PHYSICAL REVIEW B66, 134512 ~2002!
results discussed below. Figure 2 shows the critical temp
tureTc of thed-wave superconducting phase for several v
ues ofU. This type of superconductivity is enhanced near
half-filled fermion system similarly as in the extended Hu
bard model.25 In agreement with our expectations, the Co
lomb repulsion only weakly reducesTc in a dilute fermion
system. However, forDB50 we notice a considerable redu
tion of Tc or even a disappearance of superconductivity
n2F51 ~total concentration is thenntot5nF12nB52)
when U exceeds the critical Mott transition valueUcr . For
such a strong potentialU the d-wave superconducting phas
is restricted to a narrower regime of the total concentrati
such that there are no doubly occupied fermion states o
given lattice site~remember we are considering inters
Cooper pairs!.

Figure 3 illustrates the effect ofU on the extendeds-wave
phase. In a dilute regime we notice almost identical value
Tc for both the d- and extendeds-wave superconducting
phases. Also the influence ofU is there very similar. A re-
markable difference appears forDB50 when the fermion
system is near the half-fillingnF51. The critical tempera-
ture Tc of the s-wave phase is then 3 times smaller as co
pared to thed-wave phase. The system is thus less susc

FIG. 2. Transition temperatureTc into thed-wave superconduct
ing phase as a function of the total concentrationntot for the two
representative boson level valuesDB520.6 ~top! andDB50 ~bot-
tom!. Curves corresponding toU50.1 and 0.2 were obtained from
the mean-field approximation, whileU5` from the salve boson
study.
13451
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tible for the s-type pairing nearnF51 ~for DB5 it
corresponds tontot52).

One notices also some ‘‘peculiar’’ behavior ofTc(ntot) for
the extendeds-wave phase generated by an increas
strength ofU. With a small increase ofU the whole diagram
is somewhat shifted and simultaneously the optimal value
Tc slightly increases. This overall shift is caused by the H
tree termUnF/2 ~see Sec. III! which effectively pulls up the
fermion band with respect to the boson energy level.
comparing the curves corresponding toU50 in the upper
and bottom panels of Fig. 3 we realize that such a shif
responsible for enhancing thes-wave-type superconductivity
but only whenU is safely smaller thanD. A further increase
of the Coulomb interactionU proves to be detrimental on
superconductivity~independently of a symmetry of the orde
parameter! because the fermion subsystem is driven into
Mott insulating state.

To analyze in more detail the pronounced effect of t
Coulomb interaction on superconductivity for the half-fille
fermion systemnF51 (ntot52) we show in Fig. 4 the de-
pendence ofTc on U. The results have been obtained b
means of the alloy analogy approximation mentioned in S
III and discussed earlier by the same author in Ref. 23.
the dim52 tight-binding dispersion we determine the Mo
transition atUcr.0.54 in units of the initial fermion band
This value is probably underestimated. The most cred

FIG. 3. Transition temperatureTc into the extendeds-wave su-
perconducting phase for several values of the on-site repulsion
indicated. The top figure corresponds toDB520.6 and the bottom
one toDB50.
2-5
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T. DOMAŃSKI PHYSICAL REVIEW B 66, 134512 ~2002!
determination based on the dynamical mean-field theory u
ally yields Ucr larger than 1.26 Nevertheless, the qualitativ
behavior presented in Fig. 4 remains valid. As we see
comparing to Figs. 2 and 3 the AAA treatment properly
terpolates between theU50 andU5` limits.

VII. CONCLUSIONS

Summarizing, we have investigated the anisotropic su
conductivity within the boson-fermion model in the presen
of the Coulomb repulsion between fermions.

FIG. 4. Transition temperatureTc of the d- and the extended
s-wave phases for the half-filled fermion systemnF51. Both su-
perconducting phases disappear when the Mott transition is
proached. The inset shows the density of states at the Fermi en
for a normal phase obtained by the alloy analogy Approximatio
.

n

un
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~a! In a dilute regime of the fermion concentration th
effect of the Coulomb repulsion proves to be rather we
For both thed- and extendeds-wave phases we observe up
a 25% reduction of the optimalTc value whenU→`. Both
anisotropic phases survive, even in the limit of infinite
strong Coulomb repulsions.

~b! In the nearly half-filled fermion system we observe
enhancement of thed-wave superconducting phase and a
multaneous suppression of thes-wave phase until the inter
actionU is small.

~c! Around the Mott transitionUcr.0.54 both phases ar
reduced to the concentration regimenF,1, 2nB,1. Still,
the superconductivity is able to survive at sufficiently lar
hole concentrationsh512nF.0. Such a case is relevan
for a description of the HTSC materials and the boso
fermion model seems to be capable of reproducing qua
tively the phase diagrams known for these materials.

Among the problems which are not addressed in this
per there is a very intriguing question: what happens to
pseudogap of the normal phase~discussed earlier in the Refs
8, 10, 11, 13, and 19 in the presence of Coulomb inter
tions? Consideration of this subject is in progress and
results shall be discussed elsewhere.
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