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Effect of on-site Coulomb repulsion on superconductivity in the boson-fermion model
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We study the influence of the repulsive Coulomb interactions on the thermodynamic properties of the
boson-fermion model with an anisotropid-(vave and extendestwave order parameter. Superconductivity is
induced in this model from the anisotropic charge exchange interaction between the conduction-band fermions
(electrons or holgsand the immobile hard-core bosofthe localized electron paixsThe on-site Coulomb
repulsion competes with this pairing interaction and hence is expected to have a detrimental influence on
superconductivity. We analyze this effect in some detail, considering the two opposite limits of the weak and
strong repulsion. A possible crossover between both these regimes is also discussed.
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[. INTRODUCTION conducting gap. However, there are also known some
measurements—for  instance thec-axis Josephson
The boson-fermioriBF) model describes a mixture of the tunnelind® and the photoemission spectroscopy on
narrow-band fermions coupled to a system of the composit&i,Sr,CaCyOg, 5 (Ref. 1§—which provide strong argu-
hard-core bosons. Initially, this type of an effective Hamil- ments for a nonzers-wave ingredient of the order param-
tonian was invented for a system of itinerant electrons intereter. In a most realistic situation one can expect that the order
acting with local lattice deformations in the crossover regimeparameter of the HTSC cuprates acquires a mied or
between adiabatic and antiadiabatic lintitsater, the same s+id symmetry. The possibility for the appearance of the
model was independently considered by a number Ofixed symmetry superconducting phase has been theoreti-
authoré™ as a possible scenario for a mechanism of highally explored on quite general grounds using a two-
temperature superconductivitHTSC). There have also gimensional electron system with anisotropic potential
been attempts to apply a similar BF model to explam certaln:vSJer| of arbitrary (from weak to strony attraction
aspects of the Bose-condensed atoms of alkali mtals. strengtht’ So far, most studies of the superconductivity

This model reveals a rich physics bOth. In its normz_al IOhaS(?/vithin the BF model have been performed for the isotropic
and the broken symmetry superconducting-superfluid states

As shown in mean-field-type studfesthere is a characteris- pairing intera(_:ti_on. Some atte_mpts t(.) analyz_e ‘“_‘mi_r.i”g_
tic temperatureT, below which fermions are driven to the supercondu_cnwty together Wlth.a microscopic ]ust|f|(_:at|on
superconducting phase and simultaneously bosons start {8r introducing the BF--typelSHamntoman can be found in the
Bose condense. This result has been confinfmeglecting PaPer by Geshkenbeit al.™ Very recclagntly, a more formal
the hard-core nature of bosonsy means of the shielded W&y has been explored by Micnasal.™™ _
potential approximatiohand with the help of the renormal- N this paper we shall investigate various kinds of super-
ization group approachMoreover, when approaching the conducting phases induced by an anisotropic potential of the
critical temperature from above, the pairingwise correlationd3F model in the presence of Coulomb interactions between
start to manifest themselves strongly. In particular, they mayermions. For simplicity we shall concentrate only on the
give rise to the formation of a pseudogap in the fermioncase of on-site repulsiod >0, whereU = (ii|(e?/|r])]ii) in
spectrum. This effect, known experimentally from a varietythe Wannier representation. In general, one expects that the
of measurementtsee, e.g., the review in Ref),Qrovides a  on-site repulsioriwhich prevents fermions from forming lo-
firm argument for the application of this model to describecal pairg would compete with the correlations induced by
HTSC materials. the boson-fermion couplingthis interaction is a driving
Pseudogap formation and its variation with a loweringforce for the pairing in the BF model and is responsible for
temperature have been carefully investigated for the BRnducing the pseudogap at temperatufés>T>T. and the
model using(a) the self-consistent perturbative treatment oftrue superconducting gap wha&is=T,). We shall address the
the boson-fermion couplintf;*! (b) the perturbative treat- following question: what is the extent of the detrimental in-
ment of the kinetic processéis the manner of Hubbard | for fluence ofU on the pairing correlations?
the fermion hoppingwith respect to the exact solution of  The above-mentioned competition has been already stud-
this model in its atomic limit? (c) the dynamical mean-field ied in a normal phase of the BF model using the nonpertur-
theory (DMFT) equations which have been self-consistentlybative approach of the DMF¥.In our paper we shall inves-
solved within the noncrossing approximation for the auxil-tigate the anisotropic superconducting phase. To make our
iary impurity problem® and (d) the renormalization group study feasible we assume that the pairing interactions are
techniqué® relatively weak(the meaning of this assumption is explained
Many experimental data, especially angle-resolved photoin the next sectionand we try to estimate the influence of
emission spectroscop§, seem to suggest the anisotropic the Coulomb repulsion varying its intensity from the weak-
d-wave type structure of both: the pseudogap and true supete strong-interaction limit.
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Il. MODEL

The Hamiltonian of the system under consideration con

sists of the two partdd=HBF+HC. The first of them
refers to the standard BF model Hamiltorian

HEF= 2, (e )0k oCr ot (Ap=21) 2 bby

1 t
+\/_N % (Vk,qPoC—k+ g2, Ck+ g2+ H-C), (D)
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After the mean-field decoupling for the boson-fermion in-
teraction(2) we are left with an effective Hamiltonian com-

posed of the separated fermion and boson contributibhs
~HF+HE:

HF:kZ ékCE,ng,o+ UEi ni,l”i,T"'; (gpd’kCE,TCik,i
T

+H.c), 6)

HB=2" (Eqb/b;+gxbl+gx*b;). (6)

and the second part denotes the on-site interaction between
fermionsH®°"'=U=;n; n;; . We use here the standard nota- we introduced here the abbreviations for energies measured

tion for the annihilatior(creation operators of fermionss; ,,
(¢! ), with spino and for the hard-core bosdn (b]) at site
i of the two-dimensional square lattice. The indikeandq

from the chemical potentia,=¢e,—u, Eqg=Ag—2u and
for the two order parametersx=ZX;¢(C_y Ck i), P

:<bq:0>/\/N:<bi>-

in Eg. (1) denote the coordinates of momentum space. We e can easily solve the hard-core boson part of the prob-

assume the tight-binding dispersion for fermionsy
= —2t(cosk,+cosky), and set the bandwidtlb=8t as a
unit (D=1).

It is important to remark now that we let the boson-

fermion exchange potential, , to be anisotropic. As ex-

plained in Ref. 18 the low-energy physics of this model is

dominated by bosons of small momehgga=0. Usually, the

lem. For a given sité one finds the true eigenstates using the
unitary transformation
|A)i=codq «)|0);+sin(a)|1);, (7)

B)i=—sin(a)[0); +coga)[1);, )

magnitudes of the superconducting gap in HTSC materialsuch that tan(2)=(—2gx)/E,, where|0); and |1); refer

are of the order of several meWvhich is ~10 2 of the

correspondingly to the empty and singly occupigy the

bandwidthD). It is thus reasonable to assume that the pairhard-core bosonsitei. In a straightforward calculation we

ing potentialv, 4, which establishes the energy scale Tar
andA¢(T=0), is small as compared @. In such a case the
following mean-field decoupling is justified:

T —
% Uk,gPaC—k+ g2, Cht g2 =Vk,g=0({Pg=0)* C—k, | Ci,1

)

We further write down the anisotropic potentia} o as a
product?®

+b- o€k 1Ch1))-

©)

whereg characterizes the interaction strength af)dstands

vk,0=9 bk,

for the dimensionless factor which has to reflect the fourfol

can determine the expectation values for the number operator
nB=3,(b'b;) and for the order parametpr®>*°

1 EO Y
B—_ _ — L
n°=3 47tani‘( kBT>’ 9
gx Y
= Gy 1o

where y=\(Ey/2)>+|gx|]? and kg is the Boltzmann
constant.

IIl. WEAK-INTERACTION LIMIT

g First, we consider the weak-coupling limit whes is

symmetry of Cu@ planes of the HTSC cuprates. In generalfairly smaller thanD. We are in a position to utilize

the anisotropy factot, can be represented as

= agt ag(cosk,+ cosk,) + ay(cosk,— cosk, )

(4)

and the coefficientsry¢ 4 denote a relative contribution of
the isotropic, the extendeswave, and thel-wave parts into

then the Hartree-Fock-Gorkov linearization for the on-site
interaction n; n; ;=n; (i )+(n; dmi s +(clcl e iy
+clicl (ci|ci ;). The Hamiltonian of the fermion sub-
system(5) reduces then simply to the BCS structufé
:EK,UEKCE,UCK,U+zk(Al&eff)Cl,TCtk,l—’—H'C') with Ekzgk
+Unf/2 (we assume a paramagnetic stdtg ;)=(n; )

the order parameter of the superconducting phase. TheynF/2). A role of the effective gap parameter is played here

should be adjusted depending on the specific material. If, foby
exampleay# 0 anday# 0, we would have the order param-
eter of a mixeds+d or s+id symmetry. Since our main
interest is focused on the competition between the Coulomb
interaction and the superconductivity, we further consider fomwhere the isotropic part is given hy,=U(c; |c; ;). Stan-
clarity only the pure extendesl or d-wave symmetries when dard methods of the solid-state theory give the following
¢ = Ccosk,=cosk, . equations for expectation values:

AL =Ao+gp ¢y, (11)
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~§ E can rewrite the Hamiltonia(b) in terms of the new operators
nF=1-3 Xtanf - (12) as
k Ek 2kBT '
— A" Ex HP=2 tflaalf ,—u ffi,
= L],0 I,o
(C_x Ck1) 2E, t n)—( 2kBT)’ (13
T T
with a typical gapped spectruf, = v&+|AE™|2 in the + 2 Vit aaf] +H.c.
yp g pp p k k k i
superconducting phase.
It is worth mentioning that in a case dfpairing (i.e., for ¥ +
.= cosk—cosk,=7,) the isotropic component of the +Z Ail & ai+§ fiofio=1/. (16)

gap parametefll) does identically vanish. To prove this let
us substitute Eq. (13 into the definion of A, We used here the identiyal=1,% and the last term takes

=UZ(Cc_, C 1) to obtain account of the local constrainh { stands for the Lagrange
multiplier). V;; is the exchange potential whose Fourier
Ao+gp mk Ex transform is given by Eq(3) and, as usual; ; denotes the
Ap=—UD t . (14) rorm ,
R 2E, 2kgT hopping integral.

Next, we approximate Eq16) by (i) replacing the slave-
Since integration over the Brillouin zone of the part contain-hoson operators by their expectation values which are as-
ing 7, gives zero, so, fo>0, Eq.(14) has the only pos- sumed to be site independemt=(a;)=r and ii) replacing
sible solutionAy=0. It is not surprising because the repul- the local multipliers by the global one=X\. In this (mean-

sive interactions by themselves are not able to induce thgeld) approximation for the slave bosons one obtains
on-site fermion pairs.

If the boson fermion potential3d) is isotropic or takes a F E ) T
form of thes wave (¢ = cosk,+cosky), then in general H e (et Ml ofs
#0. From a consideration similar to the one discussed above '
[Eq. (14) is valid except thatp, should be replaced by,] 2 toet
we can determine a relative ratidg/gp. The extended +§k: (r°gp difi 1oy +H-C). (17
swave gap parameter is now given by
The global parameters, r are determined from a minimiza-
tion of the total energyH). This criterion leads to
S (Ug/2E ) tani( E,/2ksT) 9¥H)
ACD=gp| - K _ r=1-nF, (18)

1+, (U/2E)tanh E,/2kgT)
k

(15) A= _;f 8k<fl,u—fk,o>_2R% gp*; ¢k<f—k,lfk,T>]'

For the isotropic boson fermion potentiab{=1), Eq.(15) (19
simplifies further to give &-independent gap©¢™=gp[1

_1 . . _
* 2 (U2Btanh@/2keT)] “<gp. This expression ex- .o subsysterti " is again reduced to the BCS structure.

plicitly shows a detrimental role of the on-site repulsion OnWe thus have the same solution for the expectation values as
the isotropic superconducting phase. Such a problem has P

been previously addressed neglecting the hard-core nature given in Eqs(12) and(13) with a difference that now
of bosons and using the random phase approxima&gRé#)
treatment for the Coulomb repulsion.

As can be noticed from Ed17), the Hamiltonian of the

G=r2e—pu+\, (20)
Ay=r’gp y. (21)

_ , Both the effective fermion bandwidtB ') =r2D and the
In a case of the strong interactiond ¥ D) we make use

. . ffective pairing potentiaV{®""=r?g¢, reduce down to
of the slave-boson technique proposed by Kotliar an ; ;
Ruckensteirt? For simplicity we shall consider here only theCgero when fermion occupation approaches the half-filing.

extreme limitU —s o Under such circumstances the system is driven into the Mott
— &,

. 4 insulating state.
We represent the fermion operators @s,=a; f; , and
ciT’U= fiT’Uai , Where the auxiliary boson operataf(aiT) re-
fers to the annihilatioricreation of the empty state at site
and fermion operatof; (fIU) corresponds to annihilation Finally we consider here a regime of the intermedidte
(creation of the singly occupied sité with spin o. No  for which we adopt the procedure used earlier b¥ irs the
double occupancy is allowed and this can be formally excontext of the extended Hubbard model. We introduce the
pressed via the local constraimia; + = ,f/ f; ,=1. Nambu representatioW ;= (c{ .c_y ), ¥,=(¥])" and, as
Using the real-spac@Vannier statesrepresentation we a first step, determine the unperturbed Green's function

IV. STRONG-INTERACTION LIMIT

V. CROSSOVER
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GOk, w)=((¥,;¥)), neglecting the interactiot) in the 5|
fermion Hamiltonian(5):

=& —9p* Py
. Go(K,iwy)=1. (22)
—gpdx  Ton—& ol "

Next, we compute the dressed Green’'s function using the
matrix Dyson equation

G Yk, iwn) =G (k,iwy) —3(K,iwy). (23 O .
2

In order to proceed we simplify the self-energy matrix by the Ag/2

wailh

0 € 0.5

\\.\\\\\ e

Sk iwp) U(clicl)

U(ciciy) —2n(k,—iwp)] @9

S(k,iwy)=

Without specifying the diagonal elements of E@4) we
denote 4(k,i wp,) by 2 y(k,iw,) and make use of the iden-
tity Soo(K,iw,)=—-211(k,—iw,). The off-diagonal ele- -
ments are approximated by us by a contribution correspond-

ing to the result deduced from the mean-field-type theory FIG. 1. A schematic illustration of the two distinct critical fer-
discussed in Sec. Ill. The channel of the superconductingion concentrationsftop) ng=0.4 when the boson energyz/2
correlations is treated by us in E@4) approximately. =—0.3 and(bottom ng=1 whenAg/2=0. The shaded areas show

If one knew3. (K,iw,), then the needed expectation val- the occupied fermion states at zero temperature.

ues can be found according to the standard field theoretic . L
relation (AB)= 13 <<BQA>)- where B=1/kgT. In %e AAA, DMFT, or simple Hubbard | approximation. Here
n=e\ Tt Mo B we apply the AAA procedure to study a regime near the Mott

particular, we obtaif? transition.
; g1 iwnt &t En(—iwn) VI. NUMERICAL RESULTS
o o e S P AR ion i
n~ Sk— =N W k (25 As far as the Coulomb repulsion is concerned we expect

that its effectiveness should strongly depend on the concen-

tration of fermions. In the regime of small fermion concen-
AT tration (dilute limit) this interaction should not be very effi-
cient and, in particular, it would not affect the super-
conducting-type correlations induced by the boson-fermion
exchange. On the other hand, we expect that the strongest
where agaim (¢" is given by Eq.(11). effects of the on-site Coulomb repulsion might appear for a

It is worth noticing thatS y(K,iw,) has the meaning of System with a nearly half-filled fermion systema=1.
the normal phase self-energy for the standard Hubbard In absence oft_he Coul_omb interactions, the superconduct-
model. Of course there is no exact solution Xy available NG phase(isotropic or anisotropic oneof the BF model is
so far except maybe from numerical exact diagonalization oformed when the fermion concentration is properly adjusted.
quantum Monte Carlo studies. However, depending on thd he Fermi energy= must be close enough to the boson
magnitude of the on-site interaction, one can use varioutVel because only then can the charge exchange between the

approximate estimations. Let us point out a few possibilitieshard-core_ bosons and fermion pairs induce long-range

Starting from the weak-interaction limit the simplest sub—COhere”Cé- So the nefdfg lzconcentrauon of fermions is
stitution for 3y is the mean-field valu&/nF/2 as discussed roughly given byng=2["% ~®“po(e)de, wherepy(e) de-

in Sec. Ill. With an increase dfl one can proceed by includ- notes the density of states of the fr@®ninteracting fer-

ing some higher-order corrections, like, for example, of themion system.

second order it.2* Going toward the Mott transition regime In this section we present results obtained numerically for
U=U,~D (for the half-filled fermion systeione could the BF model in the two distinct cases when the critical
work, for example, with the so-called alloy analogy approxi-fermion concentration i¢a) small, which takes place when
mation (AAA).%% In a more subtle way one could estimate Ag/2 lies fair aside the center of fermion band, gbgclose
the momentum-independent self-enely(w) by adopting to half-filing, whenAg/2 is located in the center of fermion
the dynamical mean-field theorfgvhich becomes exact in band. We thus choose the two valugs/2=—0.3 and 0; see
the limit of infinite spatial dimensionsThe strong interac- Fig. 1.

tion case can be described in a satisfactory way either with  We take the boson fermion potentig=0.1 in all the

<C—lekT>::8_1z ; - ,
v iwn— &—Sn(iwn)[2+[AET)?

(26)
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TC ‘ ‘ T
i d-wave ¢ s-wave
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—— U=02
— U=
0.02
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FIG. 3. Transition temperaturg. into the extended-wave su-
perconducting phase for several values of the on-site repulsion, as
indicated. The top figure correspondsAg= —0.6 and the bottom
one toAz=0.

FIG. 2. Transition temperatufk, into thed-wave superconduct-
ing phase as a function of the total concentratigg for the two
representative boson level valutg= —0.6 (top) andAg=0 (bot-
tom). Curves corresponding 1d=0.1 and 0.2 were obtained from
the mean-field approximation, whild =c from the salve boson

study. tible for the stype pairing nearng=1 (for Ag= it

corresponds to,;=2).

One notices also some “peculiar” behaviorbf(n,,;) for
results discussed below. Figure 2 shows the critical temperahe extendeds-wave phase generated by an increasing
ture T of the d-wave superconducting phase for several val-strength ofu. With a small increase dfl the whole diagram
ues ofU. This type of superconductivity is enhanced near theés somewhat shifted and simultaneously the optimal value of
half-filled fermion system similarly as in the extended Hub- T, slightly increases. This overall shift is caused by the Har-
bard modef® In agreement with our expectations, the Cou-tree termU ng/2 (see Sec. l)l which effectively pulls up the
lomb repulsion only weakly reducél; in a dilute fermion  fermion band with respect to the boson energy level. By
system. However, foAg=0 we notice a considerable reduc- comparing the curves correspondingWe=0 in the upper
tion of T, or even a disappearance of superconductivity forand bottom panels of Fig. 3 we realize that such a shift is
n—F=1 (total concentration is them;,;=ng+2ng=2) responsible for enhancing tisevave-type superconductivity,
whenU exceeds the critical Mott transition valué.,. For  but only whenU is safely smaller thab. A further increase
such a strong potenti&l the d-wave superconducting phase of the Coulomb interactiotJ proves to be detrimental on
is restricted to a narrower regime of the total concentrationsuperconductivitfindependently of a symmetry of the order
such that there are no doubly occupied fermion states on parameterbecause the fermion subsystem is driven into the
given lattice site(remember we are considering intersite Mott insulating state.

Cooper pairs To analyze in more detail the pronounced effect of the

Figure 3 illustrates the effect &f on the extended-wave  Coulomb interaction on superconductivity for the half-filled
phase. In a dilute regime we notice almost identical values ofermion systermg=1 (n,,;=2) we show in Fig. 4 the de-
T, for both thed- and extendeds-wave superconducting pendence ofT, on U. The results have been obtained by
phases. Also the influence &f is there very similar. A re- means of the alloy analogy approximation mentioned in Sec.
markable difference appears fasg=0 when the fermion Il and discussed earlier by the same author in Ref. 23. For
system is near the half-filling=1. The critical tempera- the dim=2 tight-binding dispersion we determine the Mott
ture T, of the swave phase is then 3 times smaller as com-transition atU.,=0.54 in units of the initial fermion band.
pared to thed-wave phase. The system is thus less susceprhis value is probably underestimated. The most credible
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T ‘ - y y ; (@ In a dilute regime of the fermion concentration the

i effect of the Coulomb repulsion proves to be rather weak.
For both thed- and extended-wave phases we observe up to
a 25% reduction of the optimdl. value whenU —c. Both
anisotropic phases survive, even in the limit of infinitely
strong Coulomb repulsions.

(b) In the nearly half-filled fermion system we observe an
enhancement of thé-wave superconducting phase and a si-
multaneous suppression of teevave phase until the inter-
actionU is small.

(c) Around the Mott transitiorJ ;,=0.54 both phases are

‘ , , reduced to the concentration regimg<<1, 2ng<<1. Still,
0 o1 02 03 04 05 u 0.6 the superconductivity is able to survive at sufficiently large
hole concentration$i=1—n>0. Such a case is relevant

FIG. 4. Transition temperatur@c of the d- and the extended for a description of the HTSC materials and the boson-
swave phases for the half-filled fermion systerp=1. Both sU-  fermjon model seems to be capable of reproducing qualita-
perconducting phases disappear When the Mott transition_ is aRively the phase diagrams known for these materials.
proached. The inset shoyvs the density of states at the Fe.rml gnergy Among the problems which are not addressed in this pa-
for a normal phase obtained by the alloy analogy Approximation. per there is a very intriguing question: what happens to the
seudogap of the normal phaslscussed earlier in the Refs.

, 10, 11, 13, and 19 in the presence of Coulomb interac-
tions? Consideration of this subject is in progress and the
¥esults shall be discussed elsewhere.

0.02

0.01

determination based on the dynamical mean-field theory ustg-
ally yields U, larger than £° Nevertheless, the qualitative
behavior presented in Fig. 4 remains valid. As we see b
comparing to Figs. 2 and 3 the AAA treatment properly in-
terpolates between tHé=0 andU =cc limits.
ACKNOWLEDGMENTS

VIl. CONCLUSIONS . . . .
The author kindly acknowledges helpful discussions with

Summarizing, we have investigated the anisotropic super. Ranninger and K.l. Wysokski. Partial support has been
conductivity within the boson-fermion model in the presenceprovided by the Polish Committee of Scientific Research un-
of the Coulomb repulsion between fermions. der Project No. 2P03B 106 18.

1J. Ranninger and S. Robaszkiewicz, Physica3s, 468 (1985. 15K A. Kouznetsovet al, Phys. Rev. Lett79, 3050(1997; A.G.

2G.M. Eliashberg, Pis’'ma zh. Eksp. Teor. Fi#6, 94 (1987). Sunet al, ibid. 72, 2267 (1995.

3R. Friedberg and T.D. Lee, Phys. Rev4B 423(1989; R. Fried- 163, Maet al, Science267, 862(1995; H. Ding, J.C. Campuzano,
berg, T.D. Lee, and H.C. Ren, Phys. Lett1A2 417(1991. and G. Jennings, Phys. Rev. Létt, 2784(1995.

4|_. |0ffe, A.l. Larkin, Y.N. OVChinnikOV, and L. Yu, Int. J. Mod. 17‘]. Betouras and R. Joynt, Europhys_ L&, 119 (1995, K.A.
Phys. B3, 2065(1989. Musaelian, J. Betouras, A.V. Chubukov, and R. Joynt, Phys. Rev.

5J. Ranninger and J.M. Robin, Physica263 279 (1995. B 53, 3598(1996

6 ) ! .

M. Holland, S.J.J.M.F. Kokkelmans, M.L. Chiofalo, and R. 18y,5 Geshkenbein, L.B. loffe, and A.I. Larkin, Phys. Rev5B,
Walser, Phys. Rev. Let87, 120406(2001). 3173(1997)

"T. Kostyrko and J. Ranninger, Phys. Rev58 13 105(1996.

8T. Domarski and J. Ranninger, Phys. Rev.68, 134505(2001).

9T. Timusk and B. Statt, Rep. Prog. Phg2, 61 (1999.

103, Ranninger, J.M. Robin, and M. Eschrig, Phys. Rev. L&}
4027(1995; J. Ranninger and J.M. Robin, Solid State Commun.

21
98, 559(1996; Phys. Rev. B53, R11 961(1996; P. Devillard ~ , - KOStIYrko' Agta Phys. PE" Al _399%997)'
and J. Ranninger, Phys. Rev. L&, 5200(2000. G. Kotliar and A.E. Ruckenstein, Phys. Rev. Leb7, 1362

1H.C. Ren, Physica G03 115(1998. ”s (1986 DH Newns and N.{ Rgad, Adv. Phy36, 799(1987.
T. Domarski and K.l. Wysokiiski, Phys. Rev. B59, 173(1999.

9R. Micnas, S. Robaszkiewicz, and B. Tobijaszewska, Physica B
312-313 49 (2002; R. Micnas and B. Tobijaszewska, Acta
Phys. Pol. B32, 3233(200J).

20A. Romano, Phys. Rev. B4, 125101(2001).

127, Domadrski, J. Ranninger, and J.M. Robin, Solid State Commun

105, 473(1998. 244, Schweitzer and G. Czycholl, Z. Phys. B: Condens. Ma&&r
133.M. Robin, A. Romano, and J. Ranninger, Phys. Rev. Igit. 93 (1991).
2755 (1998; A. Romano and J. Ranninger, Phys. Rev6R 25R. Micnas, J. Ranninger, and S. Robaszkiewicz, Rev. Mod. Phys.
4066 (2000. 62, 113(1990.
144 Ding et al, Nature (London 382, 51 (1996; A.G. Loeser  2°A. Georges, G. Kotliar, W. Krauth, and M. Rozenberg, Rev. Mod.
et al, Science273 325(1996. Phys.68, 13 (1996.

134512-6



