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Derivation of spin Hamiltonians from the exact Hamiltonian:
Application to systems with two unpaired electrons per magnetic site
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The foundations and limits &= 3 andS=1 spin Hamiltonians for systems with two unpaired electrons in
two well-defined orbitals per site are discussed by merging accalkxitgtio calculations in binuclear systems
with the effective Hamiltonian theory. It is shown that, beyond the usgé-éj terms, the effective spin
Hamiltonian necessarily introduces four-body spin operators irSthé case and biquadratic terms in tBe
=1 formalism. The order of magnitude of these additional terms can be rationalized from a quasidegenerate
perturbation theory expansion starting from a Hubbard-type Hamiltonian. This permits to discuss the physical
mechanisms governing the reduction from the all electron Hamiltonian to the spin-only Hamiltonians and the
conditions under which a further reduction from a spin Hamiltonian to the simplest Heisenberg—Dirac—Van
Vleck form is possible. The overall discussion is illustrated by numerical calculations of the magnetic coupling
between two Ni* cations in the KNiF, perovskite and between triply bonded carbon atoms in poly-ynes.
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[. INTRODUCTION Hamiltonian reduces to the simple form of E@). The pio-
neering work of Nesb&t!! suggested that two particles with
Magnetic systems with localized spin moments can bespin S should interact according to the Heisenberg Hamil-

described by concentrating on the unpaired electrons in thnian. However, the detailed analysis of Herfisgows that
field provided by the rest of electrons and the nuclear framethe generalization is not exact and that higher-order terms
work. The dynamical response of the core electrons to thappear in a more elaborate description. A similar conclusion
fluctuation of the unpaired electron density may be cruciakcan be reached by simply starting from the well-known Hub-
for the quantitative calculation of the intersite magnetic cou-bard Hamiltonian
pling constant; but for the modeling of those properties in-
volving only the magnetic sites, total spin can be effectively .
included in the resulting parameters. The mathematical for- H™™¥ &>, t;(afa;+afa)+U> al,a.al8,,
mulation of this simple model follows the well-known (D ' @)
Heisenberg—Dirac—Van Vleck HDVV Hamiltoniah

wheret;; is the intersite hopping integral) the on-site ef-
[ HDVV — _Z Jijéi.éj, (1)  fective two-electron repulsion and th?.if and &; the usual
(.5 creation and annihilation quasiparticle operators. To the sec-
whereJ;; (J;;>0 for a ferromagnetic interactiois the mag- ond order of_ p_erturbation theory only two-body interaqtions
netic coupling constant governing the energy difference be@PPear and it is rather easy to show that the magnetic cou-

tween the different spin state§; and S; are the total spin pling constant takes the simple form
operators for centersandj and the symboli,j) indicates
summation over all andj neighbor magnetic centers. For 3 ij &)
systems in which each site only contributes with one un- 4 U’

paired electron in a well-defined and localized magnetic or-

bital, the status of the HDVV Hamiltonian is rather cléar. However, this is only a second-order development. At the
can be seen, as derived from the exact Hamiltonian througfpurth-order expansion, four-body operators appear by per-
the application of the effective Hamiltonian thedry,when  muting all spins in a four-member ring,**for instance, a

the model space is spanned by the neutral valence 6Byl square or rectangular plaquette. These four-body operators
determinant:® These neutral VB determinants are simply can be formally written as

those with a common closed-shell core and with all magnetic

orbitals singly occupied. Since all determir_1ant.s in the mode_l K4[(S~§j)(§k- ‘5|)+(‘SJ. 5)(§- 3)_(‘3.‘5‘()(‘5]. 91,

space have the same space part, only differing by the spin (4)
distribution, the effective Hamiltonian is a spin-only Hamil-

tonian. However, this does not prove that the resulting spirwhere
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80ti41 Considering the simplest architecture, namely, a two-
K4:U3— (5  magnetic site system with four unpaired electrons, the
present paper analyzes the possible foundation of two types
is a quantity that, in many circumstances, is not negligible. of Heisenberg Hamiltonians to describe the low-lying spec-
Embedded clusters have long been proposed as suitabiieim of such a system. Those ar&a ; Heisenberg Hamil-
models of bulk ionic systems and, in particular, to extracttonian involving four spins in four orbitals and the usal
electronic structure parameters from pertinahtinitio cal- =1 Heisenberg Hamiltonian, which assumes that the two
culations. Thirty years ago, Wachters and Nieuwpoort emelectrons on a magnetic site are ferromagnetically coupled in
ployed a cluster model representation of KNi6 compute an atomic triplet state. In the former case it can be shown
the magnetic coupling constant of this matetfaFollowing  that a four-orbital operator appears in the effective Hamil-
these ideas Chen and Godd&rend Martirt’*8 studied the tonian, whereas in the latter a biquadratic term appears and
electronic structure and magnetic coupling inCa0, using  the effective HDVV Hamiltonian becomes
wave-function based methods. A similar cluster model ap-
proach was used by Hybertsen and co-workers to derive ~ HDVV P & Ao
electronic structure parametérs?! although these authors H =-2 J{S-§5+ME-§)% (6)
relied on the local-density approactiDA) to density- oD
functional theory(DFT). Here, we must advert that subse-  pis paner is organized as follows. In Sec. Il we first
quent work has shown that DFT and, in particular, LDA, dOpiefy review the definition of the exact effective Hamil-
not provide an adequate description of the electronic stucgnian from the exact spectrum, according to Bloch’s and des
ture of these strongly correlated systeffis” whereas  cigizeaus original theor§®** Section 11l defines the three
configuration-interaction techniques can provide an accuratﬁossible model spaces whereas the structure of the corre-

description of the IOC,"’" glectronic st.ructur'e parametefs. sponding effective Hamiltonian together with the formal and
For a broad series of ionic systems, including highsuper-  |oica| aspects of the problem associated with the definition
conductors, it has been shown tiigt can be accurately de- tihe differentS= 1 andS=1 model spaces are discussed in

termined by means of configuration-interaction calculationsgg v 1n Sec. V. the fourth-order expansion of the two spin
. . _36 . . . . H
carried out in embedded cluster mod&1s™ This approach iamiltonians discussed above is derived from a Hubbard-

has been extended and permitted to obtain the hopping int§ye Hamiltonian. This derivation permits to discuss the rela-
gral and magnetic coupling constant of monolayered cupratge importance, i.e., the amplitude, of the fourth-order
supgrcomjucto?% revealing the existence of a quantitative yoms. Finally, Sec. VI presents an effective Hamiltonian for
relationship between the measurgdand the calculated/t —  NiF, derived from accurate configuration-interaction cal-
ratio”" Recently, the application of the effective Hamil- - jaions on an embedded-cluster representation of this
tonian theory t.ogether W|tr_1 the embeddedmcluster.approac@ompounoa_l This analysis shows that the four-body and bi-
has also permitted to obtain,Hor La;,Cu0,.™ For this su- g adratic terms are indeed small but obey the algebraic rela-
perconductor parent compound tg/J ratio appears 1o be  i5ng analytically established in Secs. I1-IV. A similar analy-
~0.1 indicating a small but noticeable deviation from theg;g g presented for ethyneHC=C—H. In this molecule
simple HDVV Hamiltonian. In six-membered rings—for in- e monocentric ferromagnetic exchange is much smaller
stance, them system of benzene and graphitic honeycomby, 5 iy ik NiF,, while the effective intersite hopping integral
lattices—a similar six-body operator appears at the sixth Oris |5rger. Using again accurate configuration-interaction
der of the perturbation expansion, the amplitude of which is, 5ye functions th&=1 andS=1 spin Hamiltonians have

6 512 H !
504;/U°. 7 Clearly, the simple usual form of the HDVV' peen derived. In this case the four-body operators and biqua-
Hamiltonian is only a low-order approximation, frequently gratic terms have very large amplitudes.
sufficient in practice, of the exact effective Hamiltonian
which may be derived from the exact Hamiltonian in a simi-

lar way as discussed above for the Hubbard model Hamil- !l RUDIMENTS OF EFFECTIVE HAMILTONIAN
tonian. THEORY

The present paper concentrates on systems where each For a system with a given exact Hamiltonian the math-

magnetic site bears two unpaired electrons, in well-definedmatical structure of quantum mechanics ensures that there is
and localized singly occupie@r magneti¢ orbitals. This is 4 complete set of eigenfunctions satisfying the time-
the case of the Ni" cations in NiO or KNiF,. In both cases independent Schdinger equation

the crystal field removes the atomic symmetry, and six of the
eightd electrons are accommodated i,g closed shell and
the other two electrons occupy tleg shell, which remains
half filled. In these systems the crystal field fixes the orien-

tation of the two unpaired electrons in well-defined atomic-Usua"Y' one is not interested in the _w_hole spectrum but
) : . . - rather in a small numbeVl of states, defining a target space
like orbitals. One might also consider sp-hybridized carbo

atoms involved in the C-C triple bond of poly-ynes. In thesghrough its proper projector operator, simply defined as

polymers each carbon atom contributes with two electrons,
each of them participating in one of the two orthogomal Prarger 2 W)W (®)
systems. i=1,M

|:||\Pm>:Em|\I'm>- (7)
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According to Bloch’s and des Cloizeaux's the®§! (see The effective Hamiltonian is related to the so-called wave
also Refs. 5 and)at is possible to define an isodimensional operator{}, allowing to obtain the exact wave function from
model spaces of projector its projection on the lower-dimensional model space,

ﬁ):,;M | D) (D] 9 Prarger= 2P (12

Neff_ BRI OB

and an exact effective Hamiltonian acting on the model or H®'=PHQP; (13
space and such that théeigenvalues match exactly those of e pegt choice of the target space is the one minimizing the
the exact Hamiltonian and thé eigenfunctions are the pro- ,5:m of the wave operator
jections of the exact wave functions onto the model space,
P o Ql|=min, 14
HEPW ) =EnP¥), m=1M. (10 o 4

and it is spanned by th# eigenstates having the largest

C_I_early, Heﬁ_onl_y permits to recover those states havi_ng Si9inear independent projection onto the model space
nificant projections onto the model space. TMesquations

(10) imposeM +M(M—1) conditions, i.e., they uniquely .
define theM? matrix elements ofi €. i—§1:|v| [P¥;[|=max. (15

The spectral definition ofi®™ provides a simple and com- .

putationally convenient way to represent this effective operaFrom Eqg.(11) it is clear that the effective Hamiltonian is
tor. This is given by uniquely defined by the choice of the model space and the

knowledge of the target space eigenvectors and eigenener-
gies. However, the identification of the relevahit eigen-
states satisfying this condition is not always straightforward.

R If the model space involves determinants of high energy,
where |PW,) is the biorthogonal vector associated with they will appear with large coefficients in high-energy eigen-
|PW ). In principle, while the different state vectors fulfill- States, they are frequently spread on a broad range of eigen-
ing Egs.(7) are orthogonal, there is no reason, except forstates and the definition of the target space may become im-
possible symmetry arguments, for the projections of thes@ossible. A

states onto the model space to be orthogonal. Nevertheless, it When the eigenenergies and the eigenvectoks$ afe not

is always possible to orthogonalize these projections as sugmown, it is possible to build the effective Hamiltonian from
gested by des Cloizeatixand the corresponding effective the model space through an order-by-order expansion, ac-
Hamiltonian is indeed Hermitian. Of course, the resultingcording to the quasidegenerate perturbation theory. If this
effective Hamiltonian depends on the choice of etates expansion converges, it leads to the exact effective Hamil-
defining the target space. tonian. The low-order terms are

Fef= ;M |PW ) En( P, (11)

(Da><(pa|v|q)J>

. . ||V
<<I>||He“|<I>J>=<d>,|V|<I>J>+‘§S (@Y

Ej-Ed
RS (@) V] @ )(D | V[P g) (D[ V| D) (D V] D )@ | V[P NP | V| D)
des fes (E5—E)(EJ—Ep) Kos de's (E9-E9(EY—EY)

+ E <q)||\A/|q)a><q)a|\7|q)ﬁ><q)ﬁ|\7|(I)y><q)y|\7|q).]>
ies /s 7es (ES—EQ)(EJ—ER)(E5—EY)

(DD WD | V| D ) (D[ V| D YDV | D)
des yesKes (ES—EQ)*(EJ-E))

(VNP IVIP NP VDYDY D) (1 1
e (ES—EQ)(ES-ED) Ek—E. Ex—Ep

S (D1|V]@ )P VI (D VD) (D] V| P5)

, 16
& s s (ES—EQ)(Eg—EQ)(EL—EY) (10
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whereV is the appropriate perturbation operator, i\é= H

—H,, and H, a convenient choice of the zero-order
Hamiltonian?~’

The perturbation expansion diverges if some of the outer 1
space determinant$p ), are close in energy to the high- _ = _ =
energy model space dgterminants; this is the well-known in- SA,—‘/i{de(aE) deta’a’)l,
truder state problerdff There is a logical connection between
the above-mentioned possible ambiguities in the choice of 1
the target eigenvectors and the divergences in the quaside- Sy=—{de(aa)+de(a'a’)}, (18)
generate perturbation theof@DPT) expansion. Neverthe- V2
less, the QDPT is essentially a tool for analysis when starting

from a simple model Hamiltonian such as the HubbardWherea anda stand for thea and 8 spin, respectively. De-
Hamiltonian. fining the product of the irreducible representations of the

orbitalsa anda’ asD (in the atom symmetry group notation,

whena anda’ are p-type orbitalg, it is straightforward to

show that the triplet states are all Bf symmetry and have

total spinz component,Ms=0, 1, —1. Likewise, for the

singlet states two different symmetries are possiSjeis an
In the preceding section it has been recalled that an effec@pen-shell singlet ob symmetry or'D, S, a closed-shell

tive Hamiltonian projects a part of the physics of a systemsinglet of the same symmetfglso 'D), andS,, a closed-

which is described in its corresponding Hilbert space, onto ghell singlet ofS symmetry or'S.

low-dimensional model space. For those systems in which DefiningK as the(positive) atomic exchange integral,

the physics can be reduced to a set of particles with total spin

3, i.e., electrons, with only one particle and one orbital per A , .

site, the model space is unambiguous. The lowest-energy K=(aa'|H|a"a)=(aa’| ' |a’a), (19

eigenstates are given by linear combinations of all the Slater

determinants that can be built by distributing all the electronst is easy to show, from atomic spectroscopy, that the energy

in all the magnetic orbitals with the restriction of avoiding difference between the two-electron Coulomb repulsion inte-

double occupancy. The space part of all these determinants @'ﬁa|s,JCOU'°mb, for the two electrons in the orbita or that

the same. Therefore, the different Slater determinants diffefor one electron ira and one ina’ is

only by their spin distribution and, as a result, the effective

Hamiltonian can only be a spin Hamiltonian. Moreover,

since the space part is made of atomic orbitals, the SlaterJSou°m— j

determinants defined above can be viewed as neutral VB

determinants since they all have the common feature of

keeping one electron per site. and hence the energy difference between the two degenerate

In the case of two particles per site, the situation is rathe%inglet states oD symmetry,S, and S, , and the lowest
more complex. In fact, for an atod contributing with tWo ipjet js 2k, while the 1S state lies K above the triplet, i.e.,
unpaired electrons, described by the atomic, well-defined,

magnetic orbitals anda’, several two-electron distributions
maintain the atomic neutrality and have an unambiguous
spin state, namely, the three components of the lowest-
energy triplet statd and three singlet statés The configu- E; =Eqo+3K. (21
ration functions defining the triplet state can be schemati- A

cally represented by

1 _
SA=‘72{de(a§’)—de(aa’)},

Ill. THE THREE POSSIBLE DEFINITIONS
OF THE MODEL SPACE

Coulomb__
aa’

E1,=Eq0+2K,

Different model spaces may be considered for A sys-
tem, all of them keeping two electrons on each atom but of
smaller and smaller dimension. The largest model space
T9=-L rde(aa)+de(@a’)}, would keep all the neutralA°B°, VB determinants. If the
V2 orbitalsa and b are of different symmetry thaa’ andb’,
the states with onéor three electron in the subséa,b} and
three(or one in the subsefa’,b’} are of different symmetry
T, =detaa’), than the states keeping two electrons in each subset. Hereaf-
ter, we will only consider the latter family, which generates
the lowest eigenstates of the system. For convenience, we
T,§=de‘(£’). (17) concentrate on th& =0 manifold, which involves ten de-
terminants, schematized in Fig. 1. The orientation of the
magnetic orbitals symbolizes their respective symmetries.
Similarly the three singlet states may be written as Among them, six avoid double occupancy, namely,
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D D, Ds D,=de(aab’b’),
a Lt ;Jb L JJ P_L J Dg=deta’'a’bb),
a’ b’

Dy=delaabb),

D, Ds Ds
L ;j L j ‘Lt ﬂ D,o=de(a’a’b’b’). (23)

D, andDg have double occupancy of the magnetic orbitals
but they are directly coupled to the singly iom¢' B~ and

A~ B" determinants, i.e., they accept instantaneous inter-
atomic delocalization. Such a delocalization is impossible for
Dy andD g, which should have a much weaker contribution

D7 DS
N N to the lowest eigenstates.
A A The ten determinants discussed above do not have the
same space part. Working with such a ten-dimensional model

Do Diq space would lead to an effective Hamiltonian handling both

1 the spin and orbital variables and, consequently, it will not be
E‘ j \_}i ﬁJ a spin(or HDVV) Hamiltonian. Moreover, the determinants
D4 andD g are so high in energy that they will appear with

FIG. 1. Schematic representation of the ten neutral VB determi-Iarge coefficients in a broad set of high-energy eigenstates.

nants defined in aAB dimer by two magnetic orbital& anda’ or For such a model_space the _identification .Of the target space
b andb’) per center. The relative orientation aims to mimic the would b(.a impossible (_)f arblt,rary‘ Accor_dlngly,_ this model
different symmetry of the magnetic orbitals. space will not be conS|dered. in fu.rther dISC.USSIOI'].

On the other hand, the first six determinants, Ep),
having a common space part define a six-dimensional model

D1=de(aa’b_b’)=T;Tg, space leading to a spin-only effective Hamiltonian. Here,
there are four particles witB=3% and the effective Hamil-
D,=de(@a'bb')=Tx T, tonian is anS=3 spin Hamiltonian with possible four-body

operators. One drawback of this model space is that it is not
invariant under on-site rotation of the magnetic orbitals. A

D3=de‘(a5’5b’), unitary transformation of the magnetic orbitadsand a’
leads to
D,=detaa’bb’), A=acose+a’ sineg,
Ds=defaa’ bb’), a’'=—asine+a’ cose, (24
o and since
Dg=detaa’bb’). (22

33’ =(cof p)aa —(sir ¢)a’a+sing cosp(a’a —aa),
The D, andD, determinants are of lower energy since they (25

;at!sfy the intra-atomic Hund's rul_e. They are coupled to the[he new open-shell distribution involves part of the previous
ionic A"B" andA"B~ VB determinants, of the def@'b’)  closed-shell ones. Nevertheless, there are two reasons to
or det@bhb’) type. This coupling gives rise to the so-called keep this model space. First, the environment ofABemag-
intersite antiferromagnetic kinetic excharfeThese ionic  netic centers may provide a natural choice for the magnetic
VB determinants also interact with the determinabtsand  orbitals, e.g., the Cul,2.,2) in the CuO planes of higfi

D4, which violate the intra-atomic Hund’s rule. The role of superconducting cuprates. Second, this model space allows
D; andD, in the lowest singlet wave function should be lessto enlighten the relationships between the four-body and the
important than that oD; andD,. Finally, in D5 and Dg, biquadratic operators in th8=3 and S=1 spin Hamilto-
which also violate the intra-atomic Hund'’s rule, intersite nians. ButD; andDg are neutral and coupled to the singly
hopping cannot take place. Hence, the weight of these deteienic VB resonating structures and they may be responsible
minants in the lowest singlet eigenstate should be evefor strong fourth-order effects in the perturbative expansion
smaller than those of the previous ones. Schematically onfeom the six-dimensional model space and eventually act as
has|Cs ¢ <|C34<|C1 4, WhereC; is the coefficient of the intruder states.

determinantD; in the wave-function expansion. The four = The third (three-dimensional model space consists in
remaining determinants that complete the neutral VB modetonsidering only the states that arise from the products of
space are local triplets defined in Eq17). These ardd; andD, plus
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TABLE |. Matrix representation of the effective Hamiltonian in tBet% model space, using the; to Dg basis defined in Eq22).

Heff D, D, Ds D, Ds De

D, (j+j"+2j"/2—h

D, h (j+j"+2j"/2—h

D, —j'r2 —jl2 2K+ (j+j"H)2—=h’

Dy, —jl2 —j'r2 h’ 2K+ (j+j')2—h’

Ds —j"r2 —j"2 —-K —-K 2K+j"=h"

Dsg —j"I2 —j"I2 —-K —-K h” 2K+j"—h"
Dé: %[{de(aar)_’_de(Ear)}{de(bEr)+de(gbr)}] as fO”OWS(See SCheme)l )

=T9T13. (26) a

This model space generates &1 1 spin Hamiltonian. No-
tice that, since

D3=3(D3+D4+Ds+Dyg), (27
the contribution of determinan®; and Dg is the same as Scheme 1
that of determinant®; andD,, which are expected to have o _ _ . _
a larger contribution in the lowest-energy eigenstates. (i) j is the magnetic coupling constant involving thand

b magnetic orbitals centered ok and B, respectively;]
IV. LOGICAL FORMS OF THE S=3 AND S=1 SPIN =Jdap. . . . .
HAMILTONIANS (i) j' is the magnetic coupling constant involving the
andb’ magnetic orbitals centered gxiandB, respectively;
In this section we discuss the analytical form of the effec-j’=J,,, .
tive Hamiltonian matrix elements corresponding to the (iii) j” is the magnetic coupling constant involving the
model spaces presented in the preceding section. For convga’') andb’ (b) magnetic orbitals centered ghnandB, re-

nience, theS=3 and S=1 spin Hamiltonians will be dis- spectively;j”=J,, =Jap .

cussed separately. (iv) h, h’, andh” are related to effective four-body op-
erators.

A. The spin Hamiltonian in the S=% model space (v) K'is the on-siteferromagnetig effective exchange, cf.
Eqg. (19.

The six-dimensional model space, spanned by the deter-
minantsD; to Dg generates a Hermitian effective Hamil- In the case wheraandb’ anda’ andb are of different local
tonian defined by & 3 =15 parameters. The corresponding symmetry,j” is expected to be small. Likewise, for a system
eigenstates can be classified according to the spin, and evefallowing the HDVV Hamiltonian the four-body operators
tually space, symmetry. There are two singlet states—should be negligible.
hereafter referred to &S, andS,, three triplet states+, The structure of the effective Hamiltonian is much sim-
T,, andT3, and one quintet state®; i.e., five energy dif- pler when making use of the space and spin symmetries
ferences. Let us consider the degrees of freedom in the c@ommented upon above. To this end, it is convenient to de-
efficients of the eigenstates that must already satisfy spin arfihe the basis made of products of lo¢ah-site eigenstates,
space symmetry requirements as well as the normalization

constraint. In a homonuclear system, the states ageanfu Di;=TaTg=D;,
symmetry. The two singlets and two triplets states arg of

symmetry(see below. If a Hermitian effective Hamiltonian D,=TATa=D,,

is searched, both singlet states are orthogonal and the same is

true for the twog triplet states. These constraints lead to a D4{=ToTg=3{D3+D4+Ds+Dg},
unique degree of freedom for the coefficients of the two sin-

glets and for those of the two triplet statesg@Eymmetry. DZ:TRSB:%{_ D5+ D4+ Ds—Dg},
There is no degree of freedom for the quintet nor for the

triplet. The total number of degrees of freedom is therefore D{=SaT%=21{D3—D4+Ds—Dg},
equal to seven. Actually the effective Hamiltonian is univo-

cally defined by seven parameters. The matrix representation Dy=SxSg=34{—Ds—D,+Ds+Dg). (28)

of this effective Hamiltonian, in the basis of tii®; to Dg
determinants, is schematically shown in Table I. The meanA subsequent simple transformation allows separating the
ing of the parameters defining this effective Hamiltonian issinglet, triplet, and quintet subspaces leading to

134430-6
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TABLE Il. Matrix representation of the effective Hamiltonian in tﬁe% model space using the space

and spin adapted basis set defined in §).

Fref S S

T T2 Ts Q

S F(+i'+2i"

3 T A
S, g(j+j/—2j”) AK+3(j+]"+2]")

T, 0 0 (i+j'+2j")—2h
T, 0 0 371 2K+3(j+j)—2n
T, 0 0 0 0 K+j"—2h"
Q 0 0 0 0 0 0
1 B c?
Si=—-{D1+D;-D3h Er=2(A=N) = S 2h—an

$2=Ds,

1
T,=—{D;-Dj},
1 \/i{ 1 2}

1
T,=—{D,—- D4},
2=—-{Di=Dg}

1
Ts=—{D,+Dgl,
3 ‘/2{ 4 5}

1
Q= —6{D1+ D,+2D3},

%

and, sinceT; is of a different space symmetry thdn and

(29

T,, the Hamiltonian takes the structure given in Table II,
where the energy of the quintet state has been set for conve-

nience to zero. By introducing
A=z(j+]j'+2j"),
B=3(j+j'—2j"),

C=3("-1), (30)
the expressions of the elements of the& 2 blocks in Table
[l are simplified.

If the intra-atomic ferromagnetic exchange integrals
large as compared to the interatomic exchange~H|,
[i'l, |j”|—the energies of the lowe& singlet andT triplet
eigenstates of the>22 blocks in Table Il are

E<=3A —382
ST 4K —2A

o 3(j+j'—2j"?
=3(j+j +2j") -

64K—8(j+]'+2j")’

('=i)?
4(2K—j"+2h—2h")"

=3(j+j'+2j")—2h-

(31)

Notice that the largest componei@sandT, on the low-
estSsinglet andT triplet, as well a®), span the model space
for the S=1 model Hamiltonian discussed in the following
section.

B. The spin Hamiltonian in the S=1 model space

This space generates one singlet, one triplet, and one
quintet states, and the corresponding wave functions are en-
tirely determined by the total spin angular momentum. Since
by hypothesisS=1, the basis set for this model Hamiltonian
corresponds to the first three elements of &@). Hence,

1

S= T Ta+TaAT4—ToTY,

‘/3{ A'B A'B A B}
T=i{T+T_—T_T+}
V3 A'B A'BJ»

1
Q= —6{TXT5 +TaTg +2TATa}, (32

G
and, hence, the only degrees of freedom concern the two
energy differences between these three st&t&sConse-
quently, the effective Hamiltonian involves only two param-
eters. Let us express the spectrum by

Er—Eq=2J,,

Taking again the energy of the quintet state as the zero, the
spectral decomposition is

Ae™=33,|S)(S|+ 23, THT|+0[Q)Q| (34

and the matrix representation of the effective Hamiltonian in
the basis{D;} defined in Eq.(28) can be calculated and
takes the form given in Table Ill. This effective Hamiltonian
can be specified for thels=1 subspace, which contains the
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TABLE Ill. Matrix representation of model Hamiltonian in the TABLE IV. Matrix representation of the model Hamiltonian in

S=1 model space in thB;, D5, D basis set; Eq(28). the S=1 model space in th#1s=1 subspace.
Fref D; D; D3 At TaTs TaTe
D; Ji+3J, TS 3,
D, J;—J, J,+J, TATS -J, J,
Dé _‘]l _Jl ‘Jl

V. A PERTURBATIVE EXPANSION OF THE HDVV
HAMILTONIAN FROM A HUBBARD-TYPE

Mg=1 triplet and qyintet states_. The degenerac_:ies_between HAMILTONIAN
Ms=0 andMg=1 eigenvalues impose the Hamiltonian ex-
pression in Table IV. Starting from a simple valence bond Hamiltonian, analo-

Notice that the usual HDVV Hamiltonian takes the form gous to the Hubbard Hamiltonian for systems with one or-
bital per site, it is possible to obtain a perturbative analytic
. derivation of the two different spin Hamiltonians described
HAOW=—> J(§-§5-1), (35 in the preceding section. The bielectronic model Hamiltonian

iy (i) introduces=t,, andt’ =t ,, hopping integrals between

when the quintet energy is taken as the origin, and, consdl€ @ and b and a’ and b’ orbitals, respectively, which
quently, it only introduces one parameter and results in &ouple the neutral and singly ionic VB determinants with the

. _ doubly ionic onesfii) attributes an energy and 2J to the
spectrum where the energy differences Bfe- Eq=2J and . . . X
Es— Eq—3J. The exact spectrum of a system with two mag_smgly and doubly ionic determinants, respectively, afid)

netic centers wittS=1 has no reason o strictly obey this introduces the previously discussed atomic spectroscopy in

£ ratio, and in order to take into account any possible devia'-[he neutral determinants subset.
N ’ yPp The resulting Hamiltonian matrix is given in Table V,

tion the biquadratic terms are to be considered. Modifyinq/vherel t0 1. are the sinalv ionic determinants:
Eq. (6) to have the same energy zero, 11 s gy '

l,,=detaaa’b’),

HHDVV:_@ZD J[SiSJ+)\(SiSJ)2_(1+)\)1]. (36) Ilzzde(aﬁ/bl),

and identifying Eqs(34) and(36), we have | 13= de(aa’a’b),
J:Jz, |14: de(?a’g' b),
N=(1-3,13,). (37) 15=deta’b’bb),
It is also interesting to relat® andJ, (or J and\) appearing l,6=de(@’ b’bb),
in the S=1 HDVV Hamiltonian to the integrals appearing in —
the S=% HDVV Hamiltonian. To the second order l17=detab’bb’),
(j+jr_2jlr)2 |18:d6(ab3,b,). (41)

Ji=3(j+i"+2)")-

(38) The doubly ionic determinants only interact with singly ionic

ones throught parameters. Their contribution to tH&= 3
(G'—)2 and S=1 spin Hamiltonians appears at the fourth order of
— . perturbation ag*/U? terms. These contributions may be ne-
8(2K—j"+2h—2h") glected as compared to the leading fourth-order corrections
39 that are proportional t6*/KU? as will be analyzed below.

64K—-8(j+]j'+2j")’

J=J=3(j+j'+2j")—h-

Keeping the leading terrk in the second-order energy de-

nominators, the amplitude of the biquadratic term can be A. Derivation of the S=3 spin Hamiltonian

expressed as Applying the QDPT using the six-dimensional model

spaceD; to Dg, as the model space, one finds the following

J—-J; 1 Bj—j"—=2)"(3j'—=j—=2]") order-by-order contributions. To the first order, the integyals
A= Jh, I, —h+ 64K - (40 reduce to the direct exchange integral®)=2K,, j'

=2K,1p , andj"®=2K,,, =2K,,, whereas the four-body
Hence, the biquadratic terim has a double origin; first the integrals are zeroh®=h'M=h"M=0 (wherej®, j’®,
existence of a four-body contributidgnand, second, the cou- j”®, h( h'® h"0) include all order corrections of the
pling between the three-dimensional model space spanned Iperturbation theory up ta). The second-order correction
the product of atomic triplet states with the states that in-does not affect the four-electron integrals but introduces the
volve the atomic neutral singlet states. kinetic exchange terms in thkintegrals:
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TABLE V. Matrix representation of the Hubbard-type model Hamiltonian projected onto the basis of the
neutral determinant®, to Dy, and the relevant singly ionic determinamig to | 5.

D, O
D, 0 0
D;, 0 0 XK
D, 0 0 0 X
Ds 0 0 —-K —K 2K
Dg 0 0 —-K —-K 0 2K
D, 0 0 0 0 0 0 &«
Dg 0 0 0 0 0 0 0 &
Dg 0 0 0 0 0 0 K K 6K
Dp 0 O 0 0O 0 0 K K 0 6K
lhy, -t 0 O t 0 O t 0 0 0 U
l, O t -t 0 O 0 -t 0 O 0 0 U
lsz -t 0O t O O O O t 0 0 0 0 U
ly, O t 0 -t 0 0 O t 0 0 0 0O 0 U
I 15 t 0 0O -t O 0 0o -t 0 0 0 0 0 0 U
ly O -t t 0 O O O t 0O O O O O 0O 0 U
ly ¢t O -t O O O -t 0 O O o O O o 0 o0wuU
l1g 0o -t 0 t’ 0 0 t 0 0 0 0 0 0 0 0 0 0 U
2 2 12
ﬁaZZKaV—iL, jWQZZKyb—4Kt<+; . (43)
u U
4’2
j'(Z)ZZKa'b'_T* The fourth-order corrections on the integrals are nu-
merous and it is convenient to concentrate on their origin.
"2 =2K .y if tyy =ty p=0. (42) The amplitudeh associated with the four-body operator,

The third order only affects thg’ integrals as

h=

i=11,18j=11,18k=7,8

(D VI){LIVIDYDV]1)(1 VD)

h=|D,)(D,|, comes from fourth-order processes of the
type

(44)

B6KU?

and similarly forh’. From Table V, it may be verified that Consequently, at this level, four-electron terms appear that
these four-body operators behavet&s?/U?K.

The fourth-order corrections are null fpf andh” since
Ds and Dg are not coupled with the singly ionic determi- which are j~—4t?/U and j'~—4t'?/U. This requires
nants. The nonzero contributions to other integrals lead to thgt#/3K U2~ 4t?/U, or K~2t%/3U~/6. Hence, the four-
fourth-order corrected expressions

(o 4’2 8t’t’?
S I VINE-TOVER
4’2 8t’t’?
UGN S
e VIR TV
2412
hwz_ﬁt —h'@
3KU?

(49)

can be of importance in systems wheré’?/KU? is not
negligible as compared to the second-order contributions,

electron terms must be introduced when the intersite cou-
plings are not negligible as compared to the intrasite direct
exchange.

B. Derivation of the S=1 spin Hamiltonian

The matrix representation of the Hubbard-type Hamil-
tonian reported on Table V can be transformed to the basis of
the eigenfunctions of the HDVV Hamiltonian given in Eq.
(29). The result of such a transformation is given in Table VI,
whereF, to F,, defined as
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TABLE VI. Matrix representation of the Hubbard-

PHYSICAL REVIEW B 66, 134430(2002

type model Hamiltonian projected onto the basis of the

Q, Ty, Ty, T3, Sy, S, states, Eq(29), theF, to F, states combinin®, to D4, cf. Eq.(46) and the relevant
singly ionic determinants;; to |,5. For convenience the coefficierasb, andc are used instead of#/2/2),

(V3/2), and3, respectively.

Q O
T, 0 0
S, 0 0 0
T, 0 0 0 X
T, 0 0 0 0 X
S, O 0 0 0 0 4«
F, O 0 0 0 0 0 K
F, O 0 0 0 0 0 0 &
F; O 0 0 0 0 0 0 0 €&
F, O 0 0 0 0 0 0 0 0 &
ly 0 —at —bt at 0 —ct ct at” 0 ct' U
l, 0 —at bt at 0 ¢t —ct' —at” 0 —-ct' 0O U
l; 0 —at’” —bt” —at’” 0O —ct’ ¢t —-at O ¢t O O U
ly O —at’ bt —-at” 0 ¢t —-ct a O —-ct 0 O O U
lis 0 at bt —-at 0 ¢t —ct' at 0O —-ct O O 0O O U
lege 0O at —-bt —-at 0 —-ct ct —at 0 ¢t 0O O O O O U
ly O at bt at 0O ¢t —-ct —-at 0 —-ct 0 0 O O O O U
lig O at’ —bt'" at’” 0 -—ct' ct aa 0 ¢t O O O O O O o0 U
F1=3{D;+Dg—Dg— Dy}, E(4):_2t2+t’2 (t2—t'2)2
i U KU?
F—i{D —Dg}
2o p T e “ 242 (2-t'2)2 9 (2—1'2)2 152’2
) Es U KU? 4 KuU? 2 KU?
Fa=—{Dy—Diqg}, “9
V2
and, consequently,
F4=3{D7+Dg+Dg+D1g, (46) 2ir? 2oy
diagonalize the Hamiltonian in this subspace and account for 3(24)=— —,
the strongK coupling existing betweeB®,; andDg with Dg U KU
andD .
At the second order of the QDPT, the energy levels are 3 (t2—t'%)?2 5t%’2
JP=3"+— (50)

E$’=0,
£0)_ t2+t'2
T = U '
t2+t'2
EP= -3 . (47
This is
t2+t'2
1R=3P= - @9

U

and the four-body contributiop\ in Eq. (6) and Eq.(40)] is
Zero.
Up to the fourth order of the QDPT it can be sown that

4 KU?  2KU*
The last two terms of Eq49) govern the deviation from a
pure HDVV Hamiltonian based on th8=1 local triplet
state that predicts that=J;=J,. The deviation becomes
important whert*/KU? and/ort’#4/KU? is not negligible in
front of K. In the case of the acetylene molecule discussed in
Sec. VII, t=t’, and, hence, the deviation i&"=J{"
—3t4/KU2.

VI. NUMERICAL EXTRACTION OF SPIN HAMILTONIANS
FROM ACCURATE CONFIGURATION-INTERACTION
CALCULATIONS

This section reports numerical applications of the formal-
ism presented above to two cases, theRNi cluster model
of the K;NiF, perovskite and ther system of the acetylene
molecule.
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(3s3p6d) quality and is contracted tp2s2p3d]. For the
fluorine bridging anion, the basis set is of trigi@lus polar-
ization quality whereas a doub#hasis has been used for the
external fluorine anions. The overall basis set is similar to

24 :
Ni? magnetic center

% F" anions that used in a previous wotkand the difference in the cal-
‘j\i culated magnetic coupling constant is almost negligibid
Y K or 0.35 meV.

Total Ion Potential for Ni** cation

The molecular orbitals are obtained from a restricted
open-shell Hartree-Fock calculation in the quintet state, and
the unpaired electrons occupy the two linear combinations of
Total Ton Potential for K" cation the 3d,2.,2 and the 8,2 (see Fig. 2 magnetic orbitals cen-

tered on the Ni atoms with variational delocalization tails in

FIG. 2. The embedded M, cluster model representation of the neighboring fluorine atoms. The complete active space
K,NiF,. (CAYS) involves four electrons in four orbitals and may be
regarded as a full valence bond space on which it is easy to
identify the six neutral VB determinants. However, the con-
figuration interaction(Cl) calculations performed according

The K;NiF, perovskite has been represented by ano the difference dedicated CI procedtir® involve double
embedded-cluster model, which is schematically shown irexcitations from the closed-shell electrons to the active
Fig. 2. This cluster can be described as jfMi)(KigNig)  space, double excitations from the active space electrons to
[point chargegPC’9)] and may be seen as containing threethe virtual space and all the possible single excitations on top
different regions, the first is (BF;;) and contains the atoms of all CAS determinants. The Cl expansion runs over more
that are explicitly quantum mechanically treated, the secon¢han 1@ determinants. In this Cl space; one has to identify
region provides an adequate quantum embedding to the firgiie six eigenvectors with largest neutral valence bond char-
region and includes the @Nig) moiety, which in turn is acter, i.e., the largest projection onto the model space. Due to
described by total ion potentialé, TIP’s, representing the the existence of low-lying ligand to metal charge-transfer
Ni?* and K' cations surrounding the Fanions. The role of states, the six roots of interest are not the six lowest
the TIP’s is to avoid an excessive polarization of the aniongigenstates. They have the ranks 1, 2, andh8se corre-
towards the PC’s that surround the first and second re§ion. sponding to the local triplets as expedteand 6, 7, and 13.
The point charges provide the long-range Madelung potenFinding the higher roots require the use of the recently pro-
tial; fractional charges obtained by means of Evjen'sposed Lagrange-Newton-Raphson-diagonalizatittNRd)
method® are used in the cluster edge to provide an accuratéechnique® > The corresponding energies and the projec-
potential in the inner region. Thesi electrons of the F tion of the eigenvectors in the badls to Dg are given in
anions and the $2s23p®3s23p® electrons of Ni* have  Table VII. These projections happen to be orthogonal and
been included in a pseudopoteritiand the total number of have been renormalized. As expected, in the ground-state
electrons included in the calculations corresponds to an ioniwave function, the coefficients of the determinabts and
description, although the total charge of the resultingD,, which are coupled with the ionic VB determinants, i.e.,
embedded-cluster model is zero. The’Nibasis set is of give rise to electronic delocalization, are slightly larger

A. Ab initio model Hamiltonian for K ,NiF,

TABLE VII. For the Ni,F;; embedded cluster model of theKiF, perovskite, the eigenvaluéimn meV)
of the six electronic eigenstates with the largest projection in the valence-bond model space spabped by
to Dg determinant$Eqg. (29)] relative to the quintet ground state and their projection onto the model space.
In parentheses, the expected coefficients of an exact HDVV Hamiltonian.

States S, T, Q T, T, S,
Energies(meV) —-12.95 —-8.77 0 2292.4 2304.4 4601.0
D, 0.5773 0.7070 0.4082  —0.0058 0.0000 —0.0013
(0.5774 (0.7072 (0.4082 (0.0000 (0.0000 (0.0000
D, 0.5773 —0.7070 0.4082 0.0058 0.0000 —0.0013
(0.5774 (—0.7072 (0.4082 (0.0000 (0.0000 (0.0000
D, —0.2898 —0.0058 0.4082 —0.7070 0.0000 —0.4993
(—0.288% (0.0000 (0.4082 (—0.7071 (0.0000 (—0.5000
D, —0.2898 0.0058 0.4082 0.7070 0.0000 —0.4993
(—0.288% (0.0000 (0.4082 (0.7072 (0.0000 (—0.5000
D5 —0.2875 0.0000 0.4082 0.0000 0.7071 0.5006
(—0.288% (0.0000 (0.4082 (0.0000 (0.7072) (0.5000
D¢ —0.2875 0.0000 0.4082 0.0000 —0.7071 0.5006

(—0.288% (0.0000 (0.4082 (0.0000 (=0.707) (0.5000
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than those of the determinands and Dg. For an exactS
=1 HDVV Hamiltonian, the composition of the six eigen-

PHYSICAL REVIEW B 66, 134430 (2002

stateis (+]'+2j")/2=—8.62 meV. The perturbation stabi-
lizes this triplet state by-(j—j’)%/8K=—0.15 meV, lead-

states would be somewhat different as shown in parenthes@sgg to the final value of—8.77 meV. The stabilization of
in the table. The small deviations are responsible for thehe singlet state is 3¢’ —2j”)%/64K=0.02 meV, much
appearance of biquadratic forms in the spin Hamiltonian. Ussmaller than that of the triplet state.

ing the spectral definition of the effective Hamiltonian per-

mits to obtain the values of the seven elements defining the

matrix representation of the effective Hamiltonian given in
Table 11.
The values found are
j=8.57 meV,
j’=-—29.18 meV,
j"=1.69 meV,
K=1151.34 meV,
h=0.00 meV,
h'=-0.20 meV,

h"=—-0.25 meV. (51)

These results call for the following comments.

(i) The intra-atomic effective exchange integkalis 40
times larger than the largest effective interatomic exchang
integral. This is a case where ti$e=1 pure HDVV Hamil-

tonian, without the quadratic term, should be appropriate

and actually

Er—Eq_ 877 . 5
Es—Eq 1295 52

slightly larger than thé ratio predicted by this Hamiltonian.
(i) The largest antiferromagnetic interatomic exchajige
concerns the 8,2 orbitals, which have the largest differential
overlap directed along the 180° magnetic path.
(i) The effective coupling between the 8,2.,2 orbitals
remains positive, due to the first-order ferromagnetic ex

B. Ab initio model Hamiltonian for the = system
of the acetylene molecule

The S=3 HDVV Hamiltonian has been proved to be a
very efficient tool for the study of conjugate hydrocarbons,
where each carbon atom brings oneslectron in a ,()
atomic orbital’® This success is somewhat unexpected, since
these systems are considered to be highly delocalizét a
[t|/U ratio close to 1, but it can be rationalized in a similar
way to that described in the preceding section. The effective
antiferromagnetic coupling should not be identified with its
second-order amplitud&? = — 4t?/U but with the exact ex-
citation energy of the Hubbard Hamiltonian for the dimer

U—UZ+16t2
J=——7—. (53
2

WhenJ is extracted from the simplest conjugated molecule,
namely, ethyne, for a set of C-C distances, one obtains an
r-dependent HDVV Hamiltonian, which, properly comple-
mented by asr-bond force field, becomes a quantitative tool
for the study of ground and excited states and can be directly
applied to photochemistR?. One may wonder whether such
a model might be used for the treatment of the lowest states
of poly-ynes; i.e., of—~C=C— triple bonds, and consider-
ing either anS=3 or S=1 spin model Hamiltonian.

Accurateab initio Cl calculations of the spectrum of the
acetylene molecule, in a double-zeta plus polarizafiaziP)
basis set, have already been reported in theastoncen-
trating especially on the possible generation @-a3 spin
Hamiltonian. Table VIII reports the energy spectrum and the
components of the relevant eigenvectors of a large Cl expan-
sion in the model space, for the equilibrium ground-state
geometry. TheS; and S, projections are strongly nonor-

change which prevails over the delocalization or over thdhogonal. This is because there are two intruder singlet states

spin polarization effects.
(iv) The integralj” between the 8,2_,2 on one center and
the 3d,2 on the other center is non-negligible. It is positive,

in this section of the spectrum. To obtain a Hermitian opera-
tor, a further orthonormalization step is required and, rather
than a S 2 symmetric orthogonalization, a Gramm-

- . . . 4
the contribution of the antiferromagnetic Anderson mechaSchmidt-type orthogonalization &, to S, is preferablé

nism between these orbitals being zero.
(v) The four-body operatork, h’, andh” are weak but
nonzero. They do not obey the relations=h andh”=0

The resulting matrix elements of ti&= 3 spin Hamiltonian
are the following(in atomic units:

obtained by permuting the Hubbard Hamiltonian, which ap- J=1"=-0.196,
pears to be oversimplified. .,
From the eigenenergies in Table VII, it is also easy to J"=—0.004,
establish thes=1 HDVV Hamiltonian sincel,=J=-4.39
meV, J;=—4.32 meV, anch=1-J,/J,=0.07/4.39-0.016, K=0.032,
confirming the weakness of the biquadratic terms in this sys-
tem. h=—0.003,
The role of the coupling between the three neutral states
generated by the local atomic triplets and the neutral states h’=—-0.005,
involving the local atomic singlets is also shown. If this cou-
pling is not taken into account, the energy of theriplet h”=-0.012. (54
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TABLE VIII. Eigenvalues of the six electronic states of the acetylene molecule with the largest projection
in the valence-bond model space spannedhyto D¢ determinants relative to the quintet ground state and
their projection in the model space.

States S, T, T, Q S, T;
Energies(hartree —-0.367 -0.189 —0.138 0.0 0.064 0.064
D, 0.525 0.707 0.000 0.408 0.416 0.000
D, 0.525 —0.707 0.000 0.408 0.416 0.000
Dy -0.470 0.000 0.707 0.408 0.148 0.000
D, -0.470 0.000 -0.707 0.408 0.148 0.000
Ds —0.054 0.000 0.000 0.408 0.552 0.707
D¢ —0.054 0.000 0.000 0.408 0.552  —-0.707

From these parameters it appears that for this problem, thgest that although theéS=1 spin Hamiltonian slightly
intra-atomic ferromagnetic exchangeis smaller than the underestimates the excitation energies, it gives rather reliable
intersite antiferromagnetic exchangévioreover, some four- results.
body operators are large;5% ofj.

It is important to point out that one of the two above-
commented intruder states is of ionic character and lies 0.059 VIl. CONCLUSIONS

a.u. above the quintet state, while the other one appears at . o
—0.083 a.u. below the quintet state, is of a neutral closed- The present work has analyzed the foundations and limits

" LT A > AT
shell valence bond nature, and is spanned by the determ@f S=2 andS=1 spin Hamiltonians for systems in which

nantsD, andDg. The coefficients of these determinants in ©¢h sité brings two unpaired electrons in two well-defined
the S, andS, singlet states are large and it is clear that theyorbltals. The analysis is limited to dimers but it permits to

act as strong perturbers at the fourth order, resulting in stronffve@! the underlying physics. From first-principles argu-
deviations from a simpl&=1 HDVV Hamiltonian. ments it is shown that, beyond the usdglterms, the effec-

From the energy differences tive_ spin Hamiltonian(\_/vhi(_:h for _the dimer can always be
defined from either a six-dimensional model space or a three-
dimensional space faB=3 and S=1, respectively neces-
sarily introduces four-body spin operators in e ; case
and biquadratic terms in th®=1 formalism. The order of
Er—Eqg=-0.189 a.u, (55  magnitude of these additional terms can be rationalized from
a QDPT expansion starting from a Hubbard-type Hamil-
the S=1 Hamiltonian is easily obtained, withy=—0.123  tonian. It is shown that both four-body and biquadratic terms
hartree and J,=-0.0945 hartree or, equivalently)  pehave as\t*/KU2~J%K. Therefore, these terms play a
= —0.0945 hartree ani=—0.3016,\ being the amplitude negligible role whenk>|J|, i.e., when the ferromagnetic
of the four-body term appearing in E¢6). Notice that, in intrasite direct exchange is much larger than the antiferro-
this case, the importance of the four-body operator is cruciahagnetic intersite kinetic exchang@~ — 4t%/U).
in contrast to what has been found for thgN{F, com- Ab initio accurate quantum chemical calculations, using
pound. Such an extraction may be performed for several C-@xtended basis sets and large configuration expansions, have
interatomic distances and the reSUlting effective Hamiltoniarbeen used to numerica”y derive effective Spin Hamiltonians
may be interpolated in a polynomial form as a function of thefrom the exact ones. In the case ofMiF, (or KNiFs),

C-C distance. which involves Nf* with a very large intrasite direct ex-
The efficiency of the resulting spin Hamiltonian has beenchange favoring the local fulfilling of Hund’s rule, the four-
tested by computing the low-energy spectrum of the firsody operators and the biquadratic terms established from an

poly-ynes, and comparing the vertical absorption and emisanalytical derivation remain with a very small amplitu@8s

sion energies to those obtained using%Az spin Hamil-  of 3). However, if one considers a carbon atom of a poly-yne

tonian and reported in Ref. 55. The results in Table IX SUgd=as bringing also two unpaired electrons per site in two or-

thogonal 7r bonds, the on-site ferromagnetic exchange and

TABLE IX. Lowest singlet to triplet transition energies of even the intersite kinetic exchange are of the same order of mag-

pon-ynes(inleV). Results in parentheses refer to previous resultsyjtde. Consequently, the four-body operators in Swes

using anS=3 spin Hamiltonian. and the biquadratic terms in tig=1 effective Hamiltonians

become very large.

CaHz CeHz CeHz To summarize, the physical mechanisms governing the

Vert. absorption 3623797 2.77(3.00 2.27(2.53 reduction from the all electron Hamiltonian to the spin-only
Vert. emission 243253  1.77(1.90  1.37(1.50 Hamiltonians have been analyzed through the effective
Hamiltonian theory. The conditions under which it is pos-

@b initio Cl calculations predict 3.84 eV. sible to reduce the full spin Hamiltonian to its simpler
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