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Derivation of spin Hamiltonians from the exact Hamiltonian:
Application to systems with two unpaired electrons per magnetic site
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The foundations and limits ofS5
1
2 andS51 spin Hamiltonians for systems with two unpaired electrons in

two well-defined orbitals per site are discussed by merging accurateab initio calculations in binuclear systems

with the effective Hamiltonian theory. It is shown that, beyond the usualJi j Ŝi•Ŝj terms, the effective spin
Hamiltonian necessarily introduces four-body spin operators in theS5

1
2 case and biquadratic terms in theS

51 formalism. The order of magnitude of these additional terms can be rationalized from a quasidegenerate
perturbation theory expansion starting from a Hubbard-type Hamiltonian. This permits to discuss the physical
mechanisms governing the reduction from the all electron Hamiltonian to the spin-only Hamiltonians and the
conditions under which a further reduction from a spin Hamiltonian to the simplest Heisenberg–Dirac–Van
Vleck form is possible. The overall discussion is illustrated by numerical calculations of the magnetic coupling
between two Ni21 cations in the K2NiF4 perovskite and between triply bonded carbon atoms in poly-ynes.

DOI: 10.1103/PhysRevB.66.134430 PACS number~s!: 75.10.Dg
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I. INTRODUCTION

Magnetic systems with localized spin moments can
described by concentrating on the unpaired electrons in
field provided by the rest of electrons and the nuclear fram
work. The dynamical response of the core electrons to
fluctuation of the unpaired electron density may be cruc
for the quantitative calculation of the intersite magnetic co
pling constant; but for the modeling of those properties
volving only the magnetic sites, total spin can be effectiv
included in the resulting parameters. The mathematical
mulation of this simple model follows the well-know
Heisenberg–Dirac–Van Vleck HDVV Hamiltonian1,2

ĤHDVV52(
^ i , j &

Ji j Ŝi•Ŝj , ~1!

whereJi j (Ji j .0 for a ferromagnetic interaction! is the mag-
netic coupling constant governing the energy difference
tween the different spin states,Ŝi and Ŝj are the total spin
operators for centersi and j and the symbol̂ i,j& indicates
summation over alli and j neighbor magnetic centers. Fo
systems in which each site only contributes with one
paired electron in a well-defined and localized magnetic
bital, the status of the HDVV Hamiltonian is rather clear.3 It
can be seen, as derived from the exact Hamiltonian thro
the application of the effective Hamiltonian theory,4–6 when
the model space is spanned by the neutral valence bond~VB!
determinants.7,8 These neutral VB determinants are simp
those with a common closed-shell core and with all magn
orbitals singly occupied. Since all determinants in the mo
space have the same space part, only differing by the
distribution, the effective Hamiltonian is a spin-only Ham
tonian. However, this does not prove that the resulting s
0163-1829/2002/66~13!/134430~14!/$20.00 66 1344
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Hamiltonian reduces to the simple form of Eq.~1!. The pio-
neering work of Nesbet9–11 suggested that two particles wit
spin S should interact according to the Heisenberg Ham
tonian. However, the detailed analysis of Herring3 shows that
the generalization is not exact and that higher-order te
appear in a more elaborate description. A similar conclus
can be reached by simply starting from the well-known Hu
bard Hamiltonian

ĤHubbard52(
^ i , j &

t i j ~ âi
†â j1â j

†âi !1U(
i

âia
† âiaâib

† âib ,

~2!

where t i j is the intersite hopping integral,U the on-site ef-
fective two-electron repulsion and theâi

† and âi the usual
creation and annihilation quasiparticle operators. To the s
ond order of perturbation theory only two-body interactio
appear and it is rather easy to show that the magnetic c
pling constant takes the simple form

Ji j 52
4t i j

2

U
, ~3!

However, this is only a second-order development. At
fourth-order expansion, four-body operators appear by p
muting all spins in a four-member ring,12–14 for instance, a
square or rectangular plaquette. These four-body opera
can be formally written as

K4@~Ŝi•Ŝj !~Ŝk•Ŝl !1~Ŝj•Ŝk!~Ŝl•Ŝi !2~Ŝi•Ŝk!~Ŝj•Ŝl !#,
~4!

where
©2002 The American Physical Society30-1
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K45
80t i j

4

U3 ~5!

is a quantity that, in many circumstances, is not negligible12

Embedded clusters have long been proposed as sui
models of bulk ionic systems and, in particular, to extr
electronic structure parameters from pertinentab initio cal-
culations. Thirty years ago, Wachters and Nieuwpoort e
ployed a cluster model representation of KNiF3 to compute
the magnetic coupling constant of this material.15 Following
these ideas Chen and Goddard16 and Martin17,18 studied the
electronic structure and magnetic coupling in La2CuO4 using
wave-function based methods. A similar cluster model
proach was used by Hybertsen and co-workers to de
electronic structure parameters,19–21 although these author
relied on the local-density approach~LDA ! to density-
functional theory~DFT!. Here, we must advert that subs
quent work has shown that DFT and, in particular, LDA,
not provide an adequate description of the electronic st
ture of these strongly correlated systems,22–25 whereas
configuration-interaction techniques can provide an accu
description of the local electronic structure parameters.26,27

For a broad series of ionic systems, including high-Tc super-
conductors, it has been shown thatJi j can be accurately de
termined by means of configuration-interaction calculatio
carried out in embedded cluster models.28–36 This approach
has been extended and permitted to obtain the hopping
gral and magnetic coupling constant of monolayered cup
superconductors37 revealing the existence of a quantitativ
relationship between the measuredTc and the calculatedJ/t
ratio.38,39 Recently, the application of the effective Ham
tonian theory together with the embedded cluster appro
has also permitted to obtain K4 for La2CuO4.14 For this su-
perconductor parent compound theK4 /J ratio appears to be
;0.1 indicating a small but noticeable deviation from t
simple HDVV Hamiltonian. In six-membered rings—for in
stance, thep system of benzene and graphitic honeyco
lattices—a similar six-body operator appears at the sixth
der of the perturbation expansion, the amplitude of which
504t i j

6 /U5.12 Clearly, the simple usual form of the HDVV
Hamiltonian is only a low-order approximation, frequent
sufficient in practice, of the exact effective Hamiltonia
which may be derived from the exact Hamiltonian in a sim
lar way as discussed above for the Hubbard model Ha
tonian.

The present paper concentrates on systems where
magnetic site bears two unpaired electrons, in well-defi
and localized singly occupied~or magnetic! orbitals. This is
the case of the Ni21 cations in NiO or K2NiF4 . In both cases
the crystal field removes the atomic symmetry, and six of
eightd electrons are accommodated in at2g closed shell and
the other two electrons occupy theeg shell, which remains
half filled. In these systems the crystal field fixes the orie
tation of the two unpaired electrons in well-defined atom
like orbitals. One might also consider sp-hybridized carb
atoms involved in the C-C triple bond of poly-ynes. In the
polymers each carbon atom contributes with two electro
each of them participating in one of the two orthogonalp
systems.
13443
ble
t

-

-
e

c-

te

s

te-
te

ch

b
r-
s

-
il-

ch
d

e

-
-
n

s,

Considering the simplest architecture, namely, a tw
magnetic site system with four unpaired electrons,
present paper analyzes the possible foundation of two ty
of Heisenberg Hamiltonians to describe the low-lying sp
trum of such a system. Those are aS5 1

2 Heisenberg Hamil-
tonian involving four spins in four orbitals and the usualS
51 Heisenberg Hamiltonian, which assumes that the t
electrons on a magnetic site are ferromagnetically couple
an atomic triplet state. In the former case it can be sho
that a four-orbital operator appears in the effective Ham
tonian, whereas in the latter a biquadratic term appears
the effective HDVV Hamiltonian becomes

ĤHDVV52(
^ i , j &

Ji j $Ŝi•Ŝj1l~Ŝi•Ŝj !
2%. ~6!

This paper is organized as follows. In Sec. II we fir
briefly review the definition of the exact effective Hami
tonian from the exact spectrum, according to Bloch’s and
Cloizeaux’s original theory.40,41 Section III defines the three
possible model spaces whereas the structure of the co
sponding effective Hamiltonian together with the formal a
logical aspects of the problem associated with the definit
of the differentS5 1

2 andS51 model spaces are discussed
Sec. IV. In Sec. V, the fourth-order expansion of the two s
Hamiltonians discussed above is derived from a Hubba
like Hamiltonian. This derivation permits to discuss the re
tive importance, i.e., the amplitude, of the fourth-ord
terms. Finally, Sec. VI presents an effective Hamiltonian
K2NiF4 derived from accurate configuration-interaction c
culations on an embedded-cluster representation of
compound.31 This analysis shows that the four-body and b
quadratic terms are indeed small but obey the algebraic r
tions analytically established in Secs. II–IV. A similar anal
sis is presented for ethyne, HuCwCuH. In this molecule
the monocentric ferromagnetic exchange is much sma
than in K2NiF4 , while the effective intersite hopping integra
is larger. Using again accurate configuration-interact
wave functions, theS5 1

2 andS51 spin Hamiltonians have
been derived. In this case the four-body operators and biq
dratic terms have very large amplitudes.

II. RUDIMENTS OF EFFECTIVE HAMILTONIAN
THEORY

For a system with a given exact Hamiltonian the ma
ematical structure of quantum mechanics ensures that the
a complete set of eigenfunctions satisfying the tim
independent Schro¨dinger equation

ĤuCm&5EmuCm&. ~7!

Usually, one is not interested in the whole spectrum
rather in a small numberM of states, defining a target spac
through its proper projector operator, simply defined as

P̂target5 (
i 51,M

uC i&^C i u. ~8!
0-2
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According to Bloch’s and des Cloizeaux’s theory40,41 ~see
also Refs. 5 and 6! it is possible to define an isodimension
model spaceS of projector

P̂5 (
i 51,M

uF i&^F i u ~9!

and an exact effective Hamiltonian acting on the mo
space and such that theM eigenvalues match exactly those
the exact Hamiltonian and theM eigenfunctions are the pro
jections of the exact wave functions onto the model spac

ĤeffuP̂Cm&5EmuP̂Cm&, m51,M . ~10!

Clearly, Ĥeff only permits to recover those states having s
nificant projections onto the model space. TheM equations
~10! impose M1M (M21) conditions, i.e., they uniquely
define theM2 matrix elements ofĤeff.

The spectral definition ofĤeff provides a simple and com
putationally convenient way to represent this effective ope
tor. This is given by

Ĥeff5 (
m51,M

uP̂Cm&Em^P̂Cm
'u, ~11!

where uP̂Cm
'& is the biorthogonal vector associated wi

uP̂Cm&. In principle, while the different state vectors fulfil
ing Eqs. ~7! are orthogonal, there is no reason, except
possible symmetry arguments, for the projections of th
states onto the model space to be orthogonal. Neverthele
is always possible to orthogonalize these projections as
gested by des Cloizeaux41 and the corresponding effectiv
Hamiltonian is indeed Hermitian. Of course, the resulti
effective Hamiltonian depends on the choice of theM states
defining the target space.
13443
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The effective Hamiltonian is related to the so-called wa
operator,V, allowing to obtain the exact wave function from
its projection on the lower-dimensional model space,

P̂target5V P̂ ~12!

or Ĥeff5 P̂ĤV P̂; ~13!

the best choice of the target space is the one minimizing
norm of the wave operator

iVi5min, ~14!

and it is spanned by theM eigenstates having the large
linear independent projection onto the model space

(
i 51,M

i P̂C i i5max. ~15!

From Eq. ~11! it is clear that the effective Hamiltonian i
uniquely defined by the choice of the model space and
knowledge of the target space eigenvectors and eigene
gies. However, the identification of the relevantM eigen-
states satisfying this condition is not always straightforwa
If the model space involves determinants of high ener
they will appear with large coefficients in high-energy eige
states, they are frequently spread on a broad range of ei
states and the definition of the target space may become
possible.

When the eigenenergies and the eigenvectors ofĤ are not
known, it is possible to build the effective Hamiltonian fro
the model space through an order-by-order expansion,
cording to the quasidegenerate perturbation theory. If
expansion converges, it leads to the exact effective Ham
tonian. The low-order terms are
^F I uĤeffuFJ&5^F I uV̂uFJ&1 (
a¹S

^F I uV̂uFa&^FauV̂uFJ&
EJ

02Ea
0

1 (
a¹S

(
b¹S

^F I uV̂uFa&^FauV̂uFb&^FbuV̂uFJ&

~EJ
02Ea

0 !~EJ
02Eb

0 !
2 (

KPS
(
a¹S

^F I uV̂uFa&^FauV̂uFK&^FKuV̂uFJ&

~EJ
02Ea

0!~EK
0 2Ea

0 !

1 (
a¹S

(
b¹S

(
g¹S

^F I uV̂uFa&^FauV̂uFb&^FbuV̂uFg&^FguV̂uFJ&

~EJ
02Ea

0 !~EJ
02Eb

0 !~EJ
02Eg

0!

2 (
a¹S

(
g¹S

(
KPS

^F I uV̂uFa&^FauV̂uFK&^FKuV̂uFg&^FguV̂uFJ&

~EJ
02Ea

0 !2~EJ
02Eg

0!

2 (
a¹S

(
b¹S

(
KPS

^F I uV̂uFa&^FauV̂uFb&^FbuV̂uFK&^FKuV̂uFJ&

~EJ
02Ea

0 !~EJ
02Eb

0 ! S 1

EK
0 2Ea

0 1
1

EK
0 2Eb

0 D
1 (

a¹S
(
KPS

(
LPS

^F I uV̂uFa&^FauV̂uFL&^FLuV̂uFK&^FKuV̂uFJ&

~EJ
02Ea

0 !~EK
0 2Ea

0 !~EL
02Ea

0 !
, ~16!
0-3
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whereV̂ is the appropriate perturbation operator, i.e.,V̂5Ĥ

2Ĥ0 , and Ĥ0 a convenient choice of the zero-ord
Hamiltonian.4–7

The perturbation expansion diverges if some of the ou
space determinants,uFa&, are close in energy to the high
energy model space determinants; this is the well-known
truder state problem.42 There is a logical connection betwee
the above-mentioned possible ambiguities in the choice
the target eigenvectors and the divergences in the qua
generate perturbation theory~QDPT! expansion. Neverthe
less, the QDPT is essentially a tool for analysis when star
from a simple model Hamiltonian such as the Hubba
Hamiltonian.

III. THE THREE POSSIBLE DEFINITIONS
OF THE MODEL SPACE

In the preceding section it has been recalled that an ef
tive Hamiltonian projects a part of the physics of a syste
which is described in its corresponding Hilbert space, ont
low-dimensional model space. For those systems in wh
the physics can be reduced to a set of particles with total
1
2, i.e., electrons, with only one particle and one orbital p
site, the model space is unambiguous. The lowest-en
eigenstates are given by linear combinations of all the Sl
determinants that can be built by distributing all the electro
in all the magnetic orbitals with the restriction of avoidin
double occupancy. The space part of all these determinan
the same. Therefore, the different Slater determinants d
only by their spin distribution and, as a result, the effect
Hamiltonian can only be a spin Hamiltonian. Moreov
since the space part is made of atomic orbitals, the Sl
determinants defined above can be viewed as neutral
determinants since they all have the common feature
keeping one electron per site.

In the case of two particles per site, the situation is rat
more complex. In fact, for an atomA contributing with two
unpaired electrons, described by the atomic, well-defin
magnetic orbitalsa anda8, several two-electron distribution
maintain the atomic neutrality and have an unambigu
spin state, namely, the three components of the low
energy triplet stateT and three singlet statesS. The configu-
ration functions defining the triplet state can be schem
cally represented by

TA
05 1
&

$det~aā8!1det~ āa8!%,

TA
15det~aa8!,

TA
25det~ āā 8!. ~17!

Similarly the three singlet states may be written as
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SA5
1

&
$det~aā8!2det~ āa8!%,

SA85
1

&
$det~aā!2det~a8ā8!%,

SA95
1

&
$det~aā!1det~a8ā8!%, ~18!

wherea and ā stand for thea andb spin, respectively. De-
fining the product of the irreducible representations of
orbitalsa anda8 asD ~in the atom symmetry group notation
when a and a8 are p-type orbitals!, it is straightforward to
show that the triplet states are all ofD symmetry and have
total spin z component,MS50, 1, 21. Likewise, for the
singlet states two different symmetries are possible;SA is an
open-shell singlet ofD symmetry or1D, SA8 a closed-shell
singlet of the same symmetry~also 1D), andSA9 a closed-
shell singlet ofS symmetry or1S.

Defining K as the~positive! atomic exchange integral,

K5^aa8uĤua8a&5^aa8u
1

r 12
ua8a&, ~19!

it is easy to show, from atomic spectroscopy, that the ene
difference between the two-electron Coulomb repulsion in
grals,JCoulomb, for the two electrons in the orbitala or that
for one electron ina and one ina8 is

Jaa
Coulomb2Jaa8

Coulomb
5^aau

1

r 12
uaa&2^aa8u

1

r 12
uaa8&52K,

~20!

and hence the energy difference between the two degen
singlet states ofD symmetry,SA and SA8 , and the lowest
triplet is 2K, while the 1S state lies 3K above the triplet, i.e.,

E1D
5ET

A
012K,

E1S
5ET

A
013K. ~21!

Different model spaces may be considered for theAB sys-
tem, all of them keeping two electrons on each atom bu
smaller and smaller dimension. The largest model sp
would keep all the neutral,A0B0, VB determinants. If the
orbitals a and b are of different symmetry thana8 and b8,
the states with one~or three! electron in the subset$a,b% and
three~or one! in the subset$a8,b8% are of different symmetry
than the states keeping two electrons in each subset. He
ter, we will only consider the latter family, which generat
the lowest eigenstates of the system. For convenience
concentrate on theMS50 manifold, which involves ten de
terminants, schematized in Fig. 1. The orientation of
magnetic orbitals symbolizes their respective symmetr
Among them, six avoid double occupancy, namely,
0-4
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D15det~aa8b̄b̄8!5TA
1TB

2 ,

D25det~ āā 8bb8!5TA
2TB

1 ,

D35det~aā8b̄b8!,

D45det~ āa8bb̄8!,

D55det~aā8bb̄8!,

D65det~ āa8b̄b8!. ~22!

The D1 andD2 determinants are of lower energy since th
satisfy the intra-atomic Hund’s rule. They are coupled to
ionic A2B1 andA1B2 VB determinants, of the det(aāa8b̄8)
or det(abb̄b8) type. This coupling gives rise to the so-calle
intersite antiferromagnetic kinetic exchange.43 These ionic
VB determinants also interact with the determinantsD3 and
D4 , which violate the intra-atomic Hund’s rule. The role
D3 andD4 in the lowest singlet wave function should be le
important than that ofD1 and D2 . Finally, in D5 and D6 ,
which also violate the intra-atomic Hund’s rule, inters
hopping cannot take place. Hence, the weight of these de
minants in the lowest singlet eigenstate should be e
smaller than those of the previous ones. Schematically
hasuC5,6u,uC3,4u,uC1,2u, whereCi is the coefficient of the
determinantDi in the wave-function expansion. The fou
remaining determinants that complete the neutral VB mo
space are

FIG. 1. Schematic representation of the ten neutral VB deter
nants defined in anAB dimer by two magnetic orbitals~a anda8 or
b and b8) per center. The relative orientation aims to mimic t
different symmetry of the magnetic orbitals.
13443
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D75det~aāb8b̄8!,

D85det~a8ā8bb̄!,

D95det~aābb̄!,

D105det~a8ā8b8b̄8!. ~23!

D7 andD8 have double occupancy of the magnetic orbit
but they are directly coupled to the singly ionicA1B2 and
A2B1 determinants, i.e., they accept instantaneous in
atomic delocalization. Such a delocalization is impossible
D9 andD10, which should have a much weaker contributio
to the lowest eigenstates.

The ten determinants discussed above do not have
same space part. Working with such a ten-dimensional mo
space would lead to an effective Hamiltonian handling b
the spin and orbital variables and, consequently, it will not
a spin~or HDVV! Hamiltonian. Moreover, the determinan
D9 andD10 are so high in energy that they will appear wi
large coefficients in a broad set of high-energy eigensta
For such a model space the identification of the target sp
would be impossible or arbitrary. Accordingly, this mod
space will not be considered in further discussion.

On the other hand, the first six determinants, Eq.~22!,
having a common space part define a six-dimensional mo
space leading to a spin-only effective Hamiltonian. He
there are four particles withS5 1

2 and the effective Hamil-
tonian is anS5 1

2 spin Hamiltonian with possible four-bod
operators. One drawback of this model space is that it is
invariant under on-site rotation of the magnetic orbitals.
unitary transformation of the magnetic orbitalsa and a8
leads to

ã5a cosw1a8 sinw,

ã852a sinw1a8 cosw, ~24!

and since

ãā̃85~cos2 w!aā82~sin2 w!a8ā1sinw cosw~a8ā82aā!,
~25!

the new open-shell distribution involves part of the previo
closed-shell ones. Nevertheless, there are two reason
keep this model space. First, the environment of theAB mag-
netic centers may provide a natural choice for the magn
orbitals, e.g., the Cu(dx2-y2) in the CuO planes of high-Tc
superconducting cuprates. Second, this model space al
to enlighten the relationships between the four-body and
biquadratic operators in theS5 1

2 and S51 spin Hamilto-
nians. ButD7 andD8 are neutral and coupled to the sing
ionic VB resonating structures and they may be respons
for strong fourth-order effects in the perturbative expans
from the six-dimensional model space and eventually ac
intruder states.

The third ~three-dimensional! model space consists i
considering only the states that arise from the products
local triplets defined in Eq.~17!. These areD1 andD2 plus

i-
0-5
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TABLE I. Matrix representation of the effective Hamiltonian in theS5
1
2 model space, using theD1 to D6 basis defined in Eq.~22!.

Ĥeff D1 D2 D3 D4 D5 D6

D1 ( j 1 j 812 j 9)/22h
D2 h ( j 1 j 812 j 9)/22h
D3 2 j 8/2 2 j /2 2K1( j 1 j 8)/22h8
D4 2 j /2 2 j 8/2 h8 2K1( j 1 j 8)/22h8
D5 2 j 9/2 2 j 9/2 2K 2K 2K1 j 92h9
D6 2 j 9/2 2 j 9/2 2K 2K h9 2K1 j 92h9
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D385 1
2 @$det~aā8!1det~ āa8!%$det~bb̄8!1det~ b̄b8!%#

5TA
0TB

0. ~26!

This model space generates anS51 spin Hamiltonian. No-
tice that, since

D385 1
2 ~D31D41D51D6!, ~27!

the contribution of determinantsD5 and D6 is the same as
that of determinantsD3 andD4 , which are expected to hav
a larger contribution in the lowest-energy eigenstates.

IV. LOGICAL FORMS OF THE SÄ 1
2 AND SÄ1 SPIN

HAMILTONIANS

In this section we discuss the analytical form of the effe
tive Hamiltonian matrix elements corresponding to t
model spaces presented in the preceding section. For co
nience, theS5 1

2 and S51 spin Hamiltonians will be dis-
cussed separately.

A. The spin Hamiltonian in the SÄ 1
2 model space

The six-dimensional model space, spanned by the de
minantsD1 to D6 generates a Hermitian effective Ham
tonian defined by 63 5

2 515 parameters. The correspondin
eigenstates can be classified according to the spin, and e
tually space, symmetry. There are two singlet state
hereafter referred to asS1 and S2 , three triplet states—T1 ,
T2 , andT3 , and one quintet state—Q; i.e., five energy dif-
ferences. Let us consider the degrees of freedom in the
efficients of the eigenstates that must already satisfy spin
space symmetry requirements as well as the normaliza
constraint. In a homonuclear system, the states are ofg or u
symmetry. The two singlets and two triplets states are og
symmetry~see below!. If a Hermitian effective Hamiltonian
is searched, both singlet states are orthogonal and the sa
true for the twog triplet states. These constraints lead to
unique degree of freedom for the coefficients of the two s
glets and for those of the two triplet states ofg symmetry.
There is no degree of freedom for the quintet nor for theu
triplet. The total number of degrees of freedom is theref
equal to seven. Actually the effective Hamiltonian is univ
cally defined by seven parameters. The matrix representa
of this effective Hamiltonian, in the basis of theD1 to D6
determinants, is schematically shown in Table I. The me
ing of the parameters defining this effective Hamiltonian
13443
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as follows~see scheme 1!.

~i! j is the magnetic coupling constant involving thea and
b magnetic orbitals centered onA and B, respectively; j
5Jab .

~ii ! j 8 is the magnetic coupling constant involving thea8
andb8 magnetic orbitals centered onA andB, respectively;
j 85Ja8b8 .

~iii ! j 9 is the magnetic coupling constant involving thea
(a8) and b8 ~b! magnetic orbitals centered onA and B, re-
spectively;j 95Jab85Ja8b .

~iv! h, h8, and h9 are related to effective four-body op
erators.

~v! K is the on-site~ferromagnetic! effective exchange, cf
Eq. ~19!.

In the case wherea andb8 anda8 andb are of different local
symmetry,j 9 is expected to be small. Likewise, for a syste
following the HDVV Hamiltonian the four-body operator
should be negligible.

The structure of the effective Hamiltonian is much sim
pler when making use of the space and spin symmet
commented upon above. To this end, it is convenient to
fine the basis made of products of local~on-site! eigenstates,

D185TA
1TB

25D1 ,

D285TA
2TB

15D2 ,

D385TA
0TB

05 1
2 $D31D41D51D6%,

D485TA
0SB5 1

2 $2D31D41D52D6%,

D585SATB
05 1

2 $D32D41D52D6%,

D685SASB5 1
2 $2D32D41D51D6%. ~28!

A subsequent simple transformation allows separating
singlet, triplet, and quintet subspaces leading to
0-6
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TABLE II. Matrix representation of the effective Hamiltonian in theS5
1
2 model space using the spac

and spin adapted basis set defined in Eq.~29!.

Ĥeff S1 S2 T1 T2 T3 Q

S1
3
4 ( j 1 j 812 j 9)

S2
A3

4
~ j 1 j 822 j 9! 4K1

1
4 ( j 1 j 812 j 9)

T1 0 0 1
2 ( j 1 j 812 j 9)22h

T2 0 0 1
2 ( j 82 j ) 2K1

1
2 ~ j1j8!22h8

T3 0 0 0 0 2K1 j 922h9
Q 0 0 0 0 0 0
II
nv

2

e
g

one
en-
ce
n

two

-

the

in

n
e

S15
1

)
$D181D282D38%,

S25D68 ,

T15
1

&
$D182D28%,

T25
1

&
$D482D58%,

T35
1

&
$D481D58%,

Q5
1

A6
$D181D2812D38%, ~29!

and, sinceT3 is of a different space symmetry thanT1 and
T2 , the Hamiltonian takes the structure given in Table
where the energy of the quintet state has been set for co
nience to zero. By introducing

A5 1
4 ~ j 1 j 812 j 9!,

B5 1
4 ~ j 1 j 822 j 9!,

C5 1
2 ~ j 82 j !, ~30!

the expressions of the elements of the 232 blocks in Table
II are simplified.

If the intra-atomic ferromagnetic exchange integralK is
large as compared to the interatomic exchange—K@u j u,
u j 8u, u j 9u—the energies of the lowestS singlet andT triplet
eigenstates of the 232 blocks in Table II are

ES53A2
3B2

4K22A

5 3
4 ~ j 1 j 812 j 9!2

3~ j 1 j 822 j 9!2

64K28~ j 1 j 812 j 9!
,

13443
,
e-

ET52~A2h!2
C

2K2 j 912h22h8

5 1
2 ~ j 1 j 812 j 9!22h2

~ j 82 j !2

4~2K2 j 912h22h8!
.

~31!

Notice that the largest componentsS1 andT1 on the low-
estSsinglet andT triplet, as well asQ, span the model spac
for the S51 model Hamiltonian discussed in the followin
section.

B. The spin Hamiltonian in the SÄ1 model space

This space generates one singlet, one triplet, and
quintet states, and the corresponding wave functions are
tirely determined by the total spin angular momentum. Sin
by hypothesisS51, the basis set for this model Hamiltonia
corresponds to the first three elements of Eq.~28!. Hence,

S5
1

)
$TA

1TB
21TA

2TB
12TA

0TB
0%,

T5
1

&
$TA

1TB
22TA

2TB
1%,

Q5
1

A6
$TA

1TB
21TA

2TB
112TA

0TB
0%, ~32!

and, hence, the only degrees of freedom concern the
energy differences between these three states.26,31 Conse-
quently, the effective Hamiltonian involves only two param
eters. Let us express the spectrum by

ET2EQ52J2 ,

ES2EQ53J1 . ~33!

Taking again the energy of the quintet state as the zero,
spectral decomposition is

Ĥeff53J1uS&^Su12J2uT&^Tu10uQ&^Qu ~34!

and the matrix representation of the effective Hamiltonian
the basis$Di8% defined in Eq.~28! can be calculated and
takes the form given in Table III. This effective Hamiltonia
can be specified for theMS51 subspace, which contains th
0-7
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MS51 triplet and quintet states. The degeneracies betw
MS50 andMS51 eigenvalues impose the Hamiltonian e
pression in Table IV.

Notice that the usual HDVV Hamiltonian takes the for

ĤHDVV52(
^ i , j &

J~Ŝi•Ŝj21̂!, ~35!

when the quintet energy is taken as the origin, and, con
quently, it only introduces one parameter and results i
spectrum where the energy differences areET2EQ52J and
ES2EQ53J. The exact spectrum of a system with two ma
netic centers withS51 has no reason to strictly obey thi
2
3 ratio, and in order to take into account any possible dev
tion the biquadratic terms are to be considered. Modify
Eq. ~6! to have the same energy zero,

ĤHDVV52(
^ i , j &

J@Ŝi•Ŝj1l~Ŝi•Ŝj !
22~11l!1̂#, ~36!

and identifying Eqs.~34! and ~36!, we have

J5J2 ,

l5~12J1 /J2!. ~37!

It is also interesting to relateJ1 andJ2 ~or J andl! appearing
in theS51 HDVV Hamiltonian to the integrals appearing
the S5 1

2 HDVV Hamiltonian. To the second order

J15 1
4 ~ j 1 j 812 j 9!2

~ j 1 j 822 j 9!2

64K28~ j 1 j 812 j 9!
, ~38!

J5J25 1
4 ~ j 1 j 812 j 9!2h2

~ j 82 j !2

8~2K2 j 912h22h8!
.

~39!

Keeping the leading termK in the second-order energy de
nominators, the amplitudel of the biquadratic term can b
expressed as

l5
J22J1

J2
5

1

J2
F2h1

~3 j 2 j 822 j 9!~3 j 82 j 22 j 9!

64K G . ~40!

Hence, the biquadratic terml has a double origin; first the
existence of a four-body contributionh and, second, the cou
pling between the three-dimensional model space spanne
the product of atomic triplet states with the states that
volve the atomic neutral singlet states.

TABLE III. Matrix representation of model Hamiltonian in th
S51 model space in theD18 , D28 , D38 basis set; Eq.~28!.

Ĥeff D18 D28 D38

D18 J11J2

D28 J12J2 J11J2

D38 2J1 2J1 J1
13443
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V. A PERTURBATIVE EXPANSION OF THE HDVV
HAMILTONIAN FROM A HUBBARD-TYPE

HAMILTONIAN

Starting from a simple valence bond Hamiltonian, ana
gous to the Hubbard Hamiltonian for systems with one
bital per site, it is possible to obtain a perturbative analy
derivation of the two different spin Hamiltonians describ
in the preceding section. The bielectronic model Hamilton
~i! introducest5tab andt85ta8b8 hopping integrals between
the a and b and a8 and b8 orbitals, respectively, which
couple the neutral and singly ionic VB determinants with t
doubly ionic ones;~ii ! attributes an energyU and 2U to the
singly and doubly ionic determinants, respectively, and;~iii !
introduces the previously discussed atomic spectroscop
the neutral determinants subset.

The resulting Hamiltonian matrix is given in Table V
whereI 11 to I 18 are the singly ionic determinants:

I 115det~aāa8b̄8!,

I 125det~aāā 8b8!,

I 135det~aa8ā8b̄!,

I 145det~ āa8ā8b!,

I 155det~a8b̄8b̄b!,

I 165det~ ā8b8b̄b!,

I 175det~ab8b̄b̄8!,

I 185det~ ābb̄8b8!. ~41!

The doubly ionic determinants only interact with singly ion
ones throught parameters. Their contribution to theS5 1

2

and S51 spin Hamiltonians appears at the fourth order
perturbation ast4/U3 terms. These contributions may be n
glected as compared to the leading fourth-order correcti
that are proportional tot4/KU2 as will be analyzed below.

A. Derivation of the SÄ 1
2 spin Hamiltonian

Applying the QDPT using the six-dimensional mod
space,D1 to D6 , as the model space, one finds the followi
order-by-order contributions. To the first order, the integraj
reduce to the direct exchange integrals:j (1)52Kab , j 8(1)

52Ka8b8 , and j 9(1)52Kab852Ka8b , whereas the four-body
integrals are zero;h(1)5h8(1)5h9(1)50 ~where j ( i ), j 8( i ),
j 9( i ), h( i ), h8( i ), h9( i ) include all order corrections of the
perturbation theory up toi!. The second-order correctio
does not affect the four-electron integrals but introduces
kinetic exchange terms in theJ integrals:

TABLE IV. Matrix representation of the model Hamiltonian i
the S51 model space in theMS51 subspace.

Ĥeff TA
0TB

1 TA
1TB

0

TA
0TB

1 J2

TA
1TB

0 2J2 J2
0-8
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TABLE V. Matrix representation of the Hubbard-type model Hamiltonian projected onto the basis o
neutral determinantsD1 to D10, and the relevant singly ionic determinantsI 11 to I 18.

D1 0

D2 0 0

D3 0 0 2K

D4 0 0 0 2K

D5 0 0 2K 2K 2K

D6 0 0 2K 2K 0 2K

D7 0 0 0 0 0 0 6K

D8 0 0 0 0 0 0 0 6K

D9 0 0 0 0 0 0 K K 6K

D10 0 0 0 0 0 0 K K 0 6K

I 11 2t 0 0 t 0 0 t8 0 0 0 U

I 12 0 t 2t 0 0 0 2t8 0 0 0 0 U

I 13 2t8 0 t8 0 0 0 0 t 0 0 0 0 U

I 14 0 t8 0 2t8 0 0 0 2t 0 0 0 0 0 U

I 15 t 0 0 2t 0 0 0 2t8 0 0 0 0 0 0 U

I 16 0 2t t 0 0 0 0 t8 0 0 0 0 0 0 0 U

I 17 t8 0 2t8 0 0 0 2t 0 0 0 0 0 0 0 0 0 U

I 18 0 2t8 0 t8 0 0 t 0 0 0 0 0 0 0 0 0 0 U
2 2 2

u-
in.
r,

he
j ~2!52Kab2
4t

U
,

j 8~2!52Ka8b82
4t82

U
,

j 9~2!52Ka8b if tab85ta8b50. ~42!

The third order only affects thej 9 integrals as
t

i-
th

13443
j 9~3!52Ka8b24K
t 1t8

U2 . ~43!

The fourth-order corrections on the integrals are n
merous and it is convenient to concentrate on their orig
The amplitudeh associated with the four-body operato
h5uD2&^D1u, comes from fourth-order processes of t
type
h5 (
i 511,18

(
j 511,18

(
k57,8

^D2uV̂uI i&^I i uV̂uDk&^DkuV̂uI j&^I j uV̂uD1&
6KU2 ~44!
that

ns,

ou-
ect

il-
s of
.
I,
and similarly forh8. From Table V, it may be verified tha
these four-body operators behave ast2t82/U2K.

The fourth-order corrections are null forj 9 andh9 since
D5 and D6 are not coupled with the singly ionic determ
nants. The nonzero contributions to other integrals lead to
fourth-order corrected expressions

j ~4!52Kab2
4t82

U
2

8t2t82

3KU2 ,

j 8~4!52Ka8b82
4t82

U
2

8t2t82

3KU2 ,

h~4!52
4t2t82

3KU2 5h8~4!. ~45!
e

Consequently, at this level, four-electron terms appear
can be of importance in systems wheret2t82/KU2 is not
negligible as compared to the second-order contributio
which are j '24t2/U and j 8'24t82/U. This requires
8t4/3KU2'4t2/U, or K'2t2/3U' j /6. Hence, the four-
electron terms must be introduced when the intersite c
plings are not negligible as compared to the intrasite dir
exchange.

B. Derivation of the SÄ1 spin Hamiltonian

The matrix representation of the Hubbard-type Ham
tonian reported on Table V can be transformed to the basi
the eigenfunctions of the HDVV Hamiltonian given in Eq
~29!. The result of such a transformation is given in Table V
whereF1 to F4 , defined as
0-9
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TABLE VI. Matrix representation of the Hubbard-type model Hamiltonian projected onto the basis o
Q, T1 , T2 , T3 , S1 , S2 states, Eq.~29!, theF1 to F4 states combiningD7 to D10, cf. Eq.~46! and the relevant
singly ionic determinantsI 11 to I 18. For convenience the coefficientsa, b, andc are used instead of (&/2),
()/2), and 1

2, respectively.

Q 0
T1 0 0
S1 0 0 0
T2 0 0 0 2K
T3 0 0 0 0 2K
S2 0 0 0 0 0 4K
F1 0 0 0 0 0 0 4K
F2 0 0 0 0 0 0 0 6K
F3 0 0 0 0 0 0 0 0 6K
F4 0 0 0 0 0 0 0 0 0 8K
I 11 0 2at 2bt at 0 2ct ct8 at8 0 ct8 U
I 12 0 2at bt at 0 ct 2ct8 2at8 0 2ct8 0 U
I 13 0 2at8 2bt8 2at8 0 2ct8 ct 2at 0 ct 0 0 U
I 14 0 2at8 bt8 2at8 0 ct8 2ct at 0 2ct 0 0 0 U
I 15 0 at bt 2at 0 ct 2ct8 at8 0 2ct8 0 0 0 0 U
I 16 0 at 2bt 2at 0 2ct ct8 2at8 0 ct8 0 0 0 0 0 U
I 17 0 at8 bt8 at8 0 ct8 2ct 2at 0 2ct 0 0 0 0 0 0 U
I 18 0 at8 2bt8 at8 0 2ct8 ct at 0 ct 0 0 0 0 0 0 0 U
t f

re

t

d in

al-
F15 1
2 $D71D82D92D10%,

F25
1

&
$D72D8%,

F35
1

&
$D92D10%,

F45 1
2 $D71D81D91D10%, ~46!

diagonalize the Hamiltonian in this subspace and accoun
the strongK coupling existing betweenD7 andD8 with D9
andD10.

At the second order of the QDPT, the energy levels a

EQ
~2!50,

ET
~2!522

t21t82

U
,

ES
~2!523

t21t82

U
. ~47!

This is

J1
~2!5J2

~2!52
t21t82

U
~48!

and the four-body contribution@l in Eq. ~6! and Eq.~40!# is
zero.

Up to the fourth order of the QDPT it can be sown tha

EQ
~4!50,
13443
or

ET
~4!522

t21t82

U
22

~ t22t82!2

KU2 ,

ES
~4!523

t21t82

U
23

~ t22t82!2

KU2 1
9

4

~ t22t82!2

KU2 2
15

2

t2t82

KU2

~49!

and, consequently,

J2
~4!52

t21t82

U
2

~ t22t82!2

KU2 ,

J1
~4!5J2

~4!1
3

4

~ t22t82!2

KU2 2
5

2

t2t82

KU2 . ~50!

The last two terms of Eq.~49! govern the deviation from a
pure HDVV Hamiltonian based on theS51 local triplet
state that predicts thatJ5J15J2 . The deviation becomes
important whent4/KU2 and/ort84/KU2 is not negligible in
front of K. In the case of the acetylene molecule discusse
Sec. VII, t5t8, and, hence, the deviation isJ1

(4)5J2
(4)

2 5
2 t4/KU2.

VI. NUMERICAL EXTRACTION OF SPIN HAMILTONIANS
FROM ACCURATE CONFIGURATION-INTERACTION

CALCULATIONS

This section reports numerical applications of the form
ism presented above to two cases, the Ni2F11 cluster model
of the K2NiF4 perovskite and thep system of the acetylene
molecule.
0-10
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DERIVATION OF SPIN HAMILTONIANS FROM THE . . . PHYSICAL REVIEW B 66, 134430 ~2002!
A. Ab initio model Hamiltonian for K 2NiF4

The K2NiF4 perovskite has been represented by
embedded-cluster model, which is schematically shown
Fig. 2. This cluster can be described as (Ni2F11)(K16Ni6)
@point charges~PC’s!# and may be seen as containing thr
different regions, the first is (Ni2F11) and contains the atom
that are explicitly quantum mechanically treated, the sec
region provides an adequate quantum embedding to the
region and includes the (K8Ni6) moiety, which in turn is
described by total ion potentials,44 TIP’s, representing the
Ni21 and K1 cations surrounding the F2 anions. The role of
the TIP’s is to avoid an excessive polarization of the anio
towards the PC’s that surround the first and second regio45

The point charges provide the long-range Madelung po
tial; fractional charges obtained by means of Evje
method46 are used in the cluster edge to provide an accu
potential in the inner region. The 1s2 electrons of the F2

anions and the 1s22s23p63s23p6 electrons of Ni21 have
been included in a pseudopotential47 and the total number o
electrons included in the calculations corresponds to an io
description, although the total charge of the result
embedded-cluster model is zero. The Ni21 basis set is of

FIG. 2. The embedded Ni2F11 cluster model representation o
K2NiF4.
13443
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(3s3p6d) quality and is contracted to@2s2p3d#. For the
fluorine bridging anion, the basis set is of triple-z plus polar-
ization quality whereas a double-zbasis has been used for th
external fluorine anions. The overall basis set is similar
that used in a previous work31 and the difference in the cal
culated magnetic coupling constant is almost negligible~,4
K or 0.35 meV!.

The molecular orbitals are obtained from a restrict
open-shell Hartree-Fock calculation in the quintet state,
the unpaired electrons occupy the two linear combination
the 3dx2-y2 and the 3dz2 ~see Fig. 2! magnetic orbitals cen-
tered on the Ni atoms with variational delocalization tails
the neighboring fluorine atoms. The complete active sp
~CAS! involves four electrons in four orbitals and may b
regarded as a full valence bond space on which it is eas
identify the six neutral VB determinants. However, the co
figuration interaction~CI! calculations performed accordin
to the difference dedicated CI procedure48,49 involve double
excitations from the closed-shell electrons to the act
space, double excitations from the active space electron
the virtual space and all the possible single excitations on
of all CAS determinants. The CI expansion runs over m
than 105 determinants. In this CI space; one has to ident
the six eigenvectors with largest neutral valence bond ch
acter, i.e., the largest projection onto the model space. Du
the existence of low-lying ligand to metal charge-trans
states, the six roots of interest are not the six low
eigenstates. They have the ranks 1, 2, and 3~those corre-
sponding to the local triplets as expected!, and 6, 7, and 13.
Finding the higher roots require the use of the recently p
posed Lagrange-Newton-Raphson-diagonalization~LNRd!
technique.50–52 The corresponding energies and the proje
tion of the eigenvectors in the basisD1 to D6 are given in
Table VII. These projections happen to be orthogonal a
have been renormalized. As expected, in the ground-s
wave function, the coefficients of the determinantsD3 and
D4 , which are coupled with the ionic VB determinants, i.e
give rise to electronic delocalization, are slightly larg
d by
ace.
TABLE VII. For the Ni2F11 embedded cluster model of the K2NiF4 perovskite, the eigenvalues~in meV!
of the six electronic eigenstates with the largest projection in the valence-bond model space spanneD1

to D6 determinants@Eq. ~29!# relative to the quintet ground state and their projection onto the model sp
In parentheses, the expected coefficients of an exact HDVV Hamiltonian.

States
Energies~meV!

S1

212.95
T1

28.77
Q
0

T2

2292.4
T3

2304.4
S2

4601.0

D1 0.5773 0.7070 0.4082 20.0058 0.0000 20.0013
~0.5774! ~0.7071! ~0.4082! ~0.0000! ~0.0000! ~0.0000!

D2 0.5773 20.7070 0.4082 0.0058 0.0000 20.0013
~0.5774! ~20.7071! ~0.4082! ~0.0000! ~0.0000! ~0.0000!

D3 20.2898 20.0058 0.4082 20.7070 0.0000 20.4993
~20.2887! ~0.0000! ~0.4082! ~20.7071! ~0.0000! ~20.5000!

D4 20.2898 0.0058 0.4082 0.7070 0.0000 20.4993
~20.2887! ~0.0000! ~0.4082! ~0.7071! ~0.0000! ~20.5000!

D5 20.2875 0.0000 0.4082 0.0000 0.7071 0.5006
~20.2887! ~0.0000! ~0.4082! ~0.0000! ~0.7071! ~0.5000!

D6 20.2875
~20.2887!

0.0000
~0.0000!

0.4082
~0.4082!

0.0000
~0.0000!

20.7071
~20.7071!

0.5006
~0.5000!
0-11
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I. de P. R. MOREIRAet al. PHYSICAL REVIEW B 66, 134430 ~2002!
than those of the determinantsD5 and D6 . For an exactS
51 HDVV Hamiltonian, the composition of the six eigen
states would be somewhat different as shown in parenth
in the table. The small deviations are responsible for
appearance of biquadratic forms in the spin Hamiltonian.
ing the spectral definition of the effective Hamiltonian pe
mits to obtain the values of the seven elements defining
matrix representation of the effective Hamiltonian given
Table II.

The values found are

j 58.57 meV,

j 85229.18 meV,

j 951.69 meV,

K51151.34 meV,

h50.00 meV,

h8520.20 meV,

h9520.25 meV. ~51!

These results call for the following comments.
~i! The intra-atomic effective exchange integralK is 40

times larger than the largest effective interatomic excha
integral. This is a case where theS51 pure HDVV Hamil-
tonian, without the quadratic term, should be appropria
and actually

ET2EQ

ES2EQ
5

8.77

12.95
50.677, ~52!

slightly larger than the23 ratio predicted by this Hamiltonian
~ii ! The largest antiferromagnetic interatomic exchangej 8

concerns the 3dz2 orbitals, which have the largest differenti
overlap directed along the 180° magnetic path.

~iii ! The effective couplingj between the 3dx2-y2 orbitals
remains positive, due to the first-order ferromagnetic
change which prevails over the delocalization or over
spin polarization effects.

~iv! The integralj 9 between the 3dx2-y2 on one center and
the 3dz2 on the other center is non-negligible. It is positiv
the contribution of the antiferromagnetic Anderson mec
nism between these orbitals being zero.

~v! The four-body operatorsh, h8, andh9 are weak but
nonzero. They do not obey the relationsh85h and h950
obtained by permuting the Hubbard Hamiltonian, which a
pears to be oversimplified.

From the eigenenergies in Table VII, it is also easy
establish theS51 HDVV Hamiltonian sinceJ25J524.39
meV, J1524.32 meV, andl512J1 /J250.07/4.3950.016,
confirming the weakness of the biquadratic terms in this s
tem.

The role of the coupling between the three neutral sta
generated by the local atomic triplets and the neutral st
involving the local atomic singlets is also shown. If this co
pling is not taken into account, the energy of theT triplet
13443
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state is (j 1 j 812 j 9)/2528.62 meV. The perturbation stab
lizes this triplet state by2( j 2 j 8)2/8K520.15 meV, lead-
ing to the final value of28.77 meV. The stabilization o
the singlet state is 3(j 1 j 822 j 9)2/64K50.02 meV, much
smaller than that of the triplet state.

B. Ab initio model Hamiltonian for the p system
of the acetylene molecule

The S5 1
2 HDVV Hamiltonian has been proved to be

very efficient tool for the study of conjugate hydrocarbon
where each carbon atom brings onep electron in a 2pz(p)
atomic orbital.7,8 This success is somewhat unexpected, si
these systems are considered to be highly delocalized~with a
utu/U ratio close to 1!, but it can be rationalized in a simila
way to that described in the preceding section. The effec
antiferromagnetic couplingJ should not be identified with its
second-order amplitudeJ(2)524t2/U but with the exact ex-
citation energy of the Hubbard Hamiltonian for the dimer

J5
U2AU2116t2

2
. ~53!

WhenJ is extracted from the simplest conjugated molecu
namely, ethyne, for a set of C-C distances, one obtains
r-dependent HDVV Hamiltonian, which, properly compl
mented by as-bond force field, becomes a quantitative to
for the study of ground and excited states and can be dire
applied to photochemistry.53 One may wonder whether suc
a model might be used for the treatment of the lowest sta
of poly-ynes; i.e., ofuCwCu triple bonds, and consider
ing either anS5 1

2 or S51 spin model Hamiltonian.
Accurateab initio CI calculations of the spectrum of th

acetylene molecule, in a double-zeta plus polarization~DZP!
basis set, have already been reported in the past,54,55concen-
trating especially on the possible generation of aS5 1

2 spin
Hamiltonian. Table VIII reports the energy spectrum and
components of the relevant eigenvectors of a large CI exp
sion in the model space, for the equilibrium ground-st
geometry. TheS1 and S2 projections are strongly nonor
thogonal. This is because there are two intruder singlet st
in this section of the spectrum. To obtain a Hermitian ope
tor, a further orthonormalization step is required and, rat
than a S21/2 symmetric orthogonalization, a Gramm
Schmidt-type orthogonalization ofS2 to S1 is preferable.54

The resulting matrix elements of theS5 1
2 spin Hamiltonian

are the following~in atomic units!:

j 5 j 8520.196,

j 9520.004,

K50.032,

h520.003,

h8520.005,

h9520.012. ~54!
0-12
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TABLE VIII. Eigenvalues of the six electronic states of the acetylene molecule with the largest proje
in the valence-bond model space spanned byD1 to D6 determinants relative to the quintet ground state a
their projection in the model space.

States
Energies~hartree!

S1

20.367
T1

20.189
T2

20.138
Q
0.0

S2

0.064
T3

0.064

D1 0.525 0.707 0.000 0.408 0.416 0.000
D2 0.525 20.707 0.000 0.408 0.416 0.000
D3 20.470 0.000 0.707 0.408 0.148 0.000
D4 20.470 0.000 20.707 0.408 0.148 0.000
D5 20.054 0.000 0.000 0.408 0.552 0.707
D6 20.054 0.000 0.000 0.408 0.552 20.707
t
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From these parameters it appears that for this problem,
intra-atomic ferromagnetic exchangeK is smaller than the
intersite antiferromagnetic exchangej. Moreover, some four-
body operators are large,;5% of j.

It is important to point out that one of the two abov
commented intruder states is of ionic character and lies 0.
a.u. above the quintet state, while the other one appea
20.083 a.u. below the quintet state, is of a neutral clos
shell valence bond nature, and is spanned by the dete
nantsD7 andD8 . The coefficients of these determinants
the S1 andS2 singlet states are large and it is clear that th
act as strong perturbers at the fourth order, resulting in str
deviations from a simpleS5 1

2 HDVV Hamiltonian.
From the energy differences

ES2EQ520.367 a.u.,

ET2EQ520.189 a.u., ~55!

the S51 Hamiltonian is easily obtained, withJ1520.123
hartree and J2520.0945 hartree or, equivalently,J
520.0945 hartree andl520.3016,l being the amplitude
of the four-body term appearing in Eq.~6!. Notice that, in
this case, the importance of the four-body operator is cru
in contrast to what has been found for the K2NiF4 com-
pound. Such an extraction may be performed for several
interatomic distances and the resulting effective Hamilton
may be interpolated in a polynomial form as a function of t
C-C distance.

The efficiency of the resulting spin Hamiltonian has be
tested by computing the low-energy spectrum of the fi
poly-ynes, and comparing the vertical absorption and em
sion energies to those obtained using anS5 1

2 spin Hamil-
tonian and reported in Ref. 55. The results in Table IX s

TABLE IX. Lowest singlet to triplet transition energies of eve
poly-ynes~in eV!. Results in parentheses refer to previous res
using anS5

1
2 spin Hamiltonian.

C4H2 C6H2 C8H2

Vert. absorption 3.62~3.79!a 2.77 ~3.00! 2.27 ~2.53!
Vert. emission 2.43~2.53! 1.77 ~1.90! 1.37 ~1.50!

aab initio Cl calculations predict 3.84 eV.
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gest that although theS51 spin Hamiltonian slightly
underestimates the excitation energies, it gives rather reli
results.

VII. CONCLUSIONS

The present work has analyzed the foundations and lim
of S5 1

2 and S51 spin Hamiltonians for systems in whic
each site brings two unpaired electrons in two well-defin
orbitals. The analysis is limited to dimers but it permits
reveal the underlying physics. From first-principles arg
ments it is shown that, beyond the usualJi j terms, the effec-
tive spin Hamiltonian~which for the dimer can always b
defined from either a six-dimensional model space or a th
dimensional space forS5 1

2 and S51, respectively! neces-
sarily introduces four-body spin operators in theS5 1

2 case
and biquadratic terms in theS51 formalism. The order of
magnitude of these additional terms can be rationalized fr
a QDPT expansion starting from a Hubbard-type Ham
tonian. It is shown that both four-body and biquadratic ter
behave aslt4/KU2'J2/K. Therefore, these terms play
negligible role whenK@uJu, i.e., when the ferromagneti
intrasite direct exchange is much larger than the antife
magnetic intersite kinetic exchange (J'24t2/U).

Ab initio accurate quantum chemical calculations, us
extended basis sets and large configuration expansions,
been used to numerically derive effective spin Hamiltonia
from the exact ones. In the case of K2NiF4 ~or KNiF3),
which involves Ni21 with a very large intrasite direct ex
change favoring the local fulfilling of Hund’s rule, the fou
body operators and the biquadratic terms established from
analytical derivation remain with a very small amplitude~3%
of J!. However, if one considers a carbon atom of a poly-y
as bringing also two unpaired electrons per site in two
thogonalp bonds, the on-site ferromagnetic exchange a
the intersite kinetic exchange are of the same order of m
nitude. Consequently, the four-body operators in theS5 1

2

and the biquadratic terms in theS51 effective Hamiltonians
become very large.

To summarize, the physical mechanisms governing
reduction from the all electron Hamiltonian to the spin-on
Hamiltonians have been analyzed through the effec
Hamiltonian theory. The conditions under which it is po
sible to reduce the full spin Hamiltonian to its simpl

s

0-13
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HDVV form have been specified.Ab initio calculations con-
firm the analytical derivation of these conditions.
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