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Long-range order in the ground state of spin systems with orbital degeneracy

K. Tanaka and T. Idogaki
Department of Applied Quantum Physics, Kyushu University, Fukuoka 812-8581, Japan
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We apply the method of infrared bounds to the spin-orbital systems with isotropic and anisotropic interac-
tions to examine the existence of long-range order~LRO! in two or more dimensions. For the isotropic case,
we prove the existence of antiferro-spin and antiferro-orbital LRO in three or more dimensions and ferro-spin-
orbital LRO in seven or more dimensions. For the anisotropic case, we prove the existence of antiferro-orbital
LRO in two or more dimensions. Under some acceptable assumptions we conjecture on the existence of
antiferro-spin LRO in three or more dimensions and extend the region where we can show antiferro-orbital
LRO in two or more dimensions.
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I. INTRODUCTION

It has been recognized, through a number of experime
and theoretical works, that quantum spin systems with orb
degeneracy exhibit interesting phenomena induced by c
bined spin-orbital degrees of freedom in addition to spin a
orbital ones. In real materials these situations are realize
the Mott insulators of the transitional-metal oxides,1–4 the
dynamical Jahn-Teller ionic or molecular systems with
strong electron-phonon coupling,5–9 and the heavy fermion
systems in the insulating phase.10–12One of the typical mod-
els for these systems containing spin, orbital, and spin-orb
interactions is described by the Hamiltonian5,6,10,13–15

H5I (
^x,y&

S~x!•S~y!1J (
^x,y&

$D@T1~x!T1~y!1T2~x!T2~y!#

1T3~x!T3~y!%2K (
^x,y&

@S~x!•S~y!#$D@T1~x!T1~y!

1T2~x!T2~y!#1T3~x!T3~y!%, ~1!

whereS(x) andT(x) are spin-1/2 and pseudospin-1/2 ope
tors representing the spin and orbital degrees of freed
respectively, andD is an anisotropy of orbital interactions. I
this paper we are concerned with Hamiltonian~1! on the
hypercubic lattice and, in particular, investigate the existe
of long-range order~LRO! in the ground state of this Hamil
tonian. The orbital LRO~Refs. 16 and 17! and the anisotropy
of orbital interactions18 have been actually observed in som
magnetic systems by using resonant x-ray scattering t
niques.

In the case ofI 5J51 andD51, Hamiltonian~1! at K
524 is an ordinary SU~4! symmetric model.2 On the other
hand, in this case Hamiltonian~1! at K54 is a different
SU~4! symmetric model19 introduced by Santoroet al.6

In one dimension, the model at the SU~4! symmetric point
with K524 is exactly soluble by the Bethe ansatz, and
solution gives three branches of low-energy gapl
excitations.20,21 For the model at the SU~4! symmetric point
with K54, according to numerical methods, the groun
state exhibits a spin-Peiels-like dimerization.19 For the region
K<0, the ground state phase diagram of this model has b
0163-1829/2002/66~13!/134426~13!/$20.00 66 1344
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investigated by various accurate methods.~See, e.g., Refs. 22
and 23, and references therein.!

In two dimensions, the ground states of both SU~4! sym-
metric points are considered to be disordered states with
nite energy gaps, which has been investigated by a va
tional method,2 a spin-wave theory,24 a Schwinger-boson
mean-field theory,25 and numerical calculations.26–28The re-
cent results of approximation methods also suggested
the ground state around the SU~4! symmetric point withK
524 is disordered.29,30 In particular, a Schwinger-boso
mean-field theory predicted that disordered ground states
still stable in three dimensions for some interval in the reg
K,0, I 5J51, D51.30 The two-dimensional system a
SU~4! symmetric point withK54 is shown to be a disor
dered ground state with a gapful energy excitation by
Monte Carlo method;28 thus the ground state in the vicinit
of this SU~4! symmetric point is thought to be disordere
These behaviors are in contrast to the SU~2! antiferromag-
netic Heisenberg model having a Ne´el-ordered ground state
in two or more dimensions. However, as was pointed out
some authors, the mean-field-type approximation meth
contain an uncontrolled accuracy,29 and for the numerical
studies of two- and three-dimensional systems, those sys
sizes are not enough compared with those of o
dimensional systems due to the large degrees of freedom
this system25 and a minus sign problem.31 Although the
above studies have these difficulties, for the two-dimensio
systems at both SU~4! symmetric points and around it, a
most all the results support the disordered ground state.

In this paper we focus our attention on the regionI 5J
51, K>0, 0<D<1, and examine the existence of LRO
zero temperature. The models in this region are potenti
realized in the systems expected to show the str
dynamical Jahn-Teller effect in the insulating phase, such
the large body of new molecular compounds based
C60 or larger fullerides7,32 and some two-dimensiona
copolymers.8,9 As mentioned above, the ground state is e
pected to be disordered state with a finite energy gap aK
54 andD51 in two dimensions. Therefore, it is interestin
whether the ground states at this point and around it
ordered ones or not in three or more dimensions.

In the present paper, we use the method of infra
bounds to establish the existence of LRO in the ground s
©2002 The American Physical Society26-1
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of Hamiltonian ~1!. This method was successfully used f
the rigorous proof of the existence of LRO in the spin s
tems with continuous symmetry.33–35 In the case of the spin
T Heisenberg model, this method is applicable to the anti
romagnetic case@ I 5K50,J.0,D.0 in our Hamiltonian
~1!#. For the isotropic case (D51) Dyson, Lieb, and Simon
~DLS! proved that there exists antiferromagnetic LRO at s
ficiently low temperatures ford>3 andT>1.34 By applying
the technique of DLS, Jarda˜o Neves and Fernando Pere
proved the existence of antiferromagnetic LRO in the grou
state ford>2 and T>1.36,37 Kennedy, Lieb, and Shastr
~KLS! improved the technique of DLS and proved its ex
tence in the ground state ford>3 andT51/2.38 Kubo and
Kishi extended the proof to the anisotropic case (0<D
Þ1),39 and then, their result was improved by som
authors.40–42 As far as we know, the existence of antiferr
magnetic LRO is proved in the regionD>0 for T>1/2 in
three dimensions andD>0 for T>1 and 0<1/D,0.20,
1/D.1.66 for T51/2 in two dimensions. The proof of it
existence at the Heisenberg point and around it is still
open problem in the case ofd52 andT51/2.

The method of infrared bounds can be applied to
Hamiltonian satisfying so-called reflection positivity. In th
paper we show that Hamiltonian~1! satisfies reflection posi
tivity for I>0, J>0, K>0, D>0, and by using the metho
of infrared bound, we prove that there exists LRO in t
ground state of Hamiltonian~1! for a restricted paramete
region within the regionI 5J51, K>0, 0<D<1. In the
case ofDÞ1 we reexamine the existence of LRO in th
region 0<K<4 under acceptable assumptions.

This paper is organized as follows. In Sec. II, we defi
some notation used throughout this paper. In Sec. III,
summarize the method of infrared bounds. In Sec. IV,
using the method of infrared bounds with the KLS techniq
we prove the existence of LRO at zero temperature in
isotropic case (D51). In Sec. V, we extend the proof to th
anisotropic case and suggest conjectures for the existen
LRO under a few assumptions. In Sec. VI, we summar
and discuss the results of Secs. IV and V.

II. DEFINITION AND SOME NOTATION

We start with the definition of the model. LetL,Zd be a
d-dimensional hypercubic lattice of the form

L5$x5~x1 , . . . ,xd!u2L11<xi<L%, ~2!

whereL is an integer. We impose periodic boundary con
tions in all directions. For each sitexPL, we associate op
eratorsS(x) andT(x) with S(x)5T(x)51/2, which denote
the degrees of freedom for spin and orbit, respectively.
this paper we use the following matrix representation:
13442
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S15
1

2 S 0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

D , S25
1

2 S 0 2 i 0 0

i 0 0 0

0 0 0 2 i

0 0 i 0

D ,

S35
1

2 S 1 0 0 0

0 21 0 0

0 0 1 0

0 0 0 21

D ,

T15
1

2 S 0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

D , T25
1

2 S 0 0 2 i 0

0 0 0 2 i

i 0 0 0

0 i 0 0

D ,

T35
1

2 S 1 0 0 0

0 1 0 0

0 0 21 0

0 0 0 21

D . ~3!

We consider theS51/2 spin system with twofold orbita
degeneracy described by the Hamiltonian

HL5HSL1HTL2KHXL , ~4!

with

HSL5 (
^x,y&

S~x!•S~y!, ~5!

HTL5 (
^x,y&

$D@T1~x!T1~y!1T2~x!T2~y!#1T3~x!T3~y!%,

~6!

HXL5 (
^x,y&

@S~x!•S~y!#$D@T1~x!T1~y!1T2~x!T2~y!#

1T3~x!T3~y!%

5 (
^x,y&

(
l ,m51

3

@DXlm~x!Xlm~y!~12d3m!

1Xlm~x!Xlm~y!d3m#, ~7!

where the summation is over all nearest-neighbor pairs^x,y&
in L, Xlm(x)5Sl(x)Tm(x), andd lm is Kronecker’sd satis-
fying 1 for l 5m and 0 for lÞm. This Hamiltonian corre-
sponds to the case ofI 5J51 in Hamiltonian ~1!. By
straightforward calculations, we find that the operators
pearing in Hamiltonian~4! satisfy the following commuta-
tion relations:

@Sl~x!,Sm~y!#5 i e lmnSn~x!dxy , ~8!

@Tl~x!,Tm~y!#5 i e lmnTn~x!dxy , ~9!
6-2



r

.

d
b

un

on

red

r-

by

LONG-RANGE ORDER IN THE GROUND STATE OF . . . PHYSICAL REVIEW B 66, 134426 ~2002!
@Sl~x!,Tm~y!#50, ~10!

@Sl~x!,Xmp~y!#5 i e lmnXnp~x!dxy , ~11!

@Tp~x!,Xlq~y!#5 i epqrXlr ~x!dxy , ~12!

@Xlp~x!,Xmq~y!#5S i

4
e lmnSn~x!dpq1

i

4
epqrTr~x!d lmD dxy ,

~13!

wheree lmn is the Levi-Civita symbol satisfying 0 if any pai
of subscripts are equal,11 if l ,m,n is an even permutation
of 1,2,3, and21 if l ,m,n is an odd permutation of 1,2,3
The commutation relation~13! holds only in the case ofS
5T51/2. In this paper we consider the regionK>0 and 0
<D<1, where we can use the method of infrared boun
The reason why the method of infrared bound is applica
to such parameter region will become clear in Sec. III.

We describe three types of LRO parameters in the gro
state of Hamiltonian~4! as follows. The antiferro-spin LRO
~AFSLRO! parameter is defined by

mS
25 lim

L→`

lim
b→`

K F 1

uLu (
xPL

~21! uxuS3~x!G2L
Lb

, ~14!

the antiferro-orbital LRO~AFOLRO! parameter by

mT
25 lim

L→`

lim
b→`

K F 1

uLu (
xPL

~21! uxuT3~x!G2L
Lb

, ~15!

and the ferro-spin-orbital LRO~FSOLRO! parameter by

mX
25 lim

L→`

lim
b→`

K S 1

uLu (
xPL

X33~x! D 2L
Lb

, ~16!

where uLu is the number of sites inL, uxu[( i 51
d uxi u for x

5(x1 , . . . ,xd), and^A&Lb denotes the thermal average ofA
at inverse temperatureb:

^A&Lb5
Tr e2bHLA

Z
, ~17!

with

Z5Tr e2bHL. ~18!

For use later, we define the Duhamel two-point functi
by

~A,B!5Z21E
0

1

Tr~e2tbHLAe2(12t)bHLB!dt, ~19!

and the Fourier transform ofSl(x), Tl(x), andXlm(x) by

Sl~k!5
1

AuLu
(
xPL

e2 ik•xSl~x!, ~20!

Tl~k!5
1

AuLu
(
xPL

e2 ik•xTl~x!, ~21!
13442
s.
le

d

Xlm~k!5
1

AuLu
(
xPL

e2 ik•xXlm~x!, ~22!

respectively, wherek5(k1 , . . . ,kd) is in a reciprocal lattice
L* .

III. SUMMARY OF THE DERIVATION OF INFRARED
BOUNDS

A. Correlation functions and sum rules

In this subsection we summarize the method of infra
bounds.34–36,38

Let us define the Fourier transform of the two-point co
relation functions by

gS~k!5^S3~k!S3~2k!&Lb , ~23!

gT~k!5^T3~k!T3~2k!&Lb , ~24!

gX~k!5^X33~k!X33~2k!&Lb , ~25!

and the interaction energies per site in the ground state

eHL52
1

uLu
lim

b→`
^HL&Lb , eH5 lim

L→`

eHL , ~26!

eSL52
1

uLu
lim

b→`
^HSL&Lb , eS5 lim

L→`

eSL , ~27!

eTL52
1

uLu
lim

b→`
^HTL&Lb , eT5 lim

L→`

eTL , ~28!

eXL5
1

uLu
lim

b→`
^HXL&Lb , eX5 lim

L→`

eXL . ~29!

For the discussion of the anisotropic case (DÞ1), we also
define the following:

« lL
T 52

1

uLu
lim

b→`
(
^x,y&

^Tl~x!Tl~y!&Lb , « l
T5 lim

L→`

« lL
T ,

~30!

«mL
X 5

1

uLu
lim

b→`
(
^x,y&

^Xlm~x!Xlm~y!&Lb , «m
X5 lim

L→`

«mL
X ,

~31!

for l ,m51,2,3. From the definitions~27!, ~28!, and ~29!,
eHL is written as

eHL5eSL1eTL1KeXL , ~32!

and from the definitions~30! and ~31!, eTL andeXL as

eTL52D«1L
T 1«3L

T , ~33!

eXL56D«1L
X 13«3L

X , ~34!

where we used the relations«1L
T 5«2L

T and«1L
X 5«2L

X , which
come from the symmetry of Hamiltonian.
6-3
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As in the case of the antiferromagnetic Heisenberg mo
we have the following KLS-type sum rule:38

1

uLu
lim

b→`
(

kPL*
gS~k!S 1

d (
m51

d

coskmD 52
eSL

3d
, ~35!

1

uLu
lim

b→`
(

kPL*
gT~k!S 1

d (
m51

d

coskmD 52
«3L

T

d
, ~36!

1

uLu
lim

b→`
(

kPL*
gX~k!S 1

d (
m51

d

coskmD 5
«3L

X

d
. ~37!

By using the above sum rules, the three types of order
rameters~14!, ~15!, and~16! are written as

mS
25 lim

L→`

lim
b→`

1

uLu
gS~Q!5

eS

3d
2GS , Q5~p, . . . ,p!,

~38!

mT
25 lim

L→`

lim
b→`

1

uLu
gT~Q!5

«3
T

d
2GT , ~39!

mX
25 lim

L→`

lim
b→`

1

uLu
gX~P!5

«3
X

d
2GX , P5~0, . . . ,0!,

~40!

with

GS5 lim
L→`

lim
b→`

1

uLu (
kÞQ

gS~k!S 2
1

d (
m51

d

coskmD , ~41!

GT5 lim
L→`

lim
b→`

1

uLu (
kÞQ

gT~k!S 2
1

d (
m51

d

coskmD , ~42!

GX5 lim
L→`

lim
b→`

1

uLu (
kÞP

gX~k!S 1

d (
m51

d

coskmD . ~43!

In order to prove that the order parameters take finite va
in the ground state, we evaluate lower bounds foreS , «3

T ,
and «3

X and upper bounds onGS , GT , and GX . To obtain
those upper bounds, we estimate infrared bounds, i.e., u
bounds on the correlation functionsgS(k) with kÞQ, gT(k)
with kÞQ, andgX(k) with kÞP.

B. Infrared bounds

In the following, we describe the derivation of infrare
bounds on the two-point correlation functions.

Theorems 3.2 and 5.1 in the paper of DLS~Ref. 34! ap-
plied to Hamiltonian~4! assures that

gS~k!<
1

2
ABS~k!CSb~k!cothS 1

2
bACSb~k!

BS~k!
D , kÞQ,

~44!

if we can estimateBS(k) andCS(k) satisfying
13442
l,

a-

s

er

„S3~k!,S3~2k!…<b21BS~k!, kÞQ, ~45!

and

^@@S3~k!,HL#,S3~2k!#&Lb<CSb~k!. ~46!

In the limit b→`, the hyperbolic cotangent factor of th
right-hand side of inequality~44! drops off and an infrared
bound is given by34,36

lim
b→`

gS~k!<
1

2
ABS~k!CS~k!, kÞQ, ~47!

whereCS(k)5 limb→`CSb(k).
When Hamiltonian satisfies reflection positivity, we ca

estimateBS(k) as described below. Let us define

S̃1~x!5US
†S1~x!US , T̃1~x!5UT

†T1~x!UT ,

S̃2~x!5US
†iS2~x!US , T̃2~x!5UT

†iT2~x!UT ,

S̃3~x!5US
†S3~x!US , T̃3~x!5UT

†T3~x!UT , ~48!

and

X̃lm~x!5S̃l~x!T̃m~x!, ~49!

with US5exp@ip(xPLodd
S2(x)# and UT

5exp@ip(xPLodd
T2(x)#, whereLodd is a collection of sitesx

with odd uxu. Let hm(x) (m51, . . . ,d) be a real-valued
function on the sitex. Then we consider the following
Hamiltonian dependent onh5$hm(x)um51, . . . ,d,xPL%:

H̃L
S~h!5H̃L

S~h!1H̃L
T ~0!1H̃L

X~0!, ~50!

with

H̃L
S~h!5

1

2 (
xPL

(
m51

d F @S̃1~x!2S̃1~x1dm!#21@S̃2~x!2S̃2~x

1dm!#21@S̃3~x!2S̃3~x1dm!1hm~x!#22
1

2G ,
~51!

H̃L
T ~h!5

1

2 (
xPL

(
m51

d H D$@ T̃1~x!2T̃1~x1dm!#2

1@ T̃2~x!2T̃2~x1dm!#2%

1@ T̃3~x!2T̃3~x1dm!1hm~x!#22
1

2J , ~52!
6-4
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H̃L
X~h!5

1

2
K (

xPL
(

m51

d FD (
p,q51

3

@X̃pq~x!2X̃pq~x1dm!#2~1

2d3q!1@X̃13~x!2X̃13~x1dm!#2

1@X̃23~x!2X̃23~x1dm!#2

1@X̃33~x!2X̃33~x1dm!1hm~x!#22
1

8G , ~53!

wheredm denotes the unit vector in them direction. We note
that

H̃L
S~0!5UT

†US
†HLUSUT . ~54!

For H̃L
S(h) we can easily check the following facts: the m

trix elements of all matrices appearing inH̃L
S(h) are real,

and the coefficients of all the nearest-neighbor spin inte
tion terms are negative and those of nearest-neighbor or
interaction and spin-orbital interaction terms are nonposi
for K>0 and D>0 ~in this paperK>0 and 0<D<1).
These conditions are required so as to satisfy reflection p
tivity. Thus, following Sec. IV and theorem 6.1 in the pap
of DLS,34 we have

Z̃S~h!<Z̃S~0!, ~55!

with

Z̃S~h!5Tr exp@2bH̃L
S~h!#, ~56!

and then inequality~55! leads to

Tr expH 2bF H̃L
S~0!1 (

xPL
h~x!S̃3~x!G J

Z̃S~0!

<expS b

2 (
xPL

(
m51

d

uhm~x!u2D , ~57!

with h(x)5(m51
d @hm(x1dm)2hm(x)#. We also follow

theorem 4.2 in the paper of DLS; then we have

S (
xPL

h~x!* S̃3~x!, (
xPL

h~x!S̃3~x! D<
1

b (
xPL

(
m51

d

uhm~x!u2,

~58!

where we should note thathm(x) is extended to a complex
valued function.

Now we choose

hm~x!5
1

AuLu
$exp@ ik•~x2dm!#2exp~ ik•x!%; ~59!

then inequality~58! becomes

b„S3~k!,S3~2k!…<
1

2E~k2Q!
5BS~k!, kÞQ, ~60!

with
13442
c-
tal
e

si-

E~k!5 (
m51

d

~12coskm!. ~61!

Combining inequalities~47! and ~60!, we have

lim
b→`

gS~k!<
1

A8E~k2Q!
ACS~k!, kÞQ. ~62!

We can obtain infrared bounds ongT(k) and gX(k) by
following a similar process of the derivation of an infrare
bound ongS(k). In the case ofgT(k), we have

lim
b→`

gT~k!<
1

A8E~k2Q!
ACT~k!, kÞQ, ~63!

with

lim
b→`

^@@T3~k!,HL#,T3~2k!#&Lb<CT~k! ~64!

in the region satisfying reflection positivity,K>0 and D
>0.

On the other hand, for an infrared bound ongX(k), we
have

lim
b→`

gX~k!<
1

2
ABX~k!CX~k!, kÞP, ~65!

with

„X33~k!,X33~2k!…<b21BX~k!, kÞP, ~66!

and

lim
b→`

^@@X33~k!,HL#,X33~2k!#&Lb<CX~k!. ~67!

In order to evaluateBX(k), we discuss the Hamiltonian de
fined by

H̃L
X~h!5H̃L

S~0!1H̃L
T ~0!1H̃L

X~h!, ~68!

and then we have

S (
xPL

h~x!* X̃33~x!, (
xPL

h~x!X̃33~x! D
<

1

bK (
xPL

(
m51

d

uhm~x!u2. ~69!

Noting that X̃33(xodd)5UT
†US

†X33(xodd)USUT5X33(xodd)
(xoddPLodd), from this inequality, we obtain

b„X33~k!,X33~2k!…<
1

2KE~k!
5BX~k!, kÞP, ~70!

corresponding to inequality~60! in the regionK.0 andD
>0. From inequalities~65! and ~70!, an infrared bound on
gX(k) is evaluated as
6-5



ds

O

e

e

bl

,

d

K. TANAKA AND T. IDOGAKI PHYSICAL REVIEW B 66, 134426 ~2002!
lim
b→`

gX~k!<
1

A8KE~k!
ACX~k!, kÞP. ~71!

In the following sections, we will estimate upper boun
on CS(k), CT(k), andCX(k) and lower bounds foreS , «3

T ,
and«3

X for each case.

IV. CASE OF AN ISOTROPIC INTERACTION, DÄ1

A. Antiferro-spin and antiferro-orbital long-range order

In this subsection, we prove the existence of AFSLR
and AFOLRO in the ground state of Hamiltonian~4! with
SU(2)^ SU(2) symmetry (D51), i.e., mS

25mT
2.0 within

the region 0<K,4.
First, we consider a lower bound oneS . We label two of

the four eigenstates ofS3 andT3 in the matrix representation
~3! on each site as

u↑1&5S 1

0

0

0

D , u↓2&5S 0

0

0

1

D . ~72!

If we take the following trial state with a two-sublattic
structure,

~ ^ xPLodd
u↑1&x) ^ ~ ^ xPLeven

u↓2&x) ~73!

~hereLeven5L\Lodd), then we obtain

eH5eS1eT1KeX>S K

16
1

1

2Dd. ~74!

We now consider the Bogoliubov inequality in a strong
form34

u^@A,B#&Lbu2<b~B†,B!^@@A,HL#,A†#&Lb . ~75!

Noting (B†,B)>0, we see

lim
b→`

^@@A,HL#,A†#&Lb>0. ~76!

SettingA5X33(Q) in inequality ~76!, we obtain

eSL>
4

3
eXL , 0<K,4, ~77!

eSL<
4

3
eXL , K.4, ~78!

where we have usedeSL5eTL . Combining inequalities~74!
and ~77!, we obtain

eS>dS K

16
1

1

2D S 3

4
K12D 21

~79!

for 0<K,4.
Second, to evaluate an upper bound onGS through in-

equality ~62!, we estimate an upper bound on the dou
13442
r

e

commutatorCS(k). After some straightforward calculations
the left-hand side of inequality~46! is reduced to

lim
b→`

^@@S3~k!,HL#,S3~2k!#&Lb5
4

3d
~eSL1KeXL!E~k!.

~80!

By using inequality~77!, an upper boundCS(k) on the ex-
pectation value of double commutator~80! at zero tempera-
ture is evaluated as

CS~k!5
1

d S K1
4

3DeSLE~k!. ~81!

From inequality~62! and Eq.~81!, we have

lim
b→`

gS~k!<A E~k!

E~k2Q!
AeSL

8d S K1
4

3D . ~82!

Thus, we obtain the following bound onGS :

GS<AeS

8d S K1
4

3DG I
1~d!, ~83!

with

G I
1~d!5

1

~2p!dE2p

p

ddkA E~k!

E~k2Q!H 2
1

d (
m51

d

coskmJ
1

,

~84!
where

$F%15H F if F>0,

0 otherwise
~85!

We have evaluatedG I
1(d) numerically and have summarize

the results in Table I. Applying inequality~83! to Eq. ~38!,
we obtain the following lower bound formS

2 :

mS
2>AeS

d S 1

3
AeS

d
2A1

8
K1

1

6
G I

1~d! D . ~86!

We also apply inequality~79! to the right-hand side of this
inequality; then it is bounded from below by

AeS

d F1

3
AS 1

16
K1

1

2D S 3

4
K12D 21

2A1

8
K1

1

6
G I

1~d!G .

TABLE I. The results of the numerical calculations forG I
1(d),

G II
1(d), andG III (d).

d G I
1(d) G II

1(d) G III (d)

2 0.646 . . . 0.457 . . . 1.393 . . .
3 0.349 . . . 0.202 . . . 1.157 . . .
4 0.253 . . . 0.126 . . . 2

5 0.206 . . . 0.0923 . . . 2

6 0.177 . . . 0.0725 . . . 2

7 0.157 . . . 0.0597 . . . 2
~87!

6-6
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Therefore the LRO parametersmS
2 andmT

2 take finite values
in d dimensions if parameterK satisfies

0<K,K̄~d!, ~88!

whereK̄(d) is given by

K̄~d!5
11A324@G I

1~d!#41324@G I
1~d!#211

27@G I
1~d!#2

22.

~89!

Since G I
1(d) is monotonously decreasing ind,43 K̄(d) is

monotonously increasing ind. Then, ind11 or more dimen-
sions, there is LRO in the region where we can prove
existence of LRO ind dimensions. The results for 3<d<7
are summarized in Table II. In two dimensions, there is
region where we can provemS

25mT
2.0 from inequality~87!.

This result is consistent with the paper of KLS~Ref. 38! as
follows. As we described in section I, KLS could prove t
existence of AFSLRO~Néel order! in the ground state o
spin-1/2 Heisenberg antiferromagnets on a simple cubic
tice, but could not on a square lattice, and this problem
been unresolved. AtK50, our Hamiltonian is divided into
the two independent antiferromagnetic Heisenberg mod
and we find that inequality~86! at K50 becomes equivalen
to inequality~4! in their paper~but they imposemS

250 for
the way of their discussion!. We can easily see that the pa
within the brackets of lower bound~87! takes its maximal
value atK50. Thus, if we cannot prove the existence
AFSLRO atK50, then there is no region for which we ca
prove its existence for 0,K,4 from the lower bound~87!.
For this reason, noting the results of the paper of KLS
scribed above, we can see that we have no region wher
can prove it for 0,K,4 in two dimensions.

B. Long-range order at KÄ4

In this subsection, we focus on the case ofK54 andD
51, where the system satisfies a class of SU~4! symmetry.19

Indeed, we can see that

@HL ,Sl
tot#5@HL ,Tm

tot#5@HL ,Xpq
tot#50, ~90!

where

TABLE II. For 0<K,4, the region where we have shown th
existence of AFSLRO and AFOLRO ind dimensions from inequal-
ity ~88!.

d K

2 2

3 0<K,0.342
4 0<K,1.342
5 0<K,2.264
6 0<K,3.148
7 0<K,4
13442
e

o

t-
s

ls,

-
we

Sl
tot5 (

xPL
Sl~x!, ~91!

Tm
tot5 (

xPL
Tm~x!, ~92!

Xpq
tot52 (

xPL
~21! uxuXpq~x!, ~93!

which generate a SU~4! Lie algebra.
We introduce the unitary operator defined by

VX5expS p

2
iX33

totD . ~94!

By using this unitary operator, we have

VX
†S1~x!VXVX

†S1~y!VX524X23~x!X23~y!. ~95!

Noting Eq. ~95! and the rotational invariance ofHL with
respect to the spin and pseudospin, we obtain the relatio

1

15
eHL5

1

3
eSL5

1

3
eTL5

4

9
eXL ~96!

and

mS
25mT

254mX
2. ~97!

By using Eq.~96!, Eqs.~38! and ~80! are written as

mS
25

eH
15d

2GS ~98!

and

lim
b→`

^@@S3~k!,HL#,S3~2k!#&Lb5
16

15

eHL

d
E~k!5CS~k!,

~99!

respectively. Combining Eqs.~62! and ~99!, we have

GS<A 2

15

eH
d

G I
1~d!. ~100!

Thus, by applying this inequality to Eq.~98!, we have a
lower bound formS

2 , and also applying inequality~74! to
that lower bound, we find

mS
2>A eH

15dSA eH
15d

2A2G I
1~d! D

>A eH
15dSA 1

20
2A2G I

1~d! D . ~101!

By using the numerical results in Table I and noting Eq.~97!,
we show that
6-7
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mS
25mT

254mX
2>A eH

105SA 1

20
2A2G I

1~7! D
5~0.000161 . . . !A eH

105
.0. ~102!

Since G I
1(d) is monotonously decreasing ind, we proved

that three types of LRO parameters simultaneously take
nite values in the ground state in seven or more dimensi

C. Ferro-spin-orbital long-range order

In this subsection, we prove the existence of FSOLRO
the ground state of Hamiltonian~4! with isotropic interaction
(D51) within the regionK.4. For the proof, we conside
Eq. ~40!. In the case ofD51, since the pseudospin part o
Hamiltonian~4! also possesses SU~2! symmetry, Eq.~40! is
written as

mX
25

eX

9d
2GX . ~103!

Let us evaluate a lower bound foreX . We combine in-
equalities~74! and ~78!, then we have

eX>dS K

16
1

1

2D S K1
8

3D 21

. ~104!

In order to obtain an upper bound ongX(k), we evaluate
CX(k). The left-hand side of inequality~67! takes the fol-
lowing form:

lim
b→`

^@@X33~k!,HL#,X33~2k!#&Lb

5
2

3
eSL1

2

9
KeXL

1S K

6
eSL1

8

9
eXLD1

d (
m51

d

coskm5CX~k!.

~105!

From the above equation and inequality~71!, we obtain

lim
b→`

gX~k!<
AI 1LH 1

d (
m51

d

coskmJ 1I 2L

E~k!
, ~106!

with

I 1L5
1

48
eSL1

1

9K
eXL , ~107!

I 2L5
1

12K
eSL1

1

36
eXL . ~108!

Then we have
13442
fi-
s.

n

lim
b→`

1

uLu (
kÞP

gX~k!S 1

d (
m51

d

coskmD

<
1

uLu (
kÞP

AI 1LH 1

d (
m51

d

coskmJ
1

1I 2L

Ek

3H 1

d (
m51

d

coskmJ
1

. ~109!

Applying inequality~78! to Eqs.~107! and ~108!, we obtain

I 1L<S 1

36
1

1

9K DeXL , ~110!

I 2L<S 1

36
1

1

9K DeXL , ~111!

for K.4. From inequalities~109!, ~110!, and~111!, we have

GX<AS 1

36
1

1

9K DeXG II
1~d!, ~112!

where

G II
1~d!5

1

~2p!dE2p

p

ddk
AH 1

d (
m51

d

coskmJ
1

11

Ek

3H 1

d (
m51

d

coskmJ
1

. ~113!

We calculate numericallyG II
1(d), and the results are listed i

Table I. By applying inequalities~104! and ~112! to Eq.
~103!, we obtain

mX
2>AeXS 1

9d
AeX2A 1

36
1

1

9K
G II

1~d! D
>AeXF 1

9d
AdS K

16
1

1

2D S K1
8

3D 21

2A 1

36
1

1

9K
G II

1~d!G . ~114!

Consequently, in seven dimensions FSOLRO param
takes a finite value for

K.4.023. ~115!

In six or less dimensions, we cannot draw a conclusion ab
the existence of FSOLRO from inequality~114!.

V. CASE OF AN ANISOTROPIC ORBITAL INTERACTION,
0ÏDË1

A. Antiferro-orbital long-range order

In this subsection, we examine the existence of AFOLR
in the ground state for 0<D,1.
6-8
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When we know the relations among the nearest-neigh
correlations in the ground state, e.g., inequalities~77! and
~78!, and Eq.~96! in the case ofD51, the KLS-type sum
rule ~36! well works. In the case ofDÞ1, we need to know
the relations amongeSL/3, «1L

T , «3L
T , 4«1L

X , and 4«3L
X due

to the symmetry lowering of the pseudospin interactio
However, as we will see in Sec. V D, we cannot find tho
relations enough to work the KLS-type sum rule. Thus,
this subsection, in order to prove the existence of AFOLR
in the ground state, we use the sum rule

1

uLu (
kPL*

gT~k!5
1

4
~116!

instead of the KLS-type sum rule.
By using the above sum rule, order parametermT

2 can be
written as

mT
25

1

4
2ĜT , ~117!

with

ĜT5 lim
L→`

lim
b→`

1

uLu (
kÞQ

gT~k!. ~118!

In order to obtain a lower bound formT
2 , we evaluate an

upper bound onĜT .
We recall that an upper bound ongT(k) in the ground

state is given by the right-hand side of inequality~63!. We
have evaluatedBT(k) in Sec. III B; thus we have only to
estimateCT(k) in this subsection.

Let us estimateCT(k). The expectation value of doubl
commutator~64! is written as

lim
b→`

^@@T3~k!,HL#,T3~2k!#&Lb

5
4D

d
~«1L

T 13K«1L
X !E~k!

5
4D

d S 2
1

2
lim

b→`
^T~x!•T~y!&Lbd

2
1

2
«3L

T 13K«1L
X D E~k!. ~119!

Here, we use the Anderson bound44 ~reproduced in Ap-
pendix of Ref. 34!

lim
b→`

^T~x!•T~y!&Lbd>2
1

4
~d11! ~120!

and the Chaucy-Schwarz inequality

2«3L
T 5 lim

b→`
^T3~x!T3~y!&Lbd<

d

4
, ~121!

«1L
X 5 lim

b→`
^Sl~x!T1~x!Sl~y!T1~y!&Lbd<

d

16
. ~122!
13442
or

.
e

Then, the right-hand side of Eq.~119! is bounded from above
by

CT~k!5DS 11
1

2d
1

3

4
K DE~k!. ~123!

Combining Eq. ~123! and inequality ~63!, gT(k) in the
ground state is bounded as

lim
b→`

gT~k!<ADS 1

8
1

1

16d
1

3

32
K DA E~k!

E~k2Q!
, kÞQ,

~124!

and an upper bound onĜT is given by

ĜT<ADS 1

8
1

1

16d
1

3

32
K DG III ~d!, ~125!

with

G III ~d!5
1

~2p!dE2p

p

ddkA E~k!

E~k2Q!
. ~126!

We have estimatedG III (2) andG III (3) numerically and have
summarized the results in table I. From Eq.~117! and in-
equality~125!, we conclude thatmT

2 takes a nonzero value i

0<D,
2d

@d~413K !12#@G III ~d!#2
. ~127!

The results for some values ofK are listed in Table III.

B. Conjecture for antiferro-spin long-range order

In this and next subsections, in order to discuss the e
tence of AFSLRO and AFOLRO in the ground state with t
KLS-type sum rule, we introduce a few assumptions on
relations among the nearest-neighbor correlations in
ground state. The discussion based on the KLS-type sum
has the advantage of adopting the variational method wh
in the ground state, gives the better results than that base
the sum rule~116!.

TABLE III. The region where we have proved the existence
AFOLRO from inequality~127!.

K d52 d53

0.0 D,0.205 D,0.319
0.5 D,0.158 D,0.241
1.0 D,0.128 D,0.194
1.5 D,0.108 D,0.162
2.0 D,0.0935 D,0.139
2.5 D,0.0823 D,0.122
3.0 D,0.0735 D,0.109
3.5 D,0.0664 D,0.0983
4.0 D,0.0605 D,0.0894
4.5 D,0.0556 D,0.0820
5.0 D,0.0514 D,0.0758
6-9
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In this subsection we examine the existence of AFSL
in the ground state under the following natural assumptio

1

3
eSL<«3L

T , ~128!

4«3L
X <«3L

T , ~129!

4«1L
X <«3L

T , ~130!

for 0<K<4 and 0<D<1. We will discuss the validities o
these assumptions in Sec. V D. Under the assumptions~128!,
~129!, and~130!, we evaluate an lower bound formS

2 . As in
Sec. IV, we estimate a lower bound foreSL and an upper
bound onGS to obtain a lower bound formS

2 .
Let us estimate a lower bound foreSL . Taking a varia-

tional state~73! for Hamiltonian~4!, we have

eSL12D«1L
T 1«3L

T 1K~6D«1L
X 13«3L

X !>S 1

2
1

1

16
K Dd.

~131!

As we will see in Sec. V D@see inequality~150!#, we have

«3L
T 13K«3L

X >«1L
T 13K«1L

X , ~132!

for 0<D,1. Applying inequalities~129! and~132! to ~131!,
we obtain

eSL>2~2D11!S 11
3

4
K D «3L

T 1S 1

2
1

K

16Dd. ~133!

To evaluate an upper bound onGS , we need to estimate
CS(k). The expectation value of double commutator~46! is
expressed as

lim
b→`

^@@S3~k!,HL#,S3~2k!#&Lb5
4

3d
~eS1KeX!E~k!.

~134!

We apply the inequalities~128!, ~129!, and~130! to the right-
hand side of Eq.~134!; then it is bounded from above by

CS~k!5
1

d
@41K~2D11!#«3

TE~k!. ~135!

Combining inequalities~62! and Eq.~135!, we have an uppe
bound onGS :

GS<A41K~2D11!

8d
«3

TG I
1~d!. ~136!

From inequalities~133! and ~136!, a lower bound formS
2 is

evaluated as

mS
2>

1

3 F2~2D11!S 11
3

4
K D «3

T

d
1

1

2
1

K

16G
2A41K~2D11!

8

«3
T

d
G I

1~d!. ~137!

Thus we can concludemS
2.0 if «3

T satisfies
13442
s:

«3
T

d
2j1.0, ~138!

where j1 is the larger solution of the following quadrati
equation forj:

aj21bj1c50, ~139!

with

a5~2D11!2S 11
3

4
K D 2

, ~140!

b52~2D11!S 11
3

4
K D S 11

K

8 D
2

3619K~2D11!

8
@G I

1~d!#2, ~141!

c5S 1

2
1

K

16D
2

. ~142!

In order to obtain a lower bound for«3
T , we combine in-

equalities~128! and ~133!. Then we have

«3
T>

~81K !d

64132D112K~2D11!
. ~143!

Applying inequality~143! to the left-hand side of inequality
~138!, we obtain

«3
T

d
2j1>

81K

64132D112K~2D11!
2j1.0. ~144!

Therefore, we obtain the region where we can evaluatemS
2

.0 for 0<K<4 as follows:

0<D

,2
3K2116K18

6K218K
1

A6K3156K2164K164@G I
1~d!#2

~6K218K !G I
1~d!

.

~145!

The results in three dimensions for some values ofK are
summarized in Table IV. In two dimensions, there is no
gion where we can conjecturemS

2.0 from inequality~145!.

TABLE IV. For 0<K<4, the region where we have shown th
existence of AFSLRO in three dimensions from inequality~145!
obtained under assumptions~128!, ~129!, and~130!.

K D K D

0.0 D,1.000 2.5 D,0.0679
0.5 D,0.792 3.0 D,0.0137
1.0 D,0.432 3.5 2

1.5 D,0.252 4.0 2

2.0 D,0.142
6-10
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C. Conjecture for antiferro-orbital long-range order

In this subsection, we reexamine the region where we
showmT

2.0 in the ground state under assumptions~128! and
~129!.

Let us estimate a lower bound for the right-hand side
Eq. ~39!. Applying inequalities~132! and~129! to the expec-
tation value of double commutator~64! in the ground state
@see also~119!#, we have

4D

d
~«1L

T 13K«1L
X !E~k!<

D

d
~413K !«3L

T E~k!5CT~k!.

~146!

By using thisCT(k) and inequality~63!, we obtain

GT<A«3
T

d
AD

8
~413K !G I

1~d!. ~147!

Then, a lower bound formT
2 is given by

mT
2>

«3
T

d
2A«3

T

d
AD

8
~413K !G I

1~d!

>A«3
T

d SA 81K

64132D112K~2D11!

2AD

8
~413K !G I

1~d! D , ~148!

where we used inequality~143!. Here we should note tha
inequality ~143! can be derived from only two assumption
~128! and ~129!. From lower bound~148!, we can conclude
that mT

2 takes a finite value in the region

0<D,2
3K116

12K116
1

A16~K18!1~3K116!2~G I
1~d!!2

4~3K14!G I
1~d!

~149!

for 0<K<4. These results are summarized in Table V.

TABLE V. The region where we have conjectured the existen
of AFOLRO under assumptions~128! and ~129! within 0<K<4.

K d52 d53

0.0 D,0.378 D,1.000
0.5 D,0.346 D,0.915
1.0 D,0.269 D,0.721
1.5 D,0.220 D,0.595
2.0 D,0.185 D,0.507
2.5 D,0.160 D,0.442
3.0 D,0.141 D,0.392
3.5 D,0.125 D,0.352
4.0 D,0.113 D,0.320
13442
n

f

D. Validties of assumptions in Sec. V B and V C

In Secs. V B and V C, we used assumptions~128!, ~129!,
and~130! to prove the existence of LRO. In this subsectio
we discuss the validities of these assumptions.

The reason for which we introduced these assumption
as follows. In the isotropic case, we foundeSL5eTL and
«1L

X 5«3L
X . Thus, in the Ising-like region (0<D,1), it is

natural to assume that«3L
T >eSL/3>«1L

T and «3L
X >«1L

X .
Then, assumption~128! may hold. We should note thateSL

>4eXL/3 for 0<K<4, in the case ofD51 @recall inequal-
ity ~77! and Eq.~96!#. From these relations, it is acceptab
to assume«3L

T >4«3L
X >4«1L

X ~note also«mL
X 5eXL/9 in the

case ofD51). Thus, assumptions~129! and~130! also may
hold.

By using inequality~76! and numerical calculations, w
discuss the validities of these assumptions in more detai

Let us setA5T1(P) in inequality ~76!. Then, this in-
equality leads to

«3L
T 13K«3L

X >«1L
T 13K«1L

X ~150!

for 0<D,1, and also doA5X11(Q) andA5X33(Q); then
we have

1

3
eSL1

1

2
«3L

T >6«1L
X ~151!

at K54D for 0<D,1 and

1

3
eSL1D«1L

T >4«3L
X 14D«1L

X ~152!

for 0<K,4, respectively. Assumptions~128!, ~129!, and
~130! do not contradict these inequalities. Noting that w
consider«3L

T >«1L
T («3L

T >eSL/3>«1L
T ) in the above, we find

that this relation combined with assumption~129! satisfies
rigorous inequality~150!.

Before proceeding to the numerical calculations, in ord
to find that some of the assumptions hold in the special c
of our Hamiltonian, we consider the relations among t
nearest-neighbor correlations in the ground state in f
casesK50, D50, K54D, andK54. At K50, from in-
equality ~150!, we have«3L

T >«1L
T @but we cannot show as

sumption ~128!#. At D50, we haveeS/3>4«3L
X from in-

equality ~152!. Combining this inequality and assumptio
~128!, we can prove assumption~129!. Next, we consider the
case ofK54D. Combining assumption~128! and inequality
~151!, we can derive assumption~130!. Furthermore, atK
54, we can find that

@HL ,Si
tot#5@HL ,T3

tot#5@HL ,X33
tot#50 ~153!

for DÞ1. By using these relations as in Sec. IV B, we ha

1

3
eSL54«3L

X , ~154!

«1L
T 54«1L

X . ~155!

e
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If we use Eq.~154!, then the assumption~128! is equivalent
to ~129!. Thus, it is sufficient if we put either assumption
this case. Combining Eq.~155! and the assumption~130!, we
have«1L

T <«3L
T . Therefore the assumptions atK54 can be

replaced by«1L
T <eS/3<«3L

T .
Next, we directly calculateeSL/3, «1L

T , «3L
T , 4«1L

X , and
4«3L

X to confirm that the assumptions are established on
tices with two, four~a single square!, and eight~a single
cube! sites. By using exact diagonalization, we have e
mated the nearest-neighbor correlations for some valuesK
and D in 0<K<4 and 0<D<1, and have confirmed tha
the results satisfy the relations«3L

T >eSL/3>«1L
T and «3L

T

>4«3L
X >4«1L

X . We also have found that relations~154! and
~155! hold at K54. These results suggest that assumpti
~128!, ~129!, and~130! are valid.

VI. SUMMARY

We have constructed upper bounds on the correla
functionsgS(k) (kÞQ), gT(k) (kÞQ), andgX(k) (kÞP)
in the finite system within the region satisfying reflectio
positivity, i.e., K>0 and 0<D<1. If the correlation func-
tion for the modek in the finite system is bounded from
above by a finite value independent of the lattice size,
LRO parameter for that mode is vanishing in the infin
system. It should be noted that we could not construct up
bounds on the spin and orbital two-point correlation fun
tions for the modeQ and the spin-orbital correlation functio
for the modeP. Thus we can determine the kind of LR
which would be realized in an infinite system if it exists; i.e
candidates for LRO are AFSLRO, AFOLRO, and FSOLR
in the thermodynamic limit in the considered parameter
gion. Indeed, we have used these upper bounds to exa
the existence of three types of LRO and have proved
conjectured thatmS

2 , mT
2 , andmX

2 take positive values unde
some conditions.

In the isotropic case (D51), for the region 0<K,4, we
have proved that AFSLRO and AFOLRO coexist for 0<K

,K̄(d). These results are summarized in Table II. AtK54
@SU~4! symmetric point#, by using the SU~4! symmetry of
the Hamiltonian, we have shown thatmS

25mT
254mX

2 , and
these order parameters take positive values in seven or m
dimensions. We cannot prove the existence of LRO fo
<d<6. In two dimensions, this result does not contrad
the result of Monte Carlo simulations.28 For the regionK
.4, we have proved that FSOLRO exist forK.4.023 in
seven dimensions.

In the anisotropic case (0<D,1), we have proved the
existence of AFOLRO in the region given by inequali
~127! in two and three dimensions. The results are summ
rized in Table III. For the region 0<K<4, we have also
conjectured on the existence of AFSLRO and AFOLRO
the region determined by inequalities~145! and ~149!, re-
spectively. These results are listed in Tables IV and V
some values ofK.

These conjectures are based on a few assumptions
using the rigorous relations among the nearest-neighbor
relations and the results of the exact diagonalization for
13442
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finite-size clusters, we have discussed the validities of
assumptions in Sec. V D. In particular, atK54D, we could
prove assumption~130!. At D50, we also could prove as
sumption~129!. At K54, we foundeSL/354«3L

X and «1L
T

54«1L
X . By using these relations, we could replace the

sumptions by«1L
T <eS/3<«3L

T . This assumption is quite
natural in the Ising-like region. All the considerations in Se
V D imply that all assumptions in Secs. V B and V C a
valid, and we expect that the results of Secs. V B and V C
fairly reliable.

In conclusion, we have established the proof and conj
ture for the existence of three types of LRO, i.e., AFSLR
AFOLRO, and FSOLRO, in fairly wide parameter region
and have first presented reliable results in high
dimensional systems where mean-field-type approximati
or numerical calculations suffer from various difficultie
such as uncontrolled accuracy or too large degrees of f
dom. The present results for 0<K<4 in three dimensions
are summarized in Fig. 1. This figure shows that the pro

FIG. 1. The regions we have proved or conjectured on the
istence of LRO in three dimensions. The region AFSLR
1AFOLRO ~rigorous! (0<K,0.342, D51) is determined by in-
equality ~88!. ~a! The region AFSLRO~conjecture! is determined
by inequality ~145!. ~b! The regions AFOLRO~rigorous! and
AFOLRO ~conjecture! are determined by inequalities~127! and
~149!, respectively. We cannot conclude anything in the shad
regions.
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and the conjecture of LRO become difficult as SU~4! sym-
metric point is approached in theK-D plane. For the region
K.4, the right-hand side of inequality~102!, giving a lower
bound for the FSOLRO parameter, is also decreasing aK
approaches this point. These tendencies probably imply
increase of quantum fluctuations. Here, we should note t
as we described in Sec. I, the existence of the antiferrom
netic LRO in the ground state of the spin-S Heisenberg an-
tiferromagnet on thed-dimensional hypercubic lattice wa
proved except for the case ofd52 andS51/2, and quantum
fluctuations in this case are considered to be the stronge
two or more dimensions. In three dimensions, our results
v,

a,

M

S
ys

Y.

Y.

. B

.

13442
he
t,

g-

in
ft

the possibility of the existence of the disordered ground s
at SU~4! symmetric point and its vicinity. We hope that th
problem will be explored by other techniques.
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