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Long-range order in the ground state of spin systems with orbital degeneracy
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We apply the method of infrared bounds to the spin-orbital systems with isotropic and anisotropic interac-
tions to examine the existence of long-range ord#¥O) in two or more dimensions. For the isotropic case,
we prove the existence of antiferro-spin and antiferro-orbital LRO in three or more dimensions and ferro-spin-
orbital LRO in seven or more dimensions. For the anisotropic case, we prove the existence of antiferro-orbital
LRO in two or more dimensions. Under some acceptable assumptions we conjecture on the existence of
antiferro-spin LRO in three or more dimensions and extend the region where we can show antiferro-orbital
LRO in two or more dimensions.
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[. INTRODUCTION investigated by various accurate methd@ee, e.g., Refs. 22
and 23, and references thergin.
It has been recognized, through a number of experimental In two dimensions, the ground states of both(&Usym-
and theoretical works, that quantum spin systems with orbitainetric points are considered to be disordered states with fi-
degeneracy exhibit interesting phenomena induced by commite energy gaps, which has been investigated by a varia-
bined spin-orbital degrees of freedom in addition to spin andional method? a spin-wave theor§# a Schwinger-boson
orbital ones. In real materials these situations are realized imean-field theor§? and numerical calculatiorf§-? The re-
the Mott insulators of the transitional-metal oxided,the  cent results of approximation methods also suggested that
dynamical Jahn-Teller ionic or molecular systems with athe ground state around the W symmetric point withK
strong electron-phonon coupling; and the heavy fermion =—4 is disordered®® In particular, a Schwinger-boson
systems in the insulating pha¥&?One of the typical mod- mean-field theory predicted that disordered ground states are
els for these systems containing spin, orbital, and spin-orbitadtill stable in three dimensions for some interval in the region
interactions is described by the Hamiltori&r®3-1° K<0, 1=J=1, A=1.%° The two-dimensional system at
SU4) symmetric point withK=4 is shown to be a disor-
dered ground state with a gapful energy excitation by the
H=12 S(x)-S(y)+J<XE {A[TL0TLY) +T2()T2(Y)]  Monte Carlo method® thus the ground state in the vicinity
) ) of this SU4) symmetric point is thought to be disordered.
These behaviors are in contrast to the(3Uantiferromag-

+T3(X)T3(y)}—K<XEy> [S(x)- S(Y) KA[T1(X) T4(y) netic Heisenberg model having & &lerdered ground state
’ in two or more dimensions. However, as was pointed out by
+To(X)To(y) ]+ Ta(X)T3(y)}, (1) some authors, the mean-field-type approximation methods

contain an uncontrolled accuratyand for the numerical

whereS(x) andT(x) are spin-1/2 and pseudospin-1/2 opera-studies of two- and three-dimensional systems, those system
tors representing the spin and orbital degrees of freedonsizes are not enough compared with those of one-
respectively, and is an anisotropy of orbital interactions. In dimensional systems due to the large degrees of freedom of
this paper we are concerned with Hamiltoniéh) on the this syster® and a minus sign probleft. Although the
hypercubic lattice and, in particular, investigate the existencabove studies have these difficulties, for the two-dimensional
of long-range orde(LRO) in the ground state of this Hamil- systems at both S4) symmetric points and around it, al-
tonian. The orbital LRGRefs. 16 and 1j7and the anisotropy most all the results support the disordered ground state.
of orbital interaction¥ have been actually observed in some In this paper we focus our attention on the regionJ
magnetic systems by using resonant x-ray scattering tech=1, K=0, 0<A<1, and examine the existence of LRO at
niques. zero temperature. The models in this region are potentially

In the case ol =J=1 andA=1, Hamiltonian(1) at K realized in the systems expected to show the strong
=—4 is an ordinary S() symmetric modef.On the other dynamical Jahn-Teller effect in the insulating phase, such as
hand, in this case Hamiltoniafl) at K=4 is a different the large body of new molecular compounds based on
SU(4) symmetric modéef introduced by Santoret al® Ceo Or larger fulleride$®? and some two-dimensional

In one dimension, the model at the @Wsymmetric point  copolymer$® As mentioned above, the ground state is ex-
with K= —4 is exactly soluble by the Bethe ansatz, and itspected to be disordered state with a finite energy gaig at
solution gives three branches of low-energy gapless=4 andA=1 intwo dimensions. Therefore, it is interesting
excitations’?! For the model at the Si) symmetric point  whether the ground states at this point and around it are
with K=4, according to numerical methods, the ground-ordered ones or not in three or more dimensions.
state exhibits a spin-Peiels-like dimerizatiSiFor the region In the present paper, we use the method of infrared
K=0, the ground state phase diagram of this model has bedyounds to establish the existence of LRO in the ground state
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of Hamiltonian (1). This method was successfully used for
the rigorous proof of the existence of LRO in the spin sys-
tems with continuous symmet?y. 3 In the case of the spin- Sl:E
T Heisenberg model, this method is applicable to the antifer- 2
romagnetic cas¢l=K=0J>0,A>0 in our Hamiltonian
(1)]. For the isotropic caseA(=1) Dyson, Lieb, and Simon
(DLS) proved that there exists antiferromagnetic LRO at suf-
ficiently low temperatures faid=3 andT=1.3* By applying 1
the technique of DLS, JardaNeves and Fernando Perez 3325
proved the existence of antiferromagnetic LRO in the ground
state ford=2 and T=1.24%" Kennedy, Lieb, and Shastry
(KLS) improved the technique of DLS and proved its exis-
tence in the ground state for=3 andT=1/2.2 Kubo and
Kishi extended the proof to the anisotropic case<(® 1
#1),%*° and then, their result was improved by some Ti=3
authors’®=*2As far as we know, the existence of antiferro-
magnetic LRO is proved in the regich=0 for T=1/2 in
three dimensions and=0 for T=1 and 0<1/A<0.20,
1/A>1.66 for T=1/2 in two dimensions. The proof of its
existence at the Heisenberg point and around it is still an T,
open problem in the case di=2 andT=1/2.

The method of infrared bounds can be applied to the 0
Hamiltonian satisfying so-called reflection positivity. In this
paper we show that Hamiltoniai) satisfies reflection posi- We consider theS=1/2 spin system with twofold orbital
tivity for 1=0, J=0, K=0, A=0, and by using the method degeneracy described by the Hamiltonian
of infrared bound, we prove that there exists LRO in the
ground state of Hamiltoniaxl) for a restricted parameter Ha=Hsp+Hra—KHxa, 4
region within the region=J=1, K=0, 0<A<1. In the with
case of A#1 we reexamine the existence of LRO in the
region 0<K<4 under acceptable assumptions.

This paper is organized as follows. In Sec. I, we define Hsp= E S(x) - S(y), (5
some notation used throughout this paper. In Sec. lll, we
summarize the method of infrared bounds. In Sec. IV, by
using the method of infrared bounds with the KLS technique, 3/ — E {A[TL00T1(Y) + To(X) To(y) ]+ T3(X) Ta(y)},
we prove the existence of LRO at zero temperature in the
isotropic case4=1). In Sec. V, we extend the proof to the (6)
anisotropic case and suggest conjectures for the existence of

LRO under a few assumptions. In Sec. VI, we summarize HXA:<X2y [S(X)- S(Y) AL TL00T1(Y) + To() To(y) ]
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and discuss the results of Secs. IV and V.

+T3()Ta(y)}
II. DEFINITION AND SOME NOTATION 3
=2 2 [AXim(0Xim(Y) (1= am)
We start with the definition of the model. LAtC Z¢ be a o) |m=
d-dimensional hypercubic lattice of the form + Xim(X)Xim(Y) S3m], (7)

where the summation is over all nearest-neighbor gairg)
in A, Xim(X)=5(X)T(X), and &, is Kronecker’ss satis-
A={X=(Xq, ... Xg)| —L+1=x<L}, (2) fying 1 for I=m and 0 forl#m. This Hamiltonian corre-
sponds to the case df=J=1 in Hamiltonian (1). By
straightforward calculations, we find that the operators ap-
pearing in Hamiltonian(4) satisfy the following commuta-
wherelL is an integer. We impose periodic boundary condi-tion relations:
tions in all directions. For each sites A, we associate op-

eratorsS(x) and T(x) with S(x)=T(x)=1/2, which denote [S(X),Sn(Y) 1= 1 €1mnSn(X) Sxy » 8
the degrees of freedom for spin and orbit, respectively. In
this paper we use the following matrix representation: [Ti(X), Tm(Y) =i €mnTn(X) Oyy 9
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[Si(x), Tm(y)]=0, (10)
[S(x), me(y)] i €1mn np(x)5xyl (13)
[Tp(x)axlq(y)]:iepqrxlr(x)‘sxya (12

ElmnSn( ) pq+46pqu (X)glm) xyr
(13

[le( ) mq(y)]

wheree,, is the Levi-Civita symbol satisfying 0 if any pair

of subscripts are equal; 1 if I,m,n is an even permutation
of 1,2,3, and—1 if I,m,n is an odd permutation of 1,2,3.
The commutation relatioil3) holds only in the case 0%
=T=1/2. In this paper we consider the regikr=0 and 0

<A<1, where we can use the method of infrared bounds.
The reason why the method of infrared bound is applicable

to such parameter region will become clear in Sec. lll.

We describe three types of LRO parameters in the ground

state of Hamiltonian(4) as follows. The antiferro-spin LRO
(AFSLRO) parameter is defined by

1 2
m2= lim Iim<[— > (- > . (19
A —0B—00 |A| Xxe A AB
the antiferro-orbital LROQAFOLRO) parameter by
<{|A| 2 (~DHTy(x) > . (19
AB
and the ferro-spin-orbital LRQFSOLRQ parameter by

= lim i X ,
mX Alinooﬁ[noc< |A| E 33(X)) >

Ap
where|A| is the number of sites i, |x|=3%,|x;| for x
=(X1, ... Xg), and(A), z denotes the thermal average/of

at inverse temperaturg:

1)Xs5(x)

m:= lim lim

A*}Wﬁ%b@

(16)

Tre FMapA
<A>AB:Ty 17
with
Z=Tre AMa, (18)

For use later, we define the Duhamel two-point function

by
1
(AB)=2z"1 f Tr(e”PMape 1-DFMAB)dL,  (19)
0

and the Fourier transform & (x), T,(x), andX;,(x) by

2

xeA

Si(k)= “HxS (%), (20

= j‘p

T(K=—==— ~HOT (x (21)

T2

ﬁ
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Jl_ g e KX m(x),

respectively, wher&=(kq, ..
A*.

le(k (22)

. ,Kq) is in a reciprocal lattice

. SUMMARY OF THE DERIVATION OF INFRARED
BOUNDS

A. Correlation functions and sum rules

In this subsection we summarize the method of infrared
bounds®*-36-38

Let us define the Fourier transform of the two-point cor-
relation functions by

9s(K) =(S3(K)S5(—K)) a g (23
gr(K) =(T3(K)T3(—=K))ap» (24
Ix(K) =(Xaa(K) X33 —K)) g (29

and the interaction energies per site in the ground state by

1

exa=— o7 im(Hadag, ex=limey,, (26
|A|,34>oo A—x

esan=— 7 Im(Hsa)rp, €s=limesy,  (27)
|A|ﬁ~>oc A—oo

erpA=— lim <HTA>AB- er=limer,, (28)
|A|B~>oo A—oo

expA= lim (Hx/\),\ﬁ, ex= lim €xA - (29)
|A|B~>oo A—

For the discussion of the anisotropic cage#(1), we also
define the following:

gl =— o lim 2 (TIOTUY))ap, &l = lime]y,
|A|'B~>oc (x,y) A—oo
(30
e =157 im E KXim()Xim(Y)ag,  em=lim ey,
|A|ﬁ~>00 Xy — 00

(31)

for I,m=1,2,3. From the definition$27), (28), and (29),
ey IS written as
enyr=esyterytKexy, (32

and from the definition$30) and (31), er, andey, as

e\ =6As%, +3e5, (34)

where we used the relatiors , =¢,, ande;, =&5, , which
come from the symmetry of Hamiltonian.
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As in the case of the antiferromagnetic Heisenberg model,

we have the following KLS-type sum ruf

€sa
lim cosk , (35
m % o ( 3, ) R
d el
3A
IAII|m > gT(k)( > coskm)=—T, (36)
B—oke A* m=1
d X
lim > gy(k)| = 2 cosky, =3 (37
|A|B—>OOkEA* m=1 d

PHYSICAL REVIEW B 66, 134426 (2002

(S3(k), Ss(—k)=B " 'Bs(k), k#Q, (45

and

([[S3(k), Hl,Ss(—=K) 1) ap=Csp(K). (46)

In the limit B—«, the hyperbolic cotangent factor of the
right-hand side of inequality44) drops off and an infrared
bound is given by3°

lim gg(k)< —\/ Bs(k)Cs(k), k#Q,

B—©

(47)

By using the above sum rules, the three types of order pa-

rameterg(14), (15), and(16) are written as

ilinwﬁltnw|A| gS(Q) 3d GS! Q:(ﬂ-v e 177)1
(39
im i gr(Q)= 26 (39)
mé= lim lim — =— -G,
T A~>ooﬁ;>oo|A|gT d T
fim fim — gy (P) 3 g P=(0,....0
mMy= IIMm M —— = y = y ey,
X A~>oclB~>oo|A|gX d X
(40
with
1 13
Gg= lim I|m— gs(k)| —= > cosky|, (41)
A—»ooﬁ—>oc|A k#Q d m=1
| 12
Gr=lim lim— > gr(k)| —= >, cosky|, (42
Awpnl A KFQ d =1

lim lim—
A—)@lg—molA| k#P

1
ox(k ( 2 coskm). (43

m=1

whereCg(k) =limg_..Cgg(K).
When Hamiltonian satisfies reflection positivity, we can
estimateBg(k) as described below. Let us define

S (x)=ULS|(x0)Us, Ti(x)=UITy(x) U7,

S(x)=UES,(x)Us, Tax)=ULiT,(x) U7,

S(x)=ULS;(x)Us, Ta(x)=UITz(x)Ur, (48

and
Xim(X) =S (X) T(X), (49)
with Us=exdimSec s, S2(X)] and Ug

=exp{iq-rEXEA0ddT2(x)], whereA ,q4qis a collection of sitex

with odd |x|. Let h,(x) (m=1,...d) be a real-valued
function on the sitex. Then we consider the following

In order to prove that the order parameters take finite valueamh

in the ground state, we evaluate lower boundsdgr 3,
and 83 and upper bounds 065, Gy, andGy. To obtain

those upper bounds, we estimate infrared bounds, i.e., , Uppeéts

bounds on the correlation functiogg(k) with k# Q, g7(k)
with k# Q, andgx(k) with k# P.

B. Infrared bounds

In the following, we describe the derivation of infrared
bounds on the two-point correlation functions.

Theorems 3.2 and 5.1 in the paper of DIRef. 39 ap-
plied to Hamiltonian(4) assures that

SB(k)
Bs(k)

), k#Q,
(44)

1
gs<k>s§JBs<k>c5ﬁ<k>cotr( 58

if we can estimaté3g(k) and Cq(k) satisfying

Hamiltonian dependent om={h(x)|m=1, ... d,xe A}:
F3()y=H3(h)+H{(0)+HX(0), (50)
Ah)=> Xg mE_ [[”sl<x)—~sl<x+ Om) 1+ [Sa(X) = Sy(x

+ 8+ (3500~ B 8 N0 5.

(51)

d
=52 2 [A{[ﬁ(x)—"ﬂ(xwm)]z

Il
>
I\)I =

+[To(x) = Ta(x+ 8, 1%}

+[Ta(X) = Ta(x+ 8m) +hin(X) 12 % . (52

134426-4
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d 3

A(h)——KE > A E [Xpq(X) = Xpg(X+ 8, 13(1

xeA m=1
— 83g) +[ Xqa(X) = Xya(X+ 8) 12

+[Xoa(X) = Xog(X+ 8) 12

- - 1
+ [ X33(X) = Xgz(X+ 5m)+hm(x)]2_§ , (53

where §,,, denotes the unit vector in thm direction. We note
that

H3(0)=UTULH,UsU . (54)

For 73 (h) we can easily check the following facts: the ma-

trix elements of all matrices appearing S v (h) are real,

PHYSICAL REVIEW B 66, 134426 (2002

d

E(k)= E_l (1—coskp). (61)
Combining inequalitieg47) and (60), we have
1
lim gg(k)s ———=J/Cg4(k), k#Q. 62)
B*}oogS( ) m S( ) Q (

We can obtain infrared bounds ai(k) and gy(k) by
following a similar process of the derivation of an infrared
bound ongg(k). In the case ofj1(k), we have

and the coefficients of all the nearest-neighbor spin interac-

tion terms are negative and those of nearest-neighbor orbital
interaction and spin-orbital interaction terms are nonpositive

for K=0 and A=0 (in this paperK=0 and O<A<1).

These conditions are required so as to satisfy reflection pos
tivity. Thus, following Sec. IV and theorem 6.1 in the paper —

of DLS,3* we have

Z4(h)<Z40), (55)
with

Zg(h)=Trexd —BH;5 ()], (56)

and then inequality55) leads to

Trexp{ -B ﬂi(OHXgA 7(X)S3(X) ]
Z4(0)
,8 d

\exp<— XEA mzl |hm(x>|2), (57)

with n(x)=2ﬂ1=1[hm(x+ Sm) —hm(X)]. We also follow
theorem 4.2 in the paper of DLS; then we have

N _ 1 d
(2 7(x)*S5(x), 2, n(x)&(x))s— > 2 |ha()[?
XeA XeA BXEA m=1
(58)

where we should note that,(x) is extended to a complex-
valued function.
Now we choose

1
()= = {exlik- (x= 3]~ explik- )} (59)

then inequality(58) becomes

B(S3(K),S3(—K))=5=7—=7=Bs(k), k#Q, (60)

2E(k Q)
with

li k)< ————=/C+(k), k
B'LnoogT( )< ’—8E(k— Cr(k), k#Q, (63
with
lim ([[T3(k),HAl, Ta(—=K) ) ap<Cr(k) (64)

B—*

‘n the region satisfying reflection positivitlK=0 and A

On the other hand, for an infrared bound gg(k), we
have

lim gx(k)<—x/Bx(k)Cx k%P, (65)
‘B—>OC
with
(Xa3(k), Xa3(—k))=B~'Bx(k), k#P, (66)
and
lim ([[X33(k), HAl, Xas( —K) ) ap<Cx(k). (67

B—x©

In order to evaluat®y(k), we discuss the Hamiltonian de-
fined by

FX(h)=H3%(0)+AL(0)+RA%(h), (68)
and then we have
EA n<x>*7<33<x>,X§A 7(x) X33(X)
1 d
<aK 2 &, Inn(0l. (69)
xeA m=1

Noting  that Xsa(Xoad =UTU $Xaa(Xoad UsUt=Xas(Xodd)
(Xodd€ Aodds from this inequality, we obtain

1
B(X33(k), Xg3( —k))= 2KEK) Bx(k), k#P, (70)

corresponding to inequality60) in the regionK>0 andA
=0. From inequalitie65) and (70), an infrared bound on
gx(k) is evaluated as

134426-5
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lim gy (k)< JCu(k), k#P. (71

B—x

1
JVBKE(K)

In the following sections, we will estimate upper bounds
on C«(k), Cr(k), andCy(k) and lower bounds foeg, &3,
ande; for each case.

IV. CASE OF AN ISOTROPIC INTERACTION, A=1

A. Antiferro-spin and antiferro-orbital long-range order

PHYSICAL REVIEW B 66, 134426 (2002

TABLE I. The results of the numerical calculations ] (d),
[} (d), andTy,(d).

d I/ (d) L (d) Ty (d)
2 0.6%. .. 0.457 . .. 1.38...
3 0.38. .. 0.2@... 1.157...
4 0.28. .. 0.1%... -

5 0.2 . .. 0.093. .. -

6 0.177 ... 0.075. .. —

7 0.15 ... 0.059 ... -

In this subsection, we prove the existence of AFSLRO

and AFOLRO in the ground state of Hamiltonié) with
SU(2)®SU(2) symmetry f=1), i.e., mé=m2>0 within
the region GsK<4.

First, we consider a lower bound @g. We label two of
the four eigenstates &; and T3 in the matrix representation
(3) on each site as

0
0
0

o O -

[T+)= [1=)= (72

0

If we take the following trial state with a two-sublattice
structure,

1

(®X€A0dd|T+>X)®(®XEAeverj~L_>X) (73)
(here A gver= AN Aoqd), then we obtain
K 1
eH:es+ er+ Kex2 l—6+ E d. (74)
We now consider the Bogoliubov inequality in a stronger
form>*
K[ABD)Apl><B(BT,BI[[AHALA g (79
Noting (BT,B)=0, we see
lim ([[A,H1,A™])14=0. (76)
B—x
SettingA= X35(Q) in inequality (76), we obtain
eSAZ §eXA, 0$K<4, (77)
4
esA< 38> K>4, (78)

where we have usegk, =er, . Combining inequalitie$74)
and(77), we obtain

(79

for 0sK<4.
Second, to evaluate an upper bound &g through in-

equality (62), we estimate an upper bound on the double

commutatorCg(k). After some straightforward calculations,
the left-hand side of inequaliti46) is reduced to

im ([[S5(K) M1, So( ) T) = g (0 + K JECK).
B
(80)

By using inequality(77), an upper boun@g(k) on the ex-
pectation value of double commutat@0) at zero tempera-
ture is evaluated as

1 4
From inequality(62) and Eq.(81), we have
€sA

lim k)= \/ \/ = 82

Thus, we obtain the following bound dBg:
Ge= /2 r d 83

=

Vagl K+ 3/T1 @, (83

with

Mool e gl e S, s

+

(84)
where

=
0

if F=0,

otherwise (85)

{F}+=‘

We have evaluateH," (d) numerically and have summarized
the results in Table I. Applying inequalit{83) to Eq. (38),
we obtain the following lower bound fan3:

2 e_SE\/ES_ 1 E +
mSZ\/;(g d \/8K+6F, (d) .

We also apply inequality79) to the right-hand side of this
inequality; then it is bounded from below by

NN e e A

(87)

(86)

1
3

1

3K+2
16

K—i—l
4

2
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TABLE Il. For 0<K <4, the region where we have shown the

existence of AFSLRO and AFOLRO uhdimensions from inequal- Slt°t= E S(x), (91
ity (88). xeA
d K
To'= 2 Tm(X), (92
2 _ xeA
3 0<K<0.342
4 0=K<1.342 tot _ _ 1\
Xon=2 1)MXpq(X), 93
5 0<K<2.264 pa ng (=17 Xpel) 3
6 0<K<3.148 ) .
7 0<K<4 which generate a S4) Lie algebra.
We introduce the unitary operator defined by
2 L T
Therefore the LRO parametemnss {inq m5 take finite values Vy= eX[{_ngoé) _ (94)
in d dimensions if parametdf satisfies 2

0=K<K(d), 88 By using this unitary operator, we have

_ VIS, (X)Vy VIS (Y)Vy=—4X X . 95
whereK(d) is given by xS1(X)VxVyS1(y)Vx 23(X) X23(Y) (95

Noting Eg. (95 and the rotational invariance d@f, with

_ 1+ \/32z[r|+(d)]4+ 324[1“,+(d)]2+ 1 respect to the spin and pseudospin, we obtain the relations
K(d)= -2.
27T (d)]? 1 T 1 4
(89) 158HA T3 T 38T gexa (96)

SinceI';"(d) is monotonously decreasing it** K(d) is
monotonously increasing ith Then, ind+ 1 or more dimen-
sions, there is LRO in the region where we can prove the
existence of LRO ird dimensions. The results for8d<7
are summarized in Table Il. In two dimensions, there is NOBy using Eq.(96), Eqs.(38) and (80) are written as
region where we can prove3=m2>0 from inequality(87). ’
This result is consistent with the paper of KI(Ref. 38 as
follows. As we described in section |, KLS could prove the
existence of AFSLRQNeel orde) in the ground state of
spin-1/2 Heisenberg antiferromagnets on a simple cubic lat; |
tice, but could not on a square lattice, and this problem has
been unresolved. AK=0, our Hamiltonian is divided into 16 e
the two independent antiferromagnetic Heisenberg models, [im <[[Sg(k),HA],Sg(_k)]>AB:—LAE(k)ZCS(k),
and we find that inequality86) at K=0 becomes equivalent  pg—« 15 d
to inequality (4) in their paper(but they imposem3=0 for (99
the way of their discussionWe can easily see that the part
within the brackets of lower boun¢B7) takes its maximal
value atK=0. Thus, if we cannot prove the existence of
AFSLRO atK =0, then there is no region for which we can Ge< /3 e—HFJ'(d) (100
prove its existence for @K <4 from the lower bound87). S 15d '
For this reason, noting the results of the paper of KLS de- ) o )
scribed above, we can see that we have no region where weUs, by applying this inequality to Eq98), we have a
can prove it for 6<K<4 in two dimensions. lower bound formg, and also applying inequality74) to
that lower bound, we find

and

m3=m3=4m3. (97)

2 ©n

Mg= ﬁ - GS (98)

respectively. Combining Eq$62) and (99), we have

ey N
Teg~ V2l <d>)

1 +
@)— Vari(d

By using the numerical results in Table | and noting &),
where we show that

B. Long-range order at K=4 =
H
In this subsection, we focus on the casekot4 andA m%? Vﬁ
=1, where the system satisfies a class of8ldymmetry'®

Indeed, we can see that [ ey
= —
15d

[Ha,S™1=[Ha Tl=[Hx X5l =0, (90

. (101

134426-7
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e 1 1 12
22— Am2= ~ | L \ﬁ_ + Z
m2=m2=4m2= \/105 55 Var, (7)) ;'TmIAI kZ,P 9x(k)| > coskm)
~(0.00018 ...)\/-£>0. (102 1q
=0 ) V10570 IlA[HE cosky( +1op
1 m=1 N
Since T’} (d) is monotonously decreasing h we proved g|A_| = E,
that three types of LRO parameters simultaneously take fi-
nite values in the ground state in seven or more dimensions. 1
x{= > coskpyi . (109
d m=1 .

C. Ferro-spin-orbital long-range order
In this subsection, we prove the existence of FSOLRO iﬁb\pplying inequality(78) to Eqs.(107) and(108), we obtain

the ground state of Hamiltonig@) with isotropic interaction 1 1

(A=1) within the regionK>4. For the proof, we consider |1AS(3—6+ oK | &xA (110

Eq. (40). In the case ofA=1, since the pseudospin part of

Hamiltonian(4) also possesses &) symmetry, Eq(40) is 1 1

written as [op< 3—6+ oK | &xA (111
ex for K>4. From inequalitie$109), (110), and(111), we have

mi=5q ~ Ox- (103

1 1
L Gy= r,u 112
Let us evaluate a lower bound fex . We combine in- X 36 9K)ex i (d), (112

equalities(74) and(78), then we have

where
8\t 13
ex=d| g+ 5]| K+ 3| - (104 {a > cosky( +1
T m=1 i
. Iy (d)=
In order to obtain an upper bound gg(k), we evaluate 2m)94) = Ex

Cx(k). The left-hand side of inequality67) takes the fol- g
lowing form: 1
owing form x[— > coskm] . (113

. m=1

lim ([[X33(K), HA T X33 —K) D ap "

B—e We calculate numericall, (d), and the results are listed in

2 2 Table I. By applying inequalitie$104) and (112 to Egq.
= —Z 103, we obtain
K 8 118 M2 on| oo \ st F(d))
ety eXA)H 2 coskny,=Cy(K). X 9d 36" oK !
m=1
1 K 1 g\t
1 N EN LS
(109 =Vex gg d(16+2 K+ 3

From the above equation and inequali®i), we obtain 1

d
1
IlA{a mZ:l coskm} 1oy

Consequently, in seven dimensions FSOLRO parameter

lim gx(k)=< 03 , (106  takes a finite value for
‘Bﬂoc
h K>4.023. (115
wit
In six or less dimensions, we cannot draw a conclusion about
1 1 the existence of FSOLRO from inequalit¥14).
I 1A 48eSA+ 9K eXA ’ (107)
V. CASE OF AN ANISOTROPIC ORBITAL INTERACTION,
0=sA<1
1
lop= 1K 5o 8sat 52 368% (108 A. Antiferro-orbital long-range order
In this subsection, we examine the existence of AFOLRO
Then we have in the ground state for€ A<1.

134426-8
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When we know the relations among the nearest-neighbor TABLE Ill. The region where we have proved the existence of

correlations in the ground state, e.g., inequaliiiég and
(78), and EQg.(96) in the case ofA=1, the KLS-type sum
rule (36) well works. In the case oA # 1, we need to know
the relations amongs,/3, £1, , €3, 4e1y, and &3, due

to the symmetry lowering of the pseudospin interaction.
However, as we will see in Sec. VD, we cannot find those

relations enough to work the KLS-type sum rule. Thus, in

this subsection, in order to prove the existence of AFOLRO

in the ground state, we use the sum rule

k)= (116
|A| kz gT(
instead of the KLS-type sum rule.

By using the above sum rule, order parametércan be
written as

mi=_-Gr, (117)
4
with
lim lim —— 2 g7(K). (118
A—»ooﬁ—>oc|A|

In order to obtain a lower bound fan?, we evaluate an

upper bound orG .

We recall that an upper bound ai(k) in the ground
state is given by the right-hand side of inequali6g). We
have evaluated+(k) in Sec. IlIB; thus we have only to
estimateC+(k) in this subsection.

Let us estimateC+(k). The expectation value of double
commutator(64) is written as

;.m ([[Ta(k), HAL Ta(—K) 1) ap

A
5 (e1a+3Ke1EK)

|2

— —I|m (T(x)-T(y
ﬂ*}@@

1y X
- §£3A+3K81A E(k). (119

Here, we use the Anderson bodfdreproduced in Ap-
pendix of Ref. 34

;@m<T(X)'T(Y)>ABd>—%(d+ 1) (120
and the Chaucy-Schwarz inequality

~ein i (To00Ta(y))apd < 2 (12

= Im (S(X)T1(X)S(y) T )/)>A,30|\g (122

B—e

AFOLRO from inequality(127).

K d=2 d=3
0.0 A<0.205 A<0.319
0.5 A<0.158 A<0.241
1.0 A<0.128 A<0.194
15 A<0.108 A<0.162
2.0 A<0.0935 A<0.139
2.5 A<0.0823 A<0.122
3.0 A<0.0735 A<0.109
3.5 A<0.0664 A<0.0983
4.0 A <0.0605 A<0.0894
4.5 A<0.0556 A<0.0820
5.0 A<0.0514 A<0.0758

Then, the right-hand side of EQL19) is bounded from above
by
Cr(k)=A| 1+

KJE(K). (123

2d4

Combining Eg. (123 and inequality (63), g(k) in the
ground state is bounded as

_ _ \/ (1 3 \/ E(k)
;ngT(k)\ A §+E+3_2K) m, k#Q,
(124
and an upper bound o8+ is given by
~ 1 1
[ERES \/A(8+E+32 )Fm(d)' (125
with
Ty (277)" \/ E(k Q) (126

We have estimatel;;; (2) andI'};(3) numerically and have
summarized the results in table I. From El7) and in-
equality (125), we conclude thann% takes a nonzero value if

_ 2d
[d(4+3K)+2][T(d)]?

(127
The results for some values Kf are listed in Table Ill.

B. Conjecture for antiferro-spin long-range order

In this and next subsections, in order to discuss the exis-
tence of AFSLRO and AFOLRO in the ground state with the
KLS-type sum rule, we introduce a few assumptions on the
relations among the nearest-neighbor correlations in the
ground state. The discussion based on the KLS-type sum rule
has the advantage of adopting the variational method which,
in the ground state, gives the better results than that based on
the sum rule(116).

134426-9
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In this subsection we examine the existence of AFSLRO TABLE IV. For 0<K=4, the region where we have shown the

in the ground state under the following natural assumptionsgxistence of AFSLRO in three dimensions from inequalityt5
obtained under assumptiofs28), (129), and(130).

1

§93A$8-3r/\ s (128) K A K A
X _.T 0.0 A<1.000 2.5 A<0.0679
437 <83, (129 0.5 A<0.792 3.0 A<0.0137
1.0 A<0.432 3.5 -
4y <ein, (130 15 A<0.252 4.0 -
for 0<sK=<4 and O=<A=<1. We will discuss the validities of 2.0 A<0.142
these assumptions in Sec. V D. Under the assumptitiz§,
(129, and(130, we evaluate an lower bound fmé. As in
Sec. IV, we estimate a lower bound feg, and an upper ey
bound onGg to obtain a lower bound foms. E_§+>O' (139

Let us estimate a lower bound feg, . Taking a varia-
tional state(73) for Hamiltonian(4), we have where ¢, is the larger solution of the following quadratic
equation foré:

1 1
T T X X
eSA+2A81A+83A+K(6A81A+383A)2 §+1_6K)d a§2+b§+c=0, (139)
(13D it
As we will see in Sec. V Osee inequalitf150)], we have ,
3
8;A+3K8§A>81A+3K8;.(A’ (132) a:(2A+1)2 1+ZK) ’ (140)
for 0<A<1. Applying inequalitieg129 and(132) to (131),
i 3 K
we obtain b=—(20+1)( 1+ K |1+ =
3 1 4 8
es =—(2A+1) 1+ZK sgA—F §+1_6 d. (133 36+9K(2A+1) | ,
- @r. a4
To evaluate an upper bound @b, we need to estimate
Cg(k). The expectation value of double commutat®é) is 1 K\2
expressed as Y
p c > + 16 (142
4
lim ([[83(k),HA],Sg(—k)]>A3=@(es+ Keyx)E(K). In order to obtain a lower bound far}, we combine in-
B—= equalities(128) and (133. Then we have
(134
We apply the inequalitie€l 28), (129), and(130) to the right- eT= (8+K)d (143
hand side of Eq(134); then it is bounded from above by 37 64+32A +12K(2A+1)°
1 N Applying inequality(143) to the left-hand side of inequality
Cs(k)= gl4tK@a+ 1)]e3E(K). (1359 (138, we obtain
Combining inequalitie$62) and Eq.(135), we have an upper sg 8+K u
bound onGs: d S TearsariK(zarn 00 (149
[A+K(2A+1) L | Therefore, we obtain the region where we can evaluage
Gs= 8d g3l (d). (136 0 for 0=K=4 as follows:

From inequalitieg133) and(136), a lower bound formé is 0<A
evaluated as

3K2+16K+8 6K +56K2+64K+64 T (d)]2

2.1 2A+1)( 1 3K 3 1 K 6K2+ 8K " 6K2+8K)I'[ (d
ms/§ ( + ) +Z F+§+1—6 + ( + ) |()
: (145
4+K(2A+1) e5_, _ _ _
-\ ——5—— /(). (137  The results in three dimensions for some valueKoére
8 d ) . . : )
summarized in Table IV. In two dimensions, there is no re-
Thus we can concludm§>0 if eg satisfies gion where we can conjectum§>0 from inequality(145).
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TABLE V. The region where we have conjectured the existence D. Validties of assumptions in Sec. VB and VC

of AFOLRO under assumptiond28 and (129 within 0sK<4. In Secs. VB and V C, we used assumptidhg8), (129,
and (130 to prove the existence of LRO. In this subsection,

K d=2 d=3 we discuss the validities of these assumptions.
0.0 A<0.378 A <1.000 The reason for which we introduced these assumptions is
0.5 A<0.346 A<0.915 as follows. In the isotropic case, we foumrd,=er, and
1.0 A<0.269 A<0.721 eXy=s&a,. Thus, in the Ising-like region (@A<1), it is
15 A<0.220 A<0.595 natural to assume thatl,=eg,/3=¢], and e3,=¢7},.
2.0 A<0.185 A<0.507 Then, assumptio128 may hold. We should note that),
2.5 A<0.160 A<0.442 =4ey,/3 for 0<K=<4, in the case ofA =1 [recall inequal-
3.0 A<0.141 A<0.392 ity (77) and Eq.(96)]. From these relations, it is acceptable
35 A<0.125 A<0.352 to assumes s, =4s3,=4e), (note alsos ), =ex,/9 in the
4.0 A<0.113 A<0.320 case ofA=1). Thus, assumptiond29 and (130 also may
hold.
By using inequality(76) and numerical calculations, we
C. Conjecture for antiferro-orbital long-range order discuss the validities of these assumptions in more detail.

In this subsection, we reexamine the region where we can Let' us setA=Ty(P) in inequality (76). Then, this in-
showm$>0 in the ground state under assumpti¢h28) and equality leads to
(129.

Let us estimate a lower bound for the right-hand side of
Eq. (39). Applying inequalities(132) and(129 to the expec-  for p<A <1, and also dA=X,(Q) andA=X35(Q); then
tation value of double commutat§64) in the ground state \ye nave
[see alsq119)], we have

eay+3Kex =e1, +3Kel, (150

1 1
4A A Segyt =83 =687, (151

T X T 3 2
5 (81 3KeTDE(K) = 5 (4+3K)e 3, E(k) = Cr(k).

(146) atK=4A for 0<A<1 and

. . . . . 1
By using thisC+(k) and inequality(63), we obtain §eSA+A8-{A>48§A+4A8?L(A (152
gg A . for 0=<K <4, respectively. Assumption€l28), (129, and
Gr="V g Vg3 (d). (147 (130 do not contradict these inequalities. Noting that we

considers,=¢1, (e3)=€5,/3=¢1,) in the above, we find
that this relation combined with assumptiéh29 satisfies
rigorous inequality(150).

Before proceeding to the numerical calculations, in order

Then, a lower bound fom% is given by

) a; sg A N to find that some of the assumptions hold in the special case
mr=45~ Vg Vg@+3Kli(d) of our Hamiltonian, we consider the relations among the
nearest-neighbor correlations in the ground state in four
£3 8+K casesk=0, A=0, K=4A, andK=4. At K=0, from in-
= F( \/64+ 32A + 12K(2A + 1) equality (150, we haveel, =], [but we cannot show as-
sumption (128]. At A=0, we haveeg3=4¢3, from in-
A N equality (152. Combining this inequality and assumption
- §(4+3K)FI (d)/, (148 (128, we can prove assumpti@h29). Next, we consider the

case ofK=4A. Combining assumptiofl28) and inequality
where we used inequalitf143. Here we should note that (150, we can derive assumptiof130. Furthermore, aK
inequality (143 can be derived from only two assumptions — 4> We can find that
(128 and(129. From lower bound148), we can conclude oty oty oty
thatm? takes a finite value in the region [Ha STI=1HA T3I=Ha X35l =0 (153

for A# 1. By using these relations as in Sec. IV B, we have

3K+16 16(K+8)+(3K+16)XT, (d))?

0sA<-— + " 1
12K +16 43K+ 4T} (d) §eSA=4s§A, (154
(149
for 0O<K<4. These results are summarized in Table V. e1py=4ely . (159
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If we use Eq.(154), then the assumptiof128) is equivalent
to (129. Thus, it is sufficient if we put either assumption in
this case. Combining E@155 and the assumptiofi30), we
haves],<s4, . Therefore the assumptions l&t=4 can be
replaced bys ], <eg3<e], .

Next, we directly calculateg,/3, e1,, €34, 4&7,, and
4¢3, to confirm that the assumptions are established on lal A
tices with two, four(a single squape and eight(a single
cube sites. By using exact diagonalization, we have esti-
mated the nearest-neighbor correlations for some valuks of
andA in 0sK=4 and O<A<1, and have confirmed that
the results satisfy the relationsy,>eg,/3=¢], and e},
=4¢%,=4e7, . We also have found that relatiofs54) and
(155 hold atK=4. These results suggest that assumption:
(128, (129, and (130 are valid.

VI. SUMMARY

We have constructed upper bounds on the correlatiol
functionsgg(k) (k#Q), g1(k) (k#Q), andgx(k) (k#P)
in the finite system within the region satisfying reflection
positivity, i.e.,K=0 and 0<A<1.
tion for the modek in the finite system is bounded from

PHYSICAL REVIEW B 66, 134426 (2002

symmetric point

0.6

0.4

0.2

AFSLRO*AFOLRO
(Ri, gorous)

N\
X
S

.

AFSLRO N
(Conjecture)

0.8

0.6

If the correlation func- A

0.4

symmetric point

AFSLRO+AFOLRO
(Rigorous)

AFOLRO

(Conjecture) B B

above by a finite value independent of the lattice size, the
LRO parameter for that mode is vanishing in the infinite |
system. It should be noted that we could not construct uppe
bounds on the spin and orbital two-point correlation func-
tions for the mode&) and the spin-orbital correlation function
for the modeP. Thus we can determine the kind of LRO
which would be realized in an infinite system if it exists; i.e.,
candidates for LRO are AFSLRO, AFOLRO, and FSOLRO FIG. 1. The regions we have proved or conjectured on the ex-
in the thermodynamic limit in the considered parameter reistence of LRO in three dimensions. The region AFSLRO
gion. Indeed, we have used these upper bounds to examineAFOLRO (rigoroug (0<=K<0.342,A=1) is determined by in-
the existence of three types of LRO and have proved oequality (88). (a) The region AFSLRO(conjecturg is determined
conjectured thamn3, m?, andm? take positive values under by inequality (145. (b) The regions AFOLRO(rigorous and
some conditions. AFOLRO (conjecturg are determined by inequalitied27) and

In the isotropic case=1), for the region 6K <4, we (149) respectively. We cannot conclude anything in the shaded
have proved that AFSLRO and AFOLRO coexist focg  €9'0ns.

<K(d). These results are summarized in Table Il.kAx:4
[SU(4) symmetric poinl, by using the SI(#) symmetry of finite-size clusters, we have discussed the validities of the
the Hamiltonian, we have shown thaiZ=m2=4m%, and assumptions in Sec. VD. In particular, lt=4A, we could
these order parameters take positive values in seven or moP§ove assumptioii130. At A=0, we also could prove as-
dimensions. We cannot prove the existence of LRO for zsumpt|on(129) At K=4, we foundes,/3=4s3, andeg,
<d=<6. In two dimensions, this result does not contradict=4&%, . By USIng these relations, we could replace the as-
the result of Monte Carlo S|mulat|or"r§.For the regionK sumptions byslA eS/3<s3A This assumption is quite
>4, we have proved that FSOLRO exist flir>4.023 in  natural in the Ising-like region. All the considerations in Sec.
seven dimensions. VD imply that all assumptions in Secs. VB and VC are
In the anisotropic case @A <1), we have proved the valid, and we expect that the results of Secs. VB and V C are
existence of AFOLRO in the region given by inequality fairly reliable.
(127) in two and three dimensions. The results are summa- In conclusion, we have established the proof and conjec-
rized in Table Ill. For the region € K<4, we have also ture for the existence of three types of LRO, i.e., AFSLRO,
conjectured on the existence of AFSLRO and AFOLRO inAFOLRO, and FSOLRO, in fairly wide parameter regions,
the region determined by inequaliti€$45 and (149), re- and have first presented reliable results in higher-
spectively. These results are listed in Tables IV and V fordimensional systems where mean-field-type approximations
some values oK. or numerical calculations suffer from various difficulties,
These conjectures are based on a few assumptions. Byuch as uncontrolled accuracy or too large degrees of free-
using the rigorous relations among the nearest-neighbor codom. The present results for<K<4 in three dimensions
relations and the results of the exact diagonalization for there summarized in Fig. 1. This figure shows that the proof

AFOLRO T
(Rigorous)

0 1
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and the conjecture of LRO become difficult as @)Jsym-  the possibility of the existence of the disordered ground state
metric point is approached in thé-A plane. For the region at SU4) symmetric point and its vicinity. We hope that this
K> 4, the right-hand side of inequalitt02), giving a lower  problem will be explored by other techniques.

bound for the FSOLRO parameter, is also decreasini as

approaches this point. These tendencies probably imply the ACKNOWLEDGMENTS

increase of quantum fluctuations. Here, we should note that,
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