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Sequence of first-order quantum phase transitions in a frustrated spin half dimer-plaquette chain
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We study the frustrated dimer-plaquette quantum spin chain for ferromagnetic dimer bonds. This quantum
system undergoes a series of first-order ground-state phase transitions driven by frustration or by a magnetic
field. We find that the different nature of the ground-state phases has a strong influence on the magnetization
curve as well as the low-temperature thermodynamics. In particular, the magnetization curve exhibits plateaus
and jumps, the number of which depends on the strength of frustration. The temperature dependence of the
susceptibility may either show an activated spin-gap behavior for small frustration or a Curie-like paramagnetic
behavior for strong frustration.

DOI: 10.1103/PhysRevB.66.134419 PACS nunider75.10.Jm

I. INTRODUCTION Haldane chain with an effective couplindesi=J2/2J4,
whereas forJ,>Jyq a plaquette phase is realizedThe
Over the last years much attention has been concentrateshglet-triplet excitation gap is always finite fdr,>0. A
on the physics of low-dimensional quantum spin systems. Igpecial feature of the model is the existence of a class of
particular, zero-temperature phase transitions and exotigxact product eigenstates, for which the composite spins of
magnetization curves in frustrated quantum magnets are igertain plaquettes form a vertical dimer single¢. S}, =0
the focus of investigations. Besides continuous quantunfor certainn). The finite stripgfragment$ between two ver-
phase transitions, remarkable first-order transitions can aIE

. . ; . -~ Yical dimer singlets contain vertical dimer tripl8§'b= 1 and
be driven by frustr.at|on. Theoretical stud|es_ have_ beneﬂtg re decoupled from each other. Therefore, these product
from recent experimental results on low-dimensional spin

: : . . . ._eigenstates correspond to a fragmentation of the chain.
half antiferromagnets like quasi-one-dimensional ladder, zig- Taking into account frustratiod,;>0 the formation of
f

é?rgér?gignsaﬁmuﬁaﬁglms fg;tigé T}Eewe" as(Ig:fzpelda?]léag"tw\%rtical dimer singlets becomes energetically more favorable
q 9 <04 ' and the system undergoes at a critical frustratiffi"

and SrCy(BO,)3.3™° - . e
Among the various models for low-dimensional quantum_f(‘]d."lp) a first-order q.“an”t“m phase transition from the
ollective ground state witB,,=1 for all n to a fragmented

magnets the spin half frustrated dimer-plaquette chairf
(FDPQ has been discussed in a series of papers in recefimer product ground state,
years. This FDPC was introduced in Ref. 6, and its Hamil-
tonian readgsee also Fig. 1

Np Np
o o=11 27Y4113D) - 11210 11 1450, @

Np Np
H=Hapt Hi=34 3 S[Sj+3p 2, (SI+S)(Sj+8,™)
N, with S3,=0 for all n. For J;>0 the dimer statédy;)) is a
+Jf2 sis, (1) singlet and the energy ofW¥, ) is E/Np=—3J:/4
n=1 _3‘Jd/4 '
. _ In the special limitJ;=Jy the critical value isJ™
whereN,=N/4 is the number of plaquettésnit cell§ andN =1.2210,.% In this limit the FDPC has a close relation to

|s_the nqmt_)er of spins. We c_o_n5|der finite ch_alnsi_\kliplns_ the two-dimensional spin model for SrBO5),, >3 and
with periodic boundary conditions. The Hamiltonian fulfills i5 caed an orthogonal-dimer chain. Similar to the quasi-
the important relatiofiH, (S}+ $})?]-=0. Hence the verti- yo-dimensional spin system SrgB0,),,>° the FDPC ex-
cal dimer spinsS; and §) form a composite spifs;,=(S;  hibits nontrivial magnetization plateafi.An interesting
+S) with eigenvalues $.,)°=Sh,(Sh,+1) and S,
={1,0}. The physics of this model was discussed in the lit-
erature for antiferromagnetic couplinds,J,,J;=0.2"°

In the unfrustrated versionJ{=0, H=H,,) the model
may serve as the one-dimensional counterpart of the 1/5
depleted square lattice of CaW,.%"**In this case J;=0)
all composite spins have eigenvalugg =1 in the singlet Sq
ground state as well as in the first triplet excitation, and the

ground-state physics of E{L) is determined by the compe- S, SZH
tition of dimer (Jy) and plaquette J;) bonds. In the limit
J¢>J, the low-energy physics of the model is that of the FIG. 1. The frustrated dimer-plaquette chéfDPQO.
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property of the FDPC, not found so far in quantum spin 1 1 1 1 1
systems to our knowledge, is the existence of an infinite <>—<>—<>—<>—<>~ <oo>
sequence of plateads.

Very recently, the FDPC was considered for arbitrary spin
guantum numbers=1/2 and a series of<Lfirst-order quan-
tum phase transitions was found by Koga and Kawakdmi. ! !
Koga and co-workers argued that the first-order phase tran
sitions described by the FDPC possess most of the essentii '
features inherent in frustrated quantum spin systetfisn J
that sense the FDPC may serve as a prototype model for spi
sytems showing first-order quantum phase transitions. O ! 0 ! 0

In the present paper we extend the model to ferromagnetic| .| .- M <>
bondsJ,. We notice that the fragmentation of the chain due
to vertical dimer singlets occurs fdg<0, too. In particular,
the dimer product statieq. (2)] is also an eigenstate of Eq. 0 s
(1) for J4<0; however, the dimer state, ;) in [V o) is I
a triplet. The energy of ¥, ) is then E/N,=—3J/4

FIG. 2. Change of the ground state with increasing frustration

J; . For small fustratiord; all composite spins are in the triplet state
Il. GROUND-STATE PHASE DIAGRAM and there is no fragmentation. Increasihg some composite spins
may prefer a vertical singlet statendicated by vertical lingsand
the chain may split into identical fragments of lengglithe spin-
spin correlation is zero along thk, bonds neighboring a vertical
1 3 singlet as indicated by dotted line§or largeJ; all composite spins
—N,— _Ns) , 3 are in the singlet state and the dimer product st (2)] is the
4 4 ground state.

We start from the energy eigenvaluef model (1) and
write the dependence & on J; in an explicit form,

E(‘Jp de v‘Jf): Edp(‘]p 1‘Jd)+‘Jf

where Ny is the number of vertical dimers with composite
spin S;,=0 andN; is the number of vertical dimers with

. on : )
composite spirB,,=1. We haveNs+N,=N,. Since every statgk) is given by the sum of the energiés;

vertical dimer singlet leads to an energy gainJefin the .+ kJs/4 of the fragments and of the energie8J:/4 of the
second part of the energy, the frustration favors states with.

S,=0, i.e., a fragmentation of the chain. The lowest state Ofsmglets separating the fragments:
these finite fragments has a total sfip,y=1 for J4<<0. We

trapolation of chains of lengthl=8, 16, 24, and 32 as well
as perturbation theory. The energy per unit eélbf a frag-

 Ext(k—3)J,/4

define the lengthk of a fragment as the number of triplet L _ (5)
composite spinsSj,=1 between two singlet composite k+1
spins.

According to the so-called linear programming schemebk iS the energy of the unfrustrated;=0) fragment of
the extrema of the energy belong to states with fragments dfngthk consisting ok plaquettes anki+ 1 dimer bondslg,
identical lengthk. 22 In what follows we use the notatiofk) ~ @nd corresponds to the energy of a finite dimer-plaquette
for a fragmented state consisting of identical fragments ofhain with &+2 spins and open boundary conditions.
length k. The dimer product stattEq. (2)] corresponds to Using the Lanc_zos algorithm we can exa_ctly caculate the
fragments of lengttk=0, i.e.,|W, =(0). Itis evident ~€nergy of the chain fragments, up tok=8 (i.e., N=34).
that the system undergoes at least one transition from thgor larger fragment lengths and for the state) we need
nonfragmented ground state/=) with SI,=1 (n aPproximations. In the I|m|t$Jd[/|Jp|<§1 and|Jp|/[Jg/<1
=1...N,) at small; to the dimer product ground stae) ~ Perturbation theory is appropriate since #@=0 and J,
with S" :"0 (n=1...N,) for largeJ; (see Fig. 2 As men- =0 the ground states are known as simple product states.
tionedaglbove, for antifeprromagnetﬂg we indeed have a di- nge we use Rayleigh-Schﬁmger perturbqtion theory up to
rect transition(e<)—(0). However, for ferromagnetid, the third order. The comparison of perturbatllon theory Wlth the
question for the existence of intermediate ground stées Lanczos results shows that the perturbation theory yields re-

: o _ liable results even fofdy/Jy|~ 1. Figure 3 shows the lowest
rivc;t: fragments of finite length €k<> needs more atten energies of the statg) with k=0,1,2,3 . . . andk=os ver-

We start from the ground state:) for low frustration. 20t 2 TRRE 8 T B antam phase
The energy per unit cell of this state is o P . 9 P
transitions. It becomes obvious that the number of phase
ef = EL/Np=em+Jf/4, 4) transitions chapges from one to four, increasing t_h_e strength
of ferromagneticly. The existence of further transitions can
wheree,, is the energy of the ground state for the unfrus-be excluded by analyzing tHedependence (kEkk according
trated chain J;=0). We determinee,. by a finite-size ex- to Niggemannet al!? The transition point);*"? between
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FIG. 3. Energiese,f( [Eq. (5)] vs J; for various strengths of

ferromagnetic dimer bondsl{=—0.1, J4=—

6, J;=—100, and

Jq=—) and fixedJ,=1. For better comparison we have sub-
tractede(J,=0,J;=0)=Jy/4 from efk. Curves are presented for
k=0, ...,7(exact resultsand fork=x (finite-size extrapolation

The accuracy of thie= o results corresponds to the thickness of the

solid line. We have labeled bgk) only the most relevant curves
with k=0,1,2,3%. The inset in the figure fody= — shows the
transition region betweefw), (3), and(2) with an enlarged scale.
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FIG. 4. Ground-state phase diagram for ferromagnétic 0
and fixed J,=1 (see the teyt Solid line, perturbation theory;
crosses, exact diagonalization.

two ground-state phasek,) and (k,) is obtained by the
relationef, = e[, . Using Egs.(4) and(5) we find

I =E—(k+1)es, I H=(k+1)Ee_1—(K)Eq.

(6)

The corresponding phase diagram is shown in Fig. 4. For
completeness and comparison we have reconsidered the case
of antiferromagneticdly (Refs. 6 and Y including perturba-
tion theory and an enlarged exact-diagonalization data set;
see Fig. 5. For a small strength of the dimer couplidg

=3 the situation is similar for both ferromagnetic and anti-
ferromagneticJy, i.e., we have a direct transitiofro)
—(0). Increasing the strength of ferromagnetic dimer cou-
pling to Jy=~—4 the situation is changed and we find an
additional intermediate phag&). Further increasingly| we

find another intermediate phaég), and finally we have a
sequence of transitiong~)—(3)—(2)—(1)—(0) at a
very strong ferromagnetidy. In this extreme limitJqy

— —oo the FDPC can be mapped onto the frustrated diamond
chain and our results are in agreement with the results re-
ported in Ref. 12.

FIG. 5. Ground-state phase diagram for antiferromagnétic
>0 and fixedJ,=1 (see the text Solid line, perturbation theory;
crosses, exact diagonalization.
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FIG. 6. Ground-state phase diagram for the FDPQNef32 FIG. 7. Magnetization curvem(h) for the FDPC ofN=32

spins with J,=1, large ferromagneticly4— —, and various
p p [¢] g d

spins in a finite magnetic fieldwith J,=1 and large ferromagnetic ‘ ths of fustratiod
strengths of frustratiod; .

Jd—>_oo.

rather small. In particular, the transition lines betweaan

=1/4 and 1/2 and between=1/2 and 1 presented in Fig. 6

are exact, since these ground-state phases belong to product
As discussed in Refs. 8 and 9 the FDPC with antiferro-states correctly described fbr=32.

magnetic J4 exhibits nontrivial magnetization plateaus.  Similar to the zero-field phase diagram there is no frag-

Therefore we now consider Hamiltonigd) including an  mentation for small frustration. However, supported by the

Ill. INFLUENCE OF A MAGNETIC FIELD ON THE
GROUND-STATE PHASES

external magnetic field field the fragmention sets in already at~0.71], for h
~0.13 instead of;~1.30], for h=0. In general, the phase
H=Hgp,+ Hi—hSy:, (7) transitions shown in Fig. 4 are shifted to lower values of
frustrationJ; .
where thez component of the total spin is given k&, The ground-state phase diagram in finite magnetic field

=3,;Sf. For ferromagnetidq we have a more complex zero- leads to interesting magnetization cur&gy. 7). We define
field ground-state phase diagram, and we can expect intereshe magnetization a®=2S/,/N; mis zero in a singlet state
ing effects caused by a magnetic field. One important differput unity in the fully polarized ferromagnetic state. Then the
ence from the antiferromagnetic ca3g>0 consists of the fragmented ground-state phages, (3), (2), (1), and(0)
circumstance that, for ferromagnetly, any fragment of in Fig. 4 correspond tn=0, 1/8, 1/6, 1/4, and 1/2, respec-
lengthk carries a finite total spi$;,q=1 in its lowest state tively.

for h=0, whereas the total spi,4 for J4>0 is zero for For small J;=0.70), we have a magnetization curve
evenk. Hence the fragmentation is favored by the magnetian(h) typical for unfrustrated gapped spin systems, like the
field, whereby short fragments are more favorable than longaldane chaif®!®*°Due to the gap the curve starts with a
fragments. As already discussed above, the extrema of thglateau at zero field but then it goes continuously to satura-
energy belong to states with fragments of identical lerigth tion. For the finite system considered the continuous part is
ForJ4<0 in zero field the fragmented state) (k finite) can  staircase like with small steisee the thin solid line in Fig.
carry total spinS;,;=N/(4k+4). From the numerical in- 7) which is related to the corresponding line ofNa=16
spection of the excitation spectrum of finite fragments weHaldane chain. For comparison we added the density matrix
argue that their excited states wil,4>1 are well sepa- renormalization grougDMRG) data for the Haldane chain
rated from the lowest state witB;,q=1. Hence we can of 60 sites(see the thick solid line in Fig.)#aken from Ref.
expect for parameter points in the zero-field phase diagrar5. For intermediate frustration 0.7 }t<J;=1.08], we have
(Fig. 4) not too far from a transition line that the first-order jumps, plateaus, and continuous parts in théh) curve.
transitions can also be driven by an external magnetic fieldHowever, for large enough=1.08], we have no continu-

To be more precise we have studied the ground-stateus parts in the curve, but only plateaus connected by jumps.
phases of a FDPC in a magnetic field witk= 32 sites in the  For instance, fod;=1.2J, (dotted line in Fig. Y we have the
limit J4— —o°. The corresponding phase diagram is shownsame sequence of phase transitions as in Fig. 4, but now
in Fig. 6. We mention, that for this chain length the frag- driven by increasing the magnetic field from=0 to h
mented staté2) does not fit the periodic boundary condi- ~0.05. As a result the magnetizatiomjumps fromm=0 to
tions and is therefore missingA finite-size calculation in- m=1/8 to 1/6 tom=1/4 to 1/2 and further increasirigto
cluding all zero-field ground-state phases would reqire saturatiorm=1 (notice thatm=1/6 is missing foN=32 in
=48 sites which is currently beyond the available computeiFig. 7). For large frustrationd;<1.5J, we have an extreme
facilities.) We argue that except for missing tt@) phase the m(h) curve consisting only of one plateau mt=1/2 fol-
other ground-state phases should be well described by tHewed by a jump to saturatiom=1.

N=232 system, since the correlation length in all phases is We remark that the jump to the saturation=1 present
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FIG. 8. Magnetic susceptibility of the FDPC ofN=16 spins FIG. 9. Specific heat of the FDPC ofN=16 spins withJ,
with J,=1, ferromagneticlq=—400, and various strengths of =1, ferromagnetidy=—400, and various strengths of frustration
frustrationJs . Js .

for J;=0.97); is related to independent magnon excitations,pained by full diagonalization of the Hamiltonian matrix.
versus the fully polarized ferromagnetic statéie notice ¢ transition from spin-gap to paramagnetic behavior is
that our result is in accordance with the general rule Ofclearly seen in Fig. 8 betweeh=1.2 and 1.4. In the same
Oshikawaet 61_'-18 thatn(s—m) has to be an integer. In our parameter region the specific heat shows a characteristic
case the periodh of a fragmented ground statg) is 4k double-peak structure due to the quasidegeneracy of states
+4, the spirsis one half and the magnetization per sités ~ near the transition line. This effect should survive in the ther-

1/(4k+4) (the magnetization per sit@ corresponds to one modynamic limit.
half of the magnetizatiom used so far

IV. FINITE TEMPERATURES V. SUMMARY

In this section we discuss some consequences of the In conclusion, we have found a series of first-order quan-

ground-state phase diagram on the low-temperature therm M ph.ase transitions ‘F‘ a frustrated one-dimensioqa} Quan-
dynamics. The different nature of the nonfragmented phas m spin system which is (_:Iosely rela_ted to_the p_055|b|llty of
ragmentation of the considered chain. This series of phase

() and the fragmented phasée) (k finite) has an impor- - . . )

art mpac on hermeyraic, W e th gound sadTSTONE S Sen S Ty & e

) is a singlet with gapped triplet excitations, the frag- : X :

mented ground statek) consist of independent paramag- '[e:iti?fecccigsr?gtuepecseeSnIOiL %Tgslscigglpgog)nertlest are p_ll_Jkrle qugrj-

netic units. As a consequence, in the former case both the! : P pin Systems. 1he exis

susceptibility y and the specific heat are thermally acti- tence O.f d|1_°ferent ground states has a strong impact on the

vated and decay exponentially to zero if the temperaiure _magnetlzat|o_n curve and the law-temperature thermodynam-

goes to zero. Varying, the low-temperature behavior gf ics of the spin system. In dependence_ on the frustration the

. o L magnetization curve shows plateaus, jumps as well as con-

changes basically, crossing the transition line between finuous parts

and (3). For a fragmented_ gr.Ol.“md state the _susceptibility Though th.e possibility of fragmentation has been ob-

shows a paramagnetic Curie-liee., y=A/T) divergency oo\ also for frustrated two-leg spin laddér, in the spin

for T—0. Increasing the temperature we find dewatlonsadder system only very simple ground states seem to be

from the simple Curie_-like_behavior due to the_ existence OHrelevant for its magnetization curve. The low-temperature

ponfragmgnte(ﬂcollfctlve) eigenstates. Thg Curie constint thermodynamics can be either spin-gap-like for small frus-

is proportional t0Sj;gN/(4k+4), wherek is the fragment  ya4ion or paramagnetic for large frustration. Furthermore an

length in the ground statéy/(4k+4) is the number of in-  qqitional low-temperature peak in the specific heat can ap-

dependent paramagnetic unisagment$ and S ,q=1 is pear.

the total spin of these units. TherefolJ;) shows a jump

crossing the phase transition line between two fragmented

phases. The behavior for the specific heat near the phase ACKNOWLEDGMENTS

boundaries can be more complex, since close to these bound-

aries we have quasidegenerated low-lying levels which may This work was supported by the DF@®i 615/6-1. The

lead to additional low-temperature peakscin authors are indebted to N.B. lvanov for fruitful discussions
To illustrate this behavior, in Figs. 8 and 9 we present theand to A. Honecker for a critical reading of the manuscript

susceptibility and the specific heat for a FDPQ\of 16 sites  and for sending the DMRG data used in Fig. 7.

134419-5



J. SCHULENBURG AND J. RICHTER PHYSICAL REVIEW B6, 134419 (2002

1S, Taniguchi, T. Nishikawa, Y. Yasui, Y. Kobayashi, M. Sato, T. 1°A. Koga and N. Kawakami, Phys. Rev. &5, 214415(2002).
Nishioka M. Kontani, and K. Sano, J. Phys. Soc. J3$.2758  IN. Katoh and M. Imada, J. Phys. Soc. Jpd, 4105(1995.

(1995. 12H. Niggemann, G. Uimin, and J. Zittartz, J. Phys.: Condens. Mat-
2T. Ohama, H. Yasuoka, M. Isobe, and Y. Ueda, J. Phys. Soc. Jpn. ter 9, 9031(1997.
66, 23 (1997). 13K. Ueda and S. Miyahara, J. Phys.: Condens. MatterL175

SH. Kageyama, K. Yoshimura, R. Stern, N. V. Mushnikov, K. Oni- (1999.
zuka, M. Kato, K. Kosuge, C. P. Slichter, T. Goto, and Y. Ueda,14-|-_ Sakai and M. Takahashi, Phys. Rev4B 13 383(1991).

Phy_s. Rev. Lett82, 3168(1999. I5A. Honecker, F. Mila, and M. Troyer, Eur. Phys. J.15, 227
4S. Miyahara and K. Ueda, Phys. Rev. L&®, 3701(1999. (2000.

5K. Onizuka, H. Kageyama, Y. Narumi, K. Kindo, Y. Ueda, and T. 16\ E. Zhitomirsky and 1. A. Zaliznyak, Phys. Rev. B3, 3428
Goto, J. Phys. Soc. Jp69, 1016(2000. (1996

6 .
7\';]';'0:]\2':0& agdIjér?;thf;azhyééﬁﬁt;‘rfi 3%8(;?57): Conden:‘]' Schulenburg, A. Honecker, J. Schnack, J. Richter, and H. J.
; B ' : g Fhys.: " Schmidt, Phys. Rev. Let88, 167207(2002.

Matter 10, 3635(1998. 18 .
8A. Koga, K. Okunishi, and N. Kawakami, Phys. Rev6B, 5558 M. Oshikawa, M. Yamanaka, and I. Affleck, Phys. Rev. L2g,

(2000 1984(1997.
. 19 H
93. Schulenburg and J. Richter, Phys. Re\6® 054420(2002. F. Mila, Eur. Phys. J. B5, 201(1998.

134419-6



