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Holstein polarons in a strong electric field: Delocalized and stretched states
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~Received 3 June 2002; published 30 October 2002!

The coherent dynamics of a Holstein polaron in strong electric fields is considered under different regimes.
Using analytical and numerical analysis, we show that even for a small hopping constant and weak electron-
phonon interaction, the original discrete Wannier-Stark~WS! ladder electronic states are each replaced by a
semicontinuous band if a resonance condition is satisfied between the phonon frequency and the ladder
spacing. In this regime, the original localized WS states can becomedelocalized, yielding both ‘‘tunneling’’
and ‘‘stretched’’ polarons. The transport properties of such a system would exhibit a modulation of the phonon
replicas in typical tunneling experiments. The modulation will reflect the complex spectra with nearly fractal
structures of the semicontinuous band. In the off-resonance regime, the WS ladder is strongly deformed,
although the states are still localized to a degree that depends on the detuning: Both the spacing between the
levels in the deformed ladder and the localization length of the resulting eigenfunctions can be adjusted by the
applied electric field. We also discuss the regime beyond the small hopping constant and weak coupling, and
find an interesting mapping to that limit via the Lang-Firsov transformation, which allows one to extend the
region of validity of the analysis.

DOI: 10.1103/PhysRevB.66.134302 PACS number~s!: 71.38.2k, 72.10.Di, 72.20.Ht
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I. INTRODUCTION

Quantum electronic transport properties in semicondu
superlattices in high electric fields have been the subjec
much interest in recent years. Experimental studies have
ported interesting phenomena, such as Bloch oscillations
Wannier-Stark~WS! ladders.1 Moreover, a number of theo
retical predictions have been made, including negative
ferential conductivity,2 dynamical localization,3 and frac-
tional WS ladders under dc and ac fields,4 to name a few.

One important issue for the dynamical behavior of a r
system is the effect of electron-phonon interactions, and
tensive research in this field has been reported. For exam
Ghosh et al. and Dekorsyet al. studied coupled Bloch-
phonon oscillations.5 The phonon-assisted hopping of a
electron on a WS ladder was studied in Ref. 6. A brillia
variational treatment of inelastic quantum transport w
given in Ref. 7, and anomalies in transport properties und
resonance condition were studied in Ref. 8. Govorov a
co-workers studied the optical absorption associated with
resonance of a WS ladder and the optical phonon freque
in a system.9,10A similar and fascinating system of electro
phonon resonance in magnetic fields has also been stu
extensively.11

Much of the work in this area considers incoherent sc
tering of electrons by phonons, which is the relevant pict
in systems at high temperature. In this paper, however,
report a study of the effects of coherent coupling of an el
tron to the phonons of the system, likely to be the relev
description at low temperatures. We concentrate on how
phonon coupling affects electron transport in high elec
field, in a situation typically achieved in semiconductor s
perlattices, for instance, but also important for electrons
0163-1829/2002/66~13!/134302~10!/$20.00 66 1343
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polymer chains,12 and even perhaps reachable in a stack
self-assembled quantum dots.13

Based on a Holstein model,14 typically used to describe
the small polaron in molecular systems, we analyze the sp
trum of the system and study its transport properties. We
here a nonperturbative description, which allows one to e
cidate the effects of resonant and nonresonant phonon fi
on the otherwise localized electrons residing in a WS ladd
for both weak and strong electron-phonon coupling. We fi
that for small hopping and coupling constant, an interest
regime results when two characteristic energy scales in
system coincide: one corresponding to the energy spa
between the WS levels, and the other corresponding to
frequency of the phonons. In thisresonantcase, the problem
is one of strong mixing between degenerate states with ra
different properties. The result is a complex semicontinuo
band structure replacing each of the original WS lad
‘‘rungs,’’ where some of the electron states becomedelocal-
ized, despite the strong electric field present. In this case,
phonons interacting with the electron provide delocalizati
unlike the usual situation. Moreover, and in contrast to th
extended states, ‘‘stretched polarons’’ are highly degene
and exhibit strongly localized electronic components, wh
the phonon component is in fact extended throughout
structure. When the system is away from the resonance
dition, a deformed WS ladder will appear, with a very inte
esting substructure. The electronic wave functions in this
gime are all localized, but with a localization length th
depends linearly on the degree of detuning.

In all phonon frequency regimes, the rich dynamical b
havior of the system is due to~or reflected in! the near fractal
structure of the spectrum. This, as we will discuss, ha
direct connection to the Cayley tree structure of the relev
Hilbert space. This structure is of course contained in
©2002 The American Physical Society02-1
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Hamiltonian and reflected also in the structure of the eig
vectors.

We also extend our studies beyond the weak-coupling
small hopping constant regime, via a Lang-Firsov trans
mation. This results in an interesting mapping of the probl
from the strong-coupling to the weak limit, and allows one
extend the results for a wider parameter range. A first rep
of the resonant case in the weak-coupling regime has b
published.15 Here, we give a detailed theory of such stat
including both resonant and nonresonant cases, and pre
the strong-coupling interaction regime.

In what remains of the paper, we give in Sec. II a desc
tion of the model used and the relevant Hilbert space in
problem. Section III contains a complete analysis of the
sulting spectrum for small hopping constant and weak p
non coupling. The extension beyond that regime is given
Sec. IV. A final discussion is presented in Sec. V.

II. DESCRIPTION OF THE MODEL

We consider the Holstein model,14 which describes an
electron in a one-dimensional tight-binding lattice, intera
ing locally with dispersionless optical phonons. Moreov
the system is subjected to a strong static electric field.
Hamiltonian is then given by

H05(
j

« j cj
†cj1t(

j
~cj

†cj 111cj 11
† cj !1v(

j
aj

†aj

1g(
j

cj
†cj~aj

†1aj ! , ~1!

where t is the electron hopping constant,v is the phonon
frequency~or energy, with\51), g is the electron-phonon
coupling constant,« j52edE j[2 j D is the site energy,E is
the electric field, andd is the lattice constant. It is known tha
a series of localized WS states will form in a strong fie
(D5edE@t) in the absence of interactions between el
trons and phonons. Within the tight-binding theory, the
genvalues and eigenfunctions of these WS states are, re
tively, « j52edE j and

uf j&5(
i

Ji 2 j~2t/edE!u i &, ~2!

whereJl is the l th-order Bessel function. The WS states a
localized states with characteristic length 2t/eE.

It is helpful to introduce creation and annihilation oper
tors for WS states as

dj5 (
i 52`

`

Ji 2 j~2t/edE!ci . ~3!
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It is easy to show that this transformation is canonic
$di

† ,dj%5d i j , and that the Hamiltonian can be written
terms ofdj ,dj

† as

H052(
j

j Ddj
†dj1(

j
vaj

†aj1g (
j ,i ,i 8

Jj 2 iJj 2 i 8~aj

1aj
†!di

†di 8 . ~4!

In the case of a strong electric field~or small hopping con-
stant, 2t/D!1) on which we concentrate in this section, th
Hamiltonian can be simplified as

H52(
j

j Ddj
†dj1v(

j
aj

†aj1g(
j

dj
†dj~aj

†1aj !

2l(
j

~aj1aj
†2aj 11

† 2aj 11!~dj
†dj 111dj 11

† dj !,

~5!

where the effective coupling constant is now

l5gt/D. ~6!

From Eq.~5!, one can see phonon-assisted hopping betw
the WS states quite clearly, so that in fact the phonons in
duce delocalization of the WS electrons. The Hamiltonian~5!
is similar to that in Ref. 9, but there are some differences
the current model, when an electron jumps from one site
the next, it cannot only emit~or absorb! a phonon on~from!
its site, but also onto~from! the nearby site. This more natu
ral description also produces a large difference on the
evant Hilbert spaces. The dimension of the relevant Hilb
space in our case is 2n21, wheren is the number of local
sites in the chain, while the size isn for the model in Ref. 9.
As we will see, the resulting energy spectrum and ot
physical quantities show quite a rich behavior.

Let us consider the process of an electron jumping
tween sites while creating or annihilating phonons in
neighborhood. For example, for a chain of three sitesn
53, the hopping of the electron from the first site will co
nect the statesu1;000&, u2;010&, u2;100&, u3;011&, u3;101&,
u3;020&, and u3;110&. Here a vector is expressed a
u j ; . . . ,m0 ,m1 , . . . &, wherej is the electron position andmk
refers to the number of phonons on sitek. It is interesting to
see that the connectivity of this portion of the Hilbert spa
has the structure of a Cayley tree or a Bethe lattice.16 Under
the condition of resonance, i.e.,D5v, all the states above
for n53 have the same energy. The off-diagonal matrix
ements therefore break the degeneracy and allow level m
ing, and one can expect that some kind of band may form
the limit of largen. As we will see later on, and in contrast t
the resonant case, the spectrum in off-resonance is still c
posed of ladders although with a complex structure.17

In the basis we list above, the Hamiltonian forn53 takes
the form
2-2
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A direct consequence of the Cayley tree connectivity of
near degenerate basis is that the Hamiltonian~7! is con-
structed by diagonal block matrices for ever largern ~of sizes
1,2,4, . . . ,2n21), and mixed by off-diagonal matrix ele
ments proportional tol. One can see that in the resona
case, all diagonal elements are given by2D, corresponding
to the degenerate manifold. Notice also that the off-diago
elements are given by6l, except for a few sporadic ele
ments which appear asA2l, associated with higher numbe
of phonons in a site, such as the stateu3;020& in this case.
This nearly self-similar structure appears for all values on.
We expect then that there would be little change in the ph
cal properties in the large-n limit if we replace 2A2l in
those few off-diagonal spots with2l. This will be con-
firmed by our numerical calculation, as we will see belo
After the substitution, the newsymmetrizedHamiltonian
Hsym takes a full self-similar form, and allows one to exac
solve analytically the eigenvalue problem, and better und
stand the physics of the system. Much of the behavior
Hsym remains described byH in the actual system.

III. SMALL HOPPING AND WEAK-COUPLING REGIME

Let us consider the eigenvalue problem for the Ham
tonianHsym, defined as that in Eq.~7!, except that the ele
ments2A2l are replaced by2l. By using the block de-
composition formula

detS A B

C DD 5det~D !det~A2BD21C!, ~8!

we find that the eigenvalues of the HamiltonianHsym are
determined by the equation

«0
N/2«1

N/4«2
N/8

•••«n21
1 50, ~9!

whereN52n, «05«2tn , « is the energy eigenvalue,tk is
defined by

tk5~n2k!~v2D!2v, ~10!

and

«k115«2tk2
2l2

«k
. ~11!

Then,«k can be written as a continuous fraction ink steps,
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«k115«2tk2
2l2

«2tk212
2l2

«2tk222
2l2

. . .

. ~12!

A. Resonant regime„DÄv…

In this case,tk50 ~after a constant energy shift ofv is
made!, we obtain the eigenvalues ofHsym as

«k, j52A2lcosS j p

k11D , ~13!

wherek51,2, . . . ,n and j 51, . . . ,k. The asymptotic band-
width of the spectrum is therefore given by 4A2l. Notice
that this behavior is similar to that of a system in magne
fields. In that case, the electron-phonon interaction bre
the degeneracy~under the condition of magnetic resonanc!
and leads to a ‘‘resonance splitting.’’ In that case, the sp
ting is proportional toa2/3 for a three-dimensional system

FIG. 1. Energy spectra for fully self-similarHsym for systems
with different lattice sizes~a! n58, ~b! n59, and~c! n511. No-
tice the clear fractal structure of spectra, as anticipated from
structure ofHsym. Increasingn produces a finer scale structure
the gaps. HereD5v51 andl50.1, so that the asymptotic band
width is 4A2l50.5657.
2-3
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and to a1/2 for a two-dimensional system, wherea is the
Frohlich electron-phonon coupling constant.11

Let us consider the question of eigenvalue degenerac
solving «0

N/2«1
N/4«2

N/8«3
N/1650, which will provide us with a

good estimate in the large-N limit. After some algebra, one
obtains for the eigenvalue equation,

«5N/16~«222l2!N/8~«224l2!N/16~«426«2l214l4!N/1650.
~14!

We then have eigenvalues«50, 6A2l, 62l, and
6lA36A5, with respective degeneracies of 5N/16, N/8,

FIG. 2. Energy spectra forH of systems with different lattice
sizes~a! n58, ~b! n59, and~c! n511. Notice the approximate
fractal structure of the spectra. Increasingn gives similar structure.
HereD5v51, l50.1, and the bandwidth slightly increases fro
one panel to the next. TheA andB labels in panel~a! indicate states
described in Figs. 4 and 5.

FIG. 3. Bandwidth results forl50.1 and different values ofn.
The asymptotic bandwidth forHsym is 4A2l50.5657, shown as a
dashed line. We see that the bandwidth forH is W*6l.
13430
by

N/16, andN/16. Higher-order polynomials would slightly
improve the degeneracy estimate for successively highe
genvalues.

Our numerical results for the eigenvalues ofHsym, Fig. 1,
and H, Fig. 2, exhibit very similar characteristics, as e
pected. The different panels in these figures show spectra
n58, 9, and 11. One can see that the main structure of
spectra changes little with increasingn, although a finer
structure appears for highern, filling to some extent the gap
of the previous structure. Our analytical results match
actly those of Fig. 1. The self-similar structure of the spe
trum is the manifestation of such symmetry inHsym. One
can see that the original highly degenerate manifold is bro
ened into a semicontinuous band by the off-diagonal mix
elements ofHsym. Notice, however, that large residual d
generacies remain at the center of the band, and other s
metrical values, as described above by Eq.~14!.

The structure of the full HamiltonianH is shown in Fig. 2,
which still maintains a nearly self-similar structure, desp
the sporadic2lA2 ‘‘asymmetrical’’ terms. Notice, however
that the degeneracy at«50 and other ‘‘plateau values’’ is no
exact here, but is only seen as a slight break~or slope! of
each plateau.

FIG. 4. ~a! Electron probabilityP( j ) for each sitej ~solid line,
scale on left!, and spatial distribution of phononsN( j ) ~dashed,
scale on right! for state labeledA in Fig. 2~a!. Large electron am-
plitude and phonon number throughout describe an extended, d
calized polaron, jointly illustrated in the composite figure at botto
2-4
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HOLSTEIN POLARONS IN A STRONG ELECTRIC . . . PHYSICAL REVIEW B66, 134302 ~2002!
Figure 3 compares the results for the bandwidth ofH and
Hsym from both analytical and numerical results. Notice th
4A2l is the asymptotic~large-n) analytical result from Eq.
~13!, for Hsym. We see in Fig. 3 that the numerical results f
the bandwidth ofHsym converge quickly to the analytica
prediction. Similarly, the numerically obtained bandwidth
H is only slightly larger than the bandwidth ofHsym, and
clearly has also a finite asymptotic value. This is an intere
ing feature ofH that although one has a large Hilbert-spa
dimensionN2152n21 (52047 for n511, for example!,
one obtains a finite bandwidth. This is of course also ass
ated with the fact that there are large degeneracies in
energy spectra, which increase withN @see Eq.~14!#.

To get a better understanding of the physics, we sh
characteristic electron probabilities, as well as phonon spa

FIG. 5. ~a! Electron probabilityP( j ) for each sitej ~solid line,
scale to left!, and spatial distribution of phononsN( j ) ~dashed,
scale to right!, for state labeledB in Fig. 2~a!. Electron is localized
at the right end of the chain, while phonons lie throughout, yield
a stretched polaron, illustrated in the bottom figure.
13430
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distributions for different eigenstates in Figs. 4 and 5. T
electronic probability function is given by

Pn~ j !5^Cnudj
†dj uCn&5(

$m%
uCj ,$m%

n u2, ~15!

where the coefficients in the last expressions are obta
from the diagonalization ofH, so that the eigenvectors ar
given by

uCn&5 (
j ,$m%

Cj ,$m%
n u j ;$m%& ~16!

for eachn eigenstate. Similarly, the corresponding phon
spatial distribution is given by

Nn~ j !5^Cnuaj
1aj uCn&5 (

l ,$m%
uCl ,$m%

n u2mj ~17!

for each eigenstate. These two spatial distribution functi
give us an idea of how the two different components of ea
state are related to one another. These functions are a pr
tion of the rather subtle coherent interactions~or mixtures!
between the electron and phonon subsystems. One can s
Fig. 4~a! that for the nondegenerate stateA in Fig. 2~a!, the
electron is extended throughout then58 lattice. At the same
time, the phonon amplitude is also extended along the latt
and one can picture the phonon ‘‘cloud’’ as ‘‘surrounding
the electron all along in Fig. 4~a!, effectively describing a
‘‘tunneling polaron.’’ In contrast, the degenerate stateB at
«50 in Fig. 2~a!, has its electron component highly loca
ized at the right end of the lattice, Fig. 5~a!, while the phonon
cloud is away, Fig. 5~b!, and nearly ‘‘detached’’ from the
electron. One can describe this as a ‘‘stretched polaron~a
precursor of the polaron dissociation predicted at high fie
in polymer systems12!.

Although by definition the electronic distribution functio
Pn is normalized to unity, the phonon functionNn is not
necessarily so, since the electron can create and ab

g

FIG. 6. Total average phonon number for each eigenstate in
2~a!. Higher value plateaus are associated with the more local
electronic amplitudes, such as stateB. Lowest phonon counts cor
respond to extended electronic states, such asA.
2-5
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phonons as it propagates up and down the lattice. This
ference in phonon content for each state can be seen by
paringN in Figs. 4~a!, and 5~a!, as thetotal phonon number
is clearly larger in the latter~stretched polaron! case. To
study this feature throughout the spectrum, we show in Fi
the total average phonon number of all states in the ch
n58. One can see clearly that the states at the center o
band («'0) have many more phonons ('75n21) than
the rest. An estimate for the average number of phonons
different states can be obtained by the following argume
The average phonon number is given bŷNn&
5( i Pn( i )mi . For an extended state,Pn.1/n for a chain of

FIG. 7. ~a! Density of states and~b! tunneling probability func-
tion Dn for n58 system.

FIG. 8. Energy spectra for system with lattice sizen58. ~a! For
full Hamiltonian H and ~b! for Hsym. Here 2D5v51, and l
50.1. A8 andB8 states are shown in Fig. 9.
13430
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n sites. A state with an electron at sitei can be obtained by
the electron hoppingi 21 steps from the first site, while
emitting mi' i 21 phonons in the process. For extend
states, this yields ^N&.( i( i 21)/n5(n21)/2, which
matches well the numerical results in Fig. 6, where the m
extended states have^N&.3.5 ~such as the state labeledA).
In contrast, an electron localized at siten, asB in Fig. 6, has
emittedn21 phonons in the process, just as one finds in
exact calculation.

Transport through structure. We should emphasize tha
the properties illustrated in Figs. 4 and 5 are quite gene
states in one of the highly~nearly! degenerate levels show
different degrees of electron localization and an abunda
of phonons in a stretched polaron configuration. In contr
states with nondegenerate companions are delocalized
larons throughout the chain with low phonon content. Ev
though it is the presence of phonons which delocalizes
electron~in the sense of the original WS ladder!, we obtain

FIG. 9. ~a! Electron probabilityP( j ) for each sitej for statesA8
and B8 indicated in Fig. 8~a!. ~b! Corresponding phonon distribu
tions N( j ).

FIG. 10. Total phonon number for each eigenstate in the n
resonant regime, as in Fig. 8.
2-6
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that the localized electrons are accompanied by m
phonons, reminiscent of the self-localized polarons when
coupling is strong.

The rather complicated behavior of the states would
course be reflected in various properties of the system. Le
focus here on what one could measure if electrons were
jected from one end of the chain and were collected ou
the other end. This is motivated by the ability to carry o
just such experiments under strong electric fields in semic
ductor superlattices, as well as in other systems. The tr
port properties provide information about the density
states in the structure and the spatial charge distributio
the different states~for optical response, see Ref. 15!. The
contribution of various eigenstates to the charge trans
can be described by the quantity

Dn5Pn~1!Pn~n!, ~18!

since the tunneling amplitude is proportional to the dens
of states in the leads and the wave-function amplitude
both ends of the structure~the sitej 51 and j 5n).18 In fact,
the tunneling probability can be calculated from theS-matrix
formalism asuTu2, whereT5^« f ,RuSu« i ,L&. HereR andL
refer to the right and left leads. In the wide-band limit,

T}GE dt1dt2ei (« f t22« i t1)^nuGR~ t22t1!u1&

5(
n

G^nun&^nu1&d~« f2« i !, ~19!

whereG describes the electron interaction with contacts, a
GR is the retarded Green function connecting both ends
the structure (j 51 and j 5n). We see then that the quantit
Dn5u^nun&^nu1&u2}uTu2 is directly involved in the tunneling
probability. Figure 7~a! shows the density of states~DOS!
and Fig. 7~b! shows the quantityDn for the system withn
58. We can see thatall the states at the center of the ba

FIG. 11. Electron probabilityP( j ) for stateA8 in Fig. 8~a! for
various detuning valuesD8.
13430
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contributezero to the transport amplitude through the cha
and this behavior is exhibited by all the high peaks in t
DOS. This is clearly consistent with the spatially localiz
charge nature of the highly degenerate states. On the o
hand,D shows large values for states ‘‘in the gaps,’’ confirm
ing in fact that the nondegenerate states in the spectrum
an extended nature. The variations shown inD would then be
reflected in strong amplitude modulations within each of
phonon replicas in tunneling experiments,19 whenever the
resonance regime is reached.

B. Nonresonant regime„DÅv…

By studying the equivalent continuous fraction~12! for
the nonresonant regime, we find that the spectrum for

FIG. 12. Relation between localization lengthL and 1/D8. Solid
line showsL/d52l/D8 dependence, while the dots show values
L obtained from fit of functions in Fig. 11 to the form ex
(2uxu/L).

FIG. 13. Bandwidth in the resonant and stronger-coupling
gime as a function of coupling constantg. Here,D5v5t51. As
g*0.6, neighboring bands will overlap, indicated here with a d
ted line.
2-7
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case is quite different from that under resonance. For
case of the small coupling constant, i.e.,l/v!1, andl/D
!1, the unperturbed spectrum is a series of ladder le
« j52(v2D) j ( j 51, . . . ,n) instead of the degenerat
manifold in the degenerate case. Notice that the spacing
tween the ladders is given by the detuning,D8[uv2Du,
instead of the original WS ladder energy. The correction
troduced by the interaction breaks some of the detuned
der degeneracies and gives some substructure to the la
Solving the first three factors,«0

N/2«1
N/4«2

N/850, to second
order,l2, we find that the spectrum is a series of states w
energies nD8, nD812l2/D8, (n21)D8, (n21)D8
22l2/D8, etc., with respective degeneraciesN/4, N/4, N/8,
N/8, etc. Notice that here the electron-phonon produces l
splittings;l2, unlike the resonant case where the splitti
~bandwidth! is linear in l. The problem is also solved nu
merically and we show the resulting spectra in Fig. 8,
both H @Fig. 8~a!#, andHsym @Fig. 8~b!#. Our analytical re-
sults match the numerical results forHsym quite well. It is
interesting to note the fine structure in each rung of t
modified ladder. The difference in electronic and phonon d
tributions within a given ladder are rather subtle. We not
again that there are only small differences between the s
tra of H andHsym.

Figure 9~a! shows the electron probability for differen
states in the spectra, labeledA8 andB8 in Fig. 8~a!. Figure
9~b! shows the distribution of phonons for the same state
is apparent that the electron wave function is localized
separated from its phonon cloud. The two states only dif
basically, on which site to be localized about@as one would
expect from their position in different rungs in the ladder
Fig. 8~a!#. In fact, the different states in theD8 ladder are
associated with different lattice sites~the highest rung state
at «.nD8 being localized atj .n). We also show in Fig. 10
the average phonon number per state for the entire spect
The structure of this figure is quite different from that in Fi
6, as it reflects dramatically different dynamical behavior
phonon counting argument as the electron hops and e
phonons can explain the average number of phonons in
different states in Fig. 10, although clearly here it produce
nearly negligible mixing of states (;l2).

One can further explore the extent of the localization
ture of the eigenstates. In Fig. 11, we show the electro
probabilities of stateA8 for variousD8 ~or electric-field! val-
ues. We might expect that the localization length would
2l/D8, e.g., the localization length for the original WS sta
is 2t/D. This simple expectation is confirmed by numeric
calculations, as seen in Fig. 12, where the solid line sho
the 2l/D8 dependence, and the dots indicate the localiza
length for states of variousD8 ~the localization lengthL is
extracted from a fit to an exponential amplitude drop ab
its central site,e2uxu/L). One would in fact expect that th
manifestation of localization in real space~and energy!
would be susceptible to be measured via Bloch oscillatio
just as in a typical WS ladder. In this case, however,
frequency of Bloch oscillations isD8, and notD. Thus the
electron-phonon interaction changes the frequency of Bl
oscillations, and this effect may be possibly observed in
periment.
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From the discussion, it is clear that the eigenstates
localized in the nonresonant regime. As such, they contrib
little to the transport across the chain. One can easily ca
late the quantityDn as before. As expected, the value ofDn

is very small (,10212) for every state, and very differen
from the resonant case. This behavior~not shown! is com-
pletely consistent with the localized nature of the eigensta
Thus, we see that in this case the dominant conduction
havior, if any, would be thermally activated hopping condu
tion, instead of band conduction.

IV. BEYOND SMALL HOPPING AND WEAK-COUPLING
REGIME

All the discussions so far have been focused on
HamiltonianH ~or Hsym), valid only under the condition of
small hopping constantt/D!1. In this section we extend ou
discussion beyond this regime, which in principle may
relevant, depending on different system parameters.

We use the Lang-Firsov canonical transformationH*
5eSH0e2S, where S52g( j cj

†cj (aj2aj 11) and g5g/v.
The transformed Hamiltonian takes the form

H* 5(
j

« j cj
†cj1v(

j
aj

†aj2g2vcj
†cj

1te2g2

(
j

@cj 11
† cje

g(aj 11
†

2aj
†)e2g(aj 112aj )1H.c.#.

~20!

One can see that this Hamiltonian is suitable for study
strong-coupling dynamics. As in the case ofH, we use the
operators for WS ladder states,dj

† . Then the Hamiltonian
can be rewritten in the form

H̃52(
j

~g21 j !Ddj
†dj1v(

j
aj

†aj1gt8Jo
2~2t8/D!

3(
j

@~aj 112aj 11
† 2aj1aj

†!~dj
†dj 112dj 11

† dj !#,

~21!

wheret85te2g2
. We see then that the effective hopping co

stant t8 becomes smaller thant. Thus the problem can be
mapped to that in the preceding section, with an effect
hopping constantt8 and an effective coupling constantl8,

t85te2g2
, l85gt8J0

2~2t8/D!. ~22!

It is clear thatl8→0 wheng→0, as expected, and the spe
trum is the discrete WS ladder in the absence of electr
phonon interaction. Moreover, one can see that for weak c
pling, the bandwidthW.6l8 is proportional tog, just as in
the situation discussed in Sec. III A~see Fig. 3!. Beyond the
weak-coupling and small hopping regime, however,W and
l8 have a nonlinear dependence ong. Figure 13 shows the
coupling constant dependence of the bandwidthW for the
resonant and stronger-coupling limit,D5v5t51. Notice
that the bandwidthW.1 for g*0.6. At this coupling, the
2-8
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HOLSTEIN POLARONS IN A STRONG ELECTRIC . . . PHYSICAL REVIEW B66, 134302 ~2002!
bands in neighboring WS rungs will begin to overlap~and
interband terms would need to be considered!. It is clear that
these corrections to the dependence ofWappear also as func
tions of t, D, and/orv.

Similar discussions are also relevant in the off-reson
case. For example, since the localization length is prop
tional to 2l8/D8 ~Sec. III B!, there is also a correction to th
simple relationL}2l/D8, whent and/org are not small. For
example, with increasing coupling constant, the correction
the ladder;2l82/D8 may become comparable with th
spacing between the detuned ladder levelsD8. In that case,
the ladder structure for the off-resonance case will also
appear. In this situation, the electron can also become d
calized, even if in the nonresonant regime, but due to
strong couplingg.

It is interesting to compare our results to those of Bon
and Trugman,7 as one goes from the weak to the strong tu
neling regime. These authors found by numerical calcula
of the drift velocity that for small electron-phonon couplin
there are energies where the electron cannot propagat
our approach, this corresponds to the formation of the q
sicontinuous band for each of the WS ladders. The elec
cannot propagate when its energy lies in the band gap. H
ever, with increasing coupling constant, the band gap
disappear because of the overlap of subsequent bands.
quantitatively, let us consider the caset5v51 ~as the pa-
rameters in Ref. 7!. Since the hopping constant is large, o
needs to adopt the formalism in this section. As seen in
13, the bandwidth increases with increasing coupling c
stant, producing band overlap for large enoughg. This van-
ishing of the gaps as a function ofg would coincide with the
resumption of particle drift in the system. Just such behav
was found numerically in Ref. 7, and one can now explai
in terms of the level structure of the system. It is also int
esting to notice that the overall envelope seen inDn is simi-
lar to that of the drift velocity: small at the center and edge
each band, as shown here in Fig. 7~b!, and qualitatively like
the graphs in Fig. 4 of Ref. 7.

V. CONCLUSION

We have studied the coherent dynamics of Holstein
larons in a strong electric field. We have found that with t
et
ay
K.
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help of phonons, a sort of quasicontinuous band will fo
under resonance conditions, even for weak coupling c
stants. The band shows an approximate fractal self-sim
structure, which is inherent in the near self-similarity of t
Hamiltonian. Although the phonons can help the electr
jump from one WS ladder state to another, the phonons
also prevent the electron from propagating, if too ma
phonons are involved. These peculiar interaction differen
give rise to a variety of unusual states, including~a! delocal-
ized polarons despite the strong electric field, with a typi
phonon cloud accompanying the electron and~b! states with
high degeneracy at the band center, where the electro
localized in a site of the lattice, and the phonon is loca
away from the electron, in a stretched configuration. T
band structure is also manifested in the transport prope
of the system, which we expect could be observed in tunn
ing experiments. The level structure and extension of
different states will appear as a modulation of the phon
replicas in the tunneling experiment. For weak coupling, t
would only occur if the system is in resonance,v5D, as
away from that condition, the states are basically localiz
and would not transport current~except for thermal effects!.
In a given structure, the resonance condition can be reac
by sweeping the electric field, while monitoring the tunne
ing through the structure. As the spacing between the
formed rungs and the localization length of the eigenfunct
can be adjusted by electric field, it would be quite interest
to see the transition in experiments. With increasing coupl
constant, the ‘‘minibands’’ will overlap, and give rise to a
overall merging of the phonon replicas in tunneling, ev
when away from the resonance regime.
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