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Holstein polarons in a strong electric field: Delocalized and stretched states
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The coherent dynamics of a Holstein polaron in strong electric fields is considered under different regimes.
Using analytical and numerical analysis, we show that even for a small hopping constant and weak electron-
phonon interaction, the original discrete Wannier-StahkS) ladder electronic states are each replaced by a
semicontinuous band if a resonance condition is satisfied between the phonon frequency and the ladder
spacing. In this regime, the original localized WS states can bedmirealized yielding both “tunneling”
and “stretched” polarons. The transport properties of such a system would exhibit a modulation of the phonon
replicas in typical tunneling experiments. The modulation will reflect the complex spectra with nearly fractal
structures of the semicontinuous band. In the off-resonance regime, the WS ladder is strongly deformed,
although the states are still localized to a degree that depends on the detuning: Both the spacing between the
levels in the deformed ladder and the localization length of the resulting eigenfunctions can be adjusted by the
applied electric field. We also discuss the regime beyond the small hopping constant and weak coupling, and
find an interesting mapping to that limit via the Lang-Firsov transformation, which allows one to extend the
region of validity of the analysis.
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[. INTRODUCTION polymer chaind? and even perhaps reachable in a stack of
self-assembled quantum ddfs.
Quantum electronic transport properties in semiconductor Based on a Holstein mod#,typically used to describe
superlattices in high electric fields have been the subject q’he small po|ar0n in molecular systems, we ana|yze the spec-
much interest in recent years. Experimental studies have rerym of the system and study its transport properties. We use
ported interesting phenomena, such as Bloch oscillations arigere a nonperturbative description, which allows one to elu-
Wannier-Stark WS) ladderst Moreover, a number of theo- cidate the effects of resonant and nonresonant phonon fields
retical predictions have been made, including negative difon the otherwise localized electrons residing in a WS ladder,
ferential conductivityy dynamical localizatiod, and frac-  for both weak and strong electron-phonon coupling. We find
tional WS ladders under dc and ac fiefds, name a few. that for small hopping and coupling constant, an interesting
One important issue for the dynamical behavior of a rearegime results when two characteristic energy scales in the
system is the effect of electron-phonon interactions, and exsystem coincide: one corresponding to the energy spacing
tensive research in this field has been reported. For exampleetween the WS levels, and the other corresponding to the
Ghoshet al. and Dekorsyet al. studied coupled Bloch- frequency of the phonons. In thissonantcase, the problem
phonon oscillations. The phonon-assisted hopping of an IS one of strong mixing between_ degenerate statefs Wlth rather
electron on a WS ladder was studied in Ref. 6. A brilliantdifferent properties. The result is a complex semicontinuous
variational treatment of inelastic quantum transport wag@nd structure replacing each of the original WS ladder
given in Ref. 7, and anomalies in transport properties under gunas, where some of the electron states becoteéocal-

resonance condition were studied in Ref. 8. Govorov an&zed despite the strong electric field present. In this case, the

co-workers studied the optical absorption associated with thBhonons interacting with the electron provide delocalization,

resonance of a WS ladder and the optical phonon fre uenCunlike the usual situation. Moreover, and in contrast to these
: 10 n Ne op P d dxtended states, “stretched polarons” are highly degenerate
in a systen?:’° A similar and fascinating system of electron-

. . .and exhibit strongly localized electronic components, while
phonon resonance in magnetic fields has also been studl(-?ﬁie phonon component is in fact extended throughout the

extensively:! o . _ structure. When the system is away from the resonance con-
Much of the work in this area cgnS{ders mcoherent.scat—dition' a deformed WS ladder will appear, with a very inter-
tering of electrons by phonons, which is the relevant picturéssting substructure. The electronic wave functions in this re-
in systems at high temperature. In this paper, however, Wgime are all localized, but with a localization length that
report a study of the effects of coherent coupling of an elecdepends linearly on the degree of detuning.

tron to the phonons of the system, likely to be the relevant |n all phonon frequency regimes, the rich dynamical be-
description at low temperatures. We concentrate on how thravior of the system is due tor reflected inthe near fractal
phonon coupling affects electron transport in high electricstructure of the spectrum. This, as we will discuss, has a
field, in a situation typically achieved in semiconductor su-direct connection to the Cayley tree structure of the relevant
perlattices, for instance, but also important for electrons irHilbert space. This structure is of course contained in the
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Hamiltonian and reflected also in the structure of the eigenit is easy to show that this transformation is canonical,

vectors. {di’r,dj}zéij, and that the Hamiltonian can be written in
We also extend our studies beyond the weak-coupling angerms ofd, ,d]-T as

small hopping constant regime, via a Lang-Firsov transfor-

mation. This results in an interesting mapping of the problem

from the strong-coupling to the weak limit, and allows oneto  Hy=— >, jAddej +> waJ-Taj Ty I id-in(ay

extend the results for a wider parameter range. A first report i i jii’

of the resonant case in the weak-coupling regime has been +ah)dld, (4

published®® Here, we give a detailed theory of such states, R

including both resonant and nonresonant cases, and present - :
the strong-coupling interaction regime. n the case of a strong electric fie{dr small hopping con-

In what remains of the paper, we give in Sec. Il a descrip-Stam* 2/A<1) on which we concentrate in this section, the

tion of the model used and the relevant Hilbert space in th&!amiltonian can be simplified as
problem. Section lll contains a complete analysis of the re-
sulting spectrum for small hopping constant and weak pho-
non coupling. The extension beyond that regime is given in

— S Agt t ty (at
Sec. IV. A final discussion is presented in Sec. V. H=-2 JAdidiJ”"; aja;t 7’; didj(aj+ay)

]

t_ .t T t
IIl. DESCRIPTION OF THE MODEL )\; (@+ay=ay, 1= 8. 2)(djdjeat djygdy),
We consider the Holstein mod¥l,which describes an ®)
electron in a one-dimensional tight-binding lattice, interact-
ing locally with dispersionless optical phonons. Moreover,where the effective coupling constant is now
the system is subjected to a strong static electric field. The
Hamiltonian is then given by A= yt/A. (6)

From Eq.(5), one can see phonon-assisted hopping between
the WS states quite clearly, so that in fact the phonons intro-
duce delocalization of the WS electrons. The Hamiltori&n

is similar to that in Ref. 9, but there are some differences. In
the current model, when an electron jumps from one site to
+ 'yz c;‘cj(aj“raj) , (1)  the next, it cannot only emior absorb a phonon or{from)

] its site, but also ont¢from) the nearby site. This more natu-
ral description also produces a large difference on the rel-
evant Hilbert spaces. The dimension of the relevant Hilbert
space in our case is"2 1, wheren is the number of local
sites in the chain, while the sizerisfor the model in Ref. 9.

As we will see, the resulting energy spectrum and other

_ t t t t
Ho=2 ;c/c;+tX (¢fcju1+cf 1)+ ala;
j j j

wheret is the electron hopping constanb, is the phonon
frequency(or energy, withi=1), vy is the electron-phonon
coupling constants;= —edEj=—jA is the site energy is
the electric field, and is the lattice constant. It is known that hvsical quantities show auite a rich behavior
a series of localized WS states will form in a strong field P q ; q T :
(A=edBE>t) in the absence of interactions between elec- Let us consider the process of an electron jumping be-
o . - - tween sites while creating or annihilating phonons in its
trons and phonons. Within the tight-binding theory, the €~ aiqhborhood. For example. for a chain of three sites
genvalues and eigenfunctions of these WS states are, respe_c-g : P, , . . ’
=3, the hopping of the electron from the first site will con-

tively, &;= —edEjand nect the statefl;000, |2;010, |2;100, |3;011), |3;101),
|3;020, and |3;110. Here a vector is expressed as
li;...,mg,myq, ...), whergj is the electron position ant,
|¢j>:2 Ji_j(2t/edB)|i), (2)  refers to the number of phonons on ditdt is interesting to
1

see that the connectivity of this portion of the Hilbert space

has the structure of a Cayley tree or a Bethe lafffdgnder

whereJ, is thelth-order Bessel function. The WS states arethe condition of resonance, Le\,=w, all th_e states abo_ve
for n=3 have the same energy. The off-diagonal matrix el-

localized states with characteristic lengttl . ements therefore break the degeneracy and allow level mix-

It is helpful to introduce creation and annihilation opera-. 9 acy .

ing, and one can expect that some kind of band may form in
tors for WS states as . ; .
the limit of largen. As we will see later on, and in contrast to
the resonant case, the spectrum in off-resonance is still com-
o posed of ladders although with a complex structdre.
dj= 2 Ji_i(2t/edB)c; . 3) In the basis we list above, the Hamiltonian for 3 takes
|=—0o

the form
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—A A\ -\ 0 0 0 0

AN —2A+w O A 0 —2\ 0

-\ 0 —2A+w O A 0 -\

H=| O N 0 —3A+20w O 0 0 (7

0 0 N 0 —3A+2w O 0

0 —y2n 0 0 0 ~3A+2w O

0 0 -\ 0 0 0 —3A+2w

|

A direct consequence of the Cayley tree connectivity of the 2)\2
near degenerate basis is that the Hamiltonf@nis con- 1=t — 5 (12
structed by diagonal block matrices for ever largéof sizes b 2\
1,24 ...,2°Y, and mixed by off-diagonal matrix ele- £ -1 2\2
ments proportional to.. One can see that in the resonant el om—

case, all diagonal elements are given-byA, corresponding

to the degenerate manifold. Notice also that the off-diagonal
elements are given by-\, except for a few sporadic ele-
ments which appear a&\, associated with higher number
of phonons in a site, such as the stf8e020 in this case.
This nearly self-similar structure appears for all values.of
We expect then that there would be little change in the physi-
cal properties in the large-limit if we replace — 2\ in

A. Resonant regime(A = w)

In this caset,=0 (after a constant energy shift of is

jm

Sk’j=2\/§)\co< Kt 1

made, we obtain the eigenvalues bfg,, as

(13

those few off-diagonal spots with-\. This will be con-
firmed by our numerical calculation, as we will see below
After the substitution, the neveymmetrizedHamiltonian
Hsymtakes a full self-similar form, and allows one to exactly
solve analytically the eigenvalue problem, and better unde
stand the physics of the system. Much of the behavior o
Hsym remains described b in the actual system.

wherek=1,2,...nandj=1, ... k. The asymptotic band-
‘width of the spectrum is therefore given by/2\. Notice

that this behavior is similar to that of a system in magnetic
rf_ields. In that case, the electron-phonon interaction breaks
Fhe degeneracwunder the condition of magnetic resonance
and leads to a “resonance splitting.” In that case, the split-

ting is proportional toa® for a three-dimensional system,

IIl. SMALL HOPPING AND WEAK-COUPLING REGIME
-
. . . a u—
Let us consider the eigenvalue problem for the Hamil- @ —
tonianHs,y,, defined as that in Ed7), except that the ele- 001 _
ments— 2\ are replaced by-\. By using the block de- —_
composition formula i
A B 0 50 100 150 200 2_5'3
0.2 State index I
de =de(D)def{A—BD !C), (8) (b) —
C D 0.0 )

w -
we find_ that the eigenvglues of the Hamiltonighy,, are 0] _'_.—'
determined by the equation -

l’] 160 2(‘)0 3(’)0 41'10 5(’]0._'-.’
SglstMSg/B- . -8%_1:0, (9) 027 (g) State index i
whereN=2", eg=¢—t,, e is the energy eigenvalug, is w 2 i :
defined by 0z ; ’
’.l-'
t= (n— k)(w— A)—w, (10) 0 500 Stat;o;?'lndex 1500 2000

and FIG. 1. Energy spectra for fully self-similatls,, for systems

with different lattice sizesa) n=8, (b) n=9, and(c) n=11. No-

2\2 tice the clear fractal structure of spectra, as anticipated from the
Ek+1= €&k~ 8_k (11) structure ofHy. Increasingn produces a finer scale structure in

the gaps. Herd = w=1 and\=0.1, so that the asymptotic band-

Then, e, can be written as a continuous fractionkiisteps,  width is 42\ =0.5657.
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FIG. 2. Energy spectra fad of systems with different lattice
sizes(a) n=8, (b) n=9, and(c) n=11. Notice the approximate
fractal structure of the spectra. Increasimgives similar structure.
HereA=w=1, A=0.1, and the bandwidth slightly increases from
one panel to the next. TheandB labels in pane(a) indicate states
described in Figs. 4 and 5.

and to o2 for a two-dimensional system, whete is the
Frohlich electron-phonon coupling constaht.

Let us consider the question of eigenvalue degeneracy b

solving e/% s Y8 36=0, which will provide us with a

good estimate in the largd-limit. After some algebra, one
obtains for the eigenvalue equation,

85N/16(82_2)\2)N/8(82_4)\2)N/16(84_682)\2+4)\4)N/16: 0.
(14)

We then have eigenvalues=0, =2\, *2\, and
i)\\/Si:]S, with respective degeneracies oNA6, N/8,

0.6

0.5 1

Bandwith

0.4

0.3

T T T T T T T T T T T
4 6 8

Lattice size

FIG. 3. Bandwidth results fox =0.1 and different values of.
The asymptotic bandwidth fddg,, is 420 =0.5657, shown as a
dashed line. We see that the bandwidth fbis W=6\.

FIG. 4. (a) Electron probabilityP(j) for each sitg (solid line,
scale on lef, and spatial distribution of phonor¥(j) (dashed,
scale on right for state labeled in Fig. 2@). Large electron am-
plitude and phonon number throughout describe an extended, delo-
calized polaron, jointly illustrated in the composite figure at bottom.

N/16, andN/16. Higher-order polynomials would slightly
improve the degeneracy estimate for successively higher ei-
genvalues.

Our numerical results for the eigenvaluesf, ., Fig. 1,
and H, Fig. 2, exhibit very similar characteristics, as ex-
pected. The different panels in these figures show spectra for
n=8, 9, and 11. One can see that the main structure of the
spectra changes little with increasing although a finer
structure appears for higherfilling to some extent the gaps
of the previous structure. Our analytical results match ex-
actly those of Fig. 1. The self-similar structure of the spec-
trum is the manifestation of such symmetry khy,,. One
can see that the original highly degenerate manifold is broad-
ened into a semicontinuous band by the off-diagonal mixing
elements ofH . Notice, however, that large residual de-
generacies remain at the center of the band, and other sym-
metrical values, as described above by Bdf).

The structure of the full HamiltoniaH is shown in Fig. 2,
which still maintains a nearly self-similar structure, despite
the sporadic- A2 “asymmetrical” terms. Notice, however,
that the degeneracy at=0 and other “plateau values” is not
exact here, but is only seen as a slight bréakslope of
each plateau.
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1.0
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o I
2 0.4 z (B)
0.2
3
0.0 0 v
0 1 2 3 4 5 6 7 '8
Site j 4
1 1 — (A)
T 3 T T T T T T
0 50 100 150 200 250 300
State index
| 4 FIG. 6. Total average phonon number for each eigenstate in Fig.
" ’i q 2(a). Higher value plateaus are associated with the more localized
In electronic amplitudes, such as st@&elowest phonon counts cor-
respond to extended electronic states, such.as
| ] ] distributions for different eigenstates in Figs. 4 and 5. The
T 7 electronic probability function is given by
P.(N=(,ldldj|¥,)=> [Cml? (15
] it o

’ where the coefficients in the last expressions are obtained
¥ from the diagonalization oH, so that the eigenvectors are
| given by

I\va>=%} C (mylis{m}) (16)

for eachv eigenstate. Similarly, the corresponding phonon
spatial distribution is given by

o o NL(D=(W,a]a[¥,)= > [Clml®m  (17)
FIG. 5. (a) Electron probabilityP(j) for each sitg (solid line, I.{m}

scale to left, and spatial distribution of phonor§(j) (dashed,
scale to righk, for state labeled® in Fig. 2(a). Electron is localized

at the right end of the chain, while phonons lie throughout, yielding
a stretched polaron, illustrated in the bottom figure.

for each eigenstate. These two spatial distribution functions
give us an idea of how the two different components of each
state are related to one another. These functions are a projec-
tion of the rather subtle coherent interactidios mixtures
between the electron and phonon subsystems. One can see in
Figure 3 compares the results for the bandwidtiiaind  Fig. 4(a) that for the nondegenerate statén Fig. 2(a), the
Hsym from both analytical and numerical results. Notice thatelectron is extended throughout the: 8 lattice. At the same
4.2\ is the asymptoticlargen) analytical result from Eq. time, the phonon amplitude is also extended along the lattice,
(13), for Hgym. We see in Fig. 3 that the numerical results forand one can picture the phonon “cloud” as “surrounding”
the bandwidth ofH;,,, converge quickly to the analytical the electron all along in Fig.(d), effectively describing a
prediction. Similarly, the numerically obtained bandwidth of “tunneling polaron.” In contrast, the degenerate st8tet
H is only slightly larger than the bandwidth éfs,,,, and ¢=0 in Fig. 2a), has its electron component highly local-
clearly has also a finite asymptotic value. This is an interestized at the right end of the lattice, Fig(d, while the phonon
ing feature ofH that although one has a large Hilbert-spacecloud is away, Fig. &), and nearly “detached” from the
dimensionN—1=2"—1 (=2047 forn=11, for examplg electron. One can describe this as a “stretched polafan”
one obtains a finite bandwidth. This is of course also associprecursor of the polaron dissociation predicted at high fields
ated with the fact that there are large degeneracies in thie polymer systems).
energy spectra, which increase wkh[see Eq(14)]. Although by definition the electronic distribution function
To get a better understanding of the physics, we showP, is normalized to unity, the phonon functidd, is not
characteristic electron probabilities, as well as phonon spatialecessarily so, since the electron can create and absorb
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1.0 T T T T T T T
(@ 0.8 i
80+ J J
0.6 -
60 J
0.4 4 -
8 o J 4
a 40 0.2 4 -1
20+ 00 ]
1 T 1 1 ) 1 1 1
0__'_Il.l_l_'-_lll___'_l_-.,¥ 4,._-_"__,III_F_I-,.I_|q_ 2 i
(b) [ ]
0.04 Z 4 ]
Q
0.02 0 »
8
Site j
0.00 - a - .
-0.3 -0.2 -0.1 0.0 0.1 0.2 03 FIG. 9. (a) Electron probabilityP(j) for each sitg for statesA’
€ and B’ indicated in Fig. &). (b) Corresponding phonon distribu-
tions N(j).

FIG. 7. (a) Density of states an(b) tunneling probability func-
tion D, for n=8 system. . . ) .
n sites. A state with an electron at sitean be obtained by

phonons as it propagates up and down the lattice. This difI—he electron hopping—1 steps from the first site, while

ference in phonon content for each state can be seen by cofnting m; ~1 _.1 phonons n the process. For extgnded

paringN in Figs. 4a), and 3a), as thetotal phonon number states, this y|elds<N>_:Zi(| —1)/_n:(_n—1)/2, which

is clearly larger in the lattetstretched polarancase. To matches well the numerical results in Fig. 6, where the most

study this feature throughout the spectrum, we show in Fig. xtended states ha‘(el>23.5.(such as the St?‘te !abeléd.

the total average phonon number of all states in the chai qontrast, an eIectror_1 localized at snt_,easB n F'g'.6’ h"’.‘s

n=28. One can see clearly that the states at the center of tff'én'ttedn* 1 p_honons in the process, just as one finds in the

band E€=~0) have many more phonons=(f=n—1) than exact calculation. .

the rest. An estimate for the average number of phonons forh Transpor_t th'rough stru.cturleWe should empha_S|ze that' )

different states can be obtained by the following argument? e properties '”“S”at?d in Figs. 4 and 5 are quite generic:

The average phonon number is given byN,) states in one of the highlynearly) c_zleg_enerate levels show

=3,P,(i)m, . For an extended stat®, = 1/n for a chain of different degrees of electron localization and an abundance
b ! v of phonons in a stretched polaron configuration. In contrast,

states with nondegenerate companions are delocalized po-

larons throughout the chain with low phonon content. Even
3{ (a) though it is the presence of phonons which delocalizes the
_.-\- electron(in the sense of the original WS ladgiewe obtain
24 —— B'
-<T - \ 8
w 14 A ]
: " e
04 e..
5
3{ (b) —_— ]
44
—— A ]
2 —r % 3.
'<|1 - J
@ 14 - H 24
4 » Sym 4
0 1'_
0 50 100 150 200 250 300 01
State index (I) 5I0 1 lI)O 1;‘:0 260 2%0 300

. . . State index
FIG. 8. Energy spectra for system with lattice size8. (a) For

full Hamiltonian H and (b) for Hg . Here AA=w=1, and\
=0.1. A’ andB’ states are shown in Fig. 9.

FIG. 10. Total phonon number for each eigenstate in the non-
resonant regime, as in Fig. 8.
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FIG. 11. Electron probability?(j) for stateA’ in Fig. 8() for

various detuning valuea'. FIG. 12. Relation between localization lendttand 1A’. Solid

line showsL/d=2\/A" dependence, while the dots show values of

that the localized electrons are accompanied by manz obtained from fit of functions in Fig. 11 to the form exp

phonons, reminiscent of the self-localized polarons when th
coupling is strong. contributezeroto the transport amplitude through the chain,
The rather complicated behavior of the states would ofand this behavior is exhibited by all the high peaks in the
course be reflected in various properties of the system. Let U3OS. This is clearly consistent with the spatially localized
focus here on what one could measure if electrons were incharge nature of the highly degenerate states. On the other
jected from one end of the chain and were collected out ohand,D shows large values for states “in the gaps,” confirm-
the other end. This is motivated by the ability to carry outing in fact that the nondegenerate states in the spectrum have
just such experiments under strong electric fields in semicon@n extended nature. The variations showBiwould then be
ductor superlattices, as well as in other systems. The trangeflected in strong amplitude modulations within each of the
port properties provide information about the density ofphonon replicas in tunneling experimefiswhenever the
states in the structure and the spatial charge distribution gBsonance regime is reached.
the different statesgfor optical response, see Ref.)19he

X|/L).

contribution of various eigenstates to the charge transport B. Nonresonant regime(A # w)
can be described by the quantity By studying the equivalent continuous fracti¢h2) for
the nonresonant regime, we find that the spectrum for this
D,=P,(1)P,(n), (189) _ _
since the tunneling amplitude is proportional to the density 7] h ]
of states in the leads and the wave-function amplitudes a R
both ends of the structur¢he sitej =1 andj=n).8 In fact, 0.8 . i
the tunneling probability can be calculated from Smatrix .
formalism as|T|?, whereT={(g¢,R|S|¢;,L). HereR andL z ] L
refer to the right and left leads. In the wide-band limit, £ 06+ . -
© .
3
Tocrf dt,dtye itz st (n|GR(t,—t;)[1) g, 0.4 -
=2 T(n|y)(v]1)8(e1—s)), (19 021 -
wherel describes the electron interaction with contacts, and 0.0 ; T . . . T .
GR is the retarded Green function connecting both ends of 0.0 0.2 0.4 08 08
the structure (=1 andj=n). We see then that the quantity Y
D,=[(n[v)(v[1)[?<|T|*is directly involved in the tunneling FIG. 13. Bandwidth in the resonant and stronger-coupling re-

probability. Figure 7a) shows the density of stat¢®OS)  gime as a function of coupling constapt Here,A=w=t=1. As
and Fig. 7b) shows the quantitp, for the system withn v=0.6, neighboring bands will overlap, indicated here with a dot-
=8. We can see thalll the states at the center of the bandted line.
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case is quite different from that under resonance. For the From the discussion, it is clear that the eigenstates are
case of the small coupling constant, i.e/w<1, and\/A localized in the nonresonant regime. As such, they contribute
<1, the unperturbed spectrum is a series of ladder levelkttle to the transport across the chain. One can easily calcu-
gj=—(w—A)j (j=1,...n) instead of the degenerate late the quantityD, as before. As expected, the value»f
manifold in the degenerate case. Notice that the spacing bés very small 10 2 for every state, and very different
tween the ladders is given by the detuniny,=|w—A]|, from the resonant case. This behavioot shown is com-
instead of the original WS ladder energy. The correction inpletely consistent with the localized nature of the eigenstates.
troduced by the interaction breaks some of the detuned ladFhus, we see that in this case the dominant conduction be-
der degeneracies and gives some substructure to the laddeavior, if any, would be thermally activated hopping conduc-
Solving the first three factors;)'%e}"*s5"®=0, to second tion, instead of band conduction.

order,\?, we find that the spectrum is a series of states with

energies nA’, nA’+2\%A’, (n—1)A’, (n—1)A’ IV. BEYOND SMALL HOPPING AND WEAK-COUPLING
—2\?/A’, etc., with respective degenerachést, N/4, N/8, REGIME

N/8, etc. Notice that here the electron-phonon produces level

splittings ~\?, unlike the resonant case where the splitting R ) e
(bandwidth is linear in\. The problem is also solved nu- HamiltonianH (or Hsyr), valid only under the condition of

merically and we show the resulting spectra in Fig. 8, fors_maII hc_Jpping constarh_tA<1_. In this_sec@ion we _extend our

both H [Fig. 8a)], andHay, [Fig. 8b)]. Our analytical re- discussion beyor_ld this regime, which in principle may be

sults match the numerical results fbi,,, quite well. It is relevant, depr(landmg on _d|fferent sys.tenl"n pararfneters: "

interesting to note the fine structure in each rung of this ste uf’g the Lang-Firsov Tcanomca transformatid

modified ladder. The difference in electronic and phonon dis— € Ho€ ~, where S=—gZcc(aj—a;,,) andg=v/w.

tributions within a given ladder are rather subtle. We notice! N€ transformed Hamiltonian takes the form

again that there are only small differences between the spec-

tra of H andH gy H*=2 ec/ci+ w2 ala;—g?wc/c
Figure 9a) shows the electron probability for different ] ]

states in the spectra, labeléd andB’ in Fig. 8@a). Figure

All the discussions so far have been focused on the

9(b) shows the distribution of phonons for the same states. It +te‘922 [cjl1cje9(ajT+1‘ajT)e‘9(aj+1—aj)+ H.c].
is apparent that the electron wave function is localized and ]
separated from its phonon cloud. The two states only differ, (20)

basically, on which site to be localized abdas one would . L ) )

expect from their position in different rungs in the ladder in On€ can see that this Hamiltonian is suitable for studying

Fig. 8a)]. In fact, the different states in th&’ ladder are ~Strong-coupling dynamics. As n the casetéf we use the

associated with different lattice sitéhe highest rung states OPerators for WS ladder stated; . Then the Hamiltonian

ate=nA’ being localized aj=n). We also show in Fig. 10 can be rewritten in the form

the average phonon number per state for the entire spectrum.

The structure of this figure is quite different from thatin Fig. ~ H= - (g2+ )Addej +0, ajTaj +gt’J3(2t'/A)

6, as it reflects dramatically different dynamical behavior. A ] i

phonon counting argument as the electron hops and emits

phonons can e>_<p|a.in the average number of phonons in the XE [(aj+1—ajT+1—aj+af)(dfdj+1—df+1dj)],

different states in Fig. 10, although clearly here it produces a ]

nearly negligible mixing of states~(\?). (21)
One can further explore the extent of the localization na- 5

ture of the eigenstates. In Fig. 11, we show the electronigvheret’ =te 9. We see then that the effective hopping con-

probabilities of staté\’ for variousA’ (or electric-field val- stantt’ becomes smaller than Thus the problem can be

ues. We might expect that the localization length would bemapped to that in the preceding section, with an effective

2N\/A', e.g., the localization length for the original WS state hopping constant’ and an effective coupling constant,

is 2t/A. This simple expectation is confirmed by numerical ,

calculations, as seen in Fig. 12, where the solid line shows t'=te 9, )\’=gt’J§(2t’/A). (22

the 2\/A’ dependence, and the dots indicate the localization

length for states of varioud’ (the localization lengti is  Itis clear that\’—0 wheng—0, as expected, and the spec-

extracted from a fit to an exponential amplitude drop aboutrum is the discrete WS ladder in the absence of electron-

its central site,e“x‘“-)_ One would in fact expect that the phonon interaction. Moreover, one can see that for weak cou-

manifestation of localization in real spadand energy pling, the bandwidtiW=6\" is proportional tog, just as in

would be susceptible to be measured via Bloch oscillationsthe situation discussed in Sec. Ill(ee Fig. 3 Beyond the

just as in a typical WS ladder. In this case, however, theveak-coupling and small hopping regime, howew&tand

frequency of Bloch oscillations id’, and notA. Thus the A\’ have a nonlinear dependence @nFigure 13 shows the

electron-phonon interaction changes the frequency of Blocleoupling constant dependence of the bandwidttfor the

oscillations, and this effect may be possibly observed in exsesonant and stronger-coupling limih=w=t=1. Notice

periment. that the bandwidtiW=1 for y=0.6. At this coupling, the
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bands in neighboring WS rungs will begin to overl@and help of phonons, a sort of quasicontinuous band will form
interband terms would need to be considerdds clear that under resonance conditions, even for weak coupling con-
t_hese corrections to the dependenc®\adppear also as func- stants. The band shows an approximate fractal self-similar
tions oft, A, and/orw. structure, which is inherent in the near self-similarity of the
Similar discussions are also relevant in the off-resonanHamiltonian. Although the phonons can help the electron
case. For example, since the localization length is propofjump from one WS ladder state to another, the phonons can
t|.0na| to 2)\,./A’ (SeC. 11 B), there is also a correction to the also prevent the electron from propagating, if too many
simple relatiorL.o<2\/A", whent and/org are not small. For - phonons are involved. These peculiar interaction differences
example, with mc;easmg coupling constant, the correction t‘bive rise to a variety of unusual states, includiagdelocal-
the ladder~2\"9/A" may become comparable with the ;o4 polarons despite the strong electric field, with a typical
spacing between the detuned ladder levels In thqt €ase, phonon cloud accompanying the electron éndstates with
the ladder structure for the off-resonance case will also d'shigh degeneracy at the band center, where the electron is

appear. In this situation, the electron can also become del(?c')calized in a site of the lattice, and the phonon is located

calized, even if in the nonresonant regime, but due to th%\way from the electron, in a stretched configuration. The
strong couplingy.

It is interesting to compare our results to those of Boncaband structure is .also manifested in the transport properties
and Trugmarf,as one goes from the weak to the strong tun-.Of the sys‘Fem, which we expect could be observeq in tnnel-
neling regime. These authors found by numerical calculatio’d €xPeriments. The level structure and extension of the
of the drift velocity that for small electron-phonon coupling, different states will appear as a modulation of the phonon
there are energies where the electron cannot propagate. fRPlicas in the tunneling experiment. For weak coupling, this
our approach, this corresponds to the formation of the quaould only occur if the system is in resonanee=A, as
sicontinuous band for each of the WS ladders. The electrogway from that condition, the states are basically localized
cannot propagate when its energy lies in the band gap. Howand would not transport currefgxcept for thermal effects
ever, with increasing coupling constant, the band gap willln a given structure, the resonance condition can be reached
disappear because of the overlap of subsequent bands. Mdvg sweeping the electric field, while monitoring the tunnel-
quantitatively, let us consider the casew=1 (as the pa- ing through the structure. As the spacing between the de-
rameters in Ref. )f Since the hopping constant is large, oneformed rungs and the localization length of the eigenfunction
needs to adopt the formalism in this section. As seen in Figcan be adjusted by electric field, it would be quite interesting
13, the bandwidth increases with increasing coupling conto see the transition in experiments. With increasing coupling
stant, producing band overlap for large enougliThis van-  constant, the “minibands” will overlap, and give rise to an
ishing of the gaps as a function gfwould coincide with the  overall merging of the phonon replicas in tunneling, even
resumption of particle drift in the system. Just such behaviofyhen away from the resonance regime.

was found numerically in Ref. 7, and one can now explain it

in terms of the level structure of the system. It is also inter-

esting to notice thgt the oyerall envelope seeb jnis simi- ACKNOWLEDGMENTS
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