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Ising model on three-dimensional random lattices: A Monte Carlo study
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We report single-cluster Monte Carlo simulations of the Ising model on three-dimensional Poissonian ran-
dom lattices with up to 128 06950° sites which are linked together according to the Voronoi-Delaunay
prescription. For each lattice size quenched averages are performed over 96 realizations. By using reweighting
techniques and finite-size scaling analyses we investigate the critical properties of the model in the close
vicinity of the phase transition point. Our random lattice data provide strong evidence that, for the available
system sizes, the resulting effective critical exponents are indistinguishable from recent high-precision esti-
mates obtained in Monte Carlo studies of the Ising model @hdield theory on three-dimensional regular
cubic lattices.
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I. INTRODUCTION clearly signals the disordered fixed point,

Experimental studies of the critical behavior of real ma- ylv=1.9666), pB/v=0.51713),
terials are often confronted with the influence of impurities
and inhomogeneities. For a proper interpretation of the mea- r=0.630413) [pure(Ref. 19],
surements it is, therefore, important to develop a firm theo-
retical understanding of the effect of such random perturba- ylv=1.9703), PBlv=0.5152),
tions. In many situations the typical time scale of thermal
fluctuations in the idealized “pure” system is clearly sepa- »=0.67810)  [disorderedRef. 13],

rated from the time scale of the impurity dynamics, such that
to a very good approximation the impurities can be treated aand, moreover, satisfies the boung 2/D = 2/3 in the disor-
guenchedfrozen, random disorder. dered case. Recently also the predicted softening effect at
The importance of the effect of quenched, random disorfirst-order phase transitions has been confirmed for 3D
der on the critical behavior of a physical system can be quite-state Potts models with=3 using MC(Refs. 16—18and
generally classified by the critical exponent of the specificHTS (Ref. 19 techniques.
heat of the pure system,, . The Harris criteriohasserts that The overall picture is even better in two dimensions
for @,>0 quenched, random disorder is a relevant perturbawhere several models with,>0 (SD Baxter modef® SD
tion, leading to a different critical behavior than in the pure Baxter-Wu modef?, three- and four-state RB Potts model,
case. In particular one expetta the disordered system that Ashkin-Teller modet®) and the marginal ¢,=0) 2D Ising
v=2/D, wherev is the correlation length exponent abd  modef*~?8have been investigated. Also the softening of the
the dimension of the system. Assuming hyperscaling to béirst-order transitions for the 2D models witj=5 has been
valid, this impliesa=2—-Dv»=<0. For a,<0 disorder is ir-  confirmed?*~3?For a recent review, see Ref. 33.
relevant, and in the marginal cagg=0 no prediction can In this paper we study another type of quenched, random
be made. For the case @foncritica) first-order phase tran- disorder: namelygonnectivity disordera generic property of
sitions it is known that the influence of quenched, randonrandom lattices whose local coordination numbers vary ran-
disorder can lead to a softening of the transition. domly from site to site. Physically the concept of random
Many theoretical and numerical studies have been defattices plays an important role in an idealized description of
voted to quenched, random site-diluti¢®D), bond-dilution  the statistical geometry of random packings of particfes®
(BD), or more general random-boigB) systems. Since for A prominent example is the crystallization process in liquids,
the three-dimension&BD) Ising model it is well known that and many statistical properties of random lattices have been
a,~0.1>0, quenched, random disorder should be relevanstudied in this context’ From a more technical point of
for this model. This has indeed been verified by a variety ofview, random lattices provide a convenient tool to discretize
techniques: Monte CarlMC) simulations for SD(Refs.  spaces of nontrivial topology without introducing defects or
4-6) and BD(Refs. 7 and § high-temperature seri¢siTS)  any kind of anisotropy° ~#°This desirable property has been
expansions for BORef. 9, and field theoretical renormal- exploited in a great variety of fields, ranging from diffusion
ization group studieéRefs. 10—1R For an excellent review limited aggregatioff and growth models for sandpiffver
and an extensive list of experimental, theoretical, and nuthe statistical mechanics of membranes and stffrtggquan-
merical estimates in the last two decades, see Ref. 14. Astam field theory and quantum gravit§*%#445The pre-
result consensus has been reached that, while the critical egerved rotational, or more generally Poincaievariance
ponent ratiosy/ v=2— » and 8/ v are hardly distinguishable suggests that spin systems or field theories defined on ran-
from the pure model, the correlation length exponent dom lattices should reach the infinite-volume or continuum
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limit faster than on regular lattices. Conceptually, however, 3D Poissonian Voronoi/Delaunay random lattices
such an approach only makes sense as long as the critici
properties of the considered system are not modified by the
irregular lattice structure. In view of the quite general Harris
criterion this is a nontrivial questiofin particular due to the
inherent spatial correlations of the disorder in this taae
least for systems characterized by=0. § 2000 1
Specifically we considered 3D Poissonian random latticesg.
of Voronoi-Delaunay type and performed an extensive com-g
puter simulation study of the Ising model for lattices varying =
in size fromN=2000~13° to 128 006=50° sites. For each g 1000 |
system size quenched averages over the connectivity disol
der are approximated by averaging over 96 independent re
alizations. We concentrated on the close vicinity of the tran-
sition point and applied finite-size scalifigSS technique® W
to extract the critical exponents and theeakly universal %0 50000 _ 100000 150000
“renormalized chargesU3 andU} . To achieve the desired # sites
accuracy of the data in reasonable computer time we applied FG. 1. The total CPU time spent in constructing a three-
the single-cluster algorithf“*®to update the spins and fur-  gimensional Poissonian random lattice according to the Voronoi-
thermore made extensively use of the reweightingpelaunay prescription vs the number of sitésThe circles show
technique4.9 the fraction of time needed to set up the “cloud of neighbors”
Previous studies of connectivity disorder focused mainlydiscussed in the Appendix.
on 2D where pronounced effects were observed in MC simu-
lations ofqg-state Potts models on quenched, random graphgiere d(x,y) denotes the usual Euclidean distance. This
provided by models of quantum gravitsnodified universal-  yields an irregular tessellation of the unit volume with
ity classes forg=2 and 4(Refs. 50-52 and softening for D-dimensional Voronoi cell§polygons in 2D, polyhedra in
q=10 (Refs. 52 and 53. For 2D random lattices of 3p, ... ).
Voronoi-Delaunay type, on the other hand, no influence was (jii) Construct the dual Delaunay lattice by linking the
seen in simulations fog=2 (Refs. 54 and 56and q=8  center sites of all Voronoi cells which share a common face.
(Ref. 5. The main difference between these two types of The first step approximates the Poissonian process. In the
random lattices is the highly fractal structtffef random  second step we always assume periodic boundary conditions,
gravity graphs which suggests a stronger “degree of disori.e., construct lattices of toroidal topology. Using this con-
der.” A similar dependence on the “degree of disorder” was struction the number of nearest neighbors of the Delaunay
recently observed for several aperiodic perturbat®ns. lattice, thelocal coordination numben, varies randomly
The rest of the paper is organized as follows. In Sec. lifrom site to site. This constitutes the special type of
we describe some properties of the random lattices used iuenched, random connectivity disorder we are investigating
the simulations, and in Sec. Il we define the model and given this work.
a few simulation details including estimates of autocorrela- The actually employed construction of the random lattices
tion times. The quantities measured are defined in Sec. IMpllows loosely the method of Ref. 60 and is described in the
where also their theoretically expected FSS behavior is reAppendix. Following this method we succeeded to reduce
called. In Sec. V, we present the FSS analysis of our datghe complexity of the lattice construction for all practical
close to the transition point which yields estimates for thepurposes from ordeN?, as expected for the most straight-
critical exponents. Finally, in Sec. VI we present a discussioforward implementation, to ordéy, up to a small overhead
of our main results and close with a few concluding remarks«N? resulting from the initial calculation of the distances
between all pairs of two sites. The actually measured CPU
Il. RANDOM LATTICES times as a function oN are shown in Fig. 1.

3000

o—= total
&—=o boxing (cloud)

A. Voronoi-Delaunay random lattices

. . . . B. Random lattice properties
The notion of a “random lattice” is by no means unique prop

and, in fact, many different types of random lattices have To test our random lattice construction we measured sev-
been considered in the recent literatffé%°2°3%9n this pa-  eral quantities which characterize the topology and geometry
per we concentrate on so-called Poissonian Voronoiof the lattices. These quantities are exactly known in the
Delaunay random lattices which, in arbitrary dimensions, ardimit N—o. “Topological” quantities are the number of

defined as follows®444% links N,, the number of triangle®l ., and the number of
(i) Draw N sitesx; at random in a unit volumésquare in  tetrahedraN ., which according to Euler’s theorem should
2D, cube in 3D,...). satisfy for a torus topology in any number of dimensions and

(i) Associate with each sites, a Voronoi cell, ¢; ~ for anynumber of sitesN the relation
={x|d(x,x;)=d(x,x;) Vj#i}, which consists of all points
X that are closer to the center sitethan to any other site. N—N;+N,—N_=0. 1)
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TABLE I. The average coordination numbar and the total
number of simplices normalized by the number of sites. The errogiven tetrahedron and then over all the tetrahedra. This is
bars are computed from the fluctuations among the 96 realizationshus the average link length per tetrahedron, aod the
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fined in such a way that we first average over the sides of a

mean link length averaged over the whole lattid&)

N q Ni /N Na /N N,/N = (EiNz'lli)/N| , Which is always larger due to the fluctuations
2000 15.5444) 7.772119) 13.544137) 6.772119) in the number of tetrahedra from realization to realization.
4000 15.53®) 7.766116) 13.532132) 6.766116) Our results normalized with an appropriate power of the den-
8000 15.53@)  7.768310) 13.536621) 6.768310) sity p=N/V are displayed in Table Il. Fromd=4000 on the

16 000 15.53®) 7.76 74476) 13.534815) 6.7674476) numerical results are again fully consistent with the analyti-
32000 15.534) 7.7670655 13.534211) 6.7670655) cal predictions ad—oo. Since all numbers agree very well
64000 15.5357) 7.7675%36) 13.5350772) 6.7675%36) with the analytical predictions, we can be quite sure that our

128000 15.534®%) 7.7674326) 13.5348653) 6.7674326) lattice construction works properly and that we have picked a

Exact 15.538... 7.7672... 13.535&... 6.7672...  Wpical sample of random lattices.

The (normalized probability densities?(q) of the coor-
48 24 48 24 dination numberg) are showr_1 in Fig. 2 for the Iattices_ Wit_h

Exact 2+3_5772 1+£W2 ﬁqﬁ ﬁwz N=64 000_anoN=128 000 sites. The average coordination

number isq=2+ 22 72=15.53% ... . Due to thdong tail

of P(q) for large values ofj, the maximum ofP(q) is found
at the next smaller integer numbg 15, which occurs with

i o
We have of course explicitly tested that this topological con—a probability of 12.03%.

straint is satisfied for all realizations, which is quite a sensi-
tive confirmation that the lattice construction works properly.
The measured averages @fN;, N, , andN, over the 96
realizations used in the simulations are collected in Table I.
The error bars are computed from the fluctuations among the We simulated the standard partition function of the Ising
96 realizations. We see that the analytically knoWrscc ~ Model,

limits are approached very rapidly. The only exception is

perhaps our smallest lattice with= 2000 sites where devia- _ KE —_ _
tions from the infinite-volume limit are clearly visible. For Z_ES:‘} e E= _%:} sisj, si=+1,
N=4000 in particular the average number of nearest neigh-

bors,q, is fully consistent with the theoretical value of where K=J/kgT>0 is the inverse temperature in natural
units and(ij) denotes the nearest-neighbor links of our
three-dimensional toroidal random lattices. In Eg) we
have adopted the convention used in Ref. 55 and assigned to
each link the same weight.

As “geometric” quantities we measured the average vol- Another interesting option would be to assign to each link
umes of the simplices, i.e., the average link lendth 3 weig_htD dlepending Of][ th? geomer!]trical tﬁro?erti?ﬁ o;‘ ttrr:e
_ <N, Y : ~ oronoi-Delaunay construction such as the length of the
_EiﬁlA[(E'ETI')/ES]/NT’ the average triangle area links or suitably defined areas of the associated tesselation.
=(2{Z1A))/N,, and the average volume of a tetrahedron|y aqgition to the connectivity disorder this would introduce
T=(EiN=TlTi)/NT- Notice that the average link length is de- also a(correlated disorder of random-bond type. In order

I1l. MODEL AND SIMULATION TECHNIQUES
A. Model

()

48
— 7?=1553% ... .

q=2+ 35

)

TABLE Il. Average simplex volumes properly normalized to natural units.

N WN)/p—lls Wp—lls E/p—Z/a ?/p—l
2000 1.2854(22) 1.236 7Q17) 0.597 00495) 0.147 66641)
4000 1.2856618) 1.2371713) 0.597 36270) 0.147 79734)
8 000 1.2856@13) 1.237 1110) 0.597 31255) 0.147 74123)

16 000 1.2856235) 1.237 09155) 0.597 30631) 0.147 76617)
32000 1.2855548) 1.237 02749 0.597 28924) 0.147 77512)
64 000 1.28553(A0) 1.23700232) 0.597 27219) 0.147 763078)

128000 1.2855428) 1.237 01220) 0.597 27%11) 0.147 766€58)

Exact 1.23703. .. 0.5972% . .. 0.147760 . ..

3 \"5x7% (1 3\2%5%x7 (2 35
Exact (E) 32x 4% F( 5) (E) 35 5) 24m?
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three dimensions the single-cluster algorithm is more effi-
cient than the original multiple-cluster formulation of
oo No128000 Swendsen and Warf§. _ o N
5—=a N= 64000 All runs were performed in the vicinity of the critical
point K. As a first rough guess df. we used the mean-

field boundK .= K== 1/g~0.064. Due to the large average
coordination number of 3D random lattices, the mean-field
approximation should be better than for the simple cubic
(SO lattice whereK(39)=1/6 is about 1.33 times smaller
than the actuak (°®~0.221 654 6. Therefore, by applying
the same correction factor to the random lattice mean-field
estimate we expect tha€. is bounded from above b,
=0.085. This heuristic argument thus suggests that 0.064
000 - S - " Heeesseoses 20 <K,=<0.085, such thaK.~0.075 should be a reasonalale

coordination number g priori guess. Once good simulation poikig were estimated

for the two smallest lattices witN=2000 and 4000 sites by

10° . . . determining for a few realizations the location of the
specific-heat and susceptibility maxima, we used FSS ex-
ST 8 ,_ trapolations(assumingv~0.63) to predicK, for the larger
’ lattices.

Depending on the lattice size from 30 000 to 180 000 clus-
ters were discarded to reach equilibrium from an initially
completely ordered state. Primary observables are the energy
per spin, e=E/N, and the magnetization per spim
=M/N=2;s;/N, which were measured every;, cluster
flip and recorded in a time-series file. The average cluster
size(|C|) is an estimator for the reduced susceptibility in the
high-temperature phasg,.;=N{(m?), and therefore scales
with the lattice size according 10”'”, wherey andv are the
usual critical exponents. Since in three dimensigfs=2
0 10 20 30 20 —n~2, we have to performg,eL cluster flips in order to

coordination number q flip, on the average, approximately the same fraction of the
- . o total number of spindN=L3, for all lattice sizes. By adjust-

FIG. 2. (8) The probability densityP(q) of the coordination  jng the absolute scale of;, we made sure that for all lattice
numbersq. The average ig=2+487/35=15.538... . () The  sjzes the measurements were taken after aNéispin flips.
same data as ifg) on a logarithmic scale. Since for the single-cluster update algorithm the autocorrela-

tion times scale only weakly with (see the discussion be-
not to mix up these two quenched disorder types, we decidefw) one then expects that, with about the same number of
to concentrate in this study exclusively on the effect of themeasurements, the statistical accuracy is comparable for all
connectivity disorder. lattice sizes. With this setup we performed 100 000 measure-
ments for each lattice size and realization (110 000 Nor
B. Simulation =8000). For more details on the employed statistics, see

o . . .Table 1lI.
The finite-size scaling analysis is performed on the basis

of seven different lattice sizes witN=2000, 4000, 8000, _
16 000, 32000, 64000, and 128000 sites. For later use we C. Update dynamics

adopt the notation fl%r regular lattices and define a linear A yseful measure of the update dynamics is the integrated
lattice sizel. by L=N"*. The linear sizes of the lattices thus autocorrelation time-.% To estimater for the measurements

vary from L~12.6 to L~50.4. To investigate the eren- of the energye and the magnetizatiom we used the fact that
dence of thermal averages on different realizations we .

performed MC simulations, for each lattice size, on the” €Nters in the error estimai€’=0?27/Npeqsfor the mean
96 randomly chosen random lattice realizations discussed i@lue O of npeqscorrelated measurements with variance
Sec. 1. =(0;0)=(0?)—(0)? and determined@? by blocking pro-

For the update of the |Sing spins we emp|oyed Wolff's cedures. Using 100 blocks of 1000 measurements each we
Sing]e-c]uster(l(:) a|gorithmf17 Various tests, in particu|ar obtained the results Compiled in Table IV where all results
for the Ising model on two- and three-dimensional regularare averaged over the 96 randomly chosen realizations. We
lattices, have clearly demonstrated that critical slowing dowrfee that the integrated autocorrelation times for the measure-
can be significantly reduced with this nonlocal updatements ofe and m are of the order ofr,~2.5-3.5 andr,
algorithm®~%3These tests also showed that in particular in~2.4—3.0. Since completely uncorrelated data correspond to

0.10 |

0.05

107

Z 10" ¢

—o N =128000
=——=a N= 64000

-6

10

(b)

107®
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TABLE Ill. Monte Carlo parameters of the simulationg=1?3 IV. OBSERVABLES AND FINITE-SIZE SCALING
is the lattice size, the hash mark symbol # denotes the number of . . . .
realizationsK , the inverse simulation temperaturgye,, the num- From the time series o and m it is straightforward to
ber of cluster flips during equilibration, anh,.,sthe number of ~COMpute in the FSS region various quantities at nearby val-
measurements taken evary,, cluster flip. ues ofK, by standard reweighting methotfsFor the esti-
mation of the statisticaltherma) errors, for each of the 96
N L # Ko Niherm Nmeas  Miip realizations the time-series data were split into 100 bins,

which were jackknifeff to decrease the bias in the analysis

2000 126 96 0.0735 30000 100000 4 of reweighted data. The final values are averages over the
4000 159 96 0.0735 50000 100000 5 96 realizations which will be denoted by square brackets

8000 200 96 0.0732 66000 110000 6 [...],, and the error bars are computed from the fluctua-

16000 25.2 96 0.0729 80000 100000 8

tions among the realizations. Note that these errors contain

32000 31.7 96 0.07285 100000 100000 10 both the average thermal error for a given realization and the
64000 39.1 96 0.07265 150000 100000 13 theoretical variance for infinitely accurate thermal averages
128000 50.4 32 0.07253 180000 100000 16 which is caused by the variation of the quenched, random
128000 50.4 64 0.07259 180000 100000 16 geometry of the 96 lattices.

From the time series of the energy measurements we can
compute by reweighting the average energy, specific heat,
7=0.5, our thermal sample thus effectively consists of abouind energetic fourth-order parameter:

15000-20 000 uncorrelated measurements for each of the 96
realizations. This amounts to a total of (1.5—2a)F effec- u(K)=[(E)Jav/N, 4
tively uncorrelated measurements for each lattice size. 2 > 2
While this properly characterizes the effective statistics of C(K)=KN[(e%) = (&) Jav, ®)
(e)

our simulations, the numbers ferof a single-cluster simu-
3(62>2

lation are not yet well suited for a comparison with other V(K)=
update algorithms or with single-cluster simulations on regu-
lar lattices. To get a comparative work estimate, the usu

procedurd’ is to convert ther by multiplying by a factorf

=nﬂip<|C|)/N to a scale where, on the average, measure
ments are taken after every spin has been flipped ige-

1_

(6)

av
aéimilarly we can derive from the magnetization measure-

ments the average magnetization, the susceptibility, and the
magnetic cumulants:

lar to, e.g., Metropolis simulationsFor quenched, random m(K)=[{|m[)]av, (7)

systems this procedure is not unique due to the necessary

average over realizations. In Table IV we therefore present x(K)=KN[{m?)—{|m|}?] ., (8)

both optiong 7],,=[f- 7].yand alsq f 1, [ 7].. The differ-

ences between the two averaging prescriptions are, however, (m?)

extremely small. Up(K)=|1- 3(m)?] (C)
The numbers in Table IV obtained in this way are very av

similar to results for the regular SC latti¢k®? By fitting a

power law r=L? to the data for the five largest lattices we _ (m*)

obtain [ 7¢]a,=0.82(6).%%? and [ ]~ 1.07(8).°1°?) Uas(K)=|1- 3mye| (10

av

respectively. The dynamic critical exponerztdor the ran-

dom lattice simulations should be compared wit Further useful quantities involving both the energy and mag-
=0.28(2) andz,=0.14(2) for the SC latticé" netization are

TABLE IV. Average cluster sizé(|C|)],, and autocorrelation times of energy and magnetization at the

simulation pointk,, wherer=f- 7 andf=ng,(|C[)/N. The tau’s are obtained from a blocking analysis on
the basis of 100 block.

N [<|C|>]a\, [;e]av [7elav [f]av'[;e]av [;m]av [ 7m]av [f]av'[;m]av
2000 246.91.9) 2.529400 1.24519 1.249 2.43438) 1.20Q20) 1.202
4000 453.83.9 2.44342) 1.37520) 1.384 2.41238) 1.36Q20) 1.367
8000 740.15.5 2.70242) 1.49422) 1.500 2.59440) 1.43622 1.440

16000 1084.0.5 2.95543) 1.59321) 1.602 2.7388) 1.47522) 1.480
32000 196217) 2.741500 1.66624) 1.681 2.5744) 1.567123 1.577
64000 26784) 3.17155 1.71827) 1.728 2.79642) 1.51623 1.520
128000 352(87)  3.9211)  1.70542 1.725 3.15772) 1.38542) 1.390
128000 432B41) 3.39972) 1.82431) 1.838 2.96460) 1.59329 1.602
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TABLE V. Fit results for the critical coupling(., using the FSS
d[(|m[)]ay
d—K=[(|m|E)—<|m|><E>]av, (1)  ansatz Kpe=K.+alL™™ and our best estimate of i/
=1.5875(12). The fit range is always frol= 4000 to 128 000.
dIn[{|m m|E
av c 0.072 428 240) 0.1010(12)  0.63
din[(m®)]., [ (m?E) X 0.072 421 (40) 0.0182(11)  0.87
IK = 5 —(E) . (13 du,/dK 0.072 422 154) —0.0326(14) 0.65
(m?) av dU, /dK 0.072 423 844) 0.0002(12)  0.89
o o N o dl(|m|)]a/dK 0.072 427 740) 0.0525(11)  0.82
In the |nf|n|te-vo_IL_Jme Ilmlt thes_e_quantltles exhlblt_ SINGU- g In[(jm{) ], /dK 0.072 425 043) ~0.0063(12) 0.83
Igrmes at the transition point. In_ finite systems the smgular_l-c| In[(r?)],,/dK 0.072 4 25844) ~00146(12) 0.76
ties are smeared out and scale in the critical region according
to Average 0.072 424(10)
o Weighted av. 0.072 42496)
C=Cregt L fcO)[1+ -], (14 Final 0.072424 §10)
[{Im)Jay=L" " fm(0[1+ -], (15
. we show in Table V besides the estimates #f also
x=L"",00[14 -], (16 the values of;,i=1,...,7(see also Fig. %
It should be emphasized that while the precise estimates
d[<|m|>]av _ . itati i
=LA-Af ()[4 -] (17) of a; do depend on the value of the qualitative conclusion
dK m il ~ . . . _
thatx=const foera)ﬁ does not require ang priori knowl
q1 b edge ofv or K. Using this information we have thus several
n[{|m| >]av:L1/yf (O[1+---] (18) possibilities to extract unbiased estimates of the critical ex-
dK P ' - [ -
ponentsy, al/v, B/v, andy/v from least-squares fits assum
ing the FSS behaviord4)—(19). Oncev is estimated we can
dU2p=L1”’fU [+ -] (19 then useKma)ﬁ(L)zKCJra,-Lfl’”ﬂL --- to extract alsaK. and
dK 2p a; .
whereC,4is a regular background term, «, 8, andvy, are
the usual critical exponent$,(x) are FSS functions with A. Critical exponent »
x=(K—K L (20) Let us thus start with the correlation length exponefdr

which we can obtain X 7=28 different estimates by con-
being the scaling variable, and the brackets- - - -] indi-  sidering the scaling ofd In[{|m|)],,/dK, dIn[{m?)],/dK,
cate corrections-to-scaling terms which become unimportardU, /dK, anddU,/dK at the seven sequences of pseudo-

for sufficiently large system sizds transition pointsK4(L). Of course, these estimates are sta-
tistically notuncorrelated, but they are differently affected by
V. RESULTS corrections to the leading FSS behavior. To test the impor-

By applying standard reweighting techniques to each Orcance of these corrections to scaling we first estimated

the 96 time-series data we first determined the temperatu gom fits using all av_ailable lattice sizes and then _compared
dependence ofC.(K), xi(K) =1 96 in the With the results of fits where the two smallest sizes were
] y ] LI | L | il

neighborhood of the simulation poiiti,. By estimating the successively discarded. As a result we did not observe any

: S N systematic improvement by omitting the smallest lattices. In
valid reweighting range for each of the realizations we mad?act already for the fits using all sizes, we obtained

sure that no systematic errors crept in by this procedure. '
. ._goodness-of-fit parametéP€Q=0.3 for about 80% of the 28
Once the temperature dependence is known for each realiz lis. The only unacceptable fit was thata[(m?)],,/dK at

tion, we can easily compute the disorder average, e.g N .
C(K)=2°,C;(K)/96, and then determine the maxima of the Kma sequence wittQ=0.01. Here we omitted thél

the averaged quantities, e.glma*(Km%)Ema&C(K). The =2000 data point which improves the goodness Qo

locations of the maxima ofC, y, dU,/dK, dU,/dK, =0.22.

This analysis clearly shows that with our data there is no
d_[(|m|>]avl_dK, dIn[{jm)].,/dK, andd In[<mz>]a\,/dll<. Pro-  heed to include corrections-to-scaling terms in the fits which
vide us with seven sequences of pseudotransition poin

. . Rﬁ/ould necessitate nonlinear fitting procedures which usually
Kma&&; which all should scale according ®max(L)=Ke  tenq 1o be quite unstable. Of course, such a conclusion de-
+aL~""+---. In other words, the scaling variablg@  pends on the accuracy of the data and only shows that the
= (Kmay(L)—KJLY"=a;+- - - should be constant if we ne- correction terms are so small that they cannot be resolved
glect the small higher-order corrections indicated by the elwithin our accuracy. This is quite remarkable because in the
lipsis. To give an idea on how these sequences apprdach pure 3D Ising model study of Ref. 67 for lattices of size

134208-6



ISING MODEL ON THREE-DIMENSIONAL RANDOM . .. PHYSICAL REVIEW B66, 134208 (2002

TABLE VI. Fit results for the critical exponent &/ 9 T T T T
Quantity Type W ° Eg " mjt/i?(K))m:m
dU,/dK at maximum 1.58183) Z Eﬂﬂjﬂﬁigz
average 1.57832) 7} ]
weighted av. 1.57982)
final 1.579%27) g
du,/dK at maximum 1.57942) 2
average 1.57634) 5| J
weighted av. 1.57743)
final 1.577425)
dU,,/dK average 1.57723
p=1 and 2 weighted av. 1.5761) 3 . . . .
final 1.578%25) 2.0 25 3.0 L 35 40 45
dnf{m o, /dk a nggsm 11'.55882%2; FIG. 3. FSS fits to extract &/
weighted av. 1.58896) . . .
final 1.588914) tion that the error of the weighted average is never _Iarger
than the error of the most accurate fit result that contributes
d In[{mP) ], /dK at maximum 1.5894.5) to this average As a general trend we see in Table VI that
average 1.590D7) the fits of d In[(|mP)].,,/dK yield more accurate results
weighted av. 1.58986) than those ofiU,,/dK. We also observe, however, that the
final 1.589812) partial averages over the fits afU,,/dK, p=1,2 and

dIn[{{mP)]./dK, p=1,2 are only marginally consistent,

d In[(mP) ], /dK average 1.58966) even though in all cases the goodness of fit was high. We
p=1and 2 weighted av. 1.5806) thus have no reason based on statistical arguments to favor

final 1.589412) one or the other group of fits and therefore take as our final
(dUsp /dK) e aNC average 1.58425) vglue the weighted average over all 28 estimates which
(d IN[(MPY Ty /I K) weighted av. 158780  Yields
(4 fits) final 1.587815)

1/v=1.5875-0.0012, »=0.62992+0.00048, (21)

dU,,/dK and average 1.58816)
d In[(nP)],,/dK weighted av. 1.58794) with the minimal error coming from the fit of
(28 fits) final 1.587%12) dIn(m?],/dK at the maximum locations of

d[(|m[)]a/dK.
) ) ) If we only average the results of the fits of the maxima of
=8-128(using a different FSS technigueonfluent correc- 4 In[(|m)]a/dK, dIn[(mA]/dK, dU,/dK, anddU,/dK,

tions to scalingxL ~* with ©=0.87(9) could be resolved. e gbtain basically the same final estimate with a slightly
One possible explanation is that random lattices with Iarngarger error bar:

average coordination number and preserved rotational invari-
ance indeed reach the infinite-volume limit earlier than their

regular counterparts. This is quite conceivable since the mag-
nitude of the correction term does not only depend on thel_ . . . . . .
exponent but also on its amplitude, and the latter is a nonJo give also a visual impression of the quality of these fits,

universal quantity which does definitely depend on the Iatticv;Jrhey are shown in Fig. 3. This re(_:onflrm_s the weighted aver-

structure. ag_e(21) over all 28 flts,_and our final estimate for the corre-
Having now 28 estimates of i/from fits with Q=0.15 lation length exponent is thus

we proceeded as follows. We computed arithmetic and error

weighted averages for the four subgroups of estimates and v=0.6299+0.0005. (23

finally over the total set of estimates. The main results are

collected in Table VI. Because of the neglected cross correFor comparison, for Ising models on regular SC lattices Fer-

lations between the fit results, in particular the error estimatéenberg and Land&fobtainedv=0.62848), Blote et al®®

of the weighted average should be taken with some care. Agoncluded that=0.630%8), Ballesteroset al®’ found® v

our best estimates we therefore quote throughout thiss0.6294(5)5], and in a recent study of th¢* lattice field

paper in all tables in the lines labeled “final” always the theory Hasenbuséhestimatedy=0.6296(3)4]. Within er-

weighted mean and quite conservatively the smallest errgior bars all three estimates are in perfect agreement with our

among all available fitémaking thus the plausible assump- result(23) for random lattices.

1/»=1.5878-0.0015, »=0.62980=0.00060. (22
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0.075 . T T +3ey;,, Whereey,=0.0012 is the error on the estimate of

S(Cdmr;;,d,()m 1/v in Eq. (21), we obtain a variation in the estimate fisig

A Yoy by only =2 in the last digit, which is much smaller than the
O (dUdK),, L L .

0.074 |V (dnmiK),,, . statistical error in Eq(25).
* (dinm®/dK), . -

X (dU,/dK),..,

C. Critical exponent y

The exponent ratigy/v can be obtained from fits to the
FSS behaviol(16) of the susceptibility. By monitoring the
quality of the fits we decided to discard tNe= 2000 data for
_— the K max, and K mas i sequenceswhich led toQ values of
1/v=1.5875 0.05 and 0.02, respectivelyThe fits collected in Table VII
then all haveQ=0.25. The final result is

0.072 |

0.071 . L L
0.000 0.005 I(_):PIJO 0.015 0.020 )//V: 1.9576+ 0.0013, (26)

which should be compared with the estimates for regular

FIG. 4. FSS fits of the pseudotransition poirK';‘,Wi with : '
SC lattices ofy/v=1.970(14) in Ref. 68y/v=1.9630(30)

1/v=1.5875 fixed, yielding a combined estimate df;

=0.072 424 9(40). in Ref. 69, y/v=1.9626(6)6] in Ref. 67, and y/v
=1.9642(4)5] in Ref. 717
B. Critical coupling K For the exponenyy, the estimaté26) implies
Having deter_mineq the critical exp(_)nen,t it is.straight- n="2—vlv=0.0424+0.0013, (27)
forward to obtain estimates of the critical couplikg from
linear least-squares fits to and, by using our valu€1l) for 1/v, we derive
Kmax=Kc+ aL~ Y, (24 v=1.2332+0.0018. (28

whereK 4 are the seven pseudotransition points discussed
earlier. Here we found a significant improvement of the qual-
ity of the fits if the smallest lattice size witN=2000 was The exponent ratigg/v can be either obtained from the
excluded. This can also be inspected visually in Fig. 4, wher&SS behavior of (|m[)],, or d[{|m[)]./dK, Eq. (15) or

the data and fits are shown. We see a systematic trend thelt?)- In the first case, the sequend€g,, andKmay, . yield

the N=2000 data lie a little bit too low. In Table V we poor Q values 0.01) if the N=2000 are included in the
therefore display the fit results over the six lattice sikes fits. If we discard the smallest lattice in these two cases, all
=4000-128 000. By using the same averaging procedure dis shown in Table VII are characterized 13=0.10. The
before we arrive at the final estimate final estimate is then

D. Critical exponent 8

K¢=0.072424 3-0.000 004 0. (25 B/v=0.515870.00082, (29

Of course, in principle this estimate is biased by our estimat@nd, by using our estimate forilin Eq. (21),
of v. We have checked, however, that the dependenaeisn
extremely weak. If we repeat the fits with v 1.5875 £=0.32498-0.00077. (30)

TABLE VII. Fit results for the critical exponents/v, B/v, and (1- 8)/v. The superscripts * and # at
the Q values indicate that these fits startNs= 4000 andN = 8000, respectively. The other fits use all data
from N=2000 to 128 000.

Knax Of ylv Q Blv Q (1-p)Iv Q
C 1.935737) 0.49 0.508911) 0.10 1.069(82) 0.87
X 1.955113) 0.36 0.52374882) 0.85° 1.066314) 0.30
du,/dK 1.964125) 0.35 0.518(41) 0.27 1.070739) 0.20
dU,/dK 1.958113) 0.59 0.517®82) 0.31 1.071819) 0.15
d[<|m|)]a\,/dK 1.947619) 0.29° 0.5109795) 0.10¢ 1.068324) 0.65
d In[(|m|>]avld K 1.960313) 0.76 0.514019) 0.28 1.065729) 0.90
d In[(mz)]a\,/dK 1.962613) 0.77 0.51282) 0.30 1.066430) 0.69
Average 1.9548&8) 0.515119) 1.068 2284)

Weighted av. 1.957 589) 0.5158749) 1.067 9886)

Final 1.957613) 0.51581782) 1.068G14)
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oC A—A K=0.072435
O dm/dK G—© K=0.072430
Ay &—¢ K=0.072425
< dUy/dK G—8 K=0.072420
v dlnglm/dK 0.590 | V—9 K=0.072415
20 [ * dinm’dK
x dU,/dK
= &
.| P ~
% s = / o
g 1.5 =2 . PRl
O L
= /,:g;:: 0.585 |
Gl
1ol * o= a/v=0.1750
s . s . . 1000 10000 100000
15 1.6 17 18 1.9 2.0 N
LoUv
048

FIG. 5. FSS behavior of the specific heat, assumitig=2/v
—D=0.1750.

A—2A K=0.072435
G—=© K=0.072430
*— K=0.072425
O—& K=0.072420
F—V K=0.072415

If hyperscaling is valid, the estimat@9) would imply y/v
=D-2B/v=1.9683(17), which, however, turns out to be
only barely consistent with the direct estim&®s) of y/v.

The FSS ofd[{|m|)],,/dK is less well behaved. Here we =
had to discard for theK Kmas g Kmasgy e and

047

ma)tv
K maxy, o SEAUENCES both thd=2000 andN=4000 data 0.46
in order to guarantee that all fits entering the average have i
goodness-of-fit paramet€)=0.15. We then obtain
(b)
(1-8)/v=1.0680+0.0014, (3D 0.45 . L
1000 10000 100000
and by inserting the estimaf@l) for 1/v, N
B/ v=0.5194+ 0.0026 (32) FIG. 6. FSS behavior of the magnetic cumulants. The central

value ofK is our best estimaté5) for the inverse critical tempera-
and ture. For the neighboring curves tlie values vary by about one
statistical error bar.
B=0.3272=0.0014. (33
fits starting with N=8000 we obtained for all seven se-
quences of pseudotransition points goodness-of-fits param-
etersQ=0.5.

Recent MC estimates for regular SC lattices $év
=0.518(7) in Ref. 68 an@/v=0.5185(15) in Ref. 69.

E. Critical exponent & F. Binder parameters U, and U,

Due to the regular background tei@jeq in the FSS be- 4 is el known® that theU,,(K) curves for different
haV|or(14), .the specific h%zat IS us.uaIIy among th.e most dlf'Iattice sized. should intersect around(, ng) with slopes
ficult quantities to analyz€&. We tried nonlinear fits to the Uépsduzp/dKocLl’”, whereU’z*p is the (weakly universal

ansatzC=Cyeg+-alL*"”, but for most sequences of pseudo- “renormalized charge.” In Fig. 6 we show, andU, as a
transition points the errors in the parameters of this fit turnequnction of N=L3 for 5 K values aroundk,~0.072 425. At

out to be large. We therefore fixed the exponeht at the . .

value one wguld expect if hyperscaling is E)/alid our best estimate df, both cumulants seem indeed to be
' almost independent of the lattice size. Taking as final esti-

(34) mate the weighted mean valdee., a least-squares fit to a

alv=2/lv—D=0.1750+0.0024, -
constant over the results foN=8000-128 000, we obtain

a=2—-Dvr=0.1102:0.0015, (35 .
U3 =0.58706+ 0.00044, (36)
and tested if linear two-parameter fits yield acceptable
goodness-of-fit values. The results are shown in Fig. 5. We U% =0.4647+0.0012. (37)

see that over the whole range of lattice sizes the expected
linear behavior is satisfied. The quantitative analysis reveal$he variation due to the uncertainty iy, is about twice the
some deviations for the two smallest lattice sizes, but for thetatistical error at fixed& (0.00080 forU, and 0.0020 for
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TABLE VIIl. Recent estimates of critical parameters of the pure larger length scaleflattice sizey the scaling behavior may
and disorderd 3D Ising modeSC = simple cubic lattice, LFF change. Such a late crossover is conceivable in the case of
lattice field theory, RG= renormalization group, SD= site-  \eak disorder, where the asymptotic critical behavior gov-

dilution, RIM = random Ising mode! erned by a “disordered” fixed point may show up only in the
extremely close vicinity of criticality—that is, at extremely
Method v vlv U3 large system sizes in a finite-size scaling analysis. Even
sce 0.62898) 1.97q14) 0.47 though the qL_laIiFative scaling behavior is expected_ to be uni-
s 0.63018) 1.963030) 0.46524) yersal, quantitative properties of the crossover point such as
sce 0.62945)[5] 1.96266)[6] 0.46564)[4] its location should depend on the strength of the disorder via

nonuniversal amplitudes. In order to obtain for the random
lattices a rough estimate of the strenditof the local con-

nectivity disorder we have computed the relative variance of
This work 0.629%) 1.957613) 0.464712) the local coordination numbers which may be viewed as a
measure for the size of effective temperature variations over

SC¢* LFTY  0.62963)[4]  1.96424)[5] 0.465 5%9)
RG® 0.630413) 1.9666) -

SD sC 0.683724)[29] 1.962G36)[9]  0.4495)[2] the lattice. From the probability densif(q) displayed in
RIM-RG? 0.67810) 1.9703) - Fig. 2 it is straightforward to obtain
RIM-RG" 0.675 1.951 -

22
aReference 68. ‘Reference 15. 5=(9-09)7/q"=0.0461, (38)
b f J—
CReference 69. gReference 6. with q=2+4872/35=15.535 ... . Similarly, for two-
Reference 67. Reference 13. dimensional Poissonian Voronoi-Delaunay random lattices
YReference 71. "Reference 11

one findsS§=0.0491 withq=6. The relative varianc¢38)
can be compared with the fluctuations of the numBeuf
Yctive bonds per site in bond-diluted models. HBf®llows
a binomial distribution,

U,). For comparison, for the standard nearest-neighbor Isin
model on a SC lattice, Ferrenberg and Larfiastimated
U} ~0.47, by combining results for three different spin

models belonging to the Ising universality classBlet al®° 2D

derivedU} =0.46524), andBallesteroset al®""® obtained P(B)=( B pB(1-p)*°~"5,

U =0.4656(4)6]. For the ¢* lattice field theory

Hasenbusch extractedU?} ~0.465 5%9). whereD is the dimension angd denotes the probability for a
bond to be activesuch thatp=1 corresponds to the pure

VI. CONCLUDING REMARKS mode), and one obtains
We have performed a detailed finite-size scaling analysis — — 1 1-p
of single-cluster Monte Carlo simulations of the Ising model §=(B-B)°/B BETS) p ' (39)

on three-dimensional Poissonian random lattices of Voronoi-
Delaunay type. At first sight our use of different quantities towith §=2Dp. By equating Eqs(38) and (39) and solving
estimate the same critical exponent might appear redundarfsr the dilution parametep one can thus determine an asso-
since the various estimates are, of course, not independent #fated bond-dilution model with the same local disorder fluc-
a statistical sense. Their consistency, however, gives confiyations as for the random lattices. For the three-dimensional
dence that corrections to the asymptotic scaling behavior argase this yieldp=0.7834, and in two dimensions one finds
very small and can safely be neglected. Our estimates for thg=0.8358. In the terminology of three-dimensional bond-
exponentsy, /v, and y/v are all consistent with the best diluted Isind~® and g-state Potts*® models such a value of
numerical estimates for the three-dimensional Ising modep belongs to the weak dilution regime where some influence
and ¢* field theory on regular lattices—at a very high level of the disordered fixed point can be observed, but it is still
of accuracy which is comparable with the best estimatesiitficult to clearly disentangle it. For site-diluted models the
coming from field theoretical techniques; cf. Table Vll.  corresponding value is presumably higher, in particular for
While our exponent ratig/ v would also be compatible with weak dilution, since all bonds around a vacant site are non-
recent estimates for the 3D Ising disordered fixed point, ougctive. In the latter models, of course, the dilution parameter
estimate folU is more consistent with the pure Ising model p can easily be tuned to study more accessible regions.
estimates. The cleanest result yields the critical expongnt In view of the very high quality of our fits based on the
where our result agrees within error bars with all previouslyleading FSS ansatz only we must conclude that in the case of
derived estimates for the pure model but is clearly incompatVoronoi-Delaunay random lattices very much larger system
ible with the disordered fixed point value. We thus obtainsizes would be necessary to observe the expected crossover
strong evidence that, for the considered lattice sizes up tm the critical behavior associated with the disordered fixed
N=128000=50°, the Ising model on three-dimensional point. This was clearly outside the scope of the present study
Poissonian random lattices of Voronoi-Delaunay type beand its computer budget which was equivalent to several
haves effectively as on regular lattices. years of fast workstation CPU time. Instead of further in-
Of course, we cannot exclude the possibility that on muctcreasing the system size, an alternative and more promising
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route for future studies could be a systematic variation of thdor, and a triangle is constructed. In order to locate this third
random lattice construction by modifying the Poissonian nasite, we draw circumferences going through X,, and the
ture of the site distribution such as to achieve larger values dfew hundred sites belonging to the cloud of neighborsof

S (corresponding to smaller values pf or an investigation We pick asx; the site for which the radius of the circumfer-
of the present random lattices coupled to a model with @nce is the smallest. From the trianglg€x, ,x,,x3) we pro-
larger critical exponente where the expected crossover ceed to locate a fourth site, linked tox; and build a tetra-

should set in for reasonable lattice sizes already for a mod?edron(x;,x,X3,Xs). When a triangle still has not been

a logical flag is turned “on.” When already used, it is re-
named to “inactive” and the flag is turned “off.”

To construct a tetrahedron from a triangle we split the

This work was partially supported by the NATO collabo- Volume in two half spaces: one “above” and the other “be-
rative research Grant No. CRG 940135. The numerical simulow” the plane lying on the triangleA (X;,Xz,X3). Let us
lations were performed on a T3D parallel computer of ZuseSuppose that we search fex in the half space “above” the
Zentrum fir Informationswissenschaften Berli@lB) under ~ triangle. In order to determing,, we draw spheres going
Grant No. bvpf07. W.J. would like to thank Kurt Binder for through Xy ,x;,xs and the sites belonging to the cloud of
useful discussions and acknowledges support from the Deufl€ighbors ofx, placed in the half space in which we are
sche ForschungsgemeinschdiFG) in an early stage of the WOrking. If we happen to find several trial sites for which
project. He also wishes to thank Amnon Aharony, Eytantl€ll distance to the circumcenter of the triangle
Domany, and Shai Wiseman for helpful discussions on dis (X1:X2.X3) is smaller than the radius of the circumscribed

ordered systems during visits supported by the GermarfifCl€ Of &(X1,X2,%3), then we pick ax, the site for which

Israel-Foundation (GIF) under Contract Nos. 1-043g- the radius of the circumscribed spheremgk, ,x;,Xs,Xs) is
145.07/95 and 1-653-181.14/1999. He is also partiallythe biggest. If, on the contrary, all the trial sites lie at a
supported by EC IHP Network Grant No. HPRN-CT-1999. distance from the circumcenter of the triangléx,,X;,X3)

00161: “EUROGRID.” R.V. acknowledges partial support greater than the radius of the circumscribed circle of
by CICYT under Contract No. AEN95-0882. A(X1,X2,X3), then we pick ax, the site for which the ra-
dius of the circumscribed sphere @fx;,X,,X3,X,) is the

smallest. From the newly built tetrahedra(x; ,X,,X3,X4),
we can take two “active” trianglesA(x1,X5,X4) and

The employed algorithm for the random lattice construc-A(X;,X3,X4) to continue building tetrahedra from triangles
tion works as follows. Adapting the method described in Refand then triangles from tetrahedra. The closer neighbors of a
60, we first draw randoml sites uniformly distributed in a given sitex; are all found when there is no “active” triangle
unit volume, thereby approximating a Poissonian distribudeft connected to the site.
tion. For alternative distributions discussed in the literature When describing how to locate;’s nearest neighbox,
see, e.g., Refs. 41 and 59. In the second step we link the sites how to findx; afterwards we emphasized that we only
according to the Voronoi-Delaunay prescription. We start bysearch from within the sites forming a cloud of neighbors
picking the first site that we drew and locate all its nearestroundx,. Its meaning is thabefore starting the linking
neighbors, keeping them stored in an array. Then we procegstocedure we set up an array for each site in the lattice con-
to the second site and search for all its nearest neighbors totgining the sites forming its cloud. A given site will belong to
once finished with the second site we keep repeating ththe cloud of, sayx, if it lies within a sphere centered ixy,.
procedure until we have done it for all the sites. Of courseThe radius of the sphere is chosen such that, on the average,
with this method we locate a given link twice, but the sim-the number of sites within the sphere is 3 times ofaiori
plicity of its implementation pays off. upper limit to the maximum number of links that a site is

Starting from a given sitex,;, the linking procedure likely to have in a finite Voronoi-Delaunay random lattice. To
works as follows. Its nearest neighbrs is located from implement an efficient search of the sites which will belong
within the few hundred sites forming, or belonging to, theto the cloud of neighbors of a given site, we subdivided the
“cloud of neighbors” aroundx,. We will comment later the unit volume into smaller boxes. The optimal box size should
issue of how to determine a cloud of neighbors for a giverbe large enough to ensure that nearest neighbors will be lo-
site. Notice that some care must be exercised when amated in the same box or at least in one of the 26 surrounding
proaching the boundaries of the lattice to ensure the periodiboxes, but small enough to minimize the time needed for
boundary conditions. Afterwards a third sitg is searched testing all trial sites in a box.
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