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Ising model on three-dimensional random lattices: A Monte Carlo study
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We report single-cluster Monte Carlo simulations of the Ising model on three-dimensional Poissonian ran-
dom lattices with up to 128 000'503 sites which are linked together according to the Voronoi-Delaunay
prescription. For each lattice size quenched averages are performed over 96 realizations. By using reweighting
techniques and finite-size scaling analyses we investigate the critical properties of the model in the close
vicinity of the phase transition point. Our random lattice data provide strong evidence that, for the available
system sizes, the resulting effective critical exponents are indistinguishable from recent high-precision esti-
mates obtained in Monte Carlo studies of the Ising model andf4 field theory on three-dimensional regular
cubic lattices.
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I. INTRODUCTION

Experimental studies of the critical behavior of real m
terials are often confronted with the influence of impuriti
and inhomogeneities. For a proper interpretation of the m
surements it is, therefore, important to develop a firm th
retical understanding of the effect of such random pertur
tions. In many situations the typical time scale of therm
fluctuations in the idealized ‘‘pure’’ system is clearly sep
rated from the time scale of the impurity dynamics, such t
to a very good approximation the impurities can be treated
quenched~frozen!, random disorder.

The importance of the effect of quenched, random dis
der on the critical behavior of a physical system can be q
generally classified by the critical exponent of the spec
heat of the pure system,ap . The Harris criterion1 asserts that
for ap.0 quenched, random disorder is a relevant pertur
tion, leading to a different critical behavior than in the pu
case. In particular one expects2 in the disordered system tha
n>2/D, wheren is the correlation length exponent andD
the dimension of the system. Assuming hyperscaling to
valid, this impliesa522Dn<0. For ap,0 disorder is ir-
relevant, and in the marginal caseap50 no prediction can
be made. For the case of~noncritical! first-order phase tran
sitions it is known that the influence of quenched, rand
disorder can lead to a softening of the transition.3

Many theoretical and numerical studies have been
voted to quenched, random site-dilution~SD!, bond-dilution
~BD!, or more general random-bond~RB! systems. Since for
the three-dimensional~3D! Ising model it is well known that
ap'0.1.0, quenched, random disorder should be relev
for this model. This has indeed been verified by a variety
techniques: Monte Carlo~MC! simulations for SD~Refs.
4–6! and BD~Refs. 7 and 8!, high-temperature series~HTS!
expansions for BD~Ref. 9!, and field theoretical renormal
ization group studies~Refs. 10–13!. For an excellent review
and an extensive list of experimental, theoretical, and
merical estimates in the last two decades, see Ref. 14.
result consensus has been reached that, while the critica
ponent ratiosg/n522h andb/n are hardly distinguishable
from the pure model, the correlation length exponentn
0163-1829/2002/66~13!/134208~13!/$20.00 66 1342
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clearly signals the disordered fixed point,

g/n51.966~6!, b/n50.517~3!,

n50.6304~13! @pure~Ref. 15!#,

g/n51.970~3!, b/n50.515~2!,

n50.678~10! @disordered~Ref. 13!#,

and, moreover, satisfies the boundn>2/D52/3 in the disor-
dered case. Recently also the predicted softening effec
first-order phase transitions has been confirmed for
q-state Potts models withq>3 using MC~Refs. 16–18! and
HTS ~Ref. 19! techniques.

The overall picture is even better in two dimensio
where several models withap.0 ~SD Baxter model,20 SD
Baxter-Wu model,21, three- and four-state RB Potts model,22

Ashkin-Teller model23! and the marginal (ap50) 2D Ising
model24–28 have been investigated. Also the softening of t
first-order transitions for the 2D models withq>5 has been
confirmed.29–32 For a recent review, see Ref. 33.

In this paper we study another type of quenched, rand
disorder: namely,connectivity disorder, a generic property of
random lattices whose local coordination numbers vary r
domly from site to site. Physically the concept of rando
lattices plays an important role in an idealized description
the statistical geometry of random packings of particles.34–36

A prominent example is the crystallization process in liquid
and many statistical properties of random lattices have b
studied in this context.37 From a more technical point o
view, random lattices provide a convenient tool to discret
spaces of nontrivial topology without introducing defects
any kind of anisotropy.38–40This desirable property has bee
exploited in a great variety of fields, ranging from diffusio
limited aggregation41 and growth models for sandpiles42 over
the statistical mechanics of membranes and strings43 to quan-
tum field theory and quantum gravity.38–40,44,45 The pre-
served rotational, or more generally Poincare´, invariance
suggests that spin systems or field theories defined on
dom lattices should reach the infinite-volume or continuu
©2002 The American Physical Society08-1
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limit faster than on regular lattices. Conceptually, howev
such an approach only makes sense as long as the cr
properties of the considered system are not modified by
irregular lattice structure. In view of the quite general Har
criterion this is a nontrivial question~in particular due to the
inherent spatial correlations of the disorder in this case!, at
least for systems characterized byap>0.

Specifically we considered 3D Poissonian random latti
of Voronoi-Delaunay type and performed an extensive co
puter simulation study of the Ising model for lattices varyi
in size fromN52000'133 to 128 000'503 sites. For each
system size quenched averages over the connectivity d
der are approximated by averaging over 96 independen
alizations. We concentrated on the close vicinity of the tr
sition point and applied finite-size scaling~FSS! techniques46

to extract the critical exponents and the~weakly universal!
‘‘renormalized charges’’U2* andU4* . To achieve the desired
accuracy of the data in reasonable computer time we app
the single-cluster algorithm47,48 to update the spins and fur
thermore made extensively use of the reweight
technique.49

Previous studies of connectivity disorder focused mai
on 2D where pronounced effects were observed in MC sim
lations ofq-state Potts models on quenched, random gra
provided by models of quantum gravity@modified universal-
ity classes forq52 and 4~Refs. 50–52!, and softening for
q510 ~Refs. 52 and 53!#. For 2D random lattices o
Voronoi-Delaunay type, on the other hand, no influence w
seen in simulations forq52 ~Refs. 54 and 55! and q58
~Ref. 56!. The main difference between these two types
random lattices is the highly fractal structure57 of random
gravity graphs which suggests a stronger ‘‘degree of dis
der.’’ A similar dependence on the ‘‘degree of disorder’’ w
recently observed for several aperiodic perturbations.58

The rest of the paper is organized as follows. In Sec.
we describe some properties of the random lattices use
the simulations, and in Sec. III we define the model and g
a few simulation details including estimates of autocorre
tion times. The quantities measured are defined in Sec
where also their theoretically expected FSS behavior is
called. In Sec. V, we present the FSS analysis of our d
close to the transition point which yields estimates for
critical exponents. Finally, in Sec. VI we present a discuss
of our main results and close with a few concluding remar

II. RANDOM LATTICES

A. Voronoi-Delaunay random lattices

The notion of a ‘‘random lattice’’ is by no means uniqu
and, in fact, many different types of random lattices ha
been considered in the recent literature.41,50,52,53,59In this pa-
per we concentrate on so-called Poissonian Voron
Delaunay random lattices which, in arbitrary dimensions,
defined as follows.38,44,45

~i! Draw N sitesxi at random in a unit volume~square in
2D, cube in 3D, . . . ).

~ii ! Associate with each sitexi a Voronoi cell, ci
[$xud(x,xi)<d(x,xj ) ; j Þ i %, which consists of all points
x that are closer to the center sitexi than to any other site
13420
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Here d(x,y) denotes the usual Euclidean distance. T
yields an irregular tessellation of the unit volume wi
D-dimensional Voronoi cells~polygons in 2D, polyhedra in
3D, . . . ).

~iii ! Construct the dual Delaunay lattice by linking th
center sites of all Voronoi cells which share a common fa

The first step approximates the Poissonian process. In
second step we always assume periodic boundary conditi
i.e., construct lattices of toroidal topology. Using this co
struction the number of nearest neighbors of the Delau
lattice, the local coordination numberq, varies randomly
from site to site. This constitutes the special type
quenched, random connectivity disorder we are investiga
in this work.

The actually employed construction of the random lattic
follows loosely the method of Ref. 60 and is described in
Appendix. Following this method we succeeded to redu
the complexity of the lattice construction for all practic
purposes from orderN2, as expected for the most straigh
forward implementation, to orderN, up to a small overhead
}N2 resulting from the initial calculation of the distance
between all pairs of two sites. The actually measured C
times as a function ofN are shown in Fig. 1.

B. Random lattice properties

To test our random lattice construction we measured s
eral quantities which characterize the topology and geom
of the lattices. These quantities are exactly known in
limit N→`. ‘‘Topological’’ quantities are the number o
links Nl , the number of trianglesNn , and the number of
tetrahedraNt , which according to Euler’s theorem shou
satisfy for a torus topology in any number of dimensions a
for any number of sitesN the relation

N2Nl1Nn2Nt50. ~1!

FIG. 1. The total CPU time spent in constructing a thre
dimensional Poissonian random lattice according to the Voron
Delaunay prescription vs the number of sitesN. The circles show
the fraction of time needed to set up the ‘‘cloud of neighbor
discussed in the Appendix.
8-2
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We have of course explicitly tested that this topological co
straint is satisfied for all realizations, which is quite a sen
tive confirmation that the lattice construction works prope
The measured averages ofq, Nl , Nn , andNt over the 96
realizations used in the simulations are collected in Tabl
The error bars are computed from the fluctuations among
96 realizations. We see that the analytically knownN→`
limits are approached very rapidly. The only exception
perhaps our smallest lattice withN52000 sites where devia
tions from the infinite-volume limit are clearly visible. Fo
N>4000 in particular the average number of nearest ne
bors,q̄, is fully consistent with the theoretical value of

q̄521
48

35
p2515.5354 . . . . ~2!

As ‘‘geometric’’ quantities we measured the average v
umes of the simplices, i.e., the average link lengthl̄

5( i 51
Nt @(( i Ptl i)/6#/Nt , the average triangle arean̄

5(( i 51
Nn n i)/Nn , and the average volume of a tetrahedr

t̄5(( i 51
Nt t i)/Nt . Notice that the average link length is d

TABLE I. The average coordination numberq̄ and the total
number of simplices normalized by the number of sites. The e
bars are computed from the fluctuations among the 96 realizati

N q̄ Nl /N Nn /N Nt /N

2 000 15.544~4! 7.7721~19! 13.5441~37! 6.7721~19!

4 000 15.532~3! 7.7661~16! 13.5321~32! 6.7661~16!

8 000 15.537~2! 7.7683~10! 13.5366~21! 6.7683~10!

16 000 15.535~2! 7.76 744~76! 13.5348~15! 6.76744~76!

32 000 15.534~1! 7.76 706~55! 13.5342~11! 6.76706~55!

64 000 15.5351~7! 7.76 755~36! 13.53507~72! 6.76755~36!

128 000 15.5349~5! 7.76 743~26! 13.53486~53! 6.76743~26!

Exact 15.5354 . . . 7.76 772 . . . 13.53545 . . . 6.76772 . . .

Exact 21
48

35
p2 11

24

35
p2

48

35
p2

24

35
p2
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fined in such a way that we first average over the sides
given tetrahedron and then over all the tetrahedra. Thi
thus the average link length per tetrahedron, andnot the
mean link length averaged over the whole lattice,l̄ (N)

5(( i 51
Nl l i)/Nl , which is always larger due to the fluctuation

in the number of tetrahedra from realization to realizatio
Our results normalized with an appropriate power of the d
sity r5N/V are displayed in Table II. FromN54000 on the
numerical results are again fully consistent with the anal
cal predictions asN→`. Since all numbers agree very we
with the analytical predictions, we can be quite sure that
lattice construction works properly and that we have picke
typical sample of random lattices.

The ~normalized! probability densitiesP(q) of the coor-
dination numbersq are shown in Fig. 2 for the lattices with
N564 000 andN5128 000 sites. The average coordinati
number isq̄521 48

35 p2515.5354 . . . . Due to thelong tail
of P(q) for large values ofq, the maximum ofP(q) is found
at the next smaller integer numberq515, which occurs with
a probability of 12.03%.

III. MODEL AND SIMULATION TECHNIQUES

A. Model

We simulated the standard partition function of the Isi
model,

Z5(
$si %

e2KE, E52(̂
i j &

sisj , si561, ~3!

where K5J/kBT.0 is the inverse temperature in natur
units and ^ i j & denotes the nearest-neighbor links of o
three-dimensional toroidal random lattices. In Eq.~3! we
have adopted the convention used in Ref. 55 and assigne
each link the same weight.

Another interesting option would be to assign to each l
a weight depending on the geometrical properties of
Voronoi-Delaunay construction such as the length of
links or suitably defined areas of the associated tessela
In addition to the connectivity disorder this would introdu
also a~correlated! disorder of random-bond type. In orde

r
s.
TABLE II. Average simplex volumes properly normalized to natural units.

N l̄ (N)/r21/3 l̄ /r21/3 n̄/r22/3 t̄/r21

2 000 1.28540~22! 1.236 70~17! 0.597 004~95! 0.147 666~41!

4 000 1.28566~18! 1.237 17~13! 0.597 362~70! 0.147 797~34!

8 000 1.28569~13! 1.237 11~10! 0.597 312~55! 0.147 747~23!

16 000 1.285623~75! 1.237 091~55! 0.597 306~31! 0.147 766~17!

32 000 1.285554~68! 1.237 027~49! 0.597 289~24! 0.147 775~12!

64 000 1.285537~40! 1.237 002~32! 0.597 272~19! 0.147 7630~78!

128 000 1.285541~28! 1.237 012~20! 0.597 275~11! 0.147 7666~58!

Exact 1.237 033 . . . 0.597 286 . . . 0.147 7600 . . .

Exact S 3

4p D 1/3 5373

32344
GS 1

3D S 3

4p D 2/35337

35p
GS 2

3D 35

24p2
8-3
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WOLFHARD JANKE AND RAMON VILLANOVA PHYSICAL REVIEW B 66, 134208 ~2002!
not to mix up these two quenched disorder types, we dec
to concentrate in this study exclusively on the effect of
connectivity disorder.

B. Simulation

The finite-size scaling analysis is performed on the ba
of seven different lattice sizes withN52000, 4000, 8000,
16 000, 32 000, 64 000, and 128 000 sites. For later use
adopt the notation for regular lattices and define a lin
lattice sizeL by L5N1/3. The linear sizes of the lattices thu
vary from L'12.6 to L'50.4. To investigate the depen
dence of thermal averages on different realizations
performed MC simulations, for each lattice size, on t
96 randomly chosen random lattice realizations discusse
Sec. II.

For the update of the Ising spins we employed Wolf
single-cluster~1C! algorithm.47 Various tests, in particula
for the Ising model on two- and three-dimensional regu
lattices, have clearly demonstrated that critical slowing do
can be significantly reduced with this nonlocal upda
algorithm.61–63 These tests also showed that in particular

FIG. 2. ~a! The probability densityP(q) of the coordination

numbersq. The average isq̄52148p2/35515.5354 . . . . ~b! The
same data as in~a! on a logarithmic scale.
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three dimensions the single-cluster algorithm is more e
cient than the original multiple-cluster formulation o
Swendsen and Wang.48

All runs were performed in the vicinity of the critica
point Kc . As a first rough guess ofKc we used the mean
field boundKc>KMF51/q̄'0.064. Due to the large averag
coordination number of 3D random lattices, the mean-fi
approximation should be better than for the simple cu
~SC! lattice whereKMF

(SC)51/6 is about 1.33 times smalle
than the actualKc

(SC)'0.221 654 6. Therefore, by applyin
the same correction factor to the random lattice mean-fi
estimate we expect thatKc is bounded from above byKc
<0.085. This heuristic argument thus suggests that 0.
<Kc<0.085, such thatKc'0.075 should be a reasonablea
priori guess. Once good simulation pointsK0 were estimated
for the two smallest lattices withN52000 and 4000 sites by
determining for a few realizations the location of th
specific-heat and susceptibility maxima, we used FSS
trapolations~assumingn'0.63) to predictK0 for the larger
lattices.

Depending on the lattice size from 30 000 to 180 000 cl
ters were discarded to reach equilibrium from an initia
completely ordered state. Primary observables are the en
per spin, e5E/N, and the magnetization per spin,m
5M /N5( isi /N, which were measured everynflip cluster
flip and recorded in a time-series file. The average clus
size^uCu& is an estimator for the reduced susceptibility in t
high-temperature phase,x red5N^m2&, and therefore scale
with the lattice size according toLg/n, whereg andn are the
usual critical exponents. Since in three dimensionsg/n52
2h'2, we have to performnflip}L cluster flips in order to
flip, on the average, approximately the same fraction of
total number of spins,N5L3, for all lattice sizes. By adjust-
ing the absolute scale ofnflip we made sure that for all lattice
sizes the measurements were taken after aboutN/2 spin flips.
Since for the single-cluster update algorithm the autocorr
tion times scale only weakly withL ~see the discussion be
low! one then expects that, with about the same numbe
measurements, the statistical accuracy is comparable fo
lattice sizes. With this setup we performed 100 000 meas
ments for each lattice size and realization (110 000 forN
58000). For more details on the employed statistics,
Table III.

C. Update dynamics

A useful measure of the update dynamics is the integra
autocorrelation timet̂.64 To estimatet̂ for the measurement
of the energye and the magnetizationm we used the fact tha
t̂ enters in the error estimatee25s22t̂/nmeas for the mean
value Ō of nmeascorrelated measurements with variances2

5^O;O&[^O2&2^O&2 and determinede2 by blocking pro-
cedures. Using 100 blocks of 1000 measurements each
obtained the results compiled in Table IV where all resu
are averaged over the 96 randomly chosen realizations.
see that the integrated autocorrelation times for the meas
ments ofe and m are of the order oft̂e'2.5–3.5 andt̂m
'2.4–3.0. Since completely uncorrelated data correspon
8-4
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t̂50.5, our thermal sample thus effectively consists of ab
15 000–20 000 uncorrelated measurements for each of th
realizations. This amounts to a total of (1.5–2.0)3106 effec-
tively uncorrelated measurements for each lattice size.

While this properly characterizes the effective statistics
our simulations, the numbers fort̂ of a single-cluster simu-
lation are not yet well suited for a comparison with oth
update algorithms or with single-cluster simulations on re
lar lattices. To get a comparative work estimate, the us
procedure47 is to convert thet̂ by multiplying by a factorf
5nflip^uCu&/N to a scale where, on the average, measu
ments are taken after every spin has been flipped once~simi-
lar to, e.g., Metropolis simulations!. For quenched, random
systems this procedure is not unique due to the neces
average over realizations. In Table IV we therefore pres
both options@t#av[@ f • t̂ #av and also@ f #av•@ t̂ #av. The differ-
ences between the two averaging prescriptions are, how
extremely small.

The numbers in Table IV obtained in this way are ve
similar to results for the regular SC lattice.61,62 By fitting a
power lawt}Lz to the data for the five largest lattices w
obtain @te#av50.82(6)L0.20(2) and @tm#av51.07(8)L0.10(2),
respectively. The dynamic critical exponentsz for the ran-
dom lattice simulations should be compared withze
50.28(2) andzx50.14(2) for the SC lattice.61

TABLE III. Monte Carlo parameters of the simulations.N[L3

is the lattice size, the hash mark symbol # denotes the numbe
realizations,K0 the inverse simulation temperature,ntherm the num-
ber of cluster flips during equilibration, andnmeas the number of
measurements taken everynflip cluster flip.

N L # K0 ntherm nmeas nflip

2 000 12.6 96 0.0735 30 000 100 000 4
4 000 15.9 96 0.0735 50 000 100 000 5
8 000 20.0 96 0.0732 66 000 110 000 6

16 000 25.2 96 0.0729 80 000 100 000 8
32 000 31.7 96 0.072 85 100 000 100 000 10
64 000 39.1 96 0.072 65 150 000 100 000 13

128 000 50.4 32 0.072 53 180 000 100 000 1
128 000 50.4 64 0.072 59 180 000 100 000 1
13420
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IV. OBSERVABLES AND FINITE-SIZE SCALING

From the time series ofe and m it is straightforward to
compute in the FSS region various quantities at nearby
ues ofK0 by standard reweighting methods.49 For the esti-
mation of the statistical~thermal! errors, for each of the 96
realizations the time-series data were split into 100 bi
which were jackknifed65 to decrease the bias in the analys
of reweighted data. The final values are averages over
96 realizations which will be denoted by square brack
@•••#av, and the error bars are computed from the fluctu
tions among the realizations. Note that these errors con
both the average thermal error for a given realization and
theoretical variance for infinitely accurate thermal avera
which is caused by the variation of the quenched, rand
geometry of the 96 lattices.

From the time series of the energy measurements we
compute by reweighting the average energy, specific h
and energetic fourth-order parameter:

u~K !5@^E&#av/N, ~4!

C~K !5K2N@^e2&2^e&2#av, ~5!

V~K !5F12
^e4&

3^e2&2G
av

. ~6!

Similarly we can derive from the magnetization measu
ments the average magnetization, the susceptibility, and
magnetic cumulants:

m~K !5@^umu&#av, ~7!

x~K !5KN@^m2&2^umu&2#av, ~8!

U2~K !5F12
^m2&

3^umu&2G
av

, ~9!

U4~K !5F12
^m4&

3^m2&2G
av

. ~10!

Further useful quantities involving both the energy and m
netization are

of
the

on
TABLE IV. Average cluster size@^uCu&#av and autocorrelation times of energy and magnetization at

simulation pointK0, wheret5 f • t̂ and f 5nflip^uCu&/N. The tau’s are obtained from a blocking analysis
the basis of 100 block.

N @^uCu&#av @ t̂e#av @te#av @ f #av•@ t̂e#av @ t̂m#av @tm#av @ f #av•@ t̂m#av

2 000 246.9~1.9! 2.529~40! 1.245~19! 1.249 2.434~38! 1.200~20! 1.202
4 000 453.3~3.9! 2.443~42! 1.375~20! 1.384 2.412~38! 1.360~20! 1.367
8 000 740.1~5.5! 2.702~42! 1.494~22! 1.500 2.594~40! 1.436~22! 1.440

16 000 1084.0~9.5! 2.955~43! 1.593~21! 1.602 2.730~38! 1.475~22! 1.480
32 000 1962~17! 2.741~50! 1.666~24! 1.681 2.572~44! 1.567~23! 1.577
64 000 2678~24! 3.177~55! 1.718~27! 1.728 2.795~42! 1.516~23! 1.520

128 000 3521~87! 3.92~11! 1.705~42! 1.725 3.157~72! 1.385~42! 1.390
128 000 4325~41! 3.399~72! 1.824~31! 1.838 2.964~60! 1.593~29! 1.602
8-5
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d@^umu&#av

dK
5@^umuE&2^umu&^E&#av, ~11!

d ln@^umu&#av

dK
5F ^umuE&

^umu&
2^E&G

av

, ~12!

d ln@^m2&#av

dK
5F ^m2E&

^m2&
2^E&G

av

. ~13!

In the infinite-volume limit these quantities exhibit sing
larities at the transition point. In finite systems the singula
ties are smeared out and scale in the critical region accor
to

C5Creg1La/n f C~x!@11•••#, ~14!

@^umu&#av5L2b/n f m~x!@11•••#, ~15!

x5Lg/n f x~x!@11•••#, ~16!

d@^umu&#av

dK
5L (12b)/n f m8~x!@11•••#, ~17!

d ln@^umup&#av

dK
5L1/n f p~x!@11•••#, ~18!

dU2p

dK
5L1/n f U2p

~x!@11•••#, ~19!

whereCreg is a regular background term,n, a, b, andg, are
the usual critical exponents,f i(x) are FSS functions with

x5~K2Kc!L
1/n ~20!

being the scaling variable, and the brackets@11•••# indi-
cate corrections-to-scaling terms which become unimpor
for sufficiently large system sizesL.

V. RESULTS

By applying standard reweighting techniques to each
the 96 time-series data we first determined the tempera
dependence ofCi(K), x i(K), . . . ,i 51, . . .,96, in the
neighborhood of the simulation pointK0. By estimating the
valid reweighting range for each of the realizations we ma
sure that no systematic errors crept in by this proced
Once the temperature dependence is known for each rea
tion, we can easily compute the disorder average, e
C(K)5( i 51

96 Ci(K)/96, and then determine the maxima
the averaged quantities, e.g.,Cmax(KmaxC

)[maxKC(K). The

locations of the maxima ofC, x, dU2 /dK, dU4 /dK,
d@^umu&#av/dK, d ln@^umu&#av/dK, and d ln@^m2&#av/dK pro-
vide us with seven sequences of pseudotransition po
Kmaxi

(L) which all should scale according toKmaxi
(L)5Kc

1aiL
21/n1•••. In other words, the scaling variablex

5(Kmaxi
(L)2Kc)L

1/n5ai1••• should be constant if we ne
glect the small higher-order corrections indicated by the
lipsis. To give an idea on how these sequences approacKc
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we show in Table V besides the estimates forKc also
the values ofai ,i 51, . . . ,7~see also Fig. 4!.

It should be emphasized that while the precise estima
of ai do depend on the value ofn, the qualitative conclusion
that x'const forKmaxi

does not require anya priori knowl-

edge ofn or Kc . Using this information we have thus sever
possibilities to extract unbiased estimates of the critical
ponentsn, a/n, b/n, andg/n from least-squares fits assum
ing the FSS behaviors~14!–~19!. Oncen is estimated we can
then useKmaxi

(L)5Kc1aiL
21/n1••• to extract alsoKc and

ai .

A. Critical exponent n

Let us thus start with the correlation length exponentn for
which we can obtain 437528 different estimates by con
sidering the scaling ofd ln@^umu&#av/dK, d ln@^m2&#av/dK,
dU2 /dK, and dU4 /dK at the seven sequences of pseud
transition pointsKmaxi

(L). Of course, these estimates are s
tistically notuncorrelated, but they are differently affected b
corrections to the leading FSS behavior. To test the imp
tance of these corrections to scaling we first estimatedn
from fits using all available lattice sizes and then compa
with the results of fits where the two smallest sizes w
successively discarded. As a result we did not observe
systematic improvement by omitting the smallest lattices.
fact, already for the fits using all sizes, we obtain
goodness-of-fit parameters66 Q>0.3 for about 80% of the 28
fits. The only unacceptable fit was that ofd ln@^m2&#av/dK at
the Kmaxx

sequence withQ50.01. Here we omitted theN

52000 data point which improves the goodness toQ
50.22.

This analysis clearly shows that with our data there is
need to include corrections-to-scaling terms in the fits wh
would necessitate nonlinear fitting procedures which usu
tend to be quite unstable. Of course, such a conclusion
pends on the accuracy of the data and only shows that
correction terms are so small that they cannot be reso
within our accuracy. This is quite remarkable because in
pure 3D Ising model study of Ref. 67 for lattices of sizeL

TABLE V. Fit results for the critical couplingKc , using the FSS
ansatz Kmaxi

5Kc1aiL
21/n and our best estimate of 1/n

51.5875(12). The fit range is always fromN54000 to 128 000.

Kmax of Kc a Q

C 0.072 428 2~40! 0.1010(12) 0.63
x 0.072 421 0~40! 0.0182(11) 0.87
dU4 /dK 0.072 422 1~54! 20.0326(14) 0.65
dU2 /dK 0.072 423 8~44! 0.0002(12) 0.89
d@^umu&#av/dK 0.072 427 7~40! 0.0525(11) 0.82
d ln@^umu&#av/dK 0.072 425 0~43! 20.0063(12) 0.83
d ln@^m2&#av/dK 0.072 4 253~44! 20.0146(12) 0.76

Average 0.072 424 7~10!

Weighted av. 0.072 424 9~16!

Final 0.072424 9~40!
8-6
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58–128~using a different FSS technique! confluent correc-
tions to scaling}L2v with v50.87(9) could be resolved
One possible explanation is that random lattices with la
average coordination number and preserved rotational inv
ance indeed reach the infinite-volume limit earlier than th
regular counterparts. This is quite conceivable since the m
nitude of the correction term does not only depend on
exponent but also on its amplitude, and the latter is a n
universal quantity which does definitely depend on the lat
structure.

Having now 28 estimates of 1/n from fits with Q>0.15
we proceeded as follows. We computed arithmetic and e
weighted averages for the four subgroups of estimates
finally over the total set of estimates. The main results
collected in Table VI. Because of the neglected cross co
lations between the fit results, in particular the error estim
of the weighted average should be taken with some care
our best estimates we therefore quote throughout
paper in all tables in the lines labeled ‘‘final’’ always th
weighted mean and quite conservatively the smallest e
among all available fits~making thus the plausible assum

TABLE VI. Fit results for the critical exponent 1/n.

Quantity Type 1/n

dU2 /dK at maximum 1.5818~33!

average 1.5783~32!

weighted av. 1.5795~12!

final 1.5795~27!

dU4 /dK at maximum 1.5797~42!

average 1.5763~34!

weighted av. 1.5774~13!

final 1.5774~25!

dU2p /dK average 1.5773~23!

p51 and 2 weighted av. 1.5785~09!

final 1.5785~25!

d ln@^umu&#av/dK at maximum 1.5886~16!

average 1.5888~08!

weighted av. 1.5889~06!

final 1.5889~14!

d ln@^m2&#av/dK at maximum 1.5894~15!

average 1.5902~07!

weighted av. 1.5898~06!

final 1.5898~12!

d ln@^mp&#av/dK average 1.5895~06!

p51 and 2 weighted av. 1.5894~05!

final 1.5894~12!

~dU2p /dK)max and average 1.5849~25!

~d ln@^mp&#av/dK)max weighted av. 1.5878~10!

~4 fits! final 1.5878~15!

dU2p /dK and average 1.5834~16!

d ln@^mp&#av/dK weighted av. 1.5875~04!

~28 fits! final 1.5875~12!
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tion that the error of the weighted average is never lar
than the error of the most accurate fit result that contribu
to this average!. As a general trend we see in Table VI th
the fits of d ln@^umup&#av/dK yield more accurate result
than those ofdU2p /dK. We also observe, however, that th
partial averages over the fits ofdU2p /dK, p51,2 and
d ln@^umup&#av/dK, p51,2 are only marginally consisten
even though in all cases the goodness of fit was high.
thus have no reason based on statistical arguments to f
one or the other group of fits and therefore take as our fi
value the weighted average over all 28 estimates wh
yields

1/n51.587560.0012, n50.6299260.00048, ~21!

with the minimal error coming from the fit o
d ln@^umu2&#av/dK at the maximum locations o
d@^umu&#av/dK.

If we only average the results of the fits of the maxima
d ln@^umu&#av/dK, d ln@^m2&#av/dK, dU2 /dK, and dU4 /dK,
we obtain basically the same final estimate with a sligh
larger error bar:

1/n51.587860.0015, n50.6298060.00060. ~22!

To give also a visual impression of the quality of these fi
they are shown in Fig. 3. This reconfirms the weighted av
age~21! over all 28 fits, and our final estimate for the corr
lation length exponent is thus

n50.629960.0005. ~23!

For comparison, for Ising models on regular SC lattices F
renberg and Landau68 obtainedn50.6289(8), Blöte et al.69

concluded thatn50.6301(8), Ballesteroset al.67 found70 n
50.6294(5)@5#, and in a recent study of thef4 lattice field
theory Hasenbusch71 estimatedn50.6296(3)@4#. Within er-
ror bars all three estimates are in perfect agreement with
result ~23! for random lattices.

FIG. 3. FSS fits to extract 1/n.
8-7
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B. Critical coupling Kc

Having determined the critical exponentn, it is straight-
forward to obtain estimates of the critical couplingKc from
linear least-squares fits to

Kmaxi
5Kc1aiL

21/n, ~24!

whereKmaxi
are the seven pseudotransition points discus

earlier. Here we found a significant improvement of the qu
ity of the fits if the smallest lattice size withN52000 was
excluded. This can also be inspected visually in Fig. 4, wh
the data and fits are shown. We see a systematic trend
the N52000 data lie a little bit too low. In Table V we
therefore display the fit results over the six lattice sizesN
54000–128 000. By using the same averaging procedur
before we arrive at the final estimate

Kc50.072 424 960.000 004 0. ~25!

Of course, in principle this estimate is biased by our estim
of n. We have checked, however, that the dependence onn is
extremely weak. If we repeat the fits with 1/n51.5875

FIG. 4. FSS fits of the pseudotransition pointsKmaxi
with

1/n51.5875 fixed, yielding a combined estimate ofKc

50.072 424 9(40).
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63e1/n , wheree1/n50.0012 is the error on the estimate
1/n in Eq. ~21!, we obtain a variation in the estimate forKc
by only 62 in the last digit, which is much smaller than th
statistical error in Eq.~25!.

C. Critical exponent g

The exponent ratiog/n can be obtained from fits to th
FSS behavior~16! of the susceptibility. By monitoring the
quality of the fits we decided to discard theN52000 data for
the KmaxC

andKmaxdm/dK
sequences~which led toQ values of

0.05 and 0.02, respectively!. The fits collected in Table VII
then all haveQ>0.25. The final result is

g/n51.957660.0013, ~26!

which should be compared with the estimates for regu
SC lattices ofg/n51.970(14) in Ref. 68,g/n51.9630(30)
in Ref. 69, g/n51.9626(6)@6# in Ref. 67, and g/n
51.9642(4)@5# in Ref. 71.70

For the exponenth, the estimate~26! implies

h522g/n50.042460.0013, ~27!

and, by using our value~21! for 1/n, we derive

g51.233260.0018. ~28!

D. Critical exponent b

The exponent ratiob/n can be either obtained from th
FSS behavior of@^umu&#av or d@^umu&#av/dK, Eq. ~15! or
~17!. In the first case, the sequencesKmaxx

andKmaxdm/dK
yield

poor Q values (<0.01) if theN52000 are included in the
fits. If we discard the smallest lattice in these two cases,
fits shown in Table VII are characterized byQ>0.10. The
final estimate is then

b/n50.5158760.00082, ~29!

and, by using our estimate for 1/n in Eq. ~21!,

b50.3249860.00077. ~30!
t
ta
TABLE VII. Fit results for the critical exponentsg/n, b/n, and (12b)/n. The superscripts * and # a
the Q values indicate that these fits start atN54000 andN58000, respectively. The other fits use all da
from N52000 to 128 000.

Kmax of g/n Q b/n Q (12b)/n Q

C 1.9357~37! 0.49* 0.5089~11! 0.10 1.0690~32! 0.82#

x 1.9551~13! 0.36 0.523 74~82! 0.85* 1.0663~14! 0.30
dU4 /dK 1.9641~25! 0.35 0.5180~41! 0.27 1.0707~39! 0.20
dU2 /dK 1.9581~13! 0.59 0.5173~22! 0.31 1.0713~19! 0.15
d@^umu&#av/dK 1.9476~19! 0.29* 0.510 97~95! 0.10* 1.0683~24! 0.65#

d ln@^umu&#av/dK 1.9603~13! 0.76 0.5140~19! 0.28 1.0657~29! 0.90#

d ln@^m2&#av/dK 1.9626~13! 0.77 0.5128~22! 0.30 1.0664~30! 0.69#

Average 1.9548~38! 0.5151~19! 1.068 22~84!

Weighted av. 1.957 58~59! 0.515 87~49! 1.067 98~86!

Final 1.9576~13! 0.515 87~82! 1.0680~14!
8-8
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If hyperscaling is valid, the estimate~29! would imply g/n
5D22b/n51.9683(17), which, however, turns out to b
only barely consistent with the direct estimate~26! of g/n.

The FSS ofd@^umu&#av/dK is less well behaved. Here w
had to discard for theKmaxC

, Kmaxdm/dK
, Kmaxdlnm/dK

, and

Kmaxdlnm2/dK
sequences both theN52000 andN54000 data

in order to guarantee that all fits entering the average ha
goodness-of-fit parameterQ>0.15. We then obtain

~12b!/n51.068060.0014, ~31!

and by inserting the estimate~21! for 1/n,

b/n50.519460.0026 ~32!

and

b50.327260.0014. ~33!

Recent MC estimates for regular SC lattices areb/n
50.518(7) in Ref. 68 andb/n50.5185(15) in Ref. 69.

E. Critical exponent a

Due to the regular background termCreg in the FSS be-
havior ~14!, the specific heat is usually among the most d
ficult quantities to analyze.72 We tried nonlinear fits to the
ansatzC5Creg1aLa/n, but for most sequences of pseud
transition points the errors in the parameters of this fit turn
out to be large. We therefore fixed the exponenta/n at the
value one would expect if hyperscaling is valid,

a/n52/n2D50.175060.0024, ~34!

a522Dn50.110260.0015, ~35!

and tested if linear two-parameter fits yield accepta
goodness-of-fit values. The results are shown in Fig. 5.
see that over the whole range of lattice sizes the expe
linear behavior is satisfied. The quantitative analysis reve
some deviations for the two smallest lattice sizes, but for

FIG. 5. FSS behavior of the specific heat, assuminga/n52/n
2D50.1750.
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fits starting with N58000 we obtained for all seven se
quences of pseudotransition points goodness-of-fits par
etersQ>0.5.

F. Binder parameters U2 and U4

It is well known73 that theU2p(K) curves for different
lattice sizesL should intersect around (Kc , U2p* ) with slopes
U2p8 [dU2p /dK}L1/n, whereU2p* is the ~weakly universal!
‘‘renormalized charge.’’ In Fig. 6 we showU2 andU4 as a
function of N[L3 for 5 K values aroundKc'0.072 425. At
our best estimate ofKc , both cumulants seem indeed to b
almost independent of the lattice size. Taking as final e
mate the weighted mean value~i.e., a least-squares fit to
constant! over the results forN58000–128 000, we obtain

U2* 50.5870660.00044, ~36!

U4* 50.464760.0012. ~37!

The variation due to the uncertainty inKc is about twice the
statistical error at fixedK (0.000 80 forU2 and 0.0020 for

FIG. 6. FSS behavior of the magnetic cumulants. The cen
value ofK is our best estimate~25! for the inverse critical tempera
ture. For the neighboring curves theK values vary by about one
statistical error bar.
8-9
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U4). For comparison, for the standard nearest-neighbor Is
model on a SC lattice, Ferrenberg and Landau68 estimated
U4* '0.47, by combining results for three different sp
models belonging to the Ising universality class Blo¨te et al.69

derivedU4* 50.4652(4), andBallesteroset al.67,70 obtained
U4* 50.4656(4)@6# . For the f4 lattice field theory
Hasenbusch71 extractedU4* '0.465 55(9).

VI. CONCLUDING REMARKS

We have performed a detailed finite-size scaling analy
of single-cluster Monte Carlo simulations of the Ising mod
on three-dimensional Poissonian random lattices of Voron
Delaunay type. At first sight our use of different quantities
estimate the same critical exponent might appear redund
since the various estimates are, of course, not independe
a statistical sense. Their consistency, however, gives co
dence that corrections to the asymptotic scaling behavior
very small and can safely be neglected. Our estimates for
exponentsn, b/n, andg/n are all consistent with the bes
numerical estimates for the three-dimensional Ising mo
andf4 field theory on regular lattices—at a very high lev
of accuracy which is comparable with the best estima
coming from field theoretical techniques; cf. Table VIII.74

While our exponent ratiog/n would also be compatible with
recent estimates for the 3D Ising disordered fixed point,
estimate forU4* is more consistent with the pure Ising mod
estimates. The cleanest result yields the critical exponenn,
where our result agrees within error bars with all previou
derived estimates for the pure model but is clearly incomp
ible with the disordered fixed point value. We thus obta
strong evidence that, for the considered lattice sizes u
N5128 000'503, the Ising model on three-dimension
Poissonian random lattices of Voronoi-Delaunay type
haves effectively as on regular lattices.

Of course, we cannot exclude the possibility that on mu

TABLE VIII. Recent estimates of critical parameters of the pu
and disorderd 3D Ising model~SC 5 simple cubic lattice, LFT5
lattice field theory, RG5 renormalization group, SD5 site-
dilution, RIM 5 random Ising model!.

Method n g/n U4*

SCa 0.6289~8! 1.970~14! 0.47
SCb 0.6301~8! 1.9630~30! 0.4652~4!

SCc 0.6294~5!@5# 1.9626~6!@6# 0.4656~4!@4#

SC f4 LFTd 0.6296~3!@4# 1.9642~4!@5# 0.465 55~9!

RGe 0.6304~13! 1.966~6! 2

This work 0.6299~5! 1.9576~13! 0.4647~12!

SD SCf 0.6837~24!@29# 1.9626~36!@9# 0.449~5!@2#

RIM-RGg 0.678~10! 1.970~3! 2

RIM-RGh 0.675 1.951 2

aReference 68. eReference 15.
bReference 69. fReference 6.
cReference 67. gReference 13.
dReference 71. hReference 11
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larger length scales~lattice sizes! the scaling behavior may
change. Such a late crossover is conceivable in the cas
weak disorder, where the asymptotic critical behavior go
erned by a ‘‘disordered’’ fixed point may show up only in th
extremely close vicinity of criticality—that is, at extremel
large system sizes in a finite-size scaling analysis. E
though the qualitative scaling behavior is expected to be u
versal, quantitative properties of the crossover point such
its location should depend on the strength of the disorder
nonuniversal amplitudes. In order to obtain for the rand
lattices a rough estimate of the strengthS of the local con-
nectivity disorder we have computed the relative variance
the local coordination numbers which may be viewed a
measure for the size of effective temperature variations o
the lattice. From the probability densityP(q) displayed in
Fig. 2 it is straightforward to obtain

S[~q2q̄!2/q̄250.0461, ~38!

with q̄52148p2/35515.5354 . . . . Similarly, for two-
dimensional Poissonian Voronoi-Delaunay random latti
one findsS50.0491 with q̄56. The relative variance~38!
can be compared with the fluctuations of the numberB of
active bonds per site in bond-diluted models. HereB follows
a binomial distribution,

P~B!5S 2D

B D pB~12p!2D2B,

whereD is the dimension andp denotes the probability for a
bond to be active~such thatp51 corresponds to the pur
model!, and one obtains

S5~B2B̄!2/B̄25
1

2D

12p

p
, ~39!

with B̄52Dp. By equating Eqs.~38! and ~39! and solving
for the dilution parameterp one can thus determine an ass
ciated bond-dilution model with the same local disorder flu
tuations as for the random lattices. For the three-dimensio
case this yieldsp50.7834, and in two dimensions one find
p50.8358. In the terminology of three-dimensional bon
diluted Ising7–9 andq-state Potts17,19 models such a value o
p belongs to the weak dilution regime where some influen
of the disordered fixed point can be observed, but it is s
difficult to clearly disentangle it. For site-diluted models th
correspondingp value is presumably higher, in particular fo
weak dilution, since all bonds around a vacant site are n
active. In the latter models, of course, the dilution parame
p can easily be tuned to study more accessible regions.

In view of the very high quality of our fits based on th
leading FSS ansatz only we must conclude that in the cas
Voronoi-Delaunay random lattices very much larger syst
sizes would be necessary to observe the expected cross
to the critical behavior associated with the disordered fix
point. This was clearly outside the scope of the present st
and its computer budget which was equivalent to seve
years of fast workstation CPU time. Instead of further
creasing the system size, an alternative and more promi
8-10



th
na
s

er
o

o-
m
se

r
eu

an
is
a
-
ll
9
rt

c
e

u
ur
si
b
es
e
to
th
se

-

he

e
a

od

ird

r-

n
d
-

he
e-

of
re
h
le

ed

a

of

s
of a

ly
rs

on-
to

rage,

is
o

ng
the
uld

lo-
ing
for

ISING MODEL ON THREE-DIMENSIONAL RANDOM . . . PHYSICAL REVIEW B66, 134208 ~2002!
route for future studies could be a systematic variation of
random lattice construction by modifying the Poissonian
ture of the site distribution such as to achieve larger value
S ~corresponding to smaller values ofp) or an investigation
of the present random lattices coupled to a model with
larger critical exponenta where the expected crossov
should set in for reasonable lattice sizes already for a m
erate degree of local disorder.
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APPENDIX: RANDOM LATTICE CONSTRUCTION

The employed algorithm for the random lattice constru
tion works as follows. Adapting the method described in R
60, we first draw randomlyN sites uniformly distributed in a
unit volume, thereby approximating a Poissonian distrib
tion. For alternative distributions discussed in the literat
see, e.g., Refs. 41 and 59. In the second step we link the
according to the Voronoi-Delaunay prescription. We start
picking the first site that we drew and locate all its near
neighbors, keeping them stored in an array. Then we proc
to the second site and search for all its nearest neighbors
once finished with the second site we keep repeating
procedure until we have done it for all the sites. Of cour
with this method we locate a given link twice, but the sim
plicity of its implementation pays off.

Starting from a given site,x1, the linking procedure
works as follows. Its nearest neighborx2 is located from
within the few hundred sites forming, or belonging to, t
‘‘cloud of neighbors’’ aroundx1. We will comment later the
issue of how to determine a cloud of neighbors for a giv
site. Notice that some care must be exercised when
proaching the boundaries of the lattice to ensure the peri
boundary conditions. Afterwards a third sitex3 is searched
R
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for, and a triangle is constructed. In order to locate this th
site, we draw circumferences going throughx1 , x2, and the
few hundred sites belonging to the cloud of neighbors ofx1.
We pick asx3 the site for which the radius of the circumfe
ence is the smallest. From the trianglen(x1 ,x2 ,x3) we pro-
ceed to locate a fourth sitex4 linked to x1 and build a tetra-
hedront(x1 ,x2 ,x3 ,x4). When a triangle still has not bee
used to build a tetrahedron from it, it is termed ‘‘active’’ an
a logical flag is turned ‘‘on.’’ When already used, it is re
named to ‘‘inactive’’ and the flag is turned ‘‘off.’’

To construct a tetrahedron from a triangle we split t
volume in two half spaces: one ‘‘above’’ and the other ‘‘b
low’’ the plane lying on the trianglen(x1 ,x2 ,x3). Let us
suppose that we search forx4 in the half space ‘‘above’’ the
triangle. In order to determinex4, we draw spheres going
through x1 ,x2 ,x3 and the sites belonging to the cloud
neighbors ofx1 placed in the half space in which we a
working. If we happen to find several trial sites for whic
their distance to the circumcenter of the triang
n(x1 ,x2 ,x3) is smaller than the radius of the circumscrib
circle of n(x1 ,x2 ,x3), then we pick asx4 the site for which
the radius of the circumscribed sphere oft(x1 ,x2 ,x3 ,x4) is
the biggest. If, on the contrary, all the trial sites lie at
distance from the circumcenter of the trianglen(x1 ,x2 ,x3)
greater than the radius of the circumscribed circle
n(x1 ,x2 ,x3), then we pick asx4 the site for which the ra-
dius of the circumscribed sphere oft(x1 ,x2 ,x3 ,x4) is the
smallest. From the newly built tetrahedront(x1 ,x2 ,x3 ,x4),
we can take two ‘‘active’’ trianglesn(x1 ,x2 ,x4) and
n(x1 ,x3 ,x4) to continue building tetrahedra from triangle
and then triangles from tetrahedra. The closer neighbors
given sitex1 are all found when there is no ‘‘active’’ triangle
left connected to the site.

When describing how to locatex1’s nearest neighborx2
or how to find x3 afterwards we emphasized that we on
search from within the sites forming a cloud of neighbo
around x1. Its meaning is thatbefore starting the linking
procedure we set up an array for each site in the lattice c
taining the sites forming its cloud. A given site will belong
the cloud of, say,x1 if it lies within a sphere centered inx1.
The radius of the sphere is chosen such that, on the ave
the number of sites within the sphere is 3 times of ana priori
upper limit to the maximum number of links that a site
likely to have in a finite Voronoi-Delaunay random lattice. T
implement an efficient search of the sites which will belo
to the cloud of neighbors of a given site, we subdivided
unit volume into smaller boxes. The optimal box size sho
be large enough to ensure that nearest neighbors will be
cated in the same box or at least in one of the 26 surround
boxes, but small enough to minimize the time needed
testing all trial sites in a box.
als
1A.B. Harris, J. Phys. C7, 1671~1974!.
2J. Chayes, L. Chayes, D.S. Fisher, and T. Spencer, Phys.

Lett. 57, 2999~1986!.
3Y. Imry and M. Wortis, Phys. Rev. B19, 3580 ~1979!; A.N.

Berker, ibid. 29, 5243 ~1984!; K. Hui and A.N. Berker, Phys.
Rev. Lett.62, 2507 ~1989!; 63, 2433~E! ~1989!; A. Aizenman
ev.
and J. Wehr,ibid. 62, 2503~1989!; A.N. Berker and K. Hui, in
Science and Technology of Nanostructured Magnetic Materi,
edited by G.C. Hadjipanayis, G. Prinz, and L. Paretti~Plenum,
New York, 1991!.

4H.-O. Heuer, Europhys. Lett.12, 551 ~1990!; Phys. Rev. B42,
6476 ~1990!; J.-S. Wang, M. Wo¨hlert, H. Mühlenbein, and D.
8-11



pu

ic

8

v

hy

hy

ev

in

ng
.

,

n

,

tat.

-

hys.

ys.

WOLFHARD JANKE AND RAMON VILLANOVA PHYSICAL REVIEW B 66, 134208 ~2002!
Chowdhury, Physica A166, 173 ~1990!; T. Holey and M.
Fähnle, Phys. Rev. B41, 11 709~1990!.

5S. Wiseman and E. Domany, Phys. Rev. Lett.81, 22 ~1998!; Phys.
Rev. E58, 2938~1998!.

6H.G. Ballesteros, L.A. Ferna´ndez, V. Martı´n-Mayor, A. Muñoz
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Sudupe, G. Parisi, and J.J. Ruiz-Lorenzo, Phys. Rev. B61, 3215
~2000!.

17C. Chatelain, B. Berche, W. Janke, and P.E. Berche, Phys. Re
64, 036120~2001!.

18C. Chatelain, P.-E. Berche, B. Berche, and W. Janke, Nucl. P
B ~Proc. Suppl.! 106&107, 899 ~2002!; Comput. Phys. Com-
mun.147, 431 ~2002!.

19M. Hellmund and W. Janke, Nucl. Phys. B~Proc. Suppl.! 106-
107, 923 ~2002!.

20D. Matthews-Morgan, D.P. Landau, and R.H. Swendsen, P
Rev. Lett.53, 679 ~1984!.

21M.A. Novotny and D.P. Landau, J. Magn. Magn. Mater.15-18,
247 ~1980!; Phys. Rev. B24, 1468~1981!; M.A. Novotny, D.P.
Landau, and R.H. Swendsen,ibid. 32, 3112~1985!.

22G. Jug and B.N. Shalaev, Phys. Rev. B54, 3442~1996!; M. Picco,
ibid. 54, 14 930~1996!; J. Cardy and J.L. Jacobsen, Phys. R
Lett. 79, 4063~1997!.

23S. Wiseman and E. Domany, Phys. Rev. E51, 3074 ~1995!; 52,
3469 ~1995!.

24For a review, see W. Selke, L.N. Shchur, and A.L. Talapov,
Annual Reviews of Computational Physics I, edited by D.
Stauffer~World Scientific, Singapore, 1994!, p. 17.

25Vik.S. Dotsenko and Vl.S. Dotsenko, JETP Lett.33, 37 ~1981!;
Adv. Phys.32, 129 ~1983!.

26B.N. Shalaev, Sov. Phys. Solid State26, 1811~1984!; Phys. Rep.
237, 129 ~1994!; R. Shankar, Phys. Rev. Lett.58, 2466~1987!;
61, 2390~1988!; A.W.W. Ludwig, ibid. 61, 2388~1988!; Nucl.
Phys. B330, 639 ~1990!.

27V.B. Andreichenko, Vl.S. Dotsenko, W. Selke, and J.-S. Wa
Nucl. Phys. B344, 531 ~1990!; J.-S. Wang, W. Selke, Vl.S
Dotsenko, and V.B. Andreichenko, Europhys. Lett.11, 301
~1990!; Physica A 164, 221 ~1990!; A.L. Talapov and L.N.
Shchur, J. Phys.: Condens. Matter6, 8295~1994!; F.D.A. Aarão
Reis, S.L.A. de Queiroz, and R.R. dos Santos, Phys. Rev. B56,
6013~1997!; D. Stauffer, F.D.A. Aara˜o Reis, S.L.A. de Queiroz
and R.R. dos Santos, Int. J. Mod. Phys. C8, 1209~1997!.
13420
t.

h

. E

s.

s.

.

,

28A. Roder, J. Adler, and W. Janke, Phys. Rev. Lett.80, 4697
~1998!; Physica A265, 28 ~1999!.

29S. Chen, A.M. Ferrenberg, and D.P. Landau, Phys. Rev. Lett.69,
1213 ~1992!; Phys. Rev. E52, 1377~1995!.
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