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In this paper, the three-dimensional Landau model of austenite-martensite transformations constructed in
Part | is generalized to include transformations between an arbitrary number of martensitic variants. The model
can incorporate all temperature-dependent thermomechanical properties of both phases for arbitrary crystal
symmetries, including higher-order elastic constants, and it correctly describes the characteristic features of
stress-strain curves for shape-memory alloys and steels, namely, constant transformation strain tensors, con-
stant or weakly temperature dependent stress hysteresis, and transformation at nonzero tangent moduli. Geo-
metric representations of the conditions for phase equilibrium and phase transformations in six-dimensional
stress space are developed. For the cubic-tetragonal phase transformation, equilibrium and transformation
surfaces in three-dimensional stress space and the corresponding lines in the deviatoric-stress plane are found
at various temperatures, and transformation processes are analyzed. All model parameters are obtained for the
NiAl cubic-tetragonal phase transformation using the results of molecular dynamics simulations available in
the literature.
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I. INTRODUCTION namics data. Phase equilibrium and transformation condi-
tions are analyzed. Our concluding remarks are made
This paper is organized as follows. In Sec. Il, the frame-in Sec. VII.
work developed in part | for the description of phase trans-

form_ations(PT’s) betw_een austenitd and marten_si_teM is: Il. TRANSEORMATIONS BETWEEN TWO

applle_d to trans_formauon; betwee_n two martensitic variants. MARTENSITIC VARIANTS

Equations obtained contain material parameters which do not

appear in the description Of thM PT. The transformatioriv 1*>M2 from Ml with transforma-

In Sec. Ill we formulate and solve the problem of con-tion straing, to M, with transformation strair, is called
structing a Gibbs potential that describes both austenite? r€orientation process. It can be ?escrlbed with thg Gibbs
martensite transformations and transformations between diptential we derived for th&—M PT" but slightly modified
arbitrary number of martensitic varianid;. To make the to account for nonzero transformation strain in the initial
theory consistent with results obtained in part | for the State and equal thermal parts of the Gibbs free energies for
A—M PT and for variant-variant PT, we employ a 2-3-4-5 both phases:
polynomial in the order parametey; . Variations in the to- —, )
pography of the free energy surface due to changes in tem- G(0,0,7)=—0o:Nal2—o:g(n)+Ap°(1-n)% (1)
perature and stress are analyzed in detail for a two-
dimensional cubic-tetragonal system. Section IV is a brief —e 7.2 Y31 (A 4

. . . . . = - an“t(4—2a)n’+(a—3 .
discussion of the symmetries of our Gibbs potential. a7 =eut(eo—en)lan+( J7+(@=3)n]
. : o 2

In Sec. V, geometric representations of the conditions for

phase equilibrium and phase transformations in Sixere ¢ is the stress tensak, is the second-order fourth-rank

enen e e . o oy Unstc complnce ensch anda are mterl praeters,
Y P y and » is the order parameter which varies from 0 fdy to

variant transformations for general stress states. For the Y tor M. The difference between the Gibbs potentials of the
bic to tetragonal PT, equilibrium and transformation surfaces 2 P

) ; ) . artensitic variants, which is the macroscopic driving force
in three-dimensional stress space and the corresponding I|n(f::s

in the deviatoric-stress plane are found at various temperaEJr the M — M transformation, is

tures, and the corresponding transformation processes are

analyzed in some detail. The validity of the associated trans- G(0,0,0)-G(0,0,1)=0:(£,~ £11). ©)

formation rule, the corresponding extremum principle, and

the nonconcavity of the regions of stability and metastabilityConditions forM; — M, andM,— M, can be obtained from

of A and allM; are demonstrated. the corresponding equations in Re_f. 1 fAr—>_M and M
In Sec. VI, all model parameters for the NiAl cubic- —A by substitutinge;,— &1 for &, A for A, a for a, and

tetragonal PT are obtained using published molecular dyAG?=0. In particular, from Eq(14) in Ref. 1
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A 6AGY—A I1l. MULTIVARIANT PHASE TRANSFORMATIONS
A—-M: og=—, M-A ogs—F )
a 6-a We now construct a Gibbs free energy for the general case

of multivariant martensitic phase transformations. It reduces
to our previous results for thd—M transformation ob-
tained in Ref. 1, as well as our results for transformations

one obtains

A : : ;
Mi—=My:  oi(gp—£1)= =, between variants obtained in Sec. II.
a The number of martensitic variants equals the ratio of the
. order(number of proper rotation®f P, , the point group of
A A, to the order ofP,,, the point group oM. For example,
Mo—=Myt oi(ep—en)<-— 6-a () n=24/8=3 for the cubic to tetragonal PTi=24/6=4 for

the cubic to trigonal PTn=24/4=6 for the cubic to ortho-
Since the magnitudes of the stresses for the—~M, and  rhombic PT, andn=24/2=12 for the cubic to monoclinic

M,— M transformations are expected to be the same, iPT. The order parametey;, i=1, ... n, parametrizes the
follows from Eq.(5) thata=3. Fora=3, the condition for ~ COSet SPac® /Py, . . _ -
the loss of stability oM ; is Let g, be the transformation strain of martensitic variant

- M. We write the multivariant Gibbs potential in the form
9°G(0,0,0)/dn*°=—60:(g— &) +2A<0. (6)

The condition forM,— M is obtained by evaluating the
second derivative ap=1 and interchanging indices 1 and 2. ] 9 3 4

It is straightforward to includej-dependent thermal strain — o gl exlani+(4—2a) g+ (a—3) 7]
and elastic compliances through fourth order

G=—0:\.0/2

n

G=—0\(7):0/2—[0:N\3(n):0]:0/3 +§‘, [A72+(4AG?—2A) 73+ (A—3AG%) 7}

—0':[0':)\4(17)10']:0'/4—0':[8t(7])+£9(7])] . ) (11
13+« «17n)

where the order parametey, corresponds to transformation
strain &, the subscript 0 denotes austenite, and

+APA(1-7)?, (7

eo(m) =g+ (€02~ £g1)[@g7°+ (4—22,) 7°+(8)—3) %],

n—-1 n
A"(7) = AT+ (NS = AD)[am, 72 F(71, ... = ; > Fy(nm) (12
+(4=2am) 7°+(am—3) 7*], ®) is a function to be determined.
where:=\2. Equations(8) are motivated by Eq2). From Define 0= (0, . 0) 7=(0,....,07,0,...,0), andy,
the condition that the magnitudes of the stresses fomhe =(0,...,07=1, 0, .,0). Themultivariant Gibbs poten-
—M; and M,— M, transformations be the same, one ob-tial (11) with F(#1, .. ..m,) =0 correctly describes four as-
tainsa,=a,, =3 and pects of martensitic PT.

80(77):801"‘(802_801)772(3_277), (1) G(‘Taaﬁ)_e("r@v%\i):‘T:Sti_AGH (13

A7) = AP (D= AT) 2(3— 279). © is the thermodynamic driving force for thle—M; PT.

The condition for the loss of stability dfl ; is (2) G(0,0,7)—G(0,0,7;))= 0(&;— &) (14)
9°G(0,60,0)/dn>=—60:(&,— &11) — 60" (92— £41) as in Eq.(3).

e o (3) The conditionsdG/dn,=0 result in the same equa-
=30\~ N\y)io tions with the same roots as in EG.2) in Ref. 1 for each
—2e(A-\):olie e o

(4) Since 9°G/dn;dn;=0 at 0 and 7 for i #j, the in-
—30[o:(A3—A}):0]:0/2+ 2A<0. equalitiess’G/d7><0 at 0 and 7, give for eachk the con-
(10) dition for A and M loss of stability, respectively, as in Eq.
(14) in Ref. 1.
The condition for the loss of stability dfl, is obtained from However, there are two deficiencies in the description of
that forM; by just interchanging variant indices 1 and 2. ThePT for F(#,, ...,7,)=0. First, the system of equations
general theory, which simultaneously describes Ake M, dGlon=0, k=1,...n, has solutions with several or all

and M;—M; PT, must reduce to the equations of this sec-7.=1, which means that the material point is simulta-
tion. As we will see in the next section, this is a strongneously in several martensitic states. This shortcoming is
constraint on the general theory. easily remedied, for example, by substitutilﬁjzglnﬁ)2 for
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the term=}_, zy in G, but we will do so in another way. The
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would lead to much more complex transformations. In par-

second and more serious deficiency is that the transformdicular, the transformations«— M; would not occur along
tions M;<>M; are not properly described. For example, thethe pathz;, 7;€[0,1].

M;—M; PT criterion 9°G(7;)/dn?<0 reduces too: e,
>A/a, Which is the condition for thé&— M; PT. Moreover,

in order to describe reorientation, we must include additional:

material parameters that are not involved in the descriptio
of A«—~M;. HenceF does not vanish, and it must satisfy
three requirements.

(1) It should not spoil any property of the potent@iwhich
is important for the description of thé— M; PT.

(2) The condition for reorientation must be given by Eg).

(3) It must remove the possibility that more than omg
simultaneously equals 1.

The first requirement is satisfied if we impose the follow-

ing conditions orF (i,j,k=1,...n):
F(0)=F(7)=0, (15)
IF(0)/ am=aF ()l 9m;=0, (16)
IF ()] a7, =0, 17
?F(0)/ o’ =3*F ()l am7=0, (18)
PF(0) aman=F(p)ldmon;=0, i#j. (19

Equation(15) preserves condition&l3) and (14). Equation
(16) constrains Oand;y\j to be extrema of the potenti&3.
Equation(17) ensures that theG(#;)/d»; are independent
of F so that theF=0 equilibrium relations between the
stress tensor, temperature, apdor each variantin particu-
lar, equilibrium stress-strain curvestill hold. Equationg18)
and (19) guarantee that the conditions for the—M; trans-
formations are unchanged. Violation of conditioi%9)

n
k=1

G=

n

.0/3—0| o

+(a3>\_3)77f<1]) Ny

n

—a:gl enlani+(4—2a)pi+(a—3) nil— 0| g0+

n n—-1

+2 [AnE+(4AG—2A) 72+ (A—3AG) 7]+ >

Ko)[axﬂk+(4 2a,) 77k+(a)\ 3) Uﬁ]) ‘0l2— 0
xé+k§l (Ne— N[ gy 72+ (4—284)) 72+ (84— 3) 7]

kgl (eac— e0)[AgmE+ (4—2ay) i+ (ay—3) 7¢]

For F a polynomial in thez;, the minimal degree for
which conditions(15)—(19) can be satisfied is fifth degree.

Ilt:onditions (15-(19) eliminate many terms from the full

ifth-degree polynomial and impose proportionalities among
the remaining terms. The result is

Fij=Bmin’+Cnln+Dn’n’—2Cny n— 2By 1y
+Buyin)+Cnin+(Y;;—C—D)nn’
+(Z;—B-D)ninf, (20)

whereB, C, andD are constants and
2Yij=*Fii(7i=0,m;= 1) 95} ,
(21)

2Z;j=0*Fij(m=1;=0)/ a7} .
Invariance ofF under interchange of indicésandj (see Sec.

IV) implies the invariance of;; , which leads to

B=C, Y;=2;, (22
henceF;; simplifies to
Fij=ni7(1— 9= 9){B[(n— 7)°— n— 7,1+ Dnin}

+ 9t gt (mZi+ mZ;). (23
Zj; is chosen so that the condition for tivg — M; transfor-

mation, 3°G(a, 6, 7;)/97°<0, coincides with Eq(6) with
indices 1 and 2 replaced byandj, respectively;

ZijZK—A'FO':[(a_S)Stj_'—SSti]' (24)

In order to account for differences in elastic compliances and
thermal expansion tensors among phases, we generalize the
Gibbs potentialG( o, 6,74, ... ,n,) of Eq. (11

n

)\g"'kz_:l (}\i’_)\g)[aa’?i*'(‘l_zas)\) WE

o

col4

n

|

n

z F|](77|y77]) (25)

=1 j=i+

The functionZ;; is obtained from the condition for thel;— M transformation 9°G( o, 0,3%)/017]%0 by requiring that it
coincides with Eq(10) with indices 1 and 2 replaced byandj, respectively,
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z; —A—A+ o:[(a—3)ey+3e;]+ om[ay( £y — £40) £,={—0.05;0.2 for B=0, D+#0, which reduces our Gibbs
potential to its simplest physically realistic form. The ther-
—3(&4— €)1+ 0:[a\ (N — Ng) —3(\;— N ]: 072 mal strain and elastic compliances are taken topbiade-

pendent. We make use of the relations
+{o[agn (A=A —3(\}—AD) .0} 073
AG’=Ay(6— 6,13, A=Ay(6—6,) (29
+o{o[an(N —N) —3(\ -\ ]:o}:0/4.  (26)
Our complete Landau model is given by E¢&3), (25), and
(26).
The transformation strain is a fifth-degree polynomial in
the order parameters

and Eq.(17) from part | (Ref. 1); 6, is the equilibrium tem-

perature for stress-fre® andM and 6, is the temperature of

A loss of stability. The loading is uniaxial along axis 1, i.e.,

o={0,0}, and the parameter values=3, 6.,=100 K, 6,

=200 K, andAy=3MPa/K are chosen. The corresponding
n transformation conditions follow from Eq&)and (5):

=2, gilan’+(4—2a)n’+(a—3)7;]

A—M;:  o=106—100),
M;—A:  o=<10(6—300),

n—-1 n

-2 2 wlEnet ey

=1 A—M,:  o=-200—100), (30)
+(@a—3)(nigj+ nigy)l. (27 M,—A: o=—20(6—300),
It is easily verified thate, satisfies all requirementst(a) M,—M;: ¢=2.20A,
O'I:heet('g{;rmegdyﬁgnzlizz egt;uqi)li(bnrli)u.m conditiongG/dn;=0 M= Ma: o<-2.220.
(i=1,...n), haven+1 solutions corresponding & and
the M;: »=0 and =1, i=1,...n. However, since no

i _ ST Plots of the function G(a,6,71,7.)=G(a,6,751,75)
restrictions were imposed orG at the points 7; 114 \:¢ [see Eq.(11)] at various stresses, temperatures,

=(0,....07=10,...,07=10,...,0), 7%=(0,....0,  and values oD andA are shown in Figs. 1-3; stressBs

7=10,...,09=10,...,0p=10,...,0), etc, the e . = o
Gibbs potential at these points can be smaller thahatthe and A are in MP_a. Growth_o_fG corresponds to variation
. ~ X o from black to white. The driving force is orthogonal to the

M . This will attract the system ta;; , 7;j, tc., which s |aye| curves. We have verified that nonphysical local minima
to be avoidedcondition (3)]. Moreover, ifG at such points  5re apsent iD satisfies the strongest of the inequalitigs)
is comparable to or less th@at A or M; then local minima ¢4 the worst combination of ande in the range of interest.
can appear at a sufficiently large stress modulus. These In Fig. 1. 6= 6.=200 K. A=300. andD = — 650. At &
minima can be interpreted as new stress-induced phaseg,o [Fig. 1(’61)] aIT three rr,1inima c<’)rres ondin t@ M
which we regard as spurious. In order that all nonphysical 9: ' ~ P g 18 M
local minima disappear or play no role because they cann@"d M2 Ihtz:\ve.the same values @, at?d ar:e SFFE)arIath_by
be reached in any transformation proceSsat 7;:, 7ii, potential barriers. Abr= —500[Fig. -1( )], the globa min-

! K mum shifts toM, but there are barriers between all minima,
etc., must be much greater th&nat A and atM; . Hence, in hence all three phases are metastable and no PT is possible
the case of two variants we require P P

without perturbationgnone of the conditions in Eq430) are

G(0,0,71,1)>G(o, 0,0, fulfilled]. As theM,— M condition is fulfilled for c=666
(28) and theA— M, condition is met fore=1000, then ato
G(o,0,71)>G(0,0,7,),i=1,2. =1000 theM, variant is unstableA is marginally unstable,

and there is a barrier betwedh, andA [Fig. 1(c)]. If A is

The relative values of5 in A M;, and atz;, €iC., are  j, raaqed to 600 while all other parameters are held fixed

pontroll_e_d by the maten_al parame_teBgand D. The strong  yhen them »,— M PT cannot occurM, is metastableA is
inequalities(28) and their generalization to three or more . :
. X . . unstable, andM , is stable[Fig. 1(d)].
variants can be written as sets of strong inequalities of the _ . —
form D—2B<g(e, ), whereg is a function that is easily __ " F19- 2 we considery= 6.=300 K, D=—1250, and
derived from Eq(28). The parameterB andD do not affect A= 300; 6. is the critical temperature at which the stress-free
the phase equilibrium or PT conditions. They could be obM loses its thermodynamic stability. At=0 both martensi-
tained by fitting our potential to the results of atomistic cal-tic variants are unstable andl is stable[Fig. 2a]. Even
culations, but in fact there are no such data to deterrBine though #°G(0,1)/073=0, i.e., the condition for them,
and D. In the absence of data these parameters shoule>M; PT is not fulfilled (likewise for theM;— M, PT), the
be chosen to eliminate all nonphysical local minifsee variantsM; and M, are connected in they; 7,-plane by
Sec. V). curves of constant energy, i.e., there is no barrier between
We now analyze in detail the Gibbs potential for a two- M, andM,. This is not a deficiency of the proposed poten-
dimensional cubic-tetragonal PT with;={0.1;,—0.05 and tial because variants1; and M, are both unstable. If the
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FIG. 1. Level curves of the functio® for = 6,=200 K andD = —650: (a) A=300, c=0; (b) A=300, o= —500; (c) A=300,
=1000; (d) A=600, o= 1000.

temperature is slightly reduced, thus preventing lhe— A In Fig. 3, A=900 andD = —1250. For#=250, ando
andM;— A PT, then a barrier between variaiis, andM, =1500[Fig. 3(@], the conditions forM,—A and A—M,
does exist. are met, but thévi,— M criterion is not fulfilled. Although

At o=1000,A, andM; are stable, they are in thermody- the criterion for theM ,— M, transition is not fulfilled, the
namic equilibrium, and they are separated by a barkikrjs M,— M, transfo_rmation will occur via phasé or along
unstable[Fig. 2b)]. If the material is in statéVl, and the ~SCMe path passing neér
stresso=1000 is applied suddenly then a PT to eitideor :Ifztsh;[lt:?m?g%tu{ﬁeﬁn\?arsigﬁﬁ ﬁ;iégﬂ;’sczgﬁfoi:gg
M, is possible. The final phase is contingent on the time.. g . 2 y

; ) rection M, (azG/an%sO), but not in direction A

dependence of the local stress during the transformation prg-., 2 . :
) . o Gl dn3=0). However, sinc& at A is lower than atM 4,
cess. Foro=500, M, is unstable in theA direction (( 7:=0) eV ! 1S oW !

5 2 . L ) 5 stress fluctuations during transformation leadAowith a
(9°G/dn3=0) but not in theM, direction (°G/977=0)  pigher probability than t,. Hence there is some conven-
[Fig. 2(c)]. However, there is a path in thg, 7, plane con-  tionality in the statement that?G(0,1)/72<0 is the M,
nectingM, and M along which th_e free energy of the sys- .M, PT criterion, While&zG(O,l)/&n§$0 is the M,— A

tem decreases. Therefore, despite the fact that the energyr congition. Either of these conditions leads to loss of sta-
minimum corresponding té is significantly lower than for bility of M, and the phase reached depends on the solution
My, it is possible that transformation td, rather than toA  of the dynamic boundary-value problem.

occurs because of stress fluctuations during the transforma- The Landau model developed here remains valid if the
tion process. temperature dependences of the material tensors are in
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(IJ 0‘.2 OI.4 0‘.6 OI.8 1 Tll

FIG. 3. Level curves of the functiof for D= —1250 andA
=900: (a) =250 K, o=1500; (b) =230 K, 60=250 .

rial parameters can be taken from experiments or molecular
dynamics simulations.

C T IV. SYMMETRIES OF THE GIBBS POTENTIAL

FIG. 2. Level curves of the functiof at three stresses for The Gibbs potentialc possesses both point group and
9=10,=300 K, A=300, andD = — 1250: (3) =0 (b) o=1000; permutation symmetries. First, the tensags €49 and the
(©) =500 . tensors\;, &, appearing inG are invariant under transfor-

mations ofP, and P,,, respectively. Second, by definition

cluded. For example, one can introduce;(#) with  of martensitic variantsg,;=R-g;-R" with some orthogonal
£i(0.) &i(6s)=0 in order to describe ferroelastic materials. tensorR from P,. Thus, products ofP, transformations
In that case our Gibbs potential will be more realistic than inlead to permutation of the martensitic variants. Conse-
Ref. 2 because it is a three-dimensional model and all mateguently, invariance ofs under P, implies invariance ofG
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under all permutations of the indices> | or, more precisely, S
with  respect to all permutations ef,\,&g,7)

(&t ,Aj, &5, 7;), Which is the case for our Gibbs potential
(12). This is not the most general potential invariant under
point group symmetrie§for example, terms involving more
than two order parameters, suchsgs;5'75, are absent but

it is the simplest polynomial potential that satisfies all the
requisite conditions discussed above. More complex poten-
tials might violate these conditions, significantly complicate
the formulation of the transformation conditions, or possess
unphysical extrema. Following standard practice we adopt
the simplest possible polynomial expression for the chemical
part of the Gibbs enerdgy!

Our Gibbs potential does not possess inversion symmetry,
i.e. it is not an even function of the transformation strain.
Nevertheless, the stress-strain curves for multivariant PT can
be symmetric under inversion. Consider the simplest case, |, MoM
namely, the one-dimensional loading of a material that has
two martensitic variants witlg,= — &;;. It is easy to show
that the stress-strain curves for negative stresses can be ob b
tained by inversion of the curves for positive stresses through
the pointo=e=0; see Fig. 1 in part}. a

(173

M:oMs AoM: bs

en-Co

V. PHASE EQUILIBRIUM AND TRANSFORMATION
DIAGRAMS IN STRESS SPACE

The conditions for thermodynamic equilibrium and the
sequence of phases appearing along arbitrarily complicated
loading paths can be conveniently analyzed by reference to
equilibrium and transformation surfaces in stress space. In
this section we develop this methodology for the case of
equal compliances foA and M;, and negligible thermal
strain and higher-order elastic constants, and apply it specifi-
cally to the cubic to tetragonal transformation.

We define the six-dimensional stress vectar
={o,6%,6% 20% 203 \20'3 and transformation
strain vectorse; ={ei!,e2%,e33,\2e2%, 2633 ,\28 3. The
factors of \2 are introduced so that the tensor and vector
norms are equal: ¢ 0)?= (o 0)? and (g, : £;)Y°= (&4
-&;Y% The relation o:g;=33_;33 ;0Mekl=35 _ ¢Mell
= o-¢&; allows us to replace the double contraction of stress
and transformation-strain tensors by inner products of stress
and transformation-strain vectors. Henceforth we drop the b
bar over vectors and use the same symbol for tensors and
vectors.

FIG. 4. Equilibrium phase diagram for the cubic-tetragonal
phase transformatiofa) in the deviatoric-stress plane afig in the

stress space &> 6, .
A. Phase equilibrium surfaces

According to Eqs(13) and(14), thermodynamic equilib- Scribed by Eq(32) for eachi andj belong to the hyperplane

rium between phases is described by the conditions through the origin and orthogonal to the vectgr— g . All
such planes divide stress space inte1 subspaces, in each
A—M;: o g—AG’=0, (31)  of which one of the phases is stable. The following inequali-

ties determine the region of stability of each phase:
Mi_Mj: 0"(8“_8“'):0. (32) -
_ stability of A:  o-g;<AG?, (33
In stress space, the stress vectors described by3g for
eachi belong to the hyperplane orthogonal to the veeter stability of M, :
and shifted by distancAGY/|e,]| in the &; direction from v
the originO of the coordinate system. The stress vectors de- #i. (34

o-g;=AG’ and o (&i—£&;)=0 Vj
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52 The pure hydrostatic stress state and the pure volumetric
strain state can be represented by vecigs and 3 en with
unit vector n={1,1,1,0,0,0/\/3 that is directed along the
so-called hydrostatic axis in stress space. SIM&=n-g;
=0, the vectorsS and g; belong to the five-dimensional
deviatoric planen- =0 which passes through the origh
and is orthogonal to the hydrostatic axis.

As an example that can be easily visualized we consider
the cubic-tetragonal PT. The three martensitic variants can be
described by the three transformation-strain vectors

8t1=ai1+,3i2+[3i3, £t2=,8i1+ai2+,8i3,
(41)
8t3:Bi1+ IB|2+ C(ig,

where thei, are orthonormal basis vectors aadand 8 are
principal transformation strains. Since only the normal stress
o*induces the PT the stress vectords=3;_,0*i,. Thus

MM the cubic-tetragonal PT can be analyzed in three-dimensional
space. The transformation deviators for the cubic-tetragonal
PT are
FIG. 5. Equilibrium phase diagram for the cubic-tetragonal —eli— 1i —Ei e —Ei i —Ei
phase transformation in the deviatoric-stress plangé<ag, . G 1775l G 2172 28

(42
Phase equilibrium in the general six-dimensional case is 1 1

most easily investigated by decomposing the stress tensor etszs( - §i1— §i2+i3),
into sphericalogl and deviatoricS partso= oyl +S, where
oo=31: 0=3%(c+ 0?2+ 0®) is the mean stresgiegative wheree:=2(a— 8)/3. The projections of the unit vectors
pressurg andl is the second-rank unit tensor. Transforma-on the deviatoric planes:=i;—i;-nn, are parallel to the
tion strains are likewise decomposeg=3s,l +¢;, where transformation strain deviators=(2/3¢)g,;. It is easy to
co=eil+eZ2+e3 is the volumetric transformation strain show thatey - (& — €m) =S¢ (64— €&m) =0 for k#1#m [Fig.
which is the same for all variants. It is evident tha®  4(a)].
=l.e,;=0, hence We first analyze cubic-tetragonal equilibrium in the devia-
toric planen- =0, that is foroy=(o'+ 0?2+ 0*)/3=0;

o &i=00e0+S g, (35  see Fig. 4a). Consider the casé> 6,, i.e.,AG’>0. Equa-
tion (39) holds inside the triangla;a,a; which is the region
of stability of A. Lines of constant:' are orthogonal ta;

29 23 13 1 hence parallel to the sides of the triangle. The distance be-

S={™'= 00,07 70,0~ 09,207,201, 20", tween O and the side of the triangle is/2/3AGY/e

where the deviator vectors are

(36 [Vei-&=3/2¢, see Eq.(42)] which corresponds to'
1 1 =2AG'/3¢ (follows from geometrical considerationsThe
&i=1ett— 580,852_580,833 second set of inequalitigg0) for M; describe a sector with

apex atO which includes the vectog,;, does not include
any other transformation strain vectors, and is unbounded in
80,\/—8“ N2el® 2812} (37)  the direction ofe,;. The first set of inequalities (40) elimi-
nate the region of stability ofA from the sector, hence the
In terms of the deviator vectors, the equilibrium and stabilityStability regions oM, M,, andM; are the convex regions
conditions(31)—(34) are bounded byb,a,azbs, b;a;asbs, andb,asa;b;. With de-
creasing temperature, the region of stabilityfo$hrinks and
A-M;: Se;=AG’— ey, disappears af= 6, (Fig. 5). It does not exist fom< 6, ei-
(38)  ther, because Eqg39) do not have a solution, which can be
Mi—M;: S(e;j—&;)=0, checked graphically. Moreover, foAG?<0, the line of
A-M; equilibrium does not intersect the positigeaxis and
stability of A:  S-e;<AG’— aye,, (39) Is outside the region of; stability. Consequently, there is
no A-M; equilibrium for < 6, and the equilibrium diagram
stability of M;:  Se;=AG’— ey, and S:(g;—&;) is the same as &= 0. o
In planes parallel to the deviatoric plane & 0) the re-
=0 Vj#i. (40)  gion of stability of A is simply rescaled—the distance be-
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(S}

M-»M:

S1

M:-»Ms Pra—
| ’ M:-»M:

€1 dg

FIG. 6. Phase transformation diagram for low temperatures a
where austenite does not exist. Pseudoplasticity arises from reori-
entation processes only. S2

tween the center and the side of the triangle/&/3(AG’
—o0ggg)/e. In the three-dimensional stress space of the Ms—M: M. MioM:
cubic-tetragonal PT, which is depicted in Figbh# the re- o A-M: ’ o
gion of stability of A is a triangular pyramid with base at
infinity, apexB on the hydrostatic axis correspondingdg MoosMo MaosM,
=AG’%e, and edges that intersect the axes at ‘ :
—3AG/[(3/2)*% —&,]. For A stable, theM;-M; equilib-
rium half-planes are attached to the edges of the pyramid and
contain the negative parts of ti axes; wherA is unstable,
they are attached to the hydrostatic axis.

The geometric analysis of cubic-tetragonal phase equilib-
ria, which involves three variants arg, with equal magni- S
tudes, can be generalized to an arbitrary numbef mar-
tensitic variants with arbitrarg,; . For 6> 6, andoy=0, the
stability region ofA in the five-dimensional deviatoric hyper-
plane is a five-dimensional prism with arsided polygonal
base which include®. The stability region oM, is a trun-
cated pyramid defined by inequalitie®0). The second set of
inequalities(40) describe a pyramid with an— 1-sided po-
lygonal base at infinity with apex &. The pyramid includes
the vectorg;, does not include any of the other, and is FIG. 7. Phase transformation diagram for coexisting austenite
unbounded in thes; direction. The first set of inequalities and martensitic variants in the pseudoelastic regime. Stress hyster-
(40) remove a region of austenite stability from the apex ofesis for the phase transformatién—M; is (a) smaller than for
the pyramid. With decreasing temperature, the region of staeorientationM;<M;, and(b) larger than for reorientation.
bility of A shrinks to a point at¥= 6, and does not exist

for <6,. A
As in the cubic to tetragonal case, the region of stability A—Mi:  Sg= a3 7o%o;
of Arescales in planes parallel to the deviatoric plane. In the )
six-dimensional stress space, the region of stabilith if a . 6AG"—A (43)
A . g M;—A: S g <———09gg
pyramid with ann-sided polygonal base at infinity and apex ! 6—a '

on the hydrostatic axis corresponding to the pressege
=AGY e, Mi—M S (egy—ey)=

w| >|

B. Phase transformation surfaces

The conditions for phase transformations, E(b. and It follows from these equations that stress space is subdi-
(5), can be written as vided by transformation planes of three type&i—M;
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Sz dy Mz—=M: Cs
f MiosMs S Mi-»M:

C6

Mz—>M:

d;

Mi—»A-M: | MiA-M:

d M:—»A->M;
2

ds A Mi»A-M:
Cq
) ?\ \ - M‘%MMI o e MM MoAoMe e
R /<
M:—>Ms = o = * g M->M Moo M M.=M,
M A->Ms Ma=sA—sM
2 1
3 da A s s
3 1
S3 d M:»A->M, Sy M;—»A-M; M;»A-M,; MM
Mi>A->M; “[A->M: ) Mi»M; «— s
c ds
Mi-»M M:-»M X . . .
e e FIG. 10. Phase transformation diagram for coexisting austenite
. 4 and martensitic variants. Transformations to austenite are absent, so
1 6

pseudoplasticity is due solely to the reorientatidhs—M; .
FIG. 8. Phase transformation diagram for the limiting case be-

tween pseudoelasticity and pseudoplasticity: the austenite triangle N A

a,a,a; has contracted to the origin. metastability of A:  S.g;< 3~ 0o,

planes; double-PT planesliscussed below and Mi~M; 1 oiocianility of M. S .= 6AG"—A —oeen and
planes. TheM;—M; andM;— M; planes, which are always o >&iZ e, 0%0

present, are parallel to and equidistant from tg—M; N

equilibrium plane. TheA—M; and M;—A planes, when S (ey— &)< = VK#i. (44)
present, are parallel to each other. The separation of the 3

A< M; and M;~M; planes is proportional to the corre- . ) ) o
sponding hysteresis. Transformation diagrams in the deviatoric plane for the

We define the region of metastability of a given phase agubic-tetragonal PT for various temperatures and material
that region outside of which the phase is absolutely unstablBarameter values are presented in Figs. 6-10.
and cannot exist. The region of stability is included in the ~The simplest diagram is for sufficiently low enough tem-
region of metastability. The conditions defining the regionsPeratures that transformations to and frémare absentFig.

of metastability ofA and theM, are 6). This corresponds to pseudoplasticity due to reorientation
processes. Each transformation line is parallel to the corre-
o MoM S MisM sponding equilibrium line and shifted from it by2A/(9¢)
1 < C6

[V(ei—ew - (ei—ex) =3&/\2, see Eq(42)]. Arrows indi-
cate the direction in which the transformation line has to be
crossed in order for the corresponding PT to occur. Only
variant M;, M,, or M3 exists in the nonconcave region
e;e,dg, did,cg, Or CciCyre5, respectively. VarianM, does
not exist outside the nonconcave regmi,Cg, its region of
metastability, because it transforms eitherMg along the
line cycq Or to M5 alongc,cs. Likewise, variantM, (M3)
does not exist outside the nonconcave regiereseqs
(d,d3dg). Thermomechanical history determines which vari-
ant exists at a given point. Progressing along the patink
from the pointk where onlyM; can exist, theMi;—M, PT
occurs where the path crosses the ligd,, theM,— M3 PT
occurs at the lineegc,, and theM;— M, PT occurs at the
Mi»M; *+] > M;—M: line dge,. Proceeding in the opposite direction frdmthe
M,—Mjz PT occurs at the ling,c,, and theM;—M,; PT
takes place at the line,d;. A PT occurs at a transformation
line if and only if the line is crossed in the direction of the
FIG. 9. Phase transformation diagram for coexisting austenit€orresponding arrow and the material is in the initial phase
and martensitic variants. Pseudoplasticity is due to botitheM, for this transformation. Note that any variant may exist in-
phase transformation and the reorientatidhs—Mj . side the hexagort,csd,dse,e; depending on history. It

c ds
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makes no sense to continue the lioge; further than the
point c;—this portion of theM ;— M, transformation line is

PHYSICAL REVIEW B 66, 134207 (2002

before the actuaA—M, PT. TheM;—A PT delays the
appearance of thel, variant. If pointb, is closer toO than

physically irrelevant because the material has already tranghe intersection of thevi;—M, PT line with the axiss,,

formed toM 5 along the linec;c;. Each of the remaining five
M;—M; lines are similarly truncated.

then theM, variant appears earlier due to the double PT

In Fig. 7 a much more complex transformation diagram is

shown for the pseudoelastic regime, i.e., where unloading

results in onlyA. In Fig. 7@ the hysteresis foM;« M is
larger than folA— M; ; vice versa in Fig. {). In addition to
lines of M;—M; PT (d;d3, es€s, C1C3, dsdg, €163, and
C4Cg), lines ofA—M; PT (b,b,, bybs, andbsb,), and lines
of M;—A PT (cscy, d3ds, andese,) are present. An inter-
esting feature of Fig. (@) that is absent from Fig.(B) is the
“double” PT along the lines,c5, d,ds, €,€3, C4Cs, dods,
ande,es. For example, th&1;— A PT occurs along the line
segment,c; but A is unstable in this region with respect to
M; (outside the lineb;b, A transforms toM3), hence the

C. Associated transformation rule and principle
of maximum transformation work

Transformation surfaces for—j PT are specified by;;
=0 (&;— &)+ -=0, wherei,j=0 for Aand- - - desig-
nates irrelevant stress-independent terms. The inequgity
=0 corresponds to the occurrence of thej PT and the set
of inequalitiesq;; <0 Vj #i defines the region of metastabil-
ity for phasei.

There are similarities between phase equilibrium and
transformation surfaces and yield surfaces in plasticity
theory!? In both cases, such surfaces divide the stress space

A—Mj PT occurs immediately. Consequently, despite theénto regions where inelastic proces$&J or plasticity oc-

fact that the direcM;— M5 PT is impossible along the line
c,Cs, the “double” PT M;— A— M3 can occur. This situa-
tion is similar to the one analyzed in Fig(aB. Inside the
triangleaja,az only A can exist.

In the region e;e,e;d,dsdg,

d,d,d;c,CsCq, OF

cur and do not occur. In both cases, an increment of inelastic
deformation, either an infinitesimal change in plastic strain
or a finite jump in transformation strain, is orthogonal to the
corresponding surface; this is the associdieith the yield
surface flow rule in plasticity theory. The associated trans-

C1C,C3e4€5€6, there exists, respectively, only the variant formation rule

M4, M5, or M5. A does not exist outside; b,b,, its region

of metastability, because it transforms to one of the marten-
sitic variants along the sides of the triangle. The nonconcave

regionc,C,C3C4CsCq is the region of metastability of variant
M because it transforms either kb, along the linec,cscg,

or to M5 alongc;c,C3, or to A alongcsc,. Similarly, variant
M, (Mj3) does not exist outside the nonconcave regio
€1€,€3€,4€5€5 (d1d>d3d,dsdg).

Along the pattkimnktheM,— A PT occurs across,; e,
the A—M4 PT occurs where it crossese,, and theM,
— M, PT takes place where the path crossgs,. Along the
pathknmlk the M,— M4 PT occurs at its intersection with
eseq, the M;— A PT takes place where it crossegd;, and
the A—M, PT occurs where it crossesc,.

In Figs. 8-10 the hysteresis for thé «— M; PT is larger

than for theA— M; PT. Figure 8 represents the limiting case
between pseudoelasticity and pseudoplasticity, that is, the tri-

anglea;a,az has contracted t® at a sufficiently low tem-
perature. With a further decrease in temperatéig. 9), the

n

_ i

o (45)

Ej— &
follows trivially from qji= o (&;— &)+ - .

It is seen from Figs. 6—10 that the region of metastability
of each phase is nonconcave, i.e.gifaind * belong to the
metastability region then the differenae- o* belongs as
well. It is easy to prove geometricallgee Fig. & and ana-
Iytically that for a nonconcave region of metastability the
associated transformation rule is equivalent to the principle
of maximum transformation work

o (&~ &)>0" - (g;— &) for g;(o)=0
and q;;(0*)<0, o-(&;— &;)=0" - (&;— &;)
for g;i(e)=0q;(0*)=0, (46)

that is, the transformation work done byoaon the transfor-

M;—A PT occurs at negative stresses, and common pointsation surface is greater than the work done by afiyon

appear along the transformation lines fdr— M; and M

—M; (i#j#k): d,,c5; Cs,65 ande,,ds. At lower tem-
peratures(Fig. 10 there are no PT t@, i.e., the line seg-
mentsc;c,, dsd,, andese, disappear.

We now consider loading processes along axisin or-
der to avoid the appearance Mf;, motion is parallel to the
s, axis at a positive infinitesimal value 6. In Fig. 7(a),
loading begins aO (i.e., in A) in the positives; direction.
The A—M, PT occurs at the intersection of the liegd,
with the axiss;. Upon reverse loading thigl;— A PT does
not take place until the path intersects the layag, hence
there is hysteresis. The FN— M, occurs at poinb;. If the
M;—A PT were suppressed, then tMg,—M, PT would
occur at the intersection of the limgcg with the axiss,, i.e.,

thei side of the transformation surface for the same jump in
transformation strain, and the transformation work is the
same for all stresses on the transformation surface. The prin-
ciple of maximum transformation work is similar to the cor-
responding principle in plasticity theory.

Alternatively, starting with Eq(46), one can prove45)
and nonconcavity of the region of metastability of each
phase. All results of this subsection are valid for stability
regions of phases as well.

If jumps in thermal strain and elastic compliance are
taken into account, then the left-hand side of E4p) is
generalized ta;— &+ &£y, — €4+ 0:(N\j— \;). The transfor-
mation and phase equilibrium surfaces are not planay; if
—\;#0. The associated transformation rule and the noncon-
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cavity of transformation surfaces at the macroscopic levelhe values ofeg, AGY, a, A, 6., Ao, and 6, for the NiAl
(after averaging over the representative volumere de-  cubic-tetragonal PT.
rived in Refs. 13,14. The internal energy density of NiAl at zero temperature
has been calculated as a function of strain by means of clas-
sical MD based on an embedded-atom met{i&8lM) inter-
VI. EQUILIBRIUM AND TRANSFORMATION atomic potentiaiL.6 At 6=0, i.e., zero kinetic energy in the
CONDITIONS FOR THE NiAl CUBIC-TETRAGONAL PT initial configuration, the MD algorithm simply relaxes the
system into a minimum energy state for a given strain tensor.
NiAl austenite has cubic symmetfZsCl structurg The  The results in Ref. 16 were presented in the form of a poly-
crystal lattice of the martensite has been determined by trangromial approximation tab. Since the cubic-tetragonal PT is
mission electron microscopy to be face-centered tetracompletely described by the three principal components
gonal (CuAu | structure.® We now use the results of (i=1,2,3) of the strain tensor, we can neglect termsbin
molecular dynamics(MD) simulation$®!” to determine that involve shear strains with the result

D=1.087F%2+e5+5)+1.616s,6,+ 8183+ £,83) —6.68Te3+e5+63)—6.11% 8,85
—3.1138%824‘ slsg-f- 8%83"!‘ 8%83"‘ 818§+ 8285)
+490.8s%e,83+ £18583+ £18,65) +250.2F 6385+ £285+ £583)

+171.83e3e,t 865+t e5este3e3t e85+ £,83) +58.54 1 +s5+¢3). (47

The coefficients in Eq(47), which are in units of 1DMPa,  sponding transformation strain components, hence we ne-
were found by a least-squares fit to the calculated energglect terms in the PT criteria that involve jumps in elastic
with a greater weighting given to points near thend M; compliance; the resulting error does not exceed 2%.
minima as well as along the minimum-energy paths betweehroughout the remainder of this section, stresses and energy
the minima(weighting factors were not provided in Ref.)16  densities are in units of MPa and temperatures are in degrees
At the minimum of the internal energy densit$7), the K where units are not explicitly indicated.
transformation strain and corresponding valig, are given The parametera anda are determined by first finding the
by stress tensors for the direct and reverse PT and then substi-
_ . ) tuting them in theA—M PT criteria (4). For e,=¢54 the
&1=1{0.215,-0.078;-0.07§, level curves of® are nearly parallel ta,;. Consequently,
AGY(0)=d,;,= —315.6 MPa; (48) the minimum energy pa_th betweek and M_l is apprpxi-
mately e=ye;;, wherey is the transformation coordinate.
the tensorse;, and €3 can be obtained by permutation of Along this path the free energy is given b=1918/>
components. The zero-temperature elastic modadli —5096y°+2862*. PT occur at the twy values satisfying
=J°®/de;de; at =0 (A) ande= gy (M) are the stability conditiond®®/dy?=0, namely,y=0.1511 @
—M,) andy=0.7391 (M;—A). Substitution of the strains
corresponding to thesg values into the expression for the
stress tensowo; = dF/de; yields the PT stressesr={1664,

Ch=C5=C%=2.175, C7,=C/3=Ch=1.616,

M _ M_ ~M_ M_ ~M_
C11=4.538, C;=Cg5=7.449, C1p=Cy3=3.967, 565.2, 565.2 for A—M, and o={—4054, 140.6, 140)&or
y (49 M;—A. Inserting these stresses into the PT critéfipone
C23=3.445. obtainsA=805.2 anda=2.980.
Comparison of the zero-temperature elastic modulAdb The barrier parametek can be determined from thd,

room-temperature experimental d&tahows discrepancies — M, PT criterion(6). We investigated the Gibbs potential
of 8% for C;;, 15% for C3,, and 11% forC’'=(C};, G=®— o« for the twinning transformatioM,—M; as a
—Ch)/2, but the discrepancy was 32% f6f,. However, function of the shear stress={c,—c,0} in the twinning
since the PT is controlled primarily b§’, the discrepancy direction. The minimum ofG corresponding tdVl, disap-
in C,, is inconsequential for the cubic-tetragonal Ex- ~ pears ab=3026. Substituting this value into E() we find
perimental values for the third-order elastic constants and th&=5320.
elastic constants dfl are not available in the literature. We It is interesting to note that after the disappearance of the
expect that our Landau model parameters determined frol, minimum, the system falls into a new minimum at
Eq. (47) are generally accurate to 20% or better. £={0.02753,—-0.03353, 0.003995which corresponds to a
We estimate that at the highest PT stress the jumps in themetastable orthorhombic phase. This phase is an artifact of
components of elastic strain do not exceed 4% of the correthe complex polynomial47), which may have other non-
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physical minima. This minimum disappearsoat 3170. Our The NiAl phase equilibrium and transformation condi-
potential has no unphysical minima fbr sufficiently small.  tions can be analyzed geometrically using the diagrams pre-
In principle, the parametef3 andB can be determined by sented in Sec. V. The phase equilibrium diagram is Fig) 4
fitting our potential to MD data at points away from both the with the distance between the center and the side of the tri-
A and M; minima and the minimum-energy paths betweenangle equal to 6.1&(—215)—0.087%=0, or Fig. 5 if the
the minima. Howeverp was not calculated at such points so inequality is reversed. Fig. 7 is the phase transformation dia-
B andD cannot be reliably determined from E@7). Con- gram for the pseudoelastic regime —894+ 1.460
sequently, we assumB=0 and bound the constafit by = —0.05%,>0). The stress hysteresis in the deviatoric plane
requiring that G(o,0,1,1»G(0,0,1,0) is satisfied under for the A—~M; PT is hyy=3445+0.05%, and that for
uniaxial compressive loading, which imposes more restricyariant-variant ~ transformations  is hyy=2+2A/(9¢)
tive bounds orD than tensile loading, and that nonphysical =g560. Figure 7) is the phase transformation diagram if
minima are absent from the Gibbs potential. A& —7000,  h,\>tan(m/6)h,y,, which is the case fop<1.9x 10°K.
which is far outside the region of sta_blllty of; and conse-  Consequently, the “double” PM;—A—M; may occur at
quently far beyond stresses of interest, the conditiorhny temperature. Figure 8 corresponds to the condition
G(0,0,1,1=G(0,0,1,0) is fulfilled atD = 1438, but thereis  —g894+1.466—0.05%,=0.
a nonphysical local minimum along the ling;=1. This
minimum disappears d =500, so we choose this value,
which ensures that no unphysical minima occur at smaller

compressive stresses or in tension. We have constructed a three-dimensional Landau theory
The critical temperatures depend on the value of the equifor multivariant stress-induced martensitic phase transforma-
librium temperature,. EAM MD calculations of 6, for  tions. The material parameters characterizing both stable and
NiAl show a strong dependence on Ni contéh®f the three  unstable states can be obtained from a combination of ex-
compositions for whichg, was calculated in Ref. 17, the periment and molecular dynamics simulations. In contrast to
volumetric straineo=sil+e2%+ 32, of Nig,Alzg, namely, previous models, ours can incorporate all temperature-
0.04, is the closest to 0.059, the valuesgfobtained from dependent thermomechanical properties of both phases, in-
Eq. (48). The cubic-tetragonal equilibrium temperature of thecluding higher-order elastic properties; describes transforma-
Nig;Al 39 was calculated to be 215 K. If we take EQ9), it  tions between austenite and martensitic variants and between
then follows from Eq.(48) and the values oA anda at #  martensitic variants for any type of symmetry Afand M;
=0 K that A;=4.40 andfd.=—183 K, and that the tem- and describes typical stress-strain curves with constant
perature oM loss of stability isf.=26,— 6.= 613 K. transformation-strain tensorgemperature and stress inde-
Substituting e y=0.059, a=2.98, A=5320 MPa, B=0, penden, constant or weakly temperature dependent stress
D=500 MPa, 0,=215 K, A,=4.40 MPaK®, and 6, hysteresis, and transformation at nonzero tangent moduli, in
=—183K in Egs.(38) and(43) gives the phase equilibrium agreement W'th exper|mer_1tal stress-strain r_e_lat|0ns.
and transformation conditions for NiAl ¢ k#1): Geometric representations of th.e co.ndmgns. for phase
equilibrium and phase transformations in six-dimensional

VII. CONCLUDING REMARKS

A—M:: 0.2155—0.078S+S)=—316+1.470—0.05%. stress space were developed. The utility of these representa-
' 5 85+9) 0 tions was exemplified by the cubic-tetragonal PT for which
M,—M,: S=S equilibrium and transformation surfaces in three-dimensional

' ke ' stress space and the corresponding lines in the deviatoric-

A—M;: 0.215—0.078S+S)=270+1.48/—0.05%;, stress plane were determined at various temperatures, and

transformation processes were analyzed. The free energy
(50) ]
(hypen surface topography can lead to nontrivial transforma-
M—A: 0.2155-0.078S+S)<—894+1.460—0.059%, ti_on processes, e.g., variant-variant tran_sformation through
virtual A, or M;— A PT along a path that includes deforma-
. tion in the direction oM (j #i). An associated transforma-
M| —M,: —§)=6050. : - J e ,
=M (S5S) tion rule, similar to that for plasticity, was found. And finally,
For uniaxial loading in th€001] direction, Eq.(22) of part|  the phase equilibrium and transformation conditions for the

gives NiAl cubic-tetragonal PT were determined.
The qualitative differences in the characteristics of direct
1260+ 6.870— 5470 and reverse PT, stress hysteresis, and variant-variant trans-
o= 1+0.0134%; : (51 formations between our model and previous models will lead

to substantial differences in the predicted structure of inter-
The A—M PT occurs atr=1260+6.876, and the reverse faces and the sensitivity to crystal defects. We expect that the
PT takes place atr=—4150+6.780; the stress hysteresis effect of stress concentration around defects, which is pro-
5410+ 0.09 is practically temperature independent. Theportional to the elastic moduli, will be more pronounced in
maximal known experimental value of the temperature deour theory than, for example, in Ref. 11, because tangent
rivative of the transformation stress is 3¥3This is smaller  elastic moduli do not tend to zero in our Landau model.
than the value predicted by our Landau model, namely, 6.84, The quantitative study of a number of important problems
because of crystal defects. concerning temperature- and stress-induced martensitic PT
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can be carried out using our three-dimensional Gibbs free significantly with stress then that dependence should be
energy. Problems of interest include the following. accounted for in mesoscale models of stress-induced

« Heterogeneous martensite nucleation. It is known that the nucleation and growth.

thermodynamic driving force to cause PT in defect-free The description of martensitic PT in steels, carbon and

Fe-Cp precipitates in a copper matrix is seven times largegoron nitrides, and the majority of high pressure PT would
than in the same precipitates containing d_|slocat?8r@u_r necessitate the generalization of our Landau model to the
Landau model can be used as the basis for quantitativgeometrically nonlinear case, i.e. large elastic and transfor-
studies of the appearance of martensitic embryos and ninational strains, and material rotation. Some aspects of the
clei at dislocation aggregates such as dislocation pile upkinematic and thermodynamic formalism developed in Ref.
and tilt and grain boundaries. Research to Hate’"has 26 outside the context of Landau theory can be of help in
been based on Landau models, discussed in the Introdugeneralizing our model.
tion to part I, with significant shortcomings. Stress hysteresis is constant or weakly temperature depen-
e Martensite nucleation at crack tips. Stress concentratiodent in our model. At the same time, experimental stress-
near crack tips may induce martensitic PT. An increase irstrain curves exhibit much greater stress hysteresig, at
the fracture toughness because of PT is an importarite., in the pseudoplastic regime, than in the pseudoelastic
strengthening mechanism called transformationregime. Even if the barrier for the variant-variant transforma-
toughening>*®The quantitative prediction of the effect of tion is significantly increased, the stress-strain curve is not
PT on fracture is of considerable practica| importance. affected because variant-variant transformation will occur
« Formation and evolution of twinned microstructdr@®  Vvia virtual A with a M;—A PT barrier. Our Landau model
The barrier height for variant-variant transformations is adoes not prOperly_ descrlbe the prerlmental, macroscopic
key parameter that controls twinning and the mobility of stress-transformatlon-s_traln behawo_r because th_e data relate
the transformation strain to the appli@tiacroscopig stress

variant-variant and\-M interfaces. In contrast to previous i _ : ;
Landau models, we introduced this parameter explicitIyWh”e the model relates the strain to the loéalicroscopig

and can study its effect on twinning and interface mobilityStress’ which is a superposition of the applied stress and in-
in real materials. ternal stresses arising from the microstructure. Thus, the de-

« Defect generation during PT and the interaction betwee scription of the macroscopic stress-transformation-strain be-

. S avior requires that the internal stresses due to fine
PT and plasticity. High internal stresses due to transmrmafnultivariant microstructure, interface surface enefgich

tion §trajn usua}lly lead to dislocation gener.ation gnd a re'may suppress transformation through virtédl and defect
duction in elastic energy through the formation of invariant, agistance to martensite-martensite interface motion be taken
plane strain variants. An interface with dislocatidsemi- hto account. This can be achieved by means of large-scale
coherent interfagehas a different mobility than a coherent nymerical simulations based on a microscopic Landau model
interface. The mOblllty of the interface is determined pri- such as ours. This numerical Coarse_graining approach is oc-
marily by the interaction of the interface with existing dis- casionally circumvented by applying Landau theory directly
locations and dislocations generated during plastic deforon a macroscopic scale; see, for example, Ref. 27. There is
mation. Moreover, strain-induced nucleation takes place aén implicit assumption that the effect of defects is approxi-
defects produced during plastic flow. The interplay be-mately included in the parameters of the potential as is done,
tween PT and plasticity is one of the most complex butfor example, in macroscopic plasticity theory. Our Landau
important problems in PT theory. model is particularly well suited for use on a macroscopic
Transition from slip to twinning as an accommodation scale because its stress-strain curves possess all of the basic
mechanism during martensite nucleation and growth. Théeatures of macroscopic stress-strain curves in the pseu-
transition is Strong|y temperature dependent and may eveﬂoekiStiC regime. Moreover, it does not suffer from the short-
occur within a single martensite plate. This transition iscomings of the Landau potential proposed in Ref. 27 for

expected to be very sensitive to the form of the LandawZirconia ceramics, namely an incgrrect si.gn for an elastic
potential for variant-variant transformations. modulus and unequal transformation strains for direct and
Structure of interfaces, solitary waves, and the interactiof€verse PT.
of moving interfaces with defecté=2®> The majority of

work on this topic has been based on polynomials in the

strain. Interface structure has been investigated primarily The support of Los Alamos National Laboratory for V.I.L.
for the stress-free case. Studies utilizing our more physiunder consulting agreement C-8060 is gratefully acknowl-
cally realistic Landau model for non-zero stress may leaddged. The technical assistance of Dong-Wook [Bexas

to new results. If it is found that the interface energy variesTech University is very much appreciated.
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