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Three-dimensional Landau theory for multivariant stress-induced martensitic
phase transformations.

II. Multivariant phase transformations and stress space analysis
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In this paper, the three-dimensional Landau model of austenite-martensite transformations constructed in
Part I is generalized to include transformations between an arbitrary number of martensitic variants. The model
can incorporate all temperature-dependent thermomechanical properties of both phases for arbitrary crystal
symmetries, including higher-order elastic constants, and it correctly describes the characteristic features of
stress-strain curves for shape-memory alloys and steels, namely, constant transformation strain tensors, con-
stant or weakly temperature dependent stress hysteresis, and transformation at nonzero tangent moduli. Geo-
metric representations of the conditions for phase equilibrium and phase transformations in six-dimensional
stress space are developed. For the cubic-tetragonal phase transformation, equilibrium and transformation
surfaces in three-dimensional stress space and the corresponding lines in the deviatoric-stress plane are found
at various temperatures, and transformation processes are analyzed. All model parameters are obtained for the
NiAl cubic-tetragonal phase transformation using the results of molecular dynamics simulations available in
the literature.
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I. INTRODUCTION

This paper is organized as follows. In Sec. II, the fram
work developed in part I for the description of phase tra
formations~PT’s! between austeniteA and martensiteM is
applied to transformations between two martensitic varia
Equations obtained contain material parameters which do
appear in the description of theA↔M PT.

In Sec. III we formulate and solve the problem of co
structing a Gibbs potential that describes both austen
martensite transformations and transformations between
arbitrary number of martensitic variantsMi . To make the
theory consistent with results obtained in part I for t
A↔M PT and for variant-variant PT, we employ a 2-3-4
polynomial in the order parameterh i . Variations in the to-
pography of the free energy surface due to changes in t
perature and stress are analyzed in detail for a t
dimensional cubic-tetragonal system. Section IV is a b
discussion of the symmetries of our Gibbs potential.

In Sec. V, geometric representations of the conditions
phase equilibrium and phase transformations in s
dimensional stress space are developed and studied.
construction dramatically simplifies the analysis of mu
variant transformations for general stress states. For the
bic to tetragonal PT, equilibrium and transformation surfa
in three-dimensional stress space and the corresponding
in the deviatoric-stress plane are found at various temp
tures, and the corresponding transformation processes
analyzed in some detail. The validity of the associated tra
formation rule, the corresponding extremum principle, a
the nonconcavity of the regions of stability and metastabi
of A and allMi are demonstrated.

In Sec. VI, all model parameters for the NiAl cubic
tetragonal PT are obtained using published molecular
0163-1829/2002/66~13!/134207~15!/$20.00 66 1342
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namics data. Phase equilibrium and transformation con
tions are analyzed. Our concluding remarks are m
in Sec. VII.

II. TRANSFORMATIONS BETWEEN TWO
MARTENSITIC VARIANTS

The transformationM1→M2 from M1 with transforma-
tion strain«t1 to M2 with transformation strain«t2 is called
a reorientation process. It can be described with the Gi
potential we derived for theA↔M PT1 but slightly modified
to account for nonzero transformation strain in the init
state and equal thermal parts of the Gibbs free energies
both phases:

G~s,u,h!52s:l:s/22s:«t~h!1Āh2~12h!2, ~1!

«t~h!5«t11~«t22«t1!@ āh21~422ā!h31~ ā23!h4#.
~2!

Heres is the stress tensor,l is the second-order fourth-ran
elastic compliance tensor,Ā and ā are material parameters
andh is the order parameter which varies from 0 forM1 to
1 for M2. The difference between the Gibbs potentials of t
martensitic variants, which is the macroscopic driving for
for the M1→M2 transformation, is

G~s,u,0!2G~s,u,1!5s:~«t22«t1!. ~3!

Conditions forM1→M2 andM2→M1 can be obtained from
the corresponding equations in Ref. 1 forA→M and M

→A by substituting«t22«t1 for «t , Ā for A, ā for a, and
DGu50. In particular, from Eq.~14! in Ref. 1
©2002 The American Physical Society07-1
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A→M : s:«t>
A

a
, M→A: s:«t<

6DGu2A

62a
~4!

one obtains

M1→M2 : s:~«t22«t1!>
Ā

ā
,

M2→M1 : s:~«t22«t1!<2
Ā

62ā
. ~5!

Since the magnitudes of the stresses for theM1→M2 and
M2→M1 transformations are expected to be the same
follows from Eq.~5! that ā53. For ā53, the condition for
the loss of stability ofM1 is

]2G~s,u,0!/]h2526s:~«t22«t1!12Ā<0. ~6!

The condition forM2→M1 is obtained by evaluating th
second derivative ath51 and interchanging indices 1 and

It is straightforward to includeh-dependent thermal strai
and elastic compliances through fourth order

G52s:l~h!:s/22@s:l3~h!:s#:s/3

2s:@s:l4~h!:s#:s/42s:@«t~h!1«u~h!#

1Āh2~12h!2, ~7!

«u~h!5«u11~«u22«u1!@ āuh21~422āu!h31~ āu23!h4#,

lm~h!5l1
m1~l2

m2l1
m!@ āmlh2

1~422āml!h31~ āml23!h4#, ~8!

wherelªl2. Equations~8! are motivated by Eq.~2!. From
the condition that the magnitudes of the stresses for theM1
→M2 and M2→M1 transformations be the same, one o
tains āu5āml53 and

«u~h!5«u11~«u22«u1!h2~322h!,
~9!

lm~h!5l1
m1~l2

m2l1
m!h2~322h!.

The condition for the loss of stability ofM1 is

]2G~s,u,0!/]h2526s:~«t22«t1!26s:~«u22«u1!

23s:~l22l1!:s

22@s:~l2
32l1

3!:s#:s

23s:@s:~l2
42l1

4!:s#:s/212Ā<0.

~10!

The condition for the loss of stability ofM2 is obtained from
that forM1 by just interchanging variant indices 1 and 2. T
general theory, which simultaneously describes theA→Mi
and Mi→M j PT, must reduce to the equations of this se
tion. As we will see in the next section, this is a stro
constraint on the general theory.
13420
it
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III. MULTIVARIANT PHASE TRANSFORMATIONS

We now construct a Gibbs free energy for the general c
of multivariant martensitic phase transformations. It redu
to our previous results for theA→M transformation ob-
tained in Ref. 1, as well as our results for transformatio
between variants obtained in Sec. II.

The number of martensitic variants equals the ratio of
order~number of proper rotations! of PA , the point group of
A, to the order ofPM , the point group ofM. For example,
n524/853 for the cubic to tetragonal PT,n524/654 for
the cubic to trigonal PT,n524/456 for the cubic to ortho-
rhombic PT, andn524/2512 for the cubic to monoclinic
PT. The order parameterh i , i 51, . . . ,n, parametrizes the
coset spacePA /PM .

Let «tk be the transformation strain of martensitic varia
Mk . We write the multivariant Gibbs potential in the form

G52s:l:s/2

2s:S (
k51

n

«tk@ahk
21~422a!hk

31~a23!hk
4# D

1 (
k51

n

@Ahk
21~4DGu22A!hk

31~A23DGu!hk
4#

1F~h1 , . . . ,hn!, ~11!

where the order parameterhk corresponds to transformatio
strain«tk , the subscript 0 denotes austenite, and

F~h1 , . . . ,hn!5 (
i 51

n21

(
j 5 i 11

n

Fi j ~h i ,h j ! ~12!

is a function to be determined.
Define 0̄5(0, . . . ,0), h ī5(0, . . . ,0,h i ,0, . . . ,0), andh î

5(0, . . . ,0,h i51,0, . . . ,0). Themultivariant Gibbs poten-
tial ~11! with F(h1 , . . . ,hn)50 correctly describes four as
pects of martensitic PT.

~1! G~s,u,0̄!2G~s,u,h î !5s:«t i2DGu ~13!

is the thermodynamic driving force for theA↔Mi PT.

~2! G~s,u,h î !2G~s,u,h ĵ !5s:~«t j2«t i ! ~14!

as in Eq.~3!.
~3! The conditions]G/]hk50 result in the same equa

tions with the same roots as in Eq.~12! in Ref. 1 for each
hk .

~4! Since]2G/]h i]h j50 at 0̄ and h k̂ for iÞ j , the in-
equalities]2G/]hk

2<0 at 0̄ andh k̂ give for eachk the con-
dition for A and Mk loss of stability, respectively, as in Eq
~14! in Ref. 1.

However, there are two deficiencies in the description
PT for F(h1 , . . . ,hn)50. First, the system of equation
]G/]hk50, k51, . . . ,n, has solutions with several or a
hk51, which means that the material point is simult
neously in several martensitic states. This shortcoming
easily remedied, for example, by substituting ((k51

n hk
2)2 for
7-2
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the term(k51
n hk

4 in G, but we will do so in another way. Th
second and more serious deficiency is that the transfor
tions Mi↔M j are not properly described. For example, t
M j→Mi PT criterion ]2G(h ĵ )/]h i

2<0 reduces tos:«t i

>A/a, which is the condition for theA→Mi PT. Moreover,
in order to describe reorientation, we must include additio
material parameters that are not involved in the descrip
of A↔Mi . HenceF does not vanish, and it must satis
three requirements.

~1! It should not spoil any property of the potentialG which
is important for the description of theA↔Mi PT.

~2! The condition for reorientation must be given by Eq.~6!.
~3! It must remove the possibility that more than onehk

simultaneously equals 1.

The first requirement is satisfied if we impose the follo
ing conditions onF ( i , j ,k51, . . . ,n):

F~ 0̄!5F~h î !50, ~15!

]F~ 0̄!/]h i5]F~h ĵ !/]h i50, ~16!

]F~h ī !/]h i50, ~17!

]2F~ 0̄!/]h i
25]2F~h î !/]h i

250, ~18!

]2F~ 0̄!/]h i]h j5]2F~h k̂!/]h i]h j50, iÞ j . ~19!

Equation~15! preserves conditions~13! and ~14!. Equation
~16! constrains 0̄and h ĵ to be extrema of the potentialG.
Equation~17! ensures that the]G(h ī)/]h i are independen
of F so that theF50 equilibrium relations between th
stress tensor, temperature, andh i for each variant~in particu-
lar, equilibrium stress-strain curves! still hold. Equations~18!
and ~19! guarantee that the conditions for theA↔Mi trans-
formations are unchanged. Violation of conditions~19!
13420
a-
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would lead to much more complex transformations. In p
ticular, the transformationsA↔Mi would not occur along
the pathh ī , h iP@0,1#.

For F a polynomial in theh i , the minimal degree for
which conditions~15!–~19! can be satisfied is fifth degree
Conditions ~15!–~19! eliminate many terms from the ful
fifth-degree polynomial and impose proportionalities amo
the remaining terms. The result is

Fi j 5Bh ih j
21Ch i

2h j1Dh i
2h j

222Ch i
3h j22Bh ih j

3

1Bh ih j
41Ch i

4h j1~Yi j 2C2D !h i
2h j

3

1~Zi j 2B2D !h i
3h j

2 , ~20!

whereB, C, andD are constants and

2Yi j 5]2Fi j ~h i50,h j51!/]h i
2 ,

~21!
2Zi j 5]2Fi j ~h i51,h j50!/]h j

2 .

Invariance ofF under interchange of indicesi andj ~see Sec.
IV ! implies the invariance ofFi j , which leads to

B5C, Yi j 5Zji , ~22!

henceFi j simplifies to

Fi j 5h ih j~12h i2h j !$B@~h i2h j !
22h i2h j #1Dh ih j%

1h i
2h j

2~h iZi j 1h jZji !. ~23!

Zi j is chosen so that the condition for theMi→M j transfor-
mation, ]2G(s,u,h î)/]h j

2<0, coincides with Eq.~6! with
indices 1 and 2 replaced byi and j, respectively;

Zi j 5Ā2A1s:@~a23!«t j13«t i #. ~24!

In order to account for differences in elastic compliances a
thermal expansion tensors among phases, we generaliz
Gibbs potentialG(s,u,h1 , . . . ,hn) of Eq. ~11!
G52s:S l01 (
k51

n

~lk2l0!@alhk
21~422al!hk

31~al23!hk
4# D :s/22s:F S l0

31 (
k51

n

~lk
32l0

3!@a3lhk
21~422a3l!hk

3

1~a3l23!hk
4# D :sG :s/32s:Fs:S l0

41 (
k51

n

~lk
42l0

4!@a4lhk
21~422a4l!hk

31~a4l23!hk
4# D :sG :s/4

2s:(
k51

n

«tk@ahk
21~422a!hk

31~a23!hk
4#2s:S «u01 (

k51

n

~«uk2«u0!@auhk
21~422au!hk

31~au23!hk
4# D

1 (
k51

n

@Ahk
21~4DGu22A!hk

31~A23DGu!hk
4#1 (

i 51

n21

(
j 5 i 11

n

Fi j ~h i ,h j !. ~25!

The functionZi j is obtained from the condition for theMi→M j transformation,]2G(s,u,h î)/]h j
2<0 by requiring that it

coincides with Eq.~10! with indices 1 and 2 replaced byi and j, respectively,
7-3
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Zi j 5Ā2A1s:@~a23!«t j13«t i #1s:@au~«u j2«u0!

23~«u j2«u i !#1s:@al~lj2l0!23~lj2li !#:s/2

1$s:@a3l~lj
32l0

3!23~lj
32li

3!#:s%:s/3

1s:$s:@a4l~lj
42l0

4!23~lj
42li

4!#:s%:s/4. ~26!

Our complete Landau model is given by Eqs.~23!, ~25!, and
~26!.

The transformation strain is a fifth-degree polynomial
the order parameters

«t5(
i 51

n

«t i@ah i
21~422a!h i

31~a23!h i
4#

2 (
i 51

n21

(
j 5 i 11

n

h i
2h j

2@3~h i«t i1h j«t j !

1~a23!~h i«t j1h i«t j !#. ~27!

It is easily verified that«t satisfies all requirements«t(0̄)
50, «t(h î)5«t i , «t(h ī)5«t iw(h i).

The thermodynamic equilibrium conditions,]G/]h i50
( i 51, . . . ,n), haven11 solutions corresponding toA and
the Mi : h50̄ and h5h î , i 51, . . . ,n. However, since no
restrictions were imposed onG at the points ĥ i j

5(0, . . . ,0,h i51,0, . . . ,0,h j51,0, . . . ,0), ĥ i jk5(0, . . . ,0,
h i51,0, . . . ,0,h j51,0, . . . ,0,hk51,0, . . . ,0), etc., the
Gibbs potential at these points can be smaller than atA or the
Mi . This will attract the system toĥ i j , ĥ i jk , etc., which is
to be avoided@condition ~3!#. Moreover, ifG at such points
is comparable to or less thanG at A or Mi then local minima
can appear at a sufficiently large stress modulus. Th
minima can be interpreted as new stress-induced pha
which we regard as spurious. In order that all nonphys
local minima disappear or play no role because they can
be reached in any transformation process,G at ĥ i j , ĥ i jk ,
etc., must be much greater thanG at A and atMi . Hence, in
the case of two variants we require

G~s,u,ĥ11!@G~s,u,0̄!,
~28!

G~s,u,ĥ11!@G~s,u,ĥ i !,i 51,2.

The relative values ofG in A, Mi , and at ĥ i j , etc., are
controlled by the material parametersB and D. The strong
inequalities~28! and their generalization to three or mo
variants can be written as sets of strong inequalities of
form D22B!g(s,u), whereg is a function that is easily
derived from Eq.~28!. The parametersB andD do not affect
the phase equilibrium or PT conditions. They could be o
tained by fitting our potential to the results of atomistic c
culations, but in fact there are no such data to determinB
and D. In the absence of data these parameters sh
be chosen to eliminate all nonphysical local minima~see
Sec. VI!.

We now analyze in detail the Gibbs potential for a tw
dimensional cubic-tetragonal PT with«t15$0.1;20.05% and
13420
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«t25$20.05;0.1% for B50, DÞ0, which reduces our Gibbs
potential to its simplest physically realistic form. The the
mal strain and elastic compliances are taken to beh inde-
pendent. We make use of the relations

DGu5A0~u2ue!/3, A5A0~u2uc! ~29!

and Eq.~17! from part I ~Ref. 1!; ue is the equilibrium tem-
perature for stress-freeA andM anduc is the temperature o
A loss of stability. The loading is uniaxial along axis 1, i.e
s5$s,0%, and the parameter valuesa53, uc5100 K, ue
5200 K, andA053M Pa/K are chosen. The correspondin
transformation conditions follow from Eqs.~4!and ~5!:

A→M1 : s>10~u2100!,

M1→A: s<10~u2300!,

A→M2 : s<220~u2100!,

M2→A: s>220~u2300!,

M2→M1 : s>2.22Ā,

M1→M2 : s<22.22Ā.

~30!

Plots of the function G̃(s,u,h1 ,h2)5G(s,u,h1 ,h2)
1 1

2 s:l:s @see Eq.~11!# at various stresses, temperature
and values ofD and Ā are shown in Figs. 1–3; stressesD

and Ā are in MPa. Growth ofG̃ corresponds to variation
from black to white. The driving force is orthogonal to th
level curves. We have verified that nonphysical local minim
are absent ifD satisfies the strongest of the inequalities~28!
for the worst combination ofu ands in the range of interest

In Fig. 1, u5ue5200 K, Ā5300, andD52650. At s
50 @Fig. 1~a!#, all three minima corresponding toA, M1,
and M2 have the same values ofG̃, and are separated b
potential barriers. Ats52500 @Fig. 1~b!#, the global mini-
mum shifts toM2 but there are barriers between all minim
hence all three phases are metastable and no PT is pos
without perturbations@none of the conditions in Eq.~30! are
fulfilled#. As theM2→M1 condition is fulfilled fors>666
and theA→M1 condition is met fors>1000, then ats
51000 theM2 variant is unstable,A is marginally unstable,
and there is a barrier betweenM2 andA @Fig. 1~c!#. If Ā is
increased to 600 while all other parameters are held fi
then theM2→M1 PT cannot occur;M2 is metastable,A is
unstable, andM1 is stable@Fig. 1~d!#.

In Fig. 2 we consideru5 ūc5300 K, D521250, and
Ā5300; ūc is the critical temperature at which the stress-fr
M loses its thermodynamic stability. Ats50 both martensi-
tic variants are unstable andA is stable@Fig. 2~a!#. Even
though ]2G(0,1)/]h1

2>0, i.e., the condition for theM2

→M1 PT is not fulfilled~likewise for theM1→M2 PT!, the
variants M1 and M2 are connected in theh1h2-plane by
curves of constant energy, i.e., there is no barrier betw
M1 andM2. This is not a deficiency of the proposed pote
tial because variantsM1 and M2 are both unstable. If the
7-4
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FIG. 1. Level curves of the functionG̃ for u5ue5200 K andD52650: ~a! Ā5300, s50; ~b! Ā5300, s52500; ~c! Ā5300, s

51000; ~d! Ā5600, s51000.
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temperature is slightly reduced, thus preventing theM2→A
andM1→A PT, then a barrier between variantsM1 andM2

does exist.
At s51000,A, andM1 are stable, they are in thermody

namic equilibrium, and they are separated by a barrier;M2 is
unstable@Fig. 2~b!#. If the material is in stateM2 and the
stresss51000 is applied suddenly then a PT to eitherA or
M1 is possible. The final phase is contingent on the ti
dependence of the local stress during the transformation
cess. For s5500, M2 is unstable in theA direction
(]2G/]h2

2<0) but not in theM1 direction (]2G/]h1
2>0)

@Fig. 2~c!#. However, there is a path in theh1h2 plane con-
nectingM2 andM1 along which the free energy of the sy
tem decreases. Therefore, despite the fact that the en
minimum corresponding toA is significantly lower than for
M1, it is possible that transformation toM1 rather than toA
occurs because of stress fluctuations during the transfo
tion process.
13420
e
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In Fig. 3, Ā5900 andD521250. Foru5250, ands
51500 @Fig. 3~a!#, the conditions forM2→A and A→M1
are met, but theM2→M1 criterion is not fulfilled. Although
the criterion for theM2→M1 transition is not fulfilled, the
M2→M1 transformation will occur via phaseA or along
some path passing nearA.

If the temperature and stress are reduced tou5230 and
s5250 @Fig. 3~b!#, then variantM2 loses its stability in di-
rection M1 (]2G/]h1

2<0), but not in direction A
(]2G/]h2

2>0). However, sinceG at A is lower than atM1,
stress fluctuations during transformation lead toA with a
higher probability than toM1. Hence there is some conven
tionality in the statement that]2G(0,1)/]h1

2<0 is the M2

→M1 PT criterion, while]2G(0,1)/]h2
2<0 is the M2→A

PT condition. Either of these conditions leads to loss of s
bility of M2 and the phase reached depends on the solu
of the dynamic boundary-value problem.

The Landau model developed here remains valid if
temperature dependences of the material tensors ar
7-5
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cluded. For example, one can introduce«t i(u) with
«t i(ue)«t i(ue)50 in order to describe ferroelastic materia
In that case our Gibbs potential will be more realistic than
Ref. 2 because it is a three-dimensional model and all m

FIG. 2. Level curves of the functionG̃ at three stressess for

u5 ūc5300 K, Ā5300, andD521250: ~a! s50; ~b! s51000;
~c! s5500 .
13420
.

e-

rial parameters can be taken from experiments or molec
dynamics simulations.

IV. SYMMETRIES OF THE GIBBS POTENTIAL

The Gibbs potentialG possesses both point group an
permutation symmetries. First, the tensorsl0 , «u0 and the
tensorsli , «u i appearing inG are invariant under transfor
mations ofPA and PM , respectively. Second, by definitio
of martensitic variants,«t i5R"«t j "R

t with some orthogonal
tensor R from PA . Thus, products ofPA transformations
lead to permutation of the martensitic variants. Con
quently, invariance ofG under PA implies invariance ofG

FIG. 3. Level curves of the functionG̃ for D521250 andĀ
5900: ~a! u5250 K, s51500; ~b! u5230 K, s5250 .
7-6
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THREE-DIMENSIONAL LANDAU . . . . II. . . . PHYSICAL REVIEW B 66, 134207 ~2002!
under all permutations of the indicesi↔ j or, more precisely,
with respect to all permutations (« t i ,li ,«u i ,h i)
↔(« t j ,lj ,«u j ,h j ), which is the case for our Gibbs potenti
~11!. This is not the most general potential invariant und
point group symmetries~for example, terms involving more
than two order parameters, such ash1

kh2
mh3

n , are absent!, but
it is the simplest polynomial potential that satisfies all t
requisite conditions discussed above. More complex po
tials might violate these conditions, significantly complica
the formulation of the transformation conditions, or poss
unphysical extrema. Following standard practice we ad
the simplest possible polynomial expression for the chem
part of the Gibbs energy.2–11

Our Gibbs potential does not possess inversion symme
i.e. it is not an even function of the transformation stra
Nevertheless, the stress-strain curves for multivariant PT
be symmetric under inversion. Consider the simplest c
namely, the one-dimensional loading of a material that
two martensitic variants with«t252«t1. It is easy to show
that the stress-strain curves for negative stresses can b
tained by inversion of the curves for positive stresses thro
the points5«50; see Fig. 1 in part I.1

V. PHASE EQUILIBRIUM AND TRANSFORMATION
DIAGRAMS IN STRESS SPACE

The conditions for thermodynamic equilibrium and t
sequence of phases appearing along arbitrarily complic
loading paths can be conveniently analyzed by referenc
equilibrium and transformation surfaces in stress space
this section we develop this methodology for the case
equal compliances forA and Mi , and negligible therma
strain and higher-order elastic constants, and apply it spe
cally to the cubic to tetragonal transformation.

We define the six-dimensional stress vectors̄
5$s11,s22,s33,A2s23,A2s13,A2s12% and transformation
strain vectors«̄t i5$« t i

11,« t i
22,« t i

33,A2« t i
23,A2« t i

13,A2« t i
12%. The

factors ofA2 are introduced so that the tensor and vec
norms are equal: (s:s)1/25(s̄•s̄)1/2 and («t i :«t i)

1/25(«t ī

•«t ī
1/2. The relation s:«t i5(k51

3 ( l 51
3 skl« t i

kl5(m51
6 sm« t i

m

5s̄"«̄t i allows us to replace the double contraction of str
and transformation-strain tensors by inner products of st
and transformation-strain vectors. Henceforth we drop
bar over vectors and use the same symbol for tensors
vectors.

A. Phase equilibrium surfaces

According to Eqs.~13! and~14!, thermodynamic equilib-
rium between phases is described by the conditions

A2Mi : s•«t i2DGu50, ~31!

Mi2M j : s•~«t i2«t j !50. ~32!

In stress space, the stress vectors described by Eq.~31! for
eachi belong to the hyperplane orthogonal to the vector«t i
and shifted by distanceDGu/u« t i u in the «t i direction from
the originO of the coordinate system. The stress vectors
13420
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scribed by Eq.~32! for eachi and j belong to the hyperplane
through the origin and orthogonal to the vector«t i2«t j . All
such planes divide stress space inton11 subspaces, in eac
of which one of the phases is stable. The following inequa
ties determine the region of stability of each phase:

stability of A: s"«t i<DGu, ~33!

stability of Mi : s"«t i>DGu and s"~«t i2«t j !>0 ; j

Þ i . ~34!

FIG. 4. Equilibrium phase diagram for the cubic-tetragon
phase transformation~a! in the deviatoric-stress plane and~b! in the
stress space atu.ue .
7-7
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Phase equilibrium in the general six-dimensional case
most easily investigated by decomposing the stress te
into sphericals0I and deviatoricS partss5s0I1S, where
s05 1

3 I: s5 1
3 (s111s221s33) is the mean stress~negative

pressure!, and I is the second-rank unit tensor. Transform
tion strains are likewise decomposed:«t i5

1
3 «0I1et i , where

«05« t i
111« t i

221« t i
33 is the volumetric transformation strai

which is the same for all variants. It is evident thatI:S
5I:et i50, hence

s•«t i5s0«01S•et i , ~35!

where the deviator vectors are

S5$s112s0 ,s222s0 ,s332s0 ,A2s23,A2s13,A2s12%,
~36!

et i5H « t i
112

1

3
«0 ,« t i

222
1

3
«0 ,« t i

33

2
1

3
«0 ,A2« t i

23,A2« t i
13,A2« t i

12J . ~37!

In terms of the deviator vectors, the equilibrium and stabi
conditions~31!–~34! are

A2Mi : S"et i5DGu2s0«0 ,
~38!

Mi2M j : S"~et i2et j !50,

stability of A: S"et i<DGu2s0«0 , ~39!

stability of Mi : S"et i>DGu2s0«0 , and S•~et i2et j !

>0 ; j Þ i . ~40!

FIG. 5. Equilibrium phase diagram for the cubic-tetragon
phase transformation in the deviatoric-stress plane atu,ue .
13420
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The pure hydrostatic stress state and the pure volume
strain state can be represented by vectorss0n and 1

3 «0n with
unit vector n5$1,1,1,0,0,0%/A3 that is directed along the
so-called hydrostatic axis in stress space. Sincen"S5n•et i
50, the vectorsS and et i belong to the five-dimensiona
deviatoric planen•s50 which passes through the originO
and is orthogonal to the hydrostatic axis.

As an example that can be easily visualized we cons
the cubic-tetragonal PT. The three martensitic variants ca
described by the three transformation-strain vectors

«t15a i11b i21b i3 , «t25b i11a i21b i3 ,
~41!

«t35b i11b i21a i3 ,

where theik are orthonormal basis vectors anda andb are
principal transformation strains. Since only the normal str
skkinduces the PT the stress vector iss5(k51

3 skkik . Thus
the cubic-tetragonal PT can be analyzed in three-dimensi
space. The transformation deviators for the cubic-tetrago
PT are

et15«S i12
1

2
i22

1

2
i3D , et25«S 2

1

2
i11 i22

1

2
i3D ,

~42!

et35«S 2
1

2
i12

1

2
i21 i3D ,

where«ª2(a2b)/3. The projections of the unit vectorsi i
on the deviatoric plane,siª i i2 i i "nn, are parallel to the
transformation strain deviatorssi5(2/3«)et i . It is easy to
show thatetk•(et l2etm)5sk•(et l2etm)50 for kÞ lÞm @Fig.
4~a!#.

We first analyze cubic-tetragonal equilibrium in the dev
toric planen•s50, that is fors05(s111s221s33)/350;
see Fig. 4~a!. Consider the caseu.ue , i.e., DGu.0. Equa-
tion ~39! holds inside the trianglea1a2a3 which is the region
of stability of A. Lines of constants i i are orthogonal tosi ,
hence parallel to the sides of the triangle. The distance
tween O and the side of the triangle isA2/3DGu/«
@Aet i•et i5A3/2«, see Eq.~42!# which corresponds tos i i

52DGu/3« ~follows from geometrical considerations!. The
second set of inequalities~40! for Mi describe a sector with
apex atO which includes the vector«t i , does not include
any other transformation strain vectors, and is unbounde
the direction of«t i . The first set of inequalities (40) elimi
nate the region of stability ofA from the sector, hence th
stability regions ofM1 , M2, andM3 are the convex regions
bounded byb2a2a3b3 , b1a1a3b3, andb2a2a1b1. With de-
creasing temperature, the region of stability ofA shrinks and
disappears atu5ue ~Fig. 5!. It does not exist foru,ue ei-
ther, because Eqs.~39! do not have a solution, which can b
checked graphically. Moreover, forDGu,0, the line of
A-Mi equilibrium does not intersect the positivesi axis and
is outside the region ofMi stability. Consequently, there i
no A-Mi equilibrium for u,ue and the equilibrium diagram
is the same as atu5ue .

In planes parallel to the deviatoric plane (soÞ0) the re-
gion of stability of A is simply rescaled—the distance b

l
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THREE-DIMENSIONAL LANDAU . . . . II. . . . PHYSICAL REVIEW B 66, 134207 ~2002!
tween the center and the side of the triangle isA2/3(DGu

2s0«0)/«. In the three-dimensional stress space of
cubic-tetragonal PT, which is depicted in Fig. 4~b!, the re-
gion of stability of A is a triangular pyramid with base a
infinity, apexB on the hydrostatic axis corresponding tos0
5DGu/«0, and edges that intersect the axes
23DGu/@(3/2)3/2«2«0#. For A stable, theMi-M j equilib-
rium half-planes are attached to the edges of the pyramid
contain the negative parts of thesk axes; whenA is unstable,
they are attached to the hydrostatic axis.

The geometric analysis of cubic-tetragonal phase equ
ria, which involves three variants and«t i with equal magni-
tudes, can be generalized to an arbitrary numbern of mar-
tensitic variants with arbitrary«t i . Foru.ue ands050, the
stability region ofA in the five-dimensional deviatoric hype
plane is a five-dimensional prism with ann-sided polygonal
base which includesO. The stability region ofMi is a trun-
cated pyramid defined by inequalities~40!. The second set o
inequalities~40! describe a pyramid with ann21-sided po-
lygonal base at infinity with apex atO. The pyramid includes
the vectoret i , does not include any of the otheret j , and is
unbounded in theet i direction. The first set of inequalitie
~40! remove a region of austenite stability from the apex
the pyramid. With decreasing temperature, the region of
bility of A shrinks to a point atu5ue and does not exis
for u,ue .

As in the cubic to tetragonal case, the region of stabi
of A rescales in planes parallel to the deviatoric plane. In
six-dimensional stress space, the region of stability ofA is a
pyramid with ann-sided polygonal base at infinity and ape
on the hydrostatic axis corresponding to the pressures0
5DGu/«0.

B. Phase transformation surfaces

The conditions for phase transformations, Eqs.~4! and
~5!, can be written as

FIG. 6. Phase transformation diagram for low temperatu
where austenite does not exist. Pseudoplasticity arises from r
entation processes only.
13420
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A→Mi : S•et i>
A

a
2s0«0 ,

Mi→A: S•et i<
6DGu2A

62a
2s0«0 ,

Ml→Mk : S•~etk2et l !>
Ā

3
.

~43!

It follows from these equations that stress space is su
vided by transformation planes of three types:A↔Mi

s
ri-

FIG. 7. Phase transformation diagram for coexisting auste
and martensitic variants in the pseudoelastic regime. Stress hy
esis for the phase transformationA↔Mi is ~a! smaller than for
reorientationMi↔M j , and~b! larger than for reorientation.
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VALERY I. LEVITAS AND DEAN L. PRESTON PHYSICAL REVIEW B66, 134207 ~2002!
planes; double-PT planes~discussed below!; and Mi↔M j
planes. TheMi→M j andM j→Mi planes, which are alway
present, are parallel to and equidistant from theMi2M j
equilibrium plane. TheA→Mi and Mi→A planes, when
present, are parallel to each other. The separation of
A↔Mi and Mi↔M j planes is proportional to the corre
sponding hysteresis.

We define the region of metastability of a given phase
that region outside of which the phase is absolutely unsta
and cannot exist. The region of stability is included in t
region of metastability. The conditions defining the regio
of metastability ofA and theMi are

FIG. 8. Phase transformation diagram for the limiting case
tween pseudoelasticity and pseudoplasticity: the austenite tria
a1a2a3 has contracted to the origin.

FIG. 9. Phase transformation diagram for coexisting auste
and martensitic variants. Pseudoplasticity is due to both theA↔Mi

phase transformation and the reorientationsMi↔M j .
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metastability of A: S•et i<
A

a
2s0«0 ,

metastability of Mi : S•et i>
6DGu2A

62a
2s0«0 and

S•~etk2et i !<
Ā

3
;kÞ i . ~44!

Transformation diagrams in the deviatoric plane for t
cubic-tetragonal PT for various temperatures and mate
parameter values are presented in Figs. 6–10.

The simplest diagram is for sufficiently low enough tem
peratures that transformations to and fromA are absent~Fig.
6!. This corresponds to pseudoplasticity due to reorienta
processes. Each transformation line is parallel to the co
sponding equilibrium line and shifted from it byA2Ā/(9«)
@A(et i2etk)•(et i2etk)53«/A2, see Eq.~42!#. Arrows indi-
cate the direction in which the transformation line has to
crossed in order for the corresponding PT to occur. O
variant M1 , M2, or M3 exists in the nonconcave regio
e1e2d6 , d1d2c6, or c1c2e6, respectively. VariantM1 does
not exist outside the nonconcave regionc1c3c6, its region of
metastability, because it transforms either toM2 along the
line c3c6 or to M3 alongc1c3. Likewise, variantM2 (M3)
does not exist outside the nonconcave regione1e3e6
(d1d3d6). Thermomechanical history determines which va
ant exists at a given point. Progressing along the pathklmnk
from the pointk where onlyM1 can exist, theM1→M2 PT
occurs where the path crosses the linec3d2, theM2→M3 PT
occurs at the linee6c2, and theM3→M1 PT occurs at the
line d6e2. Proceeding in the opposite direction fromk, the
M1→M3 PT occurs at the linec1c2, and theM3→M1 PT
takes place at the linee2d3. A PT occurs at a transformatio
line if and only if the line is crossed in the direction of th
corresponding arrow and the material is in the initial pha
for this transformation. Note that any variant may exist
side the hexagonc2c3d2d3e2e3 depending on history. It

-
le

te

FIG. 10. Phase transformation diagram for coexisting auste
and martensitic variants. Transformations to austenite are absen
pseudoplasticity is due solely to the reorientationsMi↔M j .
7-10
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THREE-DIMENSIONAL LANDAU . . . . II. . . . PHYSICAL REVIEW B 66, 134207 ~2002!
makes no sense to continue the linec6c3 further than the
point c3—this portion of theM1→M2 transformation line is
physically irrelevant because the material has already tr
formed toM3 along the linec1c3. Each of the remaining five
Mi→M j lines are similarly truncated.

In Fig. 7 a much more complex transformation diagram
shown for the pseudoelastic regime, i.e., where unload
results in onlyA. In Fig. 7~a! the hysteresis forMi↔M j is
larger than forA↔Mi ; vice versa in Fig. 7~b!. In addition to
lines of Mi→M j PT (d1d3 , e4e6 , c1c3 , d4d6 , e1e3, and
c4c6), lines ofA→Mi PT (b1b2 , b2b3, andb3b1), and lines
of Mi→A PT (c3c4 , d3d4, ande3e4) are present. An inter-
esting feature of Fig. 7~a! that is absent from Fig. 7~b! is the
‘‘double’’ PT along the linesc2c3 , d4d5 , e2e3 , c4c5 , d2d3,
ande4e5. For example, theM1→A PT occurs along the line
segmentc2c3 but A is unstable in this region with respect
M3 ~outside the lineb1b2 A transforms toM3), hence the
A→M3 PT occurs immediately. Consequently, despite
fact that the directM1→M3 PT is impossible along the line
c2c3, the ‘‘double’’ PT M1→A→M3 can occur. This situa-
tion is similar to the one analyzed in Fig. 3~a!. Inside the
trianglea1a2a3 only A can exist.

In the region e1e2e3d4d5d6 , d1d2d3c4c5c6, or
c1c2c3e4e5e6, there exists, respectively, only the varia
M1 , M2, or M3 . A does not exist outsideb1b2b3, its region
of metastability, because it transforms to one of the mart
sitic variants along the sides of the triangle. The nonconc
regionc1c2c3c4c5c6 is the region of metastability of varian
M1 because it transforms either toM2 along the linec4c5c6,
or to M3 alongc1c2c3, or toA alongc3c4. Similarly, variant
M2 (M3) does not exist outside the nonconcave reg
e1e2e3e4e5e6 (d1d2d3d4d5d6).

Along the pathklmnk theM2→A PT occurs acrossa1e4,
the A→M3 PT occurs where it crossesc3e4, and theM3
→M2 PT takes place where the path crossesd1d2. Along the
pathknmlk the M2→M3 PT occurs at its intersection wit
e5e6, theM3→A PT takes place where it crossesa1d3, and
the A→M2 PT occurs where it crossesd3c4.

In Figs. 8–10 the hysteresis for theMi↔M j PT is larger
than for theA↔Mi PT. Figure 8 represents the limiting ca
between pseudoelasticity and pseudoplasticity, that is, the
anglea1a2a3 has contracted toO at a sufficiently low tem-
perature. With a further decrease in temperature~Fig. 9!, the
Mi→A PT occurs at negative stresses, and common po
appear along the transformation lines forM j→Mi and Mk
→Mi ( iÞ j Þk): d2 ,c5 ; c2 ,e5; and e2 ,d5. At lower tem-
peratures~Fig. 10! there are no PT toA, i.e., the line seg-
mentsc3c4 , d3d4, ande3e4 disappear.

We now consider loading processes along axiss1. In or-
der to avoid the appearance ofM3, motion is parallel to the
s1 axis at a positive infinitesimal value ofs2. In Fig. 7~a!,
loading begins atO ~i.e., in A) in the positives1 direction.
The A→M1 PT occurs at the intersection of the linee3d4
with the axiss1. Upon reverse loading theM1→A PT does
not take place until the path intersects the linea2a3, hence
there is hysteresis. The PTA→M2 occurs at pointb1. If the
M1→A PT were suppressed, then theM1→M2 PT would
occur at the intersection of the linec5c6 with the axiss1, i.e.,
13420
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before the actualA→M2 PT. The M1→A PT delays the
appearance of theM2 variant. If pointb1 is closer toO than
the intersection of theM1→M2 PT line with the axiss1,
then theM2 variant appears earlier due to the double
M1→A→M2 ~Fig. 10!.

C. Associated transformation rule and principle
of maximum transformation work

Transformation surfaces fori→ j PT are specified byqji
5s•(«t j2«t i)1•••50, wherei , j 50 for A and••• desig-
nates irrelevant stress-independent terms. The inequalityqji
>0 corresponds to the occurrence of thei→ j PT and the set
of inequalitiesqji ,0 ; j Þ i defines the region of metastabi
ity for phasei.

There are similarities between phase equilibrium a
transformation surfaces and yield surfaces in plastic
theory.12 In both cases, such surfaces divide the stress sp
into regions where inelastic processes~PT or plasticity! oc-
cur and do not occur. In both cases, an increment of inela
deformation, either an infinitesimal change in plastic str
or a finite jump in transformation strain, is orthogonal to t
corresponding surface; this is the associated~with the yield
surface! flow rule in plasticity theory. The associated tran
formation rule

«t j2«t i5
]qji

]s
~45!

follows trivially from qji 5s•(«t j2«t i)1•••.
It is seen from Figs. 6–10 that the region of metastabi

of each phase is nonconcave, i.e., ifs ands* belong to the
metastability region then the differences-s* belongs as
well. It is easy to prove geometrically~see Fig. 6! and ana-
lytically that for a nonconcave region of metastability th
associated transformation rule is equivalent to the princ
of maximum transformation work

s•~«t j2«t i !.s* •~«t j2«t i ! for qji ~s!50

and qji ~s* !,0, s•~«t j2«t i !5s* •~«t j2«t i !

for qji ~s!5qji ~s* !50, ~46!

that is, the transformation work done by as on the transfor-
mation surface is greater than the work done by anys* on
the i side of the transformation surface for the same jump
transformation strain, and the transformation work is t
same for all stresses on the transformation surface. The p
ciple of maximum transformation work is similar to the co
responding principle in plasticity theory.

Alternatively, starting with Eq.~46!, one can prove~45!
and nonconcavity of the region of metastability of ea
phase. All results of this subsection are valid for stabil
regions of phases as well.

If jumps in thermal strain and elastic compliance a
taken into account, then the left-hand side of Eq.~45! is
generalized to«t j2«t i1«u j2«u i1s:(lj2li). The transfor-
mation and phase equilibrium surfaces are not planar iflj
2liÞ0. The associated transformation rule and the nonc
7-11
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VALERY I. LEVITAS AND DEAN L. PRESTON PHYSICAL REVIEW B66, 134207 ~2002!
cavity of transformation surfaces at the macroscopic le
~after averaging over the representative volume! were de-
rived in Refs. 13,14.

VI. EQUILIBRIUM AND TRANSFORMATION
CONDITIONS FOR THE NiAl CUBIC-TETRAGONAL PT

NiAl austenite has cubic symmetry~CsCl structure!. The
crystal lattice of the martensite has been determined by tr
mission electron microscopy to be face-centered te
gonal ~CuAu I structure!.15 We now use the results o
molecular dynamics~MD! simulations16,17 to determine
rg
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the values of«0 , DGu, a, Ā, ue , A0, anduc for the NiAl
cubic-tetragonal PT.

The internal energy densityF of NiAl at zero temperature
has been calculated as a function of strain by means of c
sical MD based on an embedded-atom method~EAM! inter-
atomic potential.16 At u50, i.e., zero kinetic energy in the
initial configuration, the MD algorithm simply relaxes th
system into a minimum energy state for a given strain ten
The results in Ref. 16 were presented in the form of a po
nomial approximation toF. Since the cubic-tetragonal PT i
completely described by the three principal components« i
( i 51,2,3) of the strain tensor, we can neglect terms inF
that involve shear strains with the result
F51.0875~«1
21«2

21«3
2!11.616~«1«21«1«31«2«3!26.687~«1

31«2
31«3

3!26.117«1«2«3

23.112~«1
2«21«1«2

21«1
2«31«2

2«31«1«3
21«2«3

2!

1490.8~«1
2«2«31«1«2

2«31«1«2«3
2!1250.25~«1

2«2
21«1

2«3
21«2

2«3
2!

1171.83~«1
3«21«1«2

31«1
3«31«2

3«31«1«3
31«2«3

3!158.54~«1
41«2

41«3
4!. ~47!
ne-
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The coefficients in Eq.~47!, which are in units of 105 MPa,
were found by a least-squares fit to the calculated ene
with a greater weighting given to points near theA and Mi
minima as well as along the minimum-energy paths betw
the minima~weighting factors were not provided in Ref. 16!.
At the minimum of the internal energy density~47!, the
transformation strain and corresponding valueFmin are given
by

«t15$0.215;20.078;20.078%,
~48!

DGu~0!5Fmin52315.6 MPa;

the tensors«t2 and «t3 can be obtained by permutation o
components. The zero-temperature elastic moduliCi j
5]2F/]« i]« j at «50 ~A! and«5«t1 ~M! are

C11
A 5C22

A 5C33
A 52.175, C12

A 5C13
A 5C23

A 51.616,

C11
M54.538, C22

M5C33
M57.449, C12

M5C13
M53.967,

~49!
C23

M53.445.

Comparison of the zero-temperature elastic moduli ofA to
room-temperature experimental data18 shows discrepancie
of 8% for C11

A , 15% for C12
A , and 11% for C85(C11

A

2C12
A )/2, but the discrepancy was 32% forC44

A . However,
since the PT is controlled primarily byC8, the discrepancy
in C44 is inconsequential for the cubic-tetragonal PT.18 Ex-
perimental values for the third-order elastic constants and
elastic constants ofM are not available in the literature. W
expect that our Landau model parameters determined f
Eq. ~47! are generally accurate to 20% or better.

We estimate that at the highest PT stress the jumps in
components of elastic strain do not exceed 4% of the co
y

n

e

m

he
e-

sponding transformation strain components, hence we
glect terms in the PT criteria that involve jumps in elas
compliance; the resulting error does not exceed 2
Throughout the remainder of this section, stresses and en
densities are in units of MPa and temperatures are in deg
K where units are not explicitly indicated.

The parametersA anda are determined by first finding th
stress tensors for the direct and reverse PT and then su
tuting them in theA↔M PT criteria ~4!. For «25«3 the
level curves ofF are nearly parallel to«t1. Consequently,
the minimum energy path betweenA and M1 is approxi-
mately «5y«t1, where y is the transformation coordinate
Along this path the free energy is given byF51918y2

25096y312862y4. PT occur at the twoy values satisfying
the stability conditiond2F/dy250, namely,y50.1511 (A
→M1) andy50.7391 (M1→A). Substitution of the strains
corresponding to thesey values into the expression for th
stress tensors i5]F/]« i yields the PT stresses:s5$1664,
565.2, 565.2% for A→M1 ands5$24054, 140.6, 140.6% for
M1→A. Inserting these stresses into the PT criteria~4! one
obtainsA5805.2 anda52.980.

The barrier parameterĀ can be determined from theM2
→M1 PT criterion~6!. We investigated the Gibbs potentia
G5F2s:« for the twinning transformationM2↔M1 as a
function of the shear stresss5$s,2s,0% in the twinning
direction. The minimum ofG corresponding toM2 disap-
pears ats53026. Substituting this value into Eq.~6! we find
Ā55320.

It is interesting to note that after the disappearance of
M2 minimum, the system falls into a new minimum
«5$0.02753,20.03353, 0.003995% which corresponds to a
metastable orthorhombic phase. This phase is an artifac
the complex polynomial~47!, which may have other non
7-12



he
en
so

r
ric
a

io

,
lle

qu

e

he

-

s
he
de

.8

i-
pre-

tri-

dia-

ne

if

tion

ory
ma-
and
ex-
t to
re-
, in-
ma-
een

tant
e-
ess
i, in

ase
nal
nta-

ch
nal
oric-

and
ergy
a-

ugh
a-
-
,

the

ect
ans-
ad

ter-
the
ro-
in
ent

ms
PT

THREE-DIMENSIONAL LANDAU . . . . II. . . . PHYSICAL REVIEW B 66, 134207 ~2002!
physical minima. This minimum disappears ats53170. Our
potential has no unphysical minima forD sufficiently small.

In principle, the parametersD andB can be determined by
fitting our potential to MD data at points away from both t
A and Mi minima and the minimum-energy paths betwe
the minima. However,F was not calculated at such points
B andD cannot be reliably determined from Eq.~47!. Con-
sequently, we assumeB50 and bound the constantD by
requiring that G(s,0,1,1)@G(s,0,1,0) is satisfied unde
uniaxial compressive loading, which imposes more rest
tive bounds onD than tensile loading, and that nonphysic
minima are absent from the Gibbs potential. Ats527000,
which is far outside the region of stability ofM1 and conse-
quently far beyond stresses of interest, the condit
G(s,0,1,1)5G(s,0,1,0) is fulfilled atD51438, but there is
a nonphysical local minimum along the lineh151. This
minimum disappears atD5500, so we choose this value
which ensures that no unphysical minima occur at sma
compressive stresses or in tension.

The critical temperatures depend on the value of the e
librium temperatureue . EAM MD calculations ofue for
NiAl show a strong dependence on Ni content.17 Of the three
compositions for whichue was calculated in Ref. 17, th
volumetric strain,«05« t i

111« t i
221« t i

33, of Ni61Al39, namely,
0.04, is the closest to 0.059, the value of«0 obtained from
Eq. ~48!. The cubic-tetragonal equilibrium temperature of t
Ni61Al39 was calculated to be 215 K. If we take Eq.~29!, it
then follows from Eq.~48! and the values ofA and a at u
50 K that A054.40 anduc52183 K, and that the tem
perature ofM loss of stability isūc52ue2uc5613 K.

Substituting«050.059, a52.98, Ā55320 MPa,B50,
D5500 MPa, ue5215 K, A054.40 MPa K21, and uc
52183K in Eqs.~38! and ~43! gives the phase equilibrium
and transformation conditions for NiAl (iÞkÞ l ):

A2Mi : 0.215Si20.078~Sk1Sl!5231611.47u20.059s0,

Ml2Mk : Sl5Sk ,

A→Mi : 0.215Si20.078~Sk1Sl!>27011.48u20.059s0,
~50!

Mi→A: 0.215Si20.078~Sk1Sl!<289411.46u20.059s0 ,

Ml→Mk : ~Sk2Sl !>6050.

For uniaxial loading in the@001# direction, Eq.~22! of part I
gives

s5
126016.87u25470h

110.0134h
. ~51!

The A→M PT occurs ats5126016.87u, and the reverse
PT takes place ats52415016.78u; the stress hysteresi
541010.09u is practically temperature independent. T
maximal known experimental value of the temperature
rivative of the transformation stress is 3.03.19 This is smaller
than the value predicted by our Landau model, namely, 6
because of crystal defects.
13420
-
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The NiAl phase equilibrium and transformation cond
tions can be analyzed geometrically using the diagrams
sented in Sec. V. The phase equilibrium diagram is Fig. 4~a!
with the distance between the center and the side of the
angle equal to 6.16(u2215)20.087s>0, or Fig. 5 if the
inequality is reversed. Fig. 7 is the phase transformation
gram for the pseudoelastic regime (289411.46u
20.059s0.0). The stress hysteresis in the deviatoric pla
for the A↔Mi PT is hAM5344510.059u, and that for
variant-variant transformations is hMM52A2Ā/(9«)
58560. Figure 7~a! is the phase transformation diagram
hMM.tan(p/6)hAM , which is the case foru,1.93105K.
Consequently, the ‘‘double’’ PTMi→A→M j may occur at
any temperature. Figure 8 corresponds to the condi
289411.46u20.059s050.

VII. CONCLUDING REMARKS

We have constructed a three-dimensional Landau the
for multivariant stress-induced martensitic phase transfor
tions. The material parameters characterizing both stable
unstable states can be obtained from a combination of
periment and molecular dynamics simulations. In contras
previous models, ours can incorporate all temperatu
dependent thermomechanical properties of both phases
cluding higher-order elastic properties; describes transfor
tions between austenite and martensitic variants and betw
martensitic variants for any type of symmetry ofA and M;
and describes typical stress-strain curves with cons
transformation-strain tensors~temperature and stress ind
pendent!, constant or weakly temperature dependent str
hysteresis, and transformation at nonzero tangent modul
agreement with experimental stress-strain relations.

Geometric representations of the conditions for ph
equilibrium and phase transformations in six-dimensio
stress space were developed. The utility of these represe
tions was exemplified by the cubic-tetragonal PT for whi
equilibrium and transformation surfaces in three-dimensio
stress space and the corresponding lines in the deviat
stress plane were determined at various temperatures,
transformation processes were analyzed. The free en
~hyper! surface topography can lead to nontrivial transform
tion processes, e.g., variant-variant transformation thro
virtual A, or Mi→A PT along a path that includes deform
tion in the direction ofM j ( j Þ i ). An associated transforma
tion rule, similar to that for plasticity, was found. And finally
the phase equilibrium and transformation conditions for
NiAl cubic-tetragonal PT were determined.

The qualitative differences in the characteristics of dir
and reverse PT, stress hysteresis, and variant-variant tr
formations between our model and previous models will le
to substantial differences in the predicted structure of in
faces and the sensitivity to crystal defects. We expect that
effect of stress concentration around defects, which is p
portional to the elastic moduli, will be more pronounced
our theory than, for example, in Ref. 11, because tang
elastic moduli do not tend to zero in our Landau model.

The quantitative study of a number of important proble
concerning temperature- and stress-induced martensitic
7-13
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can be carried out using our three-dimensional Gibbs
energy. Problems of interest include the following.

• Heterogeneous martensite nucleation. It is known that
thermodynamic driving force to cause PT in defect-fr
Fe-Co precipitates in a copper matrix is seven times lar
than in the same precipitates containing dislocations.20 Our
Landau model can be used as the basis for quantita
studies of the appearance of martensitic embryos and
clei at dislocation aggregates such as dislocation pile u
and tilt and grain boundaries. Research to date10,11,21 has
been based on Landau models, discussed in the Intro
tion to part I, with significant shortcomings.

• Martensite nucleation at crack tips. Stress concentra
near crack tips may induce martensitic PT. An increase
the fracture toughness because of PT is an impor
strengthening mechanism called transformat
toughening.10,16The quantitative prediction of the effect o
PT on fracture is of considerable practical importance.

• Formation and evolution of twinned microstructure.4–6,8

The barrier height for variant-variant transformations is
key parameter that controls twinning and the mobility
variant-variant andA-M interfaces. In contrast to previou
Landau models, we introduced this parameter explic
and can study its effect on twinning and interface mobil
in real materials.

• Defect generation during PT and the interaction betw
PT and plasticity. High internal stresses due to transform
tion strain usually lead to dislocation generation and a
duction in elastic energy through the formation of invaria
plane strain variants. An interface with dislocations~semi-
coherent interface! has a different mobility than a cohere
interface. The mobility of the interface is determined p
marily by the interaction of the interface with existing di
locations and dislocations generated during plastic de
mation. Moreover, strain-induced nucleation takes plac
defects produced during plastic flow. The interplay b
tween PT and plasticity is one of the most complex b
important problems in PT theory.

• Transition from slip to twinning as an accommodati
mechanism during martensite nucleation and growth. T
transition is strongly temperature dependent and may e
occur within a single martensite plate. This transition
expected to be very sensitive to the form of the Land
potential for variant-variant transformations.

• Structure of interfaces, solitary waves, and the interac
of moving interfaces with defects.21–25 The majority of
work on this topic has been based on polynomials in
strain. Interface structure has been investigated prima
for the stress-free case. Studies utilizing our more ph
cally realistic Landau model for non-zero stress may le
to new results. If it is found that the interface energy var
13420
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significantly with stress then that dependence should
accounted for in mesoscale models of stress-indu
nucleation and growth.

The description of martensitic PT in steels, carbon a
boron nitrides, and the majority of high pressure PT wou
necessitate the generalization of our Landau model to
geometrically nonlinear case, i.e. large elastic and trans
mational strains, and material rotation. Some aspects of
kinematic and thermodynamic formalism developed in R
26 outside the context of Landau theory can be of help
generalizing our model.

Stress hysteresis is constant or weakly temperature de
dent in our model. At the same time, experimental stre
strain curves exhibit much greater stress hysteresis atue ,
i.e., in the pseudoplastic regime, than in the pseudoela
regime. Even if the barrier for the variant-variant transform
tion is significantly increased, the stress-strain curve is
affected because variant-variant transformation will oc
via virtual A with a Mi→A PT barrier. Our Landau mode
does not properly describe the experimental, macrosco
stress-transformation-strain behavior because the data r
the transformation strain to the applied~macroscopic! stress
while the model relates the strain to the local~microscopic!
stress, which is a superposition of the applied stress and
ternal stresses arising from the microstructure. Thus, the
scription of the macroscopic stress-transformation-strain
havior requires that the internal stresses due to
multivariant microstructure, interface surface energy~which
may suppress transformation through virtualA), and defect
resistance to martensite-martensite interface motion be ta
into account. This can be achieved by means of large-s
numerical simulations based on a microscopic Landau mo
such as ours. This numerical coarse-graining approach is
casionally circumvented by applying Landau theory direc
on a macroscopic scale; see, for example, Ref. 27. Ther
an implicit assumption that the effect of defects is appro
mately included in the parameters of the potential as is do
for example, in macroscopic plasticity theory. Our Land
model is particularly well suited for use on a macrosco
scale because its stress-strain curves possess all of the
features of macroscopic stress-strain curves in the p
doelastic regime. Moreover, it does not suffer from the sho
comings of the Landau potential proposed in Ref. 27
zirconia ceramics, namely an incorrect sign for an elas
modulus and unequal transformation strains for direct a
reverse PT.
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