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Three-dimensional Landau theory for multivariant stress-induced martensitic phase
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A three-dimensional Landau theory of stress-induced martensitic phase transformations is presented. It
describes transformations between austenite and martensitic variants and transformations between martensitic
variants. The Landau free energy incorporates all temperature-dependent thermomechanical properties of both
phases. The theory accounts for the principal features of martensitic transformations in shape memory alloys
and steels, namely, stress-strain curves with constant transformation strain and constant, or weakly temperature
dependent, stress hysteresis, as well as nonzero tangent elastic moduli at the phase transformation point. In part
I, the austenite- martensite phase transformation is treated, while transformations between martensitic variants
are considered in part Il.
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[. INTRODUCTION required to be nonzero. Finally, the theory should accommo-
date all of the thermomechanical properties of both phases.
Landau theory is a phenomenological framework that We now discuss these required features of our Landau free
originated as a description of second-ordeontinuou$  energy in some detail.
phase transformations. Although the conventional Landau Deformation of the crystal lattice of the high-temperature
approach is strictly valid only for continuous phase transforphase, the austenité, into the low temperature phase, the
mations, Landau theory has been generalized to encompagfartensite 1), can be described in the small strain approxi-
first-order phase transformations, in particular displacive remaiion by the transformation strain tenser (also called
constructive_ transitions, which include martensitic phasesin straid or spontaneous strafff) Due to the symmetry
transformations. of the crystal lattice, there are a finite numieof crystallo-

The basic |ngred|ents of a Landau mpdel are an .ordeéraphically equivalent variants of martensite. All martensitic
parameter , which encodes the atomic configurations ariantsM. =12 n, have the same components of
[ Ty e 1

through the transformation, and the thermodynamic potenti . . . . .
G, which is a function of the order parameter. See Ref. 2 fo e transformation strain tensor in their respective crystallo-
! ' ' graphic bases. A list of transformation strain tensors for

an excellent overview of modern Landau theory. ) . .
In Ginzburg-Landau theory, a gradient term is included intransformations between various crystal lattices can be found

the total energy to account for interface surface energy " Ref. 10. Maximal components of the transformation strain
tensor are of order 0.1. In contrast to some ferroelastios,
n which the transformation strain can increase significantly as
GGL:G+O-5I(21 Voo B V. (1) the temperature is decreased, the transformation strain is
N constant for SMA and steels. A small deformation of the
The B, are positive definite second-rank tensors. Since thenartensitic crystal lattice under temperature variation can be
driving force to changey, equals— 6Gg, /67y, the kinetic  described by a thermal expansion tensobfthat has the
equations foryp, are given by ® same order of magnitude as far(a~ 10" °1/K).
N Phase transformations in some classes of matesals
a"]k__z I_ 5GGL+ Ref 9 fOI‘ NQSI’I, B|VO4, LaNbO4, (KBI’)O_27(KCN)O_73,
FTr = kpg—np &k KH,PQ,, TbVQ,, and Ref. 11 for \Si, Nb;Sn, and InTe
alloys) occur at vanishing tangent elastic modulgscorre-
. d sponding to the transformation strain. The transformation
== Ly T BtV Vi | 4 (2)  strains in such materials are usually small, and the PT are
p=1 Mp .
close to second order. In contrast, martensitic PT occur at
HereL,, are positive definite kinetic coefficients agd is  nonzeroE; in both A and M. Examples include Cu-based
the noise due to thermal fluctuations which satisfies thealloys:1L2 Fe-33.7% Ni, Fe-5.9% Ni-4.4% Mn-0.48% C steels,
dissipation-fluctuation theorem. Co - 32.5% Ni and Cu - 14.3% Al-5.8% Ni alloys,

We construct a Landau free energy that describes stronguznAl'3, and TiNi alloys** Consequently, the transition
first-order martensitic phase transformatid®d’s) in steels mechanism cannot be attributed to phonon instability, and
and shape memory alloySMA’s). Hence the transformation the soft-mode approathcannot be applied.
strain must be temperature independent, and the stress hys- Stress hysteresis in SMA is typified by a weak depen-
teresis must be constant or only weakly temperature depemience on temperatuté!® For example, in Cu-Zn-Al alloys
dent. Further, the tangent elastic moduli at the PT point ar¢he stress hysteresis is constant for a temperature variation
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FIG. 2. Stress-strain curves at six temperatures for the 2-3-4
potential proposed in Ref. 21 #& =150 K and§.=50 K: (1) 6

FIG. 1. Schematic stress-strain curves for shape memory alloys 0 < (2) #=50 K; (3) =150 K; (4) 6=300 K; (5) 6=400 K;

at various temperatured; < 6,< 0;. The behavior is pseudoplastic (6) 6=500 K.

at #, and pseudoelastic &, and #;. The constant transformation

strain and the weak temperature dependence of stress hys.teresis%]l _nonconvex Hglmholtz fr%‘e-energy polynomials in the
pseudoelastic behavior is typical. straine: F(e)=as“+be*+ce® (Ref. 18 (in Refs. 19, 20 a

Gibbs potentialG=F—o¢ is used which gives the same

. . _ L . resultd or F(e)=a&?+be®+ce*.?2172The elastic constants
from 12° to 78°C; the corresponding variation in the initia- a, b, andc are functions of the temperatug usually a

tion stress for thé\—M PT is 10 to 120 MP4Ref. 17 (see  =a,(9— ¢,), where 6, is the critical temperature at which
Ref. 13 for similar I’esulfs This is again in contrast to some the stress-free high_temperature phase loses its thermody_
ferroelasticd for which the shape of the hysteresis l0op re-namic stability. Stress-strain curves=3dF/ds at different
mains inVariant, but the transformation strain and the differ'temperatures for the 2-4-6 potentia| are ana|yzed in detail in
ence between the stresses for direct and reverse PT, i.e., thf. 18 with the goal of applying them to SMA. This is the
stress hysteresis, grows significantly with decreasing temgnly work we know of wherer-¢ curves are studied for a
perature, starting from zero at the transition temperature. | andau theory. In dimensionless form the stress-strain rela-
A generic stressd)-strain () curve for monocrystalline tion for the 2-4-6 potential iso=6s°—4e3+2(t+1)s,

SI\'XIA anter Cny"C Io?dm@f II<S sholwn n ![:I?h 1'h.Th‘§I_)M wheret is the dimensionless temperature. The transformation
(M—A) wans ormation takes place at he ighémwer) ._strain and stress hysteresis grow monotonically from zero at
stress modulus in each hysteresis loop. The volume fract|0{1: 1/4 with decreasing temperature, and both phases lose

gf M varle.? frorr11 0 go Il alonhg the hp?t;nfrol? |§=0 BI’ bgt their stability at zero tangent elastic moduli. Similar behavior
ecreases from 1 to 0 along the path ronto E. It unload- s qeon in the one-dimensional version of the 2-3-4

ing starts before the direct PT is complete, then on the Iin%otential*?'g*zs'z“Olson and Cohéi defined coefficients in a

bd (point d I|e§ on the. diagonahD) the A+M mixture . 2-3-4 potential so that it has stationary pointseat0 and
responds elastically without further phase transformation,

and the curveale corresponds to tht1 — A PT. If we inter- =9, WherEg is a constant. Iheir Stress-sEain curves
rupt the reverse PT at some point then along the linenn =2 (0= 60) 7—2(0+260.—30) n°+4(6.— 0) 7> (0 is
the A+M mixture deforms elastically, and along the linp ~ the temperature of thermodynamic equilibrium between
the A—M PT occurs. The diagonaD is the thermody- stress-freeA and M, n=¢/g, and o is proportional to the
namically unstable equilibrium stress-strain curve. The highstres$ are plotted at six temperatures in Fig. 2. These curves
temperature behavior, characterized by the occurrence of didescribe qualitatively the pseudoplastic regime, but because
rect and reverse PT at stresses of the same sign and zele stress is always zero a0 ande =g the pseudoelastic
residual transformation strain at zero stress, is called psewegime, whereM —A PT occurs at unloading, is not de-
doelastic. At low temperatures, where stress reversal is nescribed at all. Both phases lose their stability at zero tangent
essary to induce the reverse PT and there is a residual translastic moduli, and hysteresis and transformation strain are
formation stress at zero strain, the behavior is referred to astrongly temperature dependent. This behavior is generic for
pseudoplastic. free-energy polynomials in the strain.

One class of Landau theories of martensitic PT is based An alternative description of first order PT is provided by
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o(MPa) librium temperature for Cu-based aIIoVsHowever, the loss
of stability of martensite does occur at zero tangent elastic
200 modulug® (point ©), and the forwardAB) and revers¢CD)

transformation strains are unequal, which is at variance with
observation. AfterA loses stability, both strain and stress
decrease along the unphysical equilibrium stress-strain curve
AC. Moreover, thek=2 potential cannot describe pseu-
doelastic behavior, only the pseudoplastic regime can be
modeled. Macroscopic stress-strain curves based on this
model and calculated in Refs. 3, 4 also exhibit pseudoplastic
behavior only.
A notable drawback of the above models is that the elastic
constantsa, b, andc of A completely determine the elastic
FIG. 3. Equilibrium stress-strain curve described by E@s~  properties oM. This is not the case in general. For example,
(5) for k=2, E=10" MPa, £,=0.005, £,=0.01, £,=0.1, and ar- the Young’s moduli ofA andM are approximately the same
bitrary d. for CuznAl alloys'® and differ by a factor of four for TiNi
alloys* These models do not have a sufficient number of
a Landau polynomial in some order paramepewith linear ~ degrees of freedom to incorporate the thermoelastic proper-
or quadratic coupling to the strain tensdf=azn’+b»n* ties (elastic moduli of second, third, and higher order, ther-
+cn®+Ee?/2—dgyke, wherek=1, 2 andd is the striction mal expansion coefficients, and difference in thermal parts of
coefficient. The order parameter is usually related to atomidree energy of both A andM, or the transformation charac-
shuffles; deformation of the crystal lattice is considered deristics(transformation strain and stress hystefeaisl their
secondary order parameter. The thermodynamic equilibriurtemperature dependences.
conditions are There are more general models which account for atomic
shuffles and involve more complex couplings with elastic
dFlap=2an+4by’+6cn°—kdy < le=0, (3) strain?>?®*~Nevertheless, they also cannot account for the
material properties of both phases or the transformation char-
o=0Flde=Ee—dn*=E(e—¢,), (4) acteristics of strongly first-order martensitic PT.
Known three-dimensional multivariant
e=dy"/E. (5)  theoried*1920232434e simple generalizations of the above
one-dimensional models and they do not overcome their
Due to coupling with the strain, the order parameter pro-grawbacks. New problems arise because of the necessity to
duces spontaneous transformation stegir?®°25-27 describe the transformation of one martensitic variant into
A k=1 polynomial® was employed to model the cubic another. We do not know of any paper where this problem
to tetragonal transformation in FePd alfbynd a three- has been studied analytically.
dimensionak=1 theory was used to model martensitic PT |t seems that the theory advocated in Ref. 31 contains
in SMA and steef. If £>0, then the solutiony=0 of the  enough parameters to encompass the transformation charac-
thermodynamic equilibrium conditiof8) disappears, i.e., the teristics and the material parameters of both phases. How-
parent phase at any temperature is unstable at any prescribgger, in one dimension it reduces to a 2-3-4 polynomial in
strain and the PT starts immediately with straining. The equithe strain, so it has all of the shortcomings of this potential.
librium 7 and transformation strain defined by E¢8) and A three-dimensional theof§ that generalizes the 2-4-6
(5) grow monotonically with increasing strain. So a linear potentiat® discussed above by including additional param-
coupling of 7 to the strain tensork= 1) is unsuitable for the eters still suffers from the deficiencies of the 2-4-6 potential.
description of martensitic PT. The same conclusion isGroup representation theory was used in each 3tdseo
reached if one uses the 2-3-4 polynomial instead of the 2-4-@erive quite complex polynomials which may have unphysi-

100

-200

potential® cal minima. The simplest possible polynomial which satisfies
For the more common cade=2,>*%*"?" =0 (corre-  all reasonable requirementsee Ref. 3Bis preferable.
sponding toA) is always a solution of Eq(3). Two other There has been significant progress in numerical model-

solutions appear whes=¢,=(a—b?/3c)/d. One finds that ing of microstructure formation during martensitic PT based
the stable solution for the transformation strain grows with-on Landau-Ginzburg  theory. A number  of
out bound as strain increases. Whene =a/d the solution  two-dimensiond®?°and three-dimensional calculatidng*
7=0 corresponds to a maximum of the free energy, i.e., itishave been performed. Despite the drawbacks discussed
unstable to infinitesimal perturbations. The equilibriumabove, numerical simulations based on existing models pre-
stress-strain curve=E(e —¢,) is shown in Fig. 3. Loss of dict multivariant microstructures in qualitative agreement
stability of A at e =¢4 (point A) does not occur at zero tan- with photomicrographs. The salient features of the micro-
gent elastic modulus, and this model describes well the exstructure are apparently controlled by the elastic-energy-
perimental relation between the elastic constant in the direaninimization constraint on the self-organization of the mar-
tion of the transformation shear and the zone-boundaryensitic domains; material properties and transformation
frequency of the associated phonon branch at the phase eqeharacteristics presumably affect only the details in the mi-
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crostructure. Agreement of the simulations with the data mayequirement that the Gibbs potential at any temperature and
be attributed in part to the similarities among experimentallyfor any stress field has extremagt0 andp=1. We use a
observed microstructuregompare Ref. 9 for ferroelastics 2-3-4 polynomial for the thermal part of the Gibbs energy
and Ref. 35 for SMA (which is usual and for the transformation straimvhich is
All martensitic PT(even thermally inducedare affected new) and easily satisfy this requirement. Changes in the
or governed by internal stresses arising from transformatiosecond- and higher-order elastic compliance tensors and the
strain and crystal defectdislocations and point defegts thermal strain tensor during the PT are taken into account.
Any Landau potential generates stress-strain relationshipg\nalysis of the model shows that we can include complete
equilibrium diagrams, and transformation diagrams undematerial property information and describe all characteristic
general three-dimensional loading. However, no known Lanfeatures of martensitic PT. In part Il, this approach will be
dau potential is consistent with experimental stress-strain reextended to the general multivariant case.
lationships. Generally, the predictions of Landau theory Our assumed decomposition of the total strain into elastic
agree only qualitatively with observation. Nevertheless, theand transformational parts is valid only for small strains. At
Landau potential developed in this two-part paper does definite strain, this additive decomposition breaks down—one
scribe the typical features of experimental stress-straimas to use multiplicative decomposition of the deformation
curves. gradient into elastic and transformational parts and take into
In Sec. Il we develop our Landau model of austenite-account finite rotation® Formal problems then arise, simi-
martensite transformations. The simplest case, namely equiar to those encountered in finite elastoplasticftyVe will
elastic compliances for austenite and martensite, and zetlonit ourselves in this paper to the small strain approxi-
thermal stresses, is considered in Sec. Il A. In Sec. || B wamation.
present the general case, including higher-order elastic com-
pliances. Our concluding remarks for part | are made in Sec.a_ y-independent elastic compliance and zero thermal strain
lll. In part Il the Landau free energy constructed in part | is ) ) . )
extended to incorporate an arbitrary number of martensitic 1N€ Strain tensoe is decomposed into elastie, and
variants, hence it accounts for PT between austenite and maransformationak;( ) :=£.¢(7) parts
tensitic variants and transformations between martensitic
variants. £= gt £0(7), (6)
Direct tensor notations are used throughout this paper.

. p Where g; is the transformation strain tensor at thermody-
Vectors and tensors are denoted in boldface typeis the namic equilibrium in the martensitic phassg, {s determined
dyadic product of vectorsn and n, A-B=(A;;B;) and q phase

A:B=A;;B;; are the contraction of tensors over one and twoby crystallography, 7 is the order parameter (97<1),

indicesl(Af::(A:A)l’2 is the modulus of tensoh, and:== 219 ¢ IS @ monotone function for whichp(0)=0 and

means equal by definition. The indices 1 and 2 denote thg(l)zl' As y varies from 0 to 1, the transformation strain
: . ensor varies fron® to its final valueg,. The order param-
values inA andM respectively.

eter » is uniquely related to the magnitude of the transfor-

mation straine,| normalized by its maximum value,|.
Il. LANDAU MODEL OF AUSTENITE «—MARTENSITE We assume for simplicity that the thermal strain is zero
We assume that for the three-dimensional case all materignd that the elastic quuli of the austenite and ma_rtensite are
propertieqelastic moduli tensors of second, third, and higherequa,I (these assumptions are relaxed be'“?‘“d write the
order, thermal expansion tensors, and thermal parts of th%oecmc(per unit volume Gibbs free energy in the form
free energy of both phases, the transformation strain tensor,

and all temperature dependences, are known for a given ma- G=—oNol2—oep(n)+1(6,7), (@)

terial. Transformation characteristics, such as the criticalyhereq is the stress tensax, is the fourth-rank elastic com-
temperatured, for the formation of martensite, the relation pliance tensorg is the temperature, arfdis the thermal or

between the stress tensor and the temperature at Wil cemical(stress-independenpart of the free energy. Then
M; lose their stability, or are in thermodynamic equilibrium,

and the potential barriers are also known from experiment or e=—dGldo= N o+ g,0(7), (8
atomistic calculations. Our goal is to find the simplest ex-
pression for the Gibbs potential that describes Aie M; which is consistent with Eq(6). Our goal is to find the
andM;—M; (part Il) PT for any type of symmetry oh and  functions ¢(7) and f(6,7) satisfying the following three
M and includes all of this information. conditions:

The following approach is followed in this section.
Shuffles are neglected or excluded by minimization of free (1)¢(0)=0 and ¢(1)=1; f(6,1)—f(6,00=AG’6).

energy. We decompose the total strain tensor into elastic and 9
transformational parts. The magnitude of the transformation ~ 5
strain tensor is uniquely related to the order parameter The conditions one imply £(0)=0 and &(1)=¢;.

which varies from 0 inA to 1 in M. We require that the AG?(9) is the difference between the thermal parts of the
material be eitheA or M in thermodynamic equilibrium at Gibbs free energies of the martensitic and austenitic phases
any temperature and stress tensor. This translates into tles determined experimentally. It is clear th&fe,0)

134206-4



THREE-DIMENSIONAL LANDAU ... . I

oM
1

FIG. 4. The functionp(#) at variousa.
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G(wo,0,7), which represents the activation barrier for the
A—M PT. The barrier height is

G(o,0,73)—G(0,6,0)

=[A—o:ga—4(AG - oue)]732. (13

The activation barrier for M—A is G(o,0,73)
—G(o,0,75,), which can be obtained by addirg( o, 0,0)
—G(0,0,1)=0:5—AG’ to Eq. (13. The inequalities
9°Gldan?<0 atp=0 and»n=1 are conditions for the loss of
A andM stability. They are théA—M andM— A PT crite-
ria [rather than the phase equilibrium conditi@{a,6,0)
=G(o,6,1)]

6AG’—A
6= .

A—M: o-:stza, M—A: o &=

(14)

The criteria(14) also follow from the conditionsy3<0
and 3;=1, in which casen; corresponds to a minimum of

=GY(6), however for the description of PT without loss of G and 7, (0r 7,) to a maximum, and the barrier for the PT

generality we can put(6,0)=0.
(2) The free energys has extrema af andM

G(a,0,7)
=0
an

de(n) af(6,7 .
- 90(77): ( 71):0, 0.1,
an an

(10

(3) The functione( %) is monotone for & »<1.
If we chooseg(#) and f(#) to be 2-3-4 polynomials,
then conditiong1)—(3) are satisfied by the functions

e(n)=an?*+(4—-2a)n*+(a—3)n*, 0<a<s,

f(0,7)=An’+(4AG?—2A) °+ (A—3AG% 5%
11

wherea and A are material parameters. The functiez)
has no extremum on the intervakOy<1 for 0<a<®6; we
include the end pointa=0 anda=6 where infinite stress is
required to initiate direct and reverse PSee Eq(22)]. The
function ¢(#) for variousa is shown in Fig. 4. By rescaling
» and energy, the potential can be put in the fd&m K72

+ 73+ 7% However, sinck depends in a complex way on
stresses andG’, and our goal is to study the effect of
stresses on the PT, we work directly with E¢#). and (11).
The difference between the Gibbs potentials of Ahand M
phases, which is the thermodynamic driving force for ghe
—M PT, isG(0,6,0)—G(0,6,1)= 05— AG’. The ther-
modynamic equilibrium conditio@G/dn=0 has the three
roots

711=0; 7,=1;

1
773:§(A— ao g)/[A—3AG’—(a—3)og]. (12

The first two roots correspond to austenitic and martensi-

tic minima (if these phases are metastabléthe third root is

between 0 and 1, it corresponds to the maximum of

disappears. For temperature-induced Ri=Q) Egs. (14
reduce toA<0 (A—M) andA<6AG? (M —A). If the dif-
ference between the specific heats of the phases at zero stress
Av is independent of temperature, then it is easy to obtain
(see, e.g., Refs. 13,86

AG’=27(60—0,)—Av6(In 6/ 0.—1)— Avo,,

z=—As.>0. (15

Here 6, is the equilibrium temperaturgA G%(6,)=0] and

As, is the jump in specific entropy at the equilibrium tem-
perature. It is a good approximation over a modest range of
temperatures to take\v=0 and A=Aq(6—6.),A;>0,
where 6, is the critical temperature at which stress-frke
loses its thermodynamic stability. The resulting linear tem-
perature dependence AfG? is in good agreement with ex-
periments on shape memory alloys and some steels over a

wide range of temperatures. L6t denote the critical tem-
perature at which stress-fréé loses its thermodynamic sta-
bility. From Egs.(14) we obtain

A—-M: 0<6.,

62(6e— 0c)

6z—Aq (16

M—A: 0= 0,:=0,+ , Ay<6z.
The inequalityAy<6z follows from the obvious inequalities

0:.>0.> 6. It is often assumed that the equilibrium tem-
perature is the average of the critical temperatures, but in fact
there are no experimental data to support this supposition.
Nevertheless, in that case we haig=3z,

AG?=Ay(6— 6,13,

f=Ao[ (60— 6.) 7°—2(0+20,—36,) 7°13+ (6— 65) *].
(17)
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We now obtain a parametric representation of stress-strain
curves for transformations that can be treated as one-
dimensional, i.e.,o:&=0¢;, Where o and ¢, are scalar
measures of stress and transformation strain. Four important

PHYSICAL REVIEW B66, 134206 (2002
c (MPa)

1200

examples of one-dimensional transformations are

1
g=zy(mntnm), e=y, o=r=m-o-n (18
g&=¢Nn, g=¢g, o=N-0-N; (19
1
g=3¢ol, 8=80, 0=30l; (20)
1 1
g=¢| €181~ 58~ 586 |, &=¢,
1 1
U:el'ﬂ"el_EEZ'O"ez_Eeg'a'eE,- (21)

Equation(18) describes simple shear in directiomin the
shear plane with normal. The shear stress isand vy, is the
shear strain. Equatiofil9) describes simple tensioftom-
pression in the n direction. Equation(20) corresponds to a
pure volumetric transformation straigy, with mean stress
(hydrostatic pressuyer. Equation(21) describes a cubic to
tetragonal transformation with elongation in teedirection
and compensating contractions along #geand e; direc-
tions. In all four cases, Eq12) for 75 provides us with the
equilibrium stress-transformation strain curve

_ 2(A-3AG")n—A
7T el2(a-3)p-a] -

(22

For 0<a<®6, the denominator of Eq22) is nonzero for 0
< p=<1. Since the parameter maximizesG, for eacho and
0, the equilibrium curve Eq(22) is unstable. This is re-
flected by a decrease ior with an increase iny. In the
approximation thatA =0, the -7 curve depends linearly
on temperature

2[Ag(0—0.)—32(0— 0c) [ n—Ao(0—6,)
g—= .

s[2(a—3)7—al @3

The stress hysteresi$:=o(7=0)—o(n=1) is given by

6 (Ag—za)0+zald,—Ayb,
H=— ,
&t a(6—a)

(29)

1000

600

FIG. 5. Equilibrium stress-strain curves at various temperatures
(designated near curvefor A=10"% MPa !, £,=0.1, a=3, 6,
=290 K, #,=300 K, and A;=3 MPa/K. Unstable regions are
dashed.

strain and nonzero tangent moduli whé&eand M lose sta-
bility. The experimentally observed diagonal AD in Fig. 1 is
described as well.

The parameter& and A do not affect thermodynamic
equilibrium conditions, instead they characterize energy bar-
riers. After AG? is determined from thermodynamic equilib-
rium conditions, the parametess and A, (or 6.) can be
determined from theA< M transition temperatures under
stress-free conditions, and finally the parametean be de-
termined from phase transformation conditidd) at various
temperatures. The dependenceGEG+ o7 \: 072 on 7 is
presented in Fig. 6.

B. n-dependent thermal strain and elastic compliances
through fourth order

In order to account for nonzero thermal straip and
changes in the elastic compliances through fourth order dur-
ing the PT we define

G=—0:\(75):02—[0:\3(7):0]:0/3

— o[\ () o) 0l4— o 5.0( )

which is independent of temperature, as in SMA and steels,
for Ap=za. Equations(22) [or (23)] and (8) constitute a

parametric representation of the unstable branch of the equi-
librium stress-strain curve. Stress-strain curves at several
temperatures are shown in Fig. 5, where arrows indicate the

—oigy(n)+1(0,79), (25

A"(17) = A5+ (AT = AD) e (7). (26)
£4(1)=€got (€91~ €90) @4( 1), €go= (0~ 0p),

eg=ay(0—0p), (27

strain jump at constant stress in a stress-controlled experiwherehg and\f' are themth order elastic compliancégank
ment. They agree qualitatively with the schematic stress2m tensor$ of A andM, N:=A2, a, and a; are the thermal
strain curves of Fig. 1. They exhibit the most important fea-expansion tensors oA and M, and 6, is some reference
tures of martensitic phase transitions in SMA, namelytemperature, e.gf.. As the functionse,,, and ¢, have to
temperature independent stress hysteresis and transformatisatisfy the same four conditions as one obtains
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hy:=(a—3)&+(ay—3)(€p1— €40)
+(ay—3)(Ay— No): 072+ (agy,—3) (N3 —Ad): 073
(31

The conditions for thé\— M andM — A PT, 9°G/d75*<0 at
n=0 andn=1, respectively, are generalizations of Ety)
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FIG. 6. G(#) for equal deviations of the critical temperatures They are consistent with the conditions for the disappearance

from the equilibrium temperature at various stresgiEsignated in
MPa near curvesfor (a) §=200 K and(b) =250 K; £,=0.1, a
=3, 6.=100 K, 6,=200 K, A;=3 MPa/K.
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The difference between the Gibbs potentials of Ahand M
is
G(0,0,00—G(0,0,1)
=0 &t 0. (€p1— €go) T 0 (N — Ng): 02
+o:(A—\d):0]: 073

+0:[0:(N]—\)): 0]: 014— AGY. (30)

of activation barriersy;= 7, and »3= 7,. For temperature-
induced PT ¢=0), Eqgs.(16) remain valid.

The tensorsAg', A, ay, and @4 are assumed to be
known. As beforeAG? is determined from thermodynamic

equilibrium conditions, and the paramet@égsandA, (or 6,)

can be determined from th&<~M PT temperatures under
stress-free conditions. If the stresses for forward and reverse
phase transformations are determined experimentally at vari-
ous temperatures then the parameteis,,, , anda,, which
control the energy barrier betwednandM but not thermo-
dynamic equilibrium, can be obtained from E&2). If a,

a,, anda, are functions of temperature then they are not
uniquely determined by conditiori82). One can model zero
tangential moduli at PT points, if necessary.

IIIl. CONCLUDING REMARKS

In part I, a three-dimensional Landau theory for stress-
and temperature-inducel—M PT has been developed. In
contrast to previous approaches, our theory allows for inclu-
sion of all temperature-dependent thermomechanical proper-
ties of both phases and describes typical stress-strain curves
with constant transformation strain tenséesmperature and

The solutions of the thermodynamic equilibrium condition stress independentconstant or weakly temperature depen-

dGldn=0 are
1 4
77120, 772:1, ﬂgZE(A_Uhl)/(A_SAG _O':hz),

hl::a8t+ aﬁ(SHl_890)+a)\(hl_ko):0'/2

+ag 0. (N3—N\D):0/3+ ag[ o:(N]— ) o]: 04,

dent stress hysteresis, and transformation at nonzero tangent
moduli. The free energy polynomial is sufficiently simple
that spurious extrema do not appear.

Martensitic PT for which the leading transformation mode
is a transformation straifthe case considered in this paper
are classified as proper PT according to Ref. 5. For proper
PT, the transformation strain is linearly dependent on the
order parameter. For improper PT, in which the soft optical
displacement mode is a primary transformation mode and
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transformation strain is a secondary effect, the transformaning is not involved, in particular, for the pseudoelastic re-
tion strain is at least quadratic in the order parameters. Suajime) and nonzero tangent elastic moduli are independent of
a classification scheme is not satisfactory because, as viBe above factors and are defined by deformation of the crys-
have shown, martensitic PT for which the leading mode idal lattice. Stress hysteresis is strongly affected by defects so
transformation strain have a 2-3-4 polynomial dependence die cannot exclude the possibility that defects change its tem-
transformation strain on the order parameter. Note that thBerature dependence. Dislocation structure does not evolve
order parameter is not a small parameter so a higher degréignificantly during PT in the temperature range of interest;
polynomial does not mean a weaker effect. Maybe the ternthe PT itself is the _dommant mechanism of plast|C|t_y. Thus
“strong” martensitic PT for the PT with transformation W€ €xpect dislocations to change stress hysteresis by ap-
strain as a leading mode in contrast to “weak” PT for the prqxn_nately the Same.v"’.‘lue at any temperature. But the main
case when transformation strain is a secondary effect woulgointis that even if this is not the case, our theory is flexible
be more suitable. enough to employ any temperature dependence for the stress
We see no way to describe all of the desirable features Ol?ysteres!s. . . .
strong martensitic PT using a polynomial in the total strain Twinning can sub;tanﬂally increase the . pseudoplastic
rather than a polynomial in order parameters related to th tress h.ysteresu?* rglatwe to the pseudoelastic stress hy_stt?r—
transformation strain. It would be quantitatively incorrect to esis. This behavior is not predicted by our Landau potential;
determine barriers for thd<M PT or the variant-variant |sblnec(essag ;0 SSBOIVG the corresponding boundary value
PT (in part Il) from experimental stress-strain curves for PrO2€MS€€ REL. 35
single c?ystals. Stress-sptrain curves are strongly affected b Our Gibbs potential for thed—M PT can be used to
various defect distributions, surface energy, and the presen ‘ch”be tW|_nn|_ng and transformations betwee_n martensitic
of a fine twinned microstructure. Actual stresses in transYa"ants: Twinning can be regardeq as the special case of our
forming material may be very different from applied stresse <M PT thgory where the jump in the thefm?" part Qf the
due to internal stresses induced by a heterogeneous distrib ee energy 1S set of zero and the transformat|on strain cor-
tion of transformation strain. Atomistic calculations are thereSpondS to simple shegr. Traansformatlons be‘.Wee” variants
best way to determine transformation barriers in our theoryf:an be modeled by .taklng(_B =0 anq .e}ccoun.tmg for the
Comparison with experimental stress-strain curves can paonzero transformation strain of the initial variant.
made after solution of the corresponding boundary-value
problem with some prescribédr determined by correspond-
ing evolution equationsdefect distribution. The support of Los Alamos National Laboratory for V.I.L.
Our Landau theory captures the main features of macrounder consulting agreement C-8060 is gratefully acknowl-
scopic stress-strain curves notwithstanding the effects of thedged. The technical assistance of Dong-Wook [(Eexas
microstructure. The transformation strain teneghen twin-  Tech University is very much appreciated.
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