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Three-dimensional Landau theory for multivariant stress-induced martensitic phase
transformations. I. Austenite^martensite
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A three-dimensional Landau theory of stress-induced martensitic phase transformations is presented. It
describes transformations between austenite and martensitic variants and transformations between martensitic
variants. The Landau free energy incorporates all temperature-dependent thermomechanical properties of both
phases. The theory accounts for the principal features of martensitic transformations in shape memory alloys
and steels, namely, stress-strain curves with constant transformation strain and constant, or weakly temperature
dependent, stress hysteresis, as well as nonzero tangent elastic moduli at the phase transformation point. In part
I, the austenite↔martensite phase transformation is treated, while transformations between martensitic variants
are considered in part II.
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I. INTRODUCTION

Landau theory1 is a phenomenological framework th
originated as a description of second-order~continuous!
phase transformations. Although the conventional Lan
approach is strictly valid only for continuous phase transf
mations, Landau theory has been generalized to encom
first-order phase transformations, in particular displacive
constructive transitions, which include martensitic pha
transformations.

The basic ingredients of a Landau model are an or
parameter h, which encodes the atomic configuratio
through the transformation, and the thermodynamic poten
G, which is a function of the order parameter. See Ref. 2
an excellent overview of modern Landau theory.

In Ginzburg-Landau theory, a gradient term is included
the total energy to account for interface surface energy

GGL5G10.5(
k51

n

“hk•bk•“hk . ~1!

The bk are positive definite second-rank tensors. Since
driving force to changehk equals2dGGL/dhk , the kinetic
equations forhk are given by3–6

]hk

] t
52 (

p51

n

Lkp

d GGL

d hp
1jk

52 (
p51

n

LkpS ] G

] hp
2bp:“ “hpD1jk . ~2!

Here Lkp are positive definite kinetic coefficients andjk is
the noise due to thermal fluctuations which satisfies
dissipation-fluctuation theorem.

We construct a Landau free energy that describes str
first-order martensitic phase transformations~PT’s! in steels
and shape memory alloys~SMA’s!. Hence the transformation
strain must be temperature independent, and the stress
teresis must be constant or only weakly temperature de
dent. Further, the tangent elastic moduli at the PT point
0163-1829/2002/66~13!/134206~9!/$20.00 66 1342
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required to be nonzero. Finally, the theory should accomm
date all of the thermomechanical properties of both pha
We now discuss these required features of our Landau
energy in some detail.

Deformation of the crystal lattice of the high-temperatu
phase, the austenite (A), into the low temperature phase, th
martensite (M ), can be described in the small strain appro
mation by the transformation strain tensor«t ~also called
Bain strain7 or spontaneous strain.8,9! Due to the symmetry
of the crystal lattice, there are a finite numbern of crystallo-
graphically equivalent variants of martensite. All martensi
variantsMi , i 51,2, . . . ,n, have the same components
the transformation strain tensor in their respective crysta
graphic bases. A list of transformation strain tensors
transformations between various crystal lattices can be fo
in Ref. 10. Maximal components of the transformation str
tensor are of order 0.1. In contrast to some ferroelastics,9 for
which the transformation strain can increase significantly
the temperature is decreased, the transformation strai
constant for SMA and steels. A small deformation of t
martensitic crystal lattice under temperature variation can
described by a thermal expansion tensor ofM that has the
same order of magnitude as forA (a;10251/K).

Phase transformations in some classes of materials@see
Ref. 9 for Nb3Sn, BiVO4, LaNbO4, (KBr)0.27(KCN)0.73,
KH2PO4, TbVO4, and Ref. 11 for V3Si, Nb3Sn, and InTe
alloys! occur at vanishing tangent elastic modulusEt corre-
sponding to the transformation strain. The transformat
strains in such materials are usually small, and the PT
close to second order. In contrast, martensitic PT occu
nonzeroEt in both A and M . Examples include Cu-base
alloys:12 Fe-33.7% Ni, Fe-5.9% Ni-4.4% Mn-0.48% C stee
Co - 32.5% Ni and Cu - 14.3% Al-5.8% Ni alloys,11

CuZnAl,13, and TiNi alloys.14 Consequently, the transition
mechanism cannot be attributed to phonon instability, a
the soft-mode approach15 cannot be applied.

Stress hysteresis in SMA is typified by a weak depe
dence on temperature.14,16 For example, in Cu-Zn-Al alloys
the stress hysteresis is constant for a temperature varia
©2002 The American Physical Society06-1
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from 12° to 78°C; the corresponding variation in the initi
tion stress for theA→M PT is 10 to 120 MPa~Ref. 17! ~see
Ref. 13 for similar results!. This is again in contrast to som
ferroelastics9 for which the shape of the hysteresis loop r
mains invariant, but the transformation strain and the diff
ence between the stresses for direct and reverse PT, i.e
stress hysteresis, grows significantly with decreasing t
perature, starting from zero at the transition temperature

A generic stress (s)-strain («) curve for monocrystalline
SMA under cyclic loading13 is shown in Fig. 1. TheA→M
(M→A) transformation takes place at the higher~lower!
stress modulus in each hysteresis loop. The volume frac
of M varies from 0 to 1 along the path fromA to B, but
decreases from 1 to 0 along the path fromD to E. If unload-
ing starts before the direct PT is complete, then on the
bd ~point d lies on the diagonalAD) the A1M mixture
responds elastically without further phase transformati
and the curvede corresponds to theM→A PT. If we inter-
rupt the reverse PT at some pointm, then along the linemn
theA1M mixture deforms elastically, and along the linenp
the A→M PT occurs. The diagonalAD is the thermody-
namically unstable equilibrium stress-strain curve. The hi
temperature behavior, characterized by the occurrence o
rect and reverse PT at stresses of the same sign and
residual transformation strain at zero stress, is called p
doelastic. At low temperatures, where stress reversal is
essary to induce the reverse PT and there is a residual t
formation stress at zero strain, the behavior is referred to
pseudoplastic.

One class of Landau theories of martensitic PT is ba

FIG. 1. Schematic stress-strain curves for shape memory a
at various temperaturesu1,u2,u3. The behavior is pseudoplasti
at u1 and pseudoelastic atu2 andu3. The constant transformatio
strain and the weak temperature dependence of stress hystere
pseudoelastic behavior is typical.
13420
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on nonconvex Helmholtz free-energy polynomials in t
strain«: F(«)5a«21b«41c«6 ~Ref. 18! ~in Refs. 19, 20 a
Gibbs potentialG5F2s« is used which gives the sam
results! or F(«)5a«21b«31c«4.21–24The elastic constants
a, b, and c are functions of the temperatureu; usually a
5a0(u2uc), whereuc is the critical temperature at whic
the stress-free high-temperature phase loses its therm
namic stability. Stress-strain curvess5]F/] « at different
temperatures for the 2-4-6 potential are analyzed in deta
Ref. 18 with the goal of applying them to SMA. This is th
only work we know of wheres-« curves are studied for a
Landau theory. In dimensionless form the stress-strain r
tion for the 2-4-6 potential iss̄56«̄524«̄312(t1 1

4 ) «̄,
wheret is the dimensionless temperature. The transforma
strain and stress hysteresis grow monotonically from zer
t51/4 with decreasing temperature, and both phases
their stability at zero tangent elastic moduli. Similar behav
is seen in the one-dimensional version of the 2-3
potential.8,9,23,24Olson and Cohen21 defined coefficients in a
2-3-4 potential so that it has stationary points at«50 and
«5g, where g is a constant. Their stress-strain curvess̄

52 (u2uc)h̄22(u12ue23uc)h̄
214(ue2uc)h̄

3 (ue is
the temperature of thermodynamic equilibrium betwe
stress-freeA and M , h̄5«/g, and s̄ is proportional to the
stress! are plotted at six temperatures in Fig. 2. These cur
describe qualitatively the pseudoplastic regime, but beca
the stress is always zero at«50 and«5g the pseudoelastic
regime, whereM→A PT occurs at unloading, is not de
scribed at all. Both phases lose their stability at zero tang
elastic moduli, and hysteresis and transformation strain
strongly temperature dependent. This behavior is generic
free-energy polynomials in the strain.

An alternative description of first order PT is provided b

ys

for

FIG. 2. Stress-strain curves at six temperatures for the 2
potential proposed in Ref. 21 atue5150 K anduc550 K: ~1! u
50 K; ~2! u550 K; ~3! u5150 K; ~4! u5300 K; ~5! u5400 K;
~6! u5500 K.
6-2



m

iu

ro

ic

T

rib
u

ar

i
-4

th

it i
m

-
e

re
a
eq

stic

ith
s

urve
u-

be
this
stic

stic
c
le,
e

of
per-
er-
s of
-

mic
tic
the
har-

t
ve
eir

ty to
nto
em

ins
arac-
ow-
in

ial.
6
m-
ial.

si-
es

del-
ed
f

sed
pre-
nt
ro-
gy-
ar-
ion
mi-

THREE-DIMENSIONAL LANDAU . . . . I. . . . PHYSICAL REVIEW B66, 134206 ~2002!
a Landau polynomial in some order parameterh with linear
or quadratic coupling to the strain tensor:F5ah21bh4

1ch61E«2/22dhk«, wherek51, 2 andd is the striction
coefficient. The order parameter is usually related to ato
shuffles; deformation of the crystal lattice is considered
secondary order parameter. The thermodynamic equilibr
conditions are

]F/]h52ah14bh316ch52kdhk21«50, ~3!

s5]F/]«5E«2dhk5E~«2« t!, ~4!

« tªdhk/E. ~5!

Due to coupling with the strain, the order parameter p
duces spontaneous transformation strain« t .3,4,8,9,25–27

A k51 polynomial5,9 was employed to model the cub
to tetragonal transformation in FePd alloy,6 and a three-
dimensionalk51 theory was used to model martensitic P
in SMA and steel.5 If «.0, then the solutionh50 of the
thermodynamic equilibrium condition~3! disappears, i.e., the
parent phase at any temperature is unstable at any presc
strain and the PT starts immediately with straining. The eq
librium h and transformation strain defined by Eqs.~3! and
~5! grow monotonically with increasing strain. So a line
coupling ofh to the strain tensor (k51) is unsuitable for the
description of martensitic PT. The same conclusion
reached if one uses the 2-3-4 polynomial instead of the 2
potential.5

For the more common casek52,3,4,25–27 h50 ~corre-
sponding toA) is always a solution of Eq.~3!. Two other
solutions appear when«>«05(a2b2/3c)/d. One finds that
the stable solution for the transformation strain grows wi
out bound as strain increases. When«>«s5a/d the solution
h50 corresponds to a maximum of the free energy, i.e.,
unstable to infinitesimal perturbations. The equilibriu
stress-strain curves5E(«2« t) is shown in Fig. 3. Loss of
stability of A at «5«s ~point A! does not occur at zero tan
gent elastic modulus, and this model describes well the
perimental relation between the elastic constant in the di
tion of the transformation shear and the zone-bound
frequency of the associated phonon branch at the phase

FIG. 3. Equilibrium stress-strain curve described by Eqs.~3!–

~5! for k52, E5104 MPa, «050.005, «s50.01, «̄ t50.1, and ar-
bitrary d.
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librium temperature for Cu-based alloys.12 However, the loss
of stability of martensite does occur at zero tangent ela
modulus26 ~point C!, and the forward~AB! and reverse~CD!
transformation strains are unequal, which is at variance w
observation. AfterA loses stability, both strain and stres
decrease along the unphysical equilibrium stress-strain c
AC. Moreover, thek52 potential cannot describe pse
doelastic behavior, only the pseudoplastic regime can
modeled. Macroscopic stress-strain curves based on
model and calculated in Refs. 3, 4 also exhibit pseudopla
behavior only.

A notable drawback of the above models is that the ela
constantsa, b, andc of A completely determine the elasti
properties ofM . This is not the case in general. For examp
the Young’s moduli ofA andM are approximately the sam
for CuZnAl alloys13 and differ by a factor of four for TiNi
alloys.14 These models do not have a sufficient number
degrees of freedom to incorporate the thermoelastic pro
ties ~elastic moduli of second, third, and higher order, th
mal expansion coefficients, and difference in thermal part
free energy! of both A andM , or the transformation charac
teristics~transformation strain and stress hysteresis! and their
temperature dependences.

There are more general models which account for ato
shuffles and involve more complex couplings with elas
strain.25,28–30Nevertheless, they also cannot account for
material properties of both phases or the transformation c
acteristics of strongly first-order martensitic PT.

Known three-dimensional multivarian
theories3,4,19,20,23,24,31are simple generalizations of the abo
one-dimensional models and they do not overcome th
drawbacks. New problems arise because of the necessi
describe the transformation of one martensitic variant i
another. We do not know of any paper where this probl
has been studied analytically.

It seems that the theory advocated in Ref. 31 conta
enough parameters to encompass the transformation ch
teristics and the material parameters of both phases. H
ever, in one dimension it reduces to a 2-3-4 polynomial
the strain, so it has all of the shortcomings of this potent
A three-dimensional theory32 that generalizes the 2-4-
potential18 discussed above by including additional para
eters still suffers from the deficiencies of the 2-4-6 potent
Group representation theory was used in each case31,32 to
derive quite complex polynomials which may have unphy
cal minima. The simplest possible polynomial which satisfi
all reasonable requirements~see Ref. 33! is preferable.

There has been significant progress in numerical mo
ing of microstructure formation during martensitic PT bas
on Landau-Ginzburg theory. A number o
two-dimensional19,20and three-dimensional calculations3–5,34

have been performed. Despite the drawbacks discus
above, numerical simulations based on existing models
dict multivariant microstructures in qualitative agreeme
with photomicrographs. The salient features of the mic
structure are apparently controlled by the elastic-ener
minimization constraint on the self-organization of the m
tensitic domains; material properties and transformat
characteristics presumably affect only the details in the
6-3
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VALERY I. LEVITAS AND DEAN L. PRESTON PHYSICAL REVIEW B66, 134206 ~2002!
crostructure. Agreement of the simulations with the data m
be attributed in part to the similarities among experimenta
observed microstructures~compare Ref. 9 for ferroelastic
and Ref. 35 for SMA!.

All martensitic PT~even thermally induced! are affected
or governed by internal stresses arising from transforma
strain and crystal defects~dislocations and point defects!.
Any Landau potential generates stress-strain relationsh
equilibrium diagrams, and transformation diagrams un
general three-dimensional loading. However, no known L
dau potential is consistent with experimental stress-strain
lationships. Generally, the predictions of Landau the
agree only qualitatively with observation. Nevertheless,
Landau potential developed in this two-part paper does
scribe the typical features of experimental stress-st
curves.

In Sec. II we develop our Landau model of austeni
martensite transformations. The simplest case, namely e
elastic compliances for austenite and martensite, and
thermal stresses, is considered in Sec. II A. In Sec. II B
present the general case, including higher-order elastic c
pliances. Our concluding remarks for part I are made in S
III. In part II the Landau free energy constructed in part I
extended to incorporate an arbitrary number of martens
variants, hence it accounts for PT between austenite and
tensitic variants and transformations between marten
variants.

Direct tensor notations are used throughout this pa
Vectors and tensors are denoted in boldface type;mn is the
dyadic product of vectorsm and n, A•B5(Ai j Bjk) and
A:B5Ai j Bji are the contraction of tensors over one and t
indices, uAu:5(A:A)1/2 is the modulus of tensorA, andª

means equal by definition. The indices 1 and 2 denote
values inA andM respectively.

II. LANDAU MODEL OF AUSTENITE ^MARTENSITE

We assume that for the three-dimensional case all mat
properties~elastic moduli tensors of second, third, and high
order, thermal expansion tensors, and thermal parts of
free energy! of both phases, the transformation strain tens
and all temperature dependences, are known for a given
terial. Transformation characteristics, such as the crit
temperatureuc for the formation of martensite, the relatio
between the stress tensor and the temperature at whichA and
Mi lose their stability, or are in thermodynamic equilibrium
and the potential barriers are also known from experimen
atomistic calculations. Our goal is to find the simplest e
pression for the Gibbs potential that describes theA↔Mi
andMi↔M j ~part II! PT for any type of symmetry ofA and
M and includes all of this information.

The following approach is followed in this section
Shuffles are neglected or excluded by minimization of f
energy. We decompose the total strain tensor into elastic
transformational parts. The magnitude of the transforma
strain tensor is uniquely related to the order parameterh,
which varies from 0 inA to 1 in M . We require that the
material be eitherA or M in thermodynamic equilibrium a
any temperature and stress tensor. This translates into
13420
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requirement that the Gibbs potential at any temperature
for any stress field has extrema ath50 andh51. We use a
2-3-4 polynomial for the thermal part of the Gibbs ener
~which is usual! and for the transformation strain~which is
new! and easily satisfy this requirement. Changes in
second- and higher-order elastic compliance tensors and
thermal strain tensor during the PT are taken into acco
Analysis of the model shows that we can include compl
material property information and describe all characteris
features of martensitic PT. In part II, this approach will
extended to the general multivariant case.

Our assumed decomposition of the total strain into ela
and transformational parts is valid only for small strains.
finite strain, this additive decomposition breaks down—o
has to use multiplicative decomposition of the deformat
gradient into elastic and transformational parts and take
account finite rotations.36 Formal problems then arise, sim
lar to those encountered in finite elastoplasticity.37 We will
limit ourselves in this paper to the small strain appro
mation.

A. h-independent elastic compliance and zero thermal strain

The strain tensor« is decomposed into elastic«e and
transformational«̃t(h)ª«tw(h) parts

«5«e1«tw~h!, ~6!

where «t is the transformation strain tensor at thermod
namic equilibrium in the martensitic phase («t is determined
by crystallography!, h is the order parameter (0<h<1),
and w is a monotone function for whichw(0)50 and
w(1)51. As h varies from 0 to 1, the transformation stra
tensor varies from0 to its final value«t . The order param-
eter h is uniquely related to the magnitude of the transfo
mation strainu«̃tu normalized by its maximum valueu«tu.

We assume for simplicity that the thermal strain is ze
and that the elastic moduli of the austenite and martensite
equal ~these assumptions are relaxed below! and write the
specific~per unit volume! Gibbs free energy in the form

G52s:l:s/22s:«tw~h!1 f ~u,h!, ~7!

wheres is the stress tensor,l is the fourth-rank elastic com
pliance tensor,u is the temperature, andf is the thermal or
chemical~stress-independent! part of the free energy. Then

«52]G/]s5l:s1«tw~h!, ~8!

which is consistent with Eq.~6!. Our goal is to find the
functions w(h) and f (u,h) satisfying the following three
conditions:

~1!w~0!50 and w~1!51; f ~u,1!2 f ~u,0!5DGu~u!.
~9!

The conditions onw imply «̃t(0)50 and «̃t(1)5«t .
DGu(u) is the difference between the thermal parts of t
Gibbs free energies of the martensitic and austenitic pha
as determined experimentally. It is clear thatf (u,0)
6-4
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THREE-DIMENSIONAL LANDAU . . . . I. . . . PHYSICAL REVIEW B66, 134206 ~2002!
5G1
u(u), however for the description of PT without loss

generality we can putf (u,0)50.
~2! The free energyG has extrema atA andM

]G~s,u,ĥ !

]h
50⇒]w~ĥ!

]h
5

] f ~u,ĥ !

]h
50, ĥ50,1.

~10!

~3! The functionw(h) is monotone for 0<h<1.
If we choosew(h) and f (h) to be 2-3-4 polynomials,

then conditions~1!–~3! are satisfied by the functions

w~h!5ah21~422a!h31~a23!h4, 0,a,6,

f ~u,h!5Ah21~4DGu22A!h31~A23DGu!h4,
~11!

wherea and A are material parameters. The functionw(h)
has no extremum on the interval 0<h<1 for 0<a<6; we
include the end pointsa50 anda56 where infinite stress is
required to initiate direct and reverse PT@see Eq.~22!#. The
functionw(h) for variousa is shown in Fig. 4. By rescaling
h and energy, the potential can be put in the formG̃5Kh̃2

1h̃31h̃4. However, sinceK depends in a complex way o
stresses andDGu, and our goal is to study the effect o
stresses on the PT, we work directly with Eqs.~7! and ~11!.
The difference between the Gibbs potentials of theA andM
phases, which is the thermodynamic driving force for theA
→M PT, is G(s,u,0)2G(s,u,1)5s:«t2DGu. The ther-
modynamic equilibrium condition]G/]h50 has the three
roots

h150; h251;

h35
1

2
~A2as:«t!/@A23DGu2~a23!s:«t#. ~12!

The first two roots correspond to austenitic and marte
tic minima~if these phases are metastable!. If the third root is
between 0 and 1, it corresponds to the maximum

FIG. 4. The functionw(h) at variousa.
13420
i-

f

G(s,u,h), which represents the activation barrier for th
A→M PT. The barrier height is

G~s,u,h3!2G~s,u,0!

5@A2s:«ta24~DGu2s:«t!#h3
3/2. ~13!

The activation barrier for M→A is G(s,u,h3)
2G(s,u,h2), which can be obtained by addingG(s,u,0)
2G(s,u,1)5s:«t2DGu to Eq. ~13!. The inequalities
]2G/]h2<0 ath50 andh51 are conditions for the loss o
A andM stability. They are theA→M andM→A PT crite-
ria @rather than the phase equilibrium conditionG(s,u,0)
5G(s,u,1)]

A→M : s:«t>
A

a
, M→A: s:«t<

6DGu2A

62a
. ~14!

The criteria~14! also follow from the conditionsh3<0
andh3>1, in which caseh3 corresponds to a minimum o
G andh1 ~or h2) to a maximum, and the barrier for the P
disappears. For temperature-induced PT (s50) Eqs. ~14!
reduce toA<0 (A→M ) andA<6DGu (M→A). If the dif-
ference between the specific heats of the phases at zero s
Dn is independent of temperature, then it is easy to obt
~see, e.g., Refs. 13,36!

DGu5z~u2ue!2Dnu~ ln u/ue21!2Dnue ,

z52Dse.0. ~15!

Here ue is the equilibrium temperature@DGu(ue)50# and
Dse is the jump in specific entropy at the equilibrium tem
perature. It is a good approximation over a modest range
temperatures to takeDn50 and A5A0(u2uc),A0.0,
where uc is the critical temperature at which stress-freeA
loses its thermodynamic stability. The resulting linear te
perature dependence ofDGu is in good agreement with ex
periments on shape memory alloys and some steels ov
wide range of temperatures. Letūc denote the critical tem-
perature at which stress-freeM loses its thermodynamic sta
bility. From Eqs.~14! we obtain

A→M : u<uc ,

M→A: u>ūcªuc1
6z~ue2uc!

6z2A0
, A0,6z. ~16!

The inequalityA0,6z follows from the obvious inequalities
ūc.ue.uc . It is often assumed that the equilibrium tem
perature is the average of the critical temperatures, but in
there are no experimental data to support this supposit
Nevertheless, in that case we haveA053z,

DGu5A0~u2ue!/3,

f 5A0@~u2uc!h
222~u12ue23uc!h

3/31~ue2uc!h
4#.

~17!
6-5
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VALERY I. LEVITAS AND DEAN L. PRESTON PHYSICAL REVIEW B66, 134206 ~2002!
We now obtain a parametric representation of stress-st
curves for transformations that can be treated as o
dimensional, i.e.,s:«t5s« t , where s and « t are scalar
measures of stress and transformation strain. Four impo
examples of one-dimensional transformations are

«t5
1

2
g t~mn1nm!, « t5g t , s5tªm•s•n; ~18!

«t5«nn, « t5«, s5n•s•n; ~19!

«t5
1

3
«0I , « t5«0 , s5

1

3
s:I ; ~20!

«t5«S e1e12
1

2
e2e22

1

2
e3e3D , « t5«,

s5e1•s•e12
1

2
e2•s•e22

1

2
e3•s•e3 . ~21!

Equation~18! describes simple shear in directionm in the
shear plane with normaln. The shear stress ist andg t is the
shear strain. Equation~19! describes simple tension~com-
pression! in the n direction. Equation~20! corresponds to a
pure volumetric transformation strain«0 with mean stress
~hydrostatic pressure! s. Equation~21! describes a cubic to
tetragonal transformation with elongation in thee1 direction
and compensating contractions along thee2 and e3 direc-
tions. In all four cases, Eq.~12! for h3 provides us with the
equilibrium stress-transformation strain curve

s5
2~A23DGu!h2A

« t@2~a23!h2a#
. ~22!

For 0,a,6, the denominator of Eq.~22! is nonzero for 0
<h<1. Since the parameterh maximizesG, for eachs and
u, the equilibrium curve Eq.~22! is unstable. This is re-
flected by a decrease ins with an increase inh. In the
approximation thatDn50, thes-h curve depends linearly
on temperature

s5
2@A0~u2uc!23z~u2ue!#h2A0~u2uc!

« t@2~a23!h2a#
. ~23!

The stress hysteresisHªs(h50)2s(h51) is given by

H5
6

« t

~A02za!u1zaue2A0uc

a~62a!
, ~24!

which is independent of temperature, as in SMA and ste
for A05za. Equations~22! @or ~23!# and ~8! constitute a
parametric representation of the unstable branch of the e
librium stress-strain curve. Stress-strain curves at sev
temperatures are shown in Fig. 5, where arrows indicate
strain jump at constant stress in a stress-controlled exp
ment. They agree qualitatively with the schematic stre
strain curves of Fig. 1. They exhibit the most important fe
tures of martensitic phase transitions in SMA, name
temperature independent stress hysteresis and transform
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strain and nonzero tangent moduli whereA andM lose sta-
bility. The experimentally observed diagonal AD in Fig. 1
described as well.

The parametersa and A do not affect thermodynamic
equilibrium conditions, instead they characterize energy b
riers. AfterDGu is determined from thermodynamic equilib
rium conditions, the parametersuc and A0 ~or ūc) can be
determined from theA↔M transition temperatures unde
stress-free conditions, and finally the parametera can be de-
termined from phase transformation condition~14! at various
temperatures. The dependence ofG̃ªG1s:l:s/2 on h is
presented in Fig. 6.

B. h-dependent thermal strain and elastic compliances
through fourth order

In order to account for nonzero thermal strain«u and
changes in the elastic compliances through fourth order d
ing the PT we define

G52s:l~h!:s/22@s:l3~h!:s#:s/3

2s:@s:l4~h!:s#:s/42s:«tw~h!

2s:«u~h!1 f ~u,h!, ~25!

lm~h!5l0
m1~l1

m2l0
m!wml~h!, ~26!

«u~h!5«u01~«u12«u0!wu~h!, «u05a0~u2u0!,

«u15a1~u2u0!, ~27!

wherel0
m andl1

m are themth order elastic compliances~rank
2m tensors! of A andM , lªl0

2, a0 anda1 are the thermal
expansion tensors ofA and M , and u0 is some reference
temperature, e.g.,ue . As the functionswml andwu have to
satisfy the same four conditions asw, one obtains

FIG. 5. Equilibrium stress-strain curves at various temperatu
~designated near curves! for l51024 MPa21, « t50.1, a53, uc

5290 K, ue5300 K, and A053 MPa/K. Unstable regions are
dashed.
6-6
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wml~h!5amlh21~422aml!h31~aml23!h4,

0,aml,6, ~28!

wu~h!5auh21~422au!h31~au23!h4, 0,au,6.
~29!

The difference between the Gibbs potentials of theA andM
is

G~s,u,0!2G~s,u,1!

5s:«t1s:~«u12«u0!1s:~l12l0!:s/2

1@s:~l1
32l0

3!:s#:s/3

1s:@s:~l1
42l0

4!:s#:s/42DGu. ~30!

The solutions of the thermodynamic equilibrium conditi
]G/]h50 are

h150, h251, h35
1

2
~A2s:h1!/~A23DGu2s:h2!,

h1ªa«t1au~«u12«u0!1al~l12l0!:s/2

1a3ls:~l1
32l0

3!:s/31a4l@s:~l1
42l0

4!:s#:s/4,

FIG. 6. G̃(h) for equal deviations of the critical temperatur
from the equilibrium temperature at various stresses~designated in
MPa near curves! for ~a! u5200 K and~b! u5250 K; « t50.1, a
53, uc5100 K, ue5200 K, A053 MPa/K.
13420
h2ª~a23!«t1~au23!~«u12«u0!

1~al23!~l12l0!:s/21~a3l23!s:~l1
32l0

3!:s/3

1~a4l23!@s:~l1
42l0

4!:s#:s/4. ~31!

The conditions for theA→M andM→A PT,]2G/]h2<0 at
h50 andh51, respectively, are generalizations of Eq.~14!

A→M : as:«t1aus:~«u12«u0!1
al

2
s:~l12l0!:s

1
a3l

3
s:@~l1

32l0
3!:s#:s

1
a4l

4
s:@s:~l1

42l0
4!:s#:s>A,

M→A: ~62a!s:«t1~62au!s:~«u12«u0!

1
62al

2
s:~l12l0!:s1

62a3l

3
s:@~l1

32l0
3!:s#:s

1
62a4l

4
s:@s:~l1

42l0
4!:s#:s<6DGu2A. ~32!

They are consistent with the conditions for the disappeara
of activation barriers:h35h1 andh35h2. For temperature-
induced PT (s50), Eqs.~16! remain valid.

The tensorsl0
m , l1

m , a0, and a1 are assumed to be
known. As before,DGu is determined from thermodynami
equilibrium conditions, and the parametersuc andA0 ~or ūc)
can be determined from theA↔M PT temperatures unde
stress-free conditions. If the stresses for forward and rev
phase transformations are determined experimentally at v
ous temperatures then the parametersa, aml , andau , which
control the energy barrier betweenA andM but not thermo-
dynamic equilibrium, can be obtained from Eq.~32!. If a,
al , and au are functions of temperature then they are n
uniquely determined by conditions~32!. One can model zero
tangential moduli at PT points, if necessary.

III. CONCLUDING REMARKS

In part I, a three-dimensional Landau theory for stre
and temperature-inducedA↔M PT has been developed. I
contrast to previous approaches, our theory allows for inc
sion of all temperature-dependent thermomechanical pro
ties of both phases and describes typical stress-strain cu
with constant transformation strain tensors~temperature and
stress independent!, constant or weakly temperature depe
dent stress hysteresis, and transformation at nonzero tan
moduli. The free energy polynomial is sufficiently simp
that spurious extrema do not appear.

Martensitic PT for which the leading transformation mo
is a transformation strain~the case considered in this pape!
are classified as proper PT according to Ref. 5. For pro
PT, the transformation strain is linearly dependent on
order parameter. For improper PT, in which the soft opti
displacement mode is a primary transformation mode
6-7
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transformation strain is a secondary effect, the transfor
tion strain is at least quadratic in the order parameters. S
a classification scheme is not satisfactory because, as
have shown, martensitic PT for which the leading mode
transformation strain have a 2-3-4 polynomial dependenc
transformation strain on the order parameter. Note that
order parameter is not a small parameter so a higher de
polynomial does not mean a weaker effect. Maybe the te
‘‘strong’’ martensitic PT for the PT with transformatio
strain as a leading mode in contrast to ‘‘weak’’ PT for t
case when transformation strain is a secondary effect wo
be more suitable.

We see no way to describe all of the desirable feature
strong martensitic PT using a polynomial in the total str
rather than a polynomial in order parameters related to
transformation strain. It would be quantitatively incorrect
determine barriers for theA↔M PT or the variant-varian
PT ~in part II! from experimental stress-strain curves f
single crystals. Stress-strain curves are strongly affected
various defect distributions, surface energy, and the pres
of a fine twinned microstructure. Actual stresses in tra
forming material may be very different from applied stress
due to internal stresses induced by a heterogeneous dist
tion of transformation strain. Atomistic calculations are t
best way to determine transformation barriers in our theo
Comparison with experimental stress-strain curves can
made after solution of the corresponding boundary-va
problem with some prescribed~or determined by correspond
ing evolution equations! defect distribution.

Our Landau theory captures the main features of ma
scopic stress-strain curves notwithstanding the effects of
microstructure. The transformation strain tensor~when twin-
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ning is not involved, in particular, for the pseudoelastic
gime! and nonzero tangent elastic moduli are independen
the above factors and are defined by deformation of the c
tal lattice. Stress hysteresis is strongly affected by defect
we cannot exclude the possibility that defects change its t
perature dependence. Dislocation structure does not ev
significantly during PT in the temperature range of intere
the PT itself is the dominant mechanism of plasticity. Th
we expect dislocations to change stress hysteresis by
proximately the same value at any temperature. But the m
point is that even if this is not the case, our theory is flexib
enough to employ any temperature dependence for the s
hysteresis.

Twinning can substantially increase the pseudopla
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