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High-temperature phonon thermal conductivity of nanostructures
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Phonon propagation in the disordered nanostructures at a high~about the Debye temperature or higher!
temperature is considered. Scattering at the grain boundaries is assumed to be the main mechanism restricting
the thermal conductivity. Influence of the structure~the grain size and its dispersion, the pore diameter and their
volume concentration, and the intergrain interface structure! as well as temperature on the thermal conductivity
is discussed.
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I. INTRODUCTION

The problem of short-wavelength phonon transport
granular materials becomes interesting due to its poss
application for production of new coatings with minim
thermal conductivity~TC!. Such coatings are used, e.g., f
the thermal protection of gas turbines. This provides
main possibility to increase the service temperature of th
turbines, because third generation of superalloys~which are
the basic materials now! are approaching the practical upp
limit of temperature.1 The substrate temperature can be d
creased by 100–300 K by using the thermal barrier coatin
allowing reduction in cooling air temperature and consequ
increase of the engine efficiency. On the other hand, the
of the thermal barrier coatings allows to fill the temperatu
capability gap between superalloys and ceramic ma
composites,1 the next generation materials with improve
temperature capability, which still require further develo
ment.

It is apparent that the large number of the intergr
boundaries reduces the phonon mean free path; wherea
short-wavelength phonon propagation is the most impor
mechanism of TC in dielectrics at high temperaturesT
*TD , whereTD is the Debye temperature!. Really, decrease
of TC in nanocrystals has been predicted theoretically2 and
observed in the experiments.2,3

Klemens and Gell2 used the lattice wave approach to co
sider different mechanisms that affect the phonon mean
path. They assumed the phonon-phonon interaction as
main mechanism that determined TC of the bulk mater
and showed that TC can be essentially reduced due to w
scattering at the grain boundaries and impurities in
granular materials. It is apparent that the large number of
intergrain boundaries impedes understanding of the pho
transport in terms of the lattice wave theory. Indeed, Ch
et al.4 showed the importance of the structure of the granu
0163-1829/2002/66~13!/134203~9!/$20.00 66 1342
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material on the phonon transport. They demonstrate that
model where the phonons are considered as particles so
times is more appropriate than the lattice wave model
seems also that the commonly accepted continuum appr
mation is not appropriate when the intergrain transport of
phonons that wavelength is comparable with the lattice c
stant is considered.

In this paper we consider the phonon transport in
granular material assuming scattering at the grain bounda
as the main mechanism that determined TC. This means
correction to TC due to the grain boundaries prevails infl
ence of the phonon-phonon scattering. Such a situation
been really observed in the experiments.5–7 This is especially
important for the applications where nanostructuring is u
to reduce TC considerably.

We start with the phonon states that initially are localiz
at an individual grain and then consider the hopping tra
port of such the local phonons. This allows us to apply
Green’s function technique, which is well developed for t
disordered materials, to consider the thermal conductiv
The expression obtained for TC makes it possible for us
estimate the influence of different factors: the grain size,
dispersion, porosity~the pores diameter as well as their vo
ume concentration!, structure of the intergrain boundary, an
temperature on the TC value.

The paper is organized as follows. In the Sec. II we stu
the simplest one-dimensional models; this is necessary
the justification of our assumptions. It is shown that t
short-wavelength phonons are really localized at the gra
whereas their hopping between neighboring grains can
considered as perturbation. Dependence of the hopping
rameter on the distance between the grains is estimated.
dependence is shown to be powerlike, but not exponentia
it happens for the electron hopping. This makes inappro
ate the percolation models commonly used to consider
electron transport.
©2002 The American Physical Society03-1
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In the Sec. III we propose the model of the hopping ph
non transport and use it to consider TC. In Sec. IV we stu
the dependence of TC of the granular materials on the m
grain size, the distance between the grains, as well as
mean square of deviation of these variables from their m
values.

The units where the Planck constant\ and the Boltzmann
constantkB are equal to unity are adopted. We include the
constants only in Eqs.~20! and ~22! to facilitate their usage
in calculations.

II. PHONONS AT A BOUNDARY:
TWO SIMPLEST MODELS

A. Impurity atom in a 1D chain

Let us consider a contact of two one-dimensional~1D!
chains of atoms of the same massm connected by springs o
equal elasticitya ~Fig. 1!. The numbers of atoms in th
chains areN1 and N2, respectively. Subscriptn indicates
each atom, so thatn50 for the boundary atom that distin
guishes from others only by its massM. Displacements of
atomsun obey the motion equations:

mün52a~2un2un112un21!, nÞ0,

Mü052a~2u02u12u21!, n50. ~1!

To find the solution of Eq.~1! we fix the ends of the
chainsu2N1

5uN2
50 and assumeun(t)5e2 ivtun

I ,II , where

v is the phonon frequency, andun
I ,II are displacements o

atoms at each~I or II ! chain, so that

un
I 5Uq

I eiqn1U2q
I e2 iqn, n,0,

un
II 5Uq

II eiqn1U2q
II e2 iqn, n.0. ~2!

Substitution of these equations into Eq.~1! yields

v52Aa

m
sin

q

2
. ~3!

Such a dependence of frequencyv on the wave vectorq is
typical for the acoustic phonons. For the Debye frequenc
our model we havevD52Aa/m. In addition, the substitu-
tion ~2! leads to the system of uniform equations forUq

I ,
U2q

I , Uq
II , and U2q

II . In order for this system to have
nontrivial solution, the following equation should be sat
fied:

v2~M2m!~12e2iqN1!~12e2iqN2!

12ia sinq@12e2iq(N11N2)#50. ~4!

FIG. 1. The one-atom contact of two 1D chains.
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Equations~3! and ~4! determine the phonon spectrum
the chains. There are two limits that are interesting to c
sider.

~a! The long-wavelength phonons. For these phononq
!p, therefore sinq;q andv2;q2. This allows to omit the
first term in Eq.~4!. Then we obtain

12e2iq(N11N2)50.

The same equation arises also if we assumeM5m. This is a
familiar condition for quantization of the standing wave
the box, whose width isN11N2. The first term in Eq.~4!, if
taken into account, leads to the scattering of this wave at
impurity n50.

~b! The short-wavelength phonons. For these phononq
.p. Then sinq;(p2q)!1, v2;4a/m5vD

2 , i.e., the sec-
ond term in Eq.~4! is small in comparison with the first one
Omitting the second term, we find

12e2iqN150 or 12e2iqN250.

This means that the short-wavelength phonons are local
either in the left or right chains. Influence of the second te
can be considered as hopping of these localized phon
between the chains. To determine the correction to the p
non energy, arising due to this hopping, we assumeq5p
2p, wherep5pn/N11dp anddpN1!1. Then

dp5
ap

v2N1~m2M !

and

dv52
1

4 S pn

N1
D 2 a

N1v2~m2M !
Aa

m
. ~5!

It is easy to understand the difference between the ca
~a! and ~b!. Indeed, the atoms in the case~a! move in the
same direction, and the distance between them chan
slowly. The effect of impurity atn50 could be essentia
only if its mass is comparable with the mass of all the ato
in that part of the chain whose size is about the wavelen
Otherwise, the small parameter of the order ofuM
2mu/(N11N2) arises.

On the contrary, the atoms in the case~b! move in the
opposite direction. Short-wavelength phonons in this c
represent oscillation of the two-atom ‘‘molecule’’ propagat
along the chain due to resonance between all such molec
Frequency of this oscillation depends on masses of the
oms. This makes the molecule at the boundary to be ou
the resonance, and so impedes the short-wavelength pho
to cross the boundary.

B. Many-atomic interface between two 1D chains

Consider now an interface of 2N0 atoms presented in Fig
2. We supposeN0@1; the mass of the chains atoms ism, and
that of the interface atoms isM.
3-2
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The motion equations are

mün52a~2un2un112un21!, unu.N0 ,

Mü052a~2un2un112un21!, unu<N0 . ~6!

We assumeun(t)5e2 ivtun
I ,II , int , whereun

I ,II , int are the dis-
placements of atoms at each~I or II ! chain and the interface
~int!:

un
I 5Uq

I eiqn1U2q
I e2 iqn, n,2N0 ,

un
int5UQeiQn1U2Qe2 iQn, unu<N0 ,

un
II 5Uq

II eiqn1U2q
II e2 iqn, n.N0 . ~7!

The relation between the frequencyv and the wave vec-
torsq andQ that follows after substitution of these equatio
into Eq. ~6! is

v25
2a

m
~12cosq!5

2a

M
~12cosQ!. ~8!

The wave vector of the phonons in the chainsq should be
real, however, the wave vector of the phonons in the in
face Q can be either real or complex. The latter is possi
for the phonons whose energies prevail the Debye energ
the interfaceVD , if VD.vD ~Fig. 3!. Complex value ofQ
means attenuation of the phonon in the interface region. T
impedes the phonon transport. We shall consider only
phonons withq<qmax, whose energies are less thanVD .

Assuming the interface to be thin@1!N0!(2upu)21,
wherep5p2q!1], we can extend the amplitudesun

I ,II into
the interface regionunu<N0 and write the boundary condi
tion for them and their derivatives]nun

I ,II (0)5]un
I ,II /]n

52 ip(Uq
I ,II 2U2q

I ,II ) at the interfacen50.

S un
II ~0!

]nun
II ~0!

D 5T̂S un
I ~0!

]nun
I ~0!

D , ~9!

where T̂5i t i j i is the 232 matrix of the real values. Afte
some algebra~see the Appendix!, we obtain, for its matrix
elements in our model

t115t225
2 cosQ/2

sinQ
$~11N0!sin~114N0!Q/2

1N0sin~314N0!Q/2%,

t1252
1

sinQ
$~11N0!2sin 2N0Q1N0

2sin 2Q~11N0!

12N0~11N0!sinQ~112N0!%,

FIG. 2. The 2N0-atom contact of two 1D chains.
13420
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2 cosQ/2

sinQ
$sin~114N0!Q/21sin~314N0!Q/2%.

Boundary conditions, Eq.~9!, together with the conditions
at the ends of the chainsu2N1

5uN2
50 lead to the system o

four uniform equations forUq
I , U2q

I , Uq
II , andU2q

II . This
system has nontrivial solutions only if

~12e2ipN2!~12e2ipN1!22ip
t11

t21
@12e2ip(N11N2)#50,

~10!

where

2
t11

t21
5N01

sin@~114N0!Q/2#

sin@~114N0!Q/2#1sin@~314N0!Q/2#
.

Correction to the phonon energy due to the interchain h
ping @similar to that of Eq.~5!# is

dv5
1

8 S pn

N1
D 2 t11

N1t21
vD . ~11!

FIG. 3. Dependences of frequency on the wave vector for
phonons in the chains~solid line! and the interface~dashed line!.
3-3
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III. PHONON TRANSPORT IN THE GRANULAR
MATERIAL: TRANSFER HAMILTONIAN APPROACH

Analysis of the simple models shows that a boundary
pedes short-wavelength phonon transport across it. T
makes difficult to consider the phonon transport as a w
propagation, if the number of boundaries is large. This is
case of the granular materials. To avoid this difficulty, w
start with phonons or oscillating modes initially localized
each individual grain. The number of these modes is equa
3Ni , whereNi is the number of atoms in thei th grain. Fre-
quencies of these modes are individual to each grain too.
assume, however, that the grains are large, so that the
quencies are distributed homogeneously over the inte
@0,vD#. Transport of these modes occurs due to their h
ping between the neighboring grains; this can be conside
as a perturbation. We write the transfer Hamiltonian as
lows:

H5(
i ,k

v ikS aik
1aik1

1

2D1 (
i ,k, j ,p

~ t i jkpaik
1ajp1H.c.!,

~12!

where the Bose operatorsaik
1 (aik) create~annihilate! the k

[ki th localized phonon mode at thei th grain. The first term
in Eq. ~12! corresponds to the phonon energies of the in
vidual modes and the second one to the hopping betw
them.

To estimate the value of the hopping integralt i jkp , let as
return to the simple models of two chains considered in
Sec. II. Then the Hamiltonian~12! can be rewritten as

H5(
k

vkS ak
1ak1

1

2D1(
p

vpS bp
1bp1

1

2D
1(

k,p
~ tkpak

1bp1H.c.!,

where the Bose operatorsak and bp correspond to the
phonons at the chains I and II,k andp are the wave vectors
of these phonons, measured from the band edge, i.e.vk
5vDcosk/2 andvp5vDcosp/2. The Schro¨dinger equation
HC5EC following from this Hamiltonian leads to the
equation for the energy spectrumE,

11(
k,p

tkp
2

~vk2E!~vp2E!
50. ~13!

For tkp50, the energy spectrum is determines by the
ros of the denominator, Eq.~13!, i.e.,E5vk andE5vp . For
small tkp we write E5v1d v, wherev is one of the zeros
of the denominator, Eq.~13!, anddv is the correction. This
correction is equal to Eq.~5!, if

tkp
2 5

aS 12cos
p

2D S 12cos
k

2D
N1N2~m2M !

5
a~vD2vk!~vD2vp!

N1N2~m2M !vD
2

,

or Eq. ~11!, if
13420
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tkp
2 52

t11

t21

vD
2

N1N2
S 12cos

p

2D S 12cos
k

2D
52

t11

t21

~vD2vk!~vD2vp!

N1N2
.

We shall use this estimation further.
Using the Hamiltonian~12!, it is possible to determine the

total phonon current to thei th grain from all neighboring
grains.

Qi5 i (
j ,k,p

v ik^~ t i jkpaik
1ajp2H.c.!&.

Here the bracketŝ& denote the thermodynamic average.
the second order of the perturbation theory with respec
t i jkp , this value is equal to

Qi5 (
j ,k,p

v ikut i jkpu2~ni2nj !d~v ik2v jp!, ~14!

whereTi is the temperature of thei th grain, the Bose func-
tion ni5@ev ik /Ti21#21 is the number of phonons with th
energyv ik at the i th grain. In particular,ni5Ti /v ik under
the high temperaturesTi@v ik , so that

Qi5 (
j ,k,p

ut i jkpu2~Ti2Tj !d~v ik2v jp!,

and TC becomes temperature independent.
The d function in Eq. ~14! means conservation of th

phonon energy under hopping. There are two limits that
interesting to consider. First, the mean spacing between
phonon levelsv ik significantly exceeds the hopping integr
ut i jkpu. This is possible for the small grains or the phono
whose energies are close to the band edgevD . Such
phonons are localized and do not participate in the ther
transport. Indeed, the phonon with certain energy\vp can-
not move to the neighboring grain, if the level with the sam
energy is absent there. This is the Anderson localization
the phonons, which also restricts TC. Let us consider
contact of two one-dimensional chains studied in Sec. II.
the first approximation the phonon states of the chains
localized, and ifN1ÞN2, their energies are different. Cor
rections to these energies due to the hopping are determ
by Eq. ~5!,

dv;2
p2tvD

4N1,2
,

where

t5
a

~M2m!vD
2

5
m

4~M2m!
.

The wave vectorp is measured from the band edge; it
small for the Debye phonons withvp'vD . Spacing be-
tween the levels of the different chains is of the order of
3-4
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Dv;
vD

2
cos

q

2
Dq,

i.e.,

U dv

DvU; p2t

2p cos
q

2

;
pt

2p
.

This means that fort;1, dv!Dv, and all the phonon
states are localized.

This is, however, characteristic of the 1D chain. For t
3D case we have

dv;2
p2tvD

4Nz
,

meanwhile

Dv;
vD

Nj
,

i.e.,

U dv

DvU; pt

2p
NxNy5

ptS̄

2pa2
.

The phonons are localized if this value is less than 4/xc ,
where xc'0.35 is a percolation threshold for the 3D si
problem~see Ref. 8 for the details!. Thus, only the phonons
with p.pc , wherepc'8pa2/(tS̄xc) is the mobility thresh-
old, are delocalized and participate in the heat transport
estimate correction to the TC, we have to replacevD
→vDcos(pc/2).

The value ofpc is small if S̄5d2; however, it increases
for the smaller values ofS̄. This could be a result of porosity
Indeed, for the point contact of the two spheres~the porosity
is about 12p/6'1/2), NxNy51, and we return back to th
1D case where all phonon states are localized.

Consider now the second limit. Suppose the mean spa
between the phonon levelsv ik is considerably less than th
hopping integralut i jkpu. This is characteristic of large grain
and the phonons that energies are far off the mobility ed
Assuming the phonon energies to be continuously distribu
on the interval@0,vD#, we change the summation over th
states of thej th grain in Eq.~14!, with thed function for its
multiplication by the 1D density of the states 3Njz /(2vD)
@Njz5d/a is the number of atoms of thej th grain in one~z!
direction#. Indeed, each oscillating mode of thei th grain con-
nects with each mode of thej th grain via the hopping inte
gral t i jkp . However, this connection occurs at the bound
where each atom of thei th grain connects only with one
atom of the j th grain. For this clear reason,Njz
5Nj /(NjxNjy), but not Nj itself arises in the density o
states. This becomes more apparent if we consider the p
interface, wheret i jkp}d(ki2pi) (ki and pi are the parallel
to the grain boundary components of the wave vectors!. This
means that density of the phonon states with regards to
vector is one dimensional. Replacing also the summing o
13420
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the states of thei th grain for the integration with the 3D
density of states 3vk

2Nj /vD
3 and assumingTi'Tj , from Eq.

~14!, we find

Qi5
9

2 S 2
t11

t21
D ~Ti2Tj !

NjNiz

vD
4 NizNjz

3E
0

vD
S vk

T D 2

evk /T

~evk /T21!2
~vD2vk!

2vk
2 dvk

or

Qi5S 2
t11

t21
DvDb~T!

Si j ~Ti2Tj !

a2
, ~15!

where

b~T!5
9

2
u5E

0

1/u x4ex

~ex21!2 S x2
1

u D 2

dx

and

u5
T

TD
.

Here Si j is the area of the contact between thei th and j th
grains, so that (2t11/t21)Si j is a random function ofi and j.

To determine the thermal conductivity, we have to add
values ofQi over the grains in the unit layer. It is natural t
interpret Qi as an electrical current to the sitei from its
neighborsj, and the temperaturesTi andTj as the potentials
of these sites. In other words, we have to estimate the c
ductivity of the net of the random resistances whose val
are @bvD(2t11/t21)Si j /a2#)21. It is important that these
random values do not have an exponential, but a power
dispersion.

IV. CONDUCTIVITY OF THE 3D CUBIC LATTICE
OF THE RANDOM RESISTORS

We find the conductivity of the net presented in Fig. 4
Let Vi jk be the potential of the site, the coordinates

which arei, j, k (V0 jk50,VN jk5V), andr i 11/2jk is resistance
of the cube edge between the sitesi, j, k and i 11,j ,k. The
first Kirchhoff’s law being written for thei th site is

FIG. 4. The net of random resistors. For simplicity, only its 2
projection is presented.
3-5
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Vi 11 jk2Vi jk

r i 11/2jk
2

Vi jk2Vi 21 jk

r i 21/2jk
1

Vi j 11k2Vi jk

r i j 21/2k
2

Vi jk2Vi j 21k

r i j 21/2 k

1
Vi jk 112Vi jk

r i jk 11/2
2

Vi jk2Vi jk 21

r i j k 21/2
50. ~16!

The current across the net is

I 5(
j ,k

Vi 11 jk2Vi jk

r i 11/2jk
. ~17!

Equation~16! can be solved numerically for any distribu
tion of the resistancer i 11/2jk . This can also be done analyt
cally if we assume the small deviation of these values
the large number of neighboring sites.

Really, the solution of Eq.~16! for equal resistors (r i jk
5r 0) is Vi jk5 iV/N, whereN is the number of resistors in
the direction of the bias application (z). Then I
5NxNyV/Nr0, whereNx andNy are the number of resistor
on the contact plane.

Let

1

r i 11/2jk
5

1

r 0
~11j i 11/2jk!, Vi jk5

V

N
~ i 1h i jk !,

wherej i 11/2jk and h i jk are random variables with the zer
mean. Suppose independence of the fluctuations ofj at the
different sites, and the mean square of these fluctuation
the same site to be s2, i.e., j i 11/2jkj i 811/2j 8k8
5s2d i i 8d j j 8dkk8 . Then the current across the net is

I 5
NxNyV

Nr0
1dI ,

dI 5
V

Nr0
(
j ,k

~h i 11 jk2h i jk !j i 11/2jk

5
V

Nr0
(
j ,k

h i jk~j i 21/2jk2j i 11/2jk!. ~18!

We assume homogeneity of the fluctuations, i.e., their in
pendence of the particular site. This means that all avera
under sums in Eq.~18! are invariant under the shift of a
indices on the same vector, i.e.,i→ i 1a, j→ j 1b, and k
→k1c.

To evaluate the averages for the current expression~18!, it
is necessary to rewrite Eqs.~16! in terms ofj and h, then
multiply them by the correspondentj and average. This rou
tine leads to the infinite system of the linked equations
the averageshj that connect the fluctuations of the condu
tancesj and the potentialsh at the different sites of the ne
To unlink the equations, we assume the number of neighb
for each site in the netn to be large. Then it is possible t
consider only the averages connected to the nearest n
bors. Assuming also the fluctuations to be small (uju!1,uh
u!1), we write

h i 11 jk j i 11/2 jk2nh i jk j i 11/2 jk14g1s250,
13420
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h i 21 jk j i 21/2 jk2nh i jk j i 21/2 jk14d2s250,

whereg;h i j 11 kj i 11/2jk andd;h i j 21 kj i 21/2jk are the av-
erages connected the next neighboring sites. Omitting th
we obtain

h i 11 jk j i 11/2 jk52
s2

11n
, h i 21 jk j i 21/2 jk5

s2

11n
,

so that

dI 52
2V NxNy

Nr0

s2

11n
,

and

r 5r 0S 11
2s2

11nD . ~19!

It can be shown thatugu;udu;s2/@n(11n)#; they are
smaller thann@1.

The value of mean conductivity isr 0
215bvDtS̄/a2,

where S̄ is the mean area of the intergrain boundary ant
5^ut11/t21u& depends only on the boundary structure. Th
we can write TC as follows:

kph5
1

kB a2d
b~T!tS̄vDF~s!. ~20!

Here F(s) is the factor relevant to the disorder. Equatio
~20! yields for it

F5S 11
2s2

n D 21

. ~21!

We solved numerically the system~16! for the cube with
10031003100 sites by iterative Lanczos~or conjugate gra-
dient! algorithm outlined in Ref. 9. Accuracy of the solutio
has been estimated by overall current deviation that equa
sum of the absolute values of current imbalance in each
The resulting deviation in our calculations typically wa
about 10213 of the value of total current. This value chara
terizes very high accuracy of solution as well as accuracy
determining total current through cube. However, due to
finite size of the cube, there is dispersion of the current
the different realization of the random valuesr i jk

21 . Figure 5
presents the average value of factorF obtained from numeri-
cal solution of Eq.~16! for different random realizations o
r i jk

21 together with the factorF following from Eq.~21!. Con-
ductivities r i jk

21 were assumed to be distributed homog
neously on the interval@12d/2, 11d/2# ~in calculations
they were produced by noise number generator!, this yields
s25d2/12.

Analysis of dispersion of theF factor for the maximal
fluctuations of conductivity, i.e. ford52, yields the follow-
ing average values ofF and its standard deviation: 0.874
60.0003. The calculations performed for the 30330330
and 50350350 cube dimensions yield the following resul
for F: 0.872360.0011 and 0.874360.0021, respectively.
This statistics was derived from results for the six rand
3-6
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realizations of the conductivities. Standard deviation gen
ally decreases with increasing cube size, whereas the cu
value changes slightly. This gives assurance that the re
for 10031003100 cube reproduce the thermodynamic lim
for the current with the accuracy being equal to the stand
deviation ofF for various random realizations ofr i jk

21 ~for
d52 it is equal to 0.0003). Obviously, the relative value
the standard deviation should decrease with decreasind.
All the above, together with Fig. 5, make apparent that
~21! can be used for the qualitative estimations even for
large fluctuation of the conductivities. It seems that this
always the case ifn@1; this makes the influence of the gra
size fluctuations not so essential.

V. DISCUSSION

In this paper we propose the model to describe the h
temperature thermal conductivity of the nonmetalic na
structures. We show that the short-wavelength phono
which are of main importance for the high-temperature th
mal conductivity, are strongly localized at the grains. Su
phonon confinement has been investigated numerically
the superlattices;10 the considerable decrease of TC due
change of the phonon spectrum caused by the boundarie
been found. The jump of the temperature at the grain bou
ary caused by the phonon confinement can be considere
a possible mechanism of the Kapitza resistance,11 this allows
one to use numerical methods12–14 to estimate TC of the
structure. Nevetheless, the analytical expression~20! we ob-

FIG. 5. Factor of disorder. The bold line corresponds to E
~21!, dots represent average value ofF ~over six random realiza-
tions of the conductivities! obtained from numerical solution of Eq
~16!.
13420
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tained allows us to estimate qualitatively the influence
different factors on the TC of nanostructures.

The value of TC is determined as a function of two p
rameterst ands. First of them corresponds to the transpa
ency of the intergrain boundary for the short-waveleng
phonons. The second one corresponds to the disorder th
due to deviation of the grain sizes, the area of the intergr
boundary, and its width. Both the parameters depend
many factors and should be considered as phenomenolog
Nevertheless, it would be interesting to estimate the in
ence of different factors on their values.

For thet parameter at a one-atom 1D interface, we obt
t}(M2m)21, so that it becomes large ifM'm. This
should be the case if velocities of the sound and the De
frequencies of the grain material and the interface are clo
In particular, for the interface of the crystalline and amo
phous Al2O3, this value isS/uScrystalline2Samorphousu'21.2.
To reduce it, some impurities that change the interface d
sity or elasticity should be introduced.

To estimate the influence of the interface width, we c
use Eq.~10!. If the Debye frequencies of the grain materi
and the interface are close, thenQ→p. If also (p2Q)N0
!1, thent becomes close to its value for the one-atom
terface. Otherwise, we have an oscillating dependence oft on
the interface width. In the 3D case, this means an increas
the s value, which leads to a decrease of the TC.

The grain-size dependence of TC is not simple. Two v
ues: the grain sized and the mean area of the interfaceS̄

affect it, and the relationS̄}d2 is not always satisfied. Equa
tion ~20! determines TC of the large grains. For the smal
grains the localization of the short-wavelength phonons
comes appreciable. To take this into account, we have
substitute vD→vDcospc/2 in this expression. Herepc

'8pa2/(tS̄xc) is the mobility threshold,xc'0.35 or xc
'0.6 for the three- or two-dimensional structure
respectively.8 The value ofpc becomes comparable withp/2
~all the short-wavelength phonons are localized! when S̄
'16a2/(txc). For t;1, this means that the size of the inte
face region is comparable with six lattice constants. This
possible even for the large (d@6a) grains due to porosity.
This may be the possible explanation of the experiments
Ref. 7, where a sharp jump of TC atd510 nm in yttria-
stabilized zirconia (a'0.5 nm) nanostructured thin films ha
been observed. TC of the nanostructure of smaller grain
due to the large-wavelength phonons (lph@d) that are not
localized. The number of such phonons isNph;d23; thus, it
is possible to expect an increasek;d22 of TC for the very
small grain-size structures.

The temperature dependence of TC is determined by
b factor ~Fig. 6!. It is independent of the grain size. At sma
temperatures (T&TD), it increases due to increase of th
number of the phonons responsible for the heat transpor
high temperatures (T@TD) it is constant. Such a behavior o
TC follows also from the commonly used expressionk
51/3CVVd, where the heat capacityCV is a well-known
function of temperature andV is the velocity of sound. It
should be noted, however, that the high-temperature valu
TC we obtain is about of one order less than what

.

3-7
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commonly used expression yields; i.e., mean free pathl ph is
less than the grain size. This is due to the confinement of
high-energy phonons at the grains.

The decrease of TC, which is observed in some exp
ments, is due to the phonon-phonon interaction that has
been taken into account. To consider it in the framework
our model, let us assume that some resistors are series
nected tor i jk ~Fig. 4!. Such an assumption valids if the ph
non scattering at the grain boundaries and due to the pho
phonon interaction can be considered independently, so
1/l 51/l B11/l ph . This concerns also any other bulk mech
nism of the phonon scattering. The value of this resistanc
r i5(k id)21, where k i is the bulk part of TC. For the
phonon-phonon interaction it can be estimated ask i
51/3CVVlph , where l ph5(20Tma)/(g2T) is the phonon
mean free path,Tm is the melting point, andg is the Grun-
eisen constant. ThenR5r i1r i jk , r i jk'a2/@b(T)vDtd2#,
and for the effective value of TC,k51/(Rd), we obtain

k5kBTE
0

1/u k iB~x!tS̄F

\kB
21 k ia

2d1kBTDB~x!tS̄F
dx,

where

B~x!5
9

2
u4

x4ex

~ex21!2 S x2
1

u D 2

, u5
T

TD
. ~22!

This expression can be simplified if we substitutex by its
average valuex̄,

k5
k ib t̃ S̄vDF

kB
21k ia

2d1b t̃ S̄vDF
,

however, in this case the trial parametert̃ 5B( x̄)t/b be-
comes dependent on the temperature.

It is apparent that the total TC is determined by t
minima value ofkph and k i . Temperature dependences
both the values for the different grain sizes are presente

FIG. 6. Temperature factor.
13420
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Fig. 7. For a large grain-size nanostructure~curve 1! k i
!kph, i.e., k'k i . Decreasing of the grain size results
some temperature interval wherek i.kph ~curve 2!, i.e., k
'kph and the nanostructuring is important. This temperat
interval increases for a smaller grain size~curve 3!.

It should be noted that temperature dependence of
allows one to estimate what mechanism prevails in a cer
experiment: phonon-phonon interaction or scattering at
grain boundaries. For the first case TC decreases ak
}1/T, whereas for the latter one,k increases or become
constant. Such a behavior of TC has been also obtaine
Ref. 2.

It seems possible that change of the phonon spectrum
to confinement could change also the phonon-phonon pa
the TC, like it occurs in the superlattices.10 This is the subject
of futher investigations.
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APPENDIX

To obtain the boundary conditions~9! that connect the
amplitudesun

I ,II at the interface, we have to relate the valu
Uq

I , U2q
I , Uq

II , U2q
II , UQ , andU2Q . To do this, the motion

equations~6! should be written for the bordered atomsn
56(N011) andn56N0. In particular, for the atom atn
52N021, we have

mv2u2N021
I

5a~2u2N021
I 2u2N0

int 2u2N022
I 2u2N0

I 1u2N0

I !. ~A1!

FIG. 7. Temperature dependence of the bulkk i and a boundary
kph parts of TC for the different grain-size nanostructures (d1

.d2.d3).
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Here u2N0

I is the solution of the first equation of Eq.~6!

expanded into the siten52N0. Note that the amplitude
u2N0

I obeys the first equation of Eq.~6!, whereasu2N0

int the

second one. Then Eq.~A1! reduces to

u2N0

I 5u2N0
,

u2N0215u2N021
I ,

uN0

II 5uN0
,

uN011
II 5uN011 .

The last three equations received from the motion equa
for the atomsn56N0 andn5N011 in the same manner.

After substitution ofun
I IIint from Eq. ~7! and elimination

of U6Q , we find
y

n,

c

13420
n

2cosQN0@Uq
I eip(N011)1U2q

I e2 ip(N011)

1Uq
II e2 ip(N011)1U2q

II eip(N011)#

5cosQ~N011!@Uq
I eipN01U2q

I e2 ipN0

1Uq
II e2 ipN01U2q

II eipN0#,

2sinQN0@2Uq
I eip(N011)2U2q

I e2 ip(N011)

1Uq
II e2 ip(N011)1U2q

II eip(N011)#

5sinQ~N011!@2Uq
I eipN02U2q

I e2 ipN0

1Uq
II e2 ipN01U2q

II eipN0#.

Here p5p2q!1. This allows us to expand the exponen
and rewrite the last equation as the boundary conditions~9!
for un

I ,II (0)5Uq
I ,II 1U2q

I ,II and ]nun
I ,II (0)52 ip(Uq

I ,II

2U2q
I ,II ), which are the displacements and their derivatives

n50. It can be shown that deti t iki51. In particular, forQ
5p ~this happens whenvD5VD in Fig. 3!, we havet11
5t2251 andt125t2150.
do,
,
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