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High-temperature phonon thermal conductivity of nanostructures
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Phonon propagation in the disordered nanostructures at a(algiut the Debye temperature or higher
temperature is considered. Scattering at the grain boundaries is assumed to be the main mechanism restricting
the thermal conductivity. Influence of the structdifee grain size and its dispersion, the pore diameter and their
volume concentration, and the intergrain interface strut@seavell as temperature on the thermal conductivity

is discussed.
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[. INTRODUCTION material on the phonon transport. They demonstrate that the

model where the phonons are considered as particles some-

The problem of short-wavelength phonon transport intimes is more appropriate than the lattice wave model. It
granular materials becomes interesting due to its possibleeems also that the commonly accepted continuum approxi-
application for production of new coatings with minimal mation is not appropriate when the intergrain transport of the
thermal conductivity(TC). Such coatings are used, e.g., for phonons that wavelength is comparable with the lattice con-
the thermal protection of gas turbines. This provides thestant is considered.
main possibility to increase the service temperature of these In this paper we consider the phonon transport in the
turbines, because third generation of superalloyisich are  granular material assuming scattering at the grain boundaries
the basic materials novare approaching the practical upper as the main mechanism that determined TC. This means that
limit of temperaturé. The substrate temperature can be de-correction to TC due to the grain boundaries prevails influ-
creased by 100-300 K by using the thermal barrier coatingssnce of the phonon-phonon scattering. Such a situation has
allowing reduction in cooling air temperature and consequenbeen really observed in the experimettThis is especially
increase of the engine efficiency. On the other hand, the usenportant for the applications where nanostructuring is used
of the thermal barrier coatings allows to fill the temperatureto reduce TC considerably.
capability gap between superalloys and ceramic matrix We start with the phonon states that initially are localized
composites, the next generation materials with improved at an individual grain and then consider the hopping trans-
temperature capability, which still require further develop-port of such the local phonons. This allows us to apply the
ment. Green’s function technique, which is well developed for the

It is apparent that the large number of the intergraindisordered materials, to consider the thermal conductivity.
boundaries reduces the phonon mean free path; whereas, thke expression obtained for TC makes it possible for us to
short-wavelength phonon propagation is the most importangstimate the influence of different factors: the grain size, its
mechanism of TC in dielectrics at high temperaturds ( dispersion, porositythe pores diameter as well as their vol-
=Ty, whereTp is the Debye temperatureReally, decrease ume concentration structure of the intergrain boundary, and
of TC in nanocrystals has been predicted theoretitalyd temperature on the TC value.
observed in the experimerfts. The paper is organized as follows. In the Sec. Il we study

Klemens and Gellused the lattice wave approach to con-the simplest one-dimensional models; this is necessary for
sider different mechanisms that affect the phonon mean frethe justification of our assumptions. It is shown that the
path. They assumed the phonon-phonon interaction as thghort-wavelength phonons are really localized at the grains,
main mechanism that determined TC of the bulk materialsvhereas their hopping between neighboring grains can be
and showed that TC can be essentially reduced due to waw®nsidered as perturbation. Dependence of the hopping pa-
scattering at the grain boundaries and impurities in theameter on the distance between the grains is estimated. This
granular materials. It is apparent that the large number of thdependence is shown to be powerlike, but not exponential as
intergrain boundaries impedes understanding of the phonoit happens for the electron hopping. This makes inappropri-
transport in terms of the lattice wave theory. Indeed, Cherate the percolation models commonly used to consider the
et al* showed the importance of the structure of the granulaelectron transport.
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1 m M 11 Equations(3) and (4) determine the phonon spectrum of
e o o o O e o o o th((ja chains. There are two limits that are interesting to con-
sider.
-N; -2 -1 o0 1 2 N, (@ The long-wavelength phonons. For these phongns

<r, therefore sim~q and w?~q?. This allows to omit the

FIG. 1. The one-atom contact of two 1D chains. first term in Eq.(4). Then we obtain

In the Sec. Il we propose the model of the hopping pho-
non transport and use it to consider TC. In Sec. IV we study
the dependence of TC of the granular materials on the meap,
grain size, the distance between the grains, as well as tr}g
mean square of deviation of these variables from their meaj),

values. : . .
. taken into account, leads to the scattering of this wave at the
The units where the Planck constd@nand the Boltzmann impurity n=0 g

constanikg are equal to unity are adopted. We include these (b) The short-wavelen
) " : - gth phonons. For these phorpns
constants only in Eq420) and (22) to facilitate their usage ~ . Then sing~(m—q)<1, w2~4a/m=w2D, ie.. the sec-

in calculations. ond term in Eq(4) is small in comparison with the first one.
Omitting the second term, we find

1—e2id(N1+tN2) — .

e same equation arises also if we assliirem. This is a
miliar condition for quantization of the standing wave in
e box, whose width idl; + N,. The first term in Eq(4), if

Il. PHONONS AT A BOUNDARY:
TWO SIMPLEST MODELS 1—daNi—Q or 1 e2aN2— ()

A. Impurity atom in a 1D chain . .
This means that the short-wavelength phonons are localized

Let us consider a contact of two one-dimensio(®D) eijther in the left or right chains. Influence of the second term
chains of atoms of the same masonnected by springs of can be considered as hopping of these localized phonons
equal elasticitya (Fig. 1). The numbers of atoms in the petween the chains. To determine the correction to the pho-

chains areN; and N, respectively. Subscript indicates  non energy, arising due to this hopping, we assugrer
each atom, so that=0 for the boundary atom that distin- —p wherep=n/N;+ 8p and SpN;<1. Then

guishes from others only by its mabé Displacements of
atomsu, obey the motion equations:

ap
- op= T
mu,=—a(2u,—U,.1—Uy_1), N#0, w“Ni(m—=M)
. and
MUOZ_(I(ZUO_Ul_U_l), n=0. (1)
To find the solution of Eq(1l) we fix the ends of the _ 1(77” 2 a \/E
. _ _ _ =it 5(.0—_— N YN - (5)
chainsu_y, =uy,=0 and assume,(t)=e '“"u;" , where 4\N1/ Nywi(m—M) ¥Ym
 is the phonon frequency, and." are displacements of
atoms at eackl or Il) chain, so that It is easy to understand the difference between the cases
A . (@) and (b). Indeed, the atoms in the cas® move in the
u,=Uge 9"+ Ul e 1", n<o, same direction, and the distance between them changes
slowly. The effect of impurity an=0 could be essential
UL' = U'qleiqn+ U'_'qe‘iq”, n>o0. 2) only if its mass is comparable with the mass of all the atoms
in that part of the chain whose size is about the wavelength.
Substitution of these equations into K@) yields Otherwise, the small parameter of the order [
—m|/(N;+N,) arises.
\/E . q On the contrary, the atoms in the cad® move in the
w=2/siny. (3 opposite direction. Short-wavelength phonons in this case

represent oscillation of the two-atom “molecule” propagated
Such a dependence of frequensyon the wave vectoq is  along the chain due to resonance between all such molecules.
typical for the acoustic phonons. For the Debye frequency irFrequency of this oscillation depends on masses of the at-
our model we havesp=2a/m. In addition, the substitu- oms. This makes the molecule at the boundary to be out of

tion (2) leads to the system of uniform equations tdh, the resonance, and so impedes the short-wavelength phonons
Ul,, Uy, andU",. In order for this system to have a to cross the boundary.
nontrivial solution, the following equation should be satis-
fied: B. Many-atomic interface between two 1D chains
w2(M—m)(1—e?aN1)(1—g?iaNz) Consider now an interface of\g atoms.presented_ in Fig.
2. We supposel>1; the mass of the chains atomsrsand
+2iasing[1—e?9MN1tN2)]=, (4)  that of the interface atoms M.
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FIG. 2. The Nj-atom contact of two 1D chains.

The motion equations are

Mu,= — a@(2Up—Up 11— Up—1), |n|>NO!
Mug=—a(2U,=Unp1—Up-1), |n|$NO' (6)
We assumai,(t)=e 'yl 1"t “whereu!:!" " are the dis-

placements of atoms at ea@hor Il) chain and the interface
(int):

up=Ug€"+U' e 19 n<—N,
UM=Uq€e"+U_oe 9" |n|<Nj,
up =Uge"+U" 7" n>N,. @)

The relation between the frequeneyand the wave vec-
torsq andQ that follows after substitution of these equations
into Eq. (6) is

2_2a 1 _2a 1 g
w=——(1=cosq)= - (1-cosQ). (8

The wave vector of the phonons in the chairshould be
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real, however, the wave vector of the phonons in the inter-
face Q can be either real or complex. The latter is possible FIG. 3. Dependences of frequency on the wave vector for the
for the phonons whose energies prevail the Debye energy @honons in the chaingolid line) and the interfacédashed ling

the interfaceQ)p, if Qp>wp (Fig. 3). Complex value oQ

means attenuation of the phonon in the interface region. This

impedes the phonon transport. We shall consider only th
phonons withq=q,,.x, Whose energies are less th@p .
Assuming the interface to be thifl<Ny<(2|p|) %,
wherep=7—q<1], we can extend the amplituda§'" into
the interface regiofn|<N, and write the boundary condi-

tion for them and their derivativeg,u;" (0)=4u;'"/on
=—ip(Uy" - U"}) at the interfacen=0.
up(0) | [ up(0)
I =T | ; )
dnUn (0) Inun(0)

where'i’=||tij|| is the 2<x2 matrix of the real values. After
some algebrdsee the Appendijx we obtain, for its matrix
elements in our model

B 2 cosQ/2
t22= sinQ

+Ngsin(3+4No)Q/2},

1
tyo=— m{(ﬂ No)?2sin 2NoQ+ N3sin 2Q(1+ No)

+2Ng(1+Ng)sinQ(1+2Ng)},

2 cosQ/2 .

e ty=— W{sm(1+4r\|o)Q/2+ sSin(3+4Ng)Q/2}.
Boundary conditions, Ed9), together with the conditions

at the ends of the chaim&,\,l= un,=0 lead to the system of

four uniform equations fotJy, U, Uy, andU" . This

system has nontrivial solutions only if

) ) t :
(1_ eZIpNz)(l_ eZIle) _ 2|p t_l-i[l_ e2|p(N1+ Nz)] =0,

(10
where
ty Sin(1+4Ng)Q/2]
Tt ot G (15 4Ng) Q2] F Sin (3+ 4Ng)0/2]

Correction to the phonon energy due to the interchain hop-
ping [similar to that of Eq.(5)] is

Sl

1

8

mn

Ny

11

ow ——wp .
Nyty ©

(11)
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I1l. PHONON TRANSPORT IN THE GRANULAR ) ty, ‘UZD p k
MATERIAL: TRANSFER HAMILTONIAN APPROACH tkp: - — —( 1- CO%) 1- COSZ—)
ta1 NiNp
Analysis of the simple models shows that a boundary im-
pedes short-wavelength phonon transport across it. This __tu(wp—w(wp—wp)
makes difficult to consider the phonon transport as a wave ty N;N,

propagation, if the number of boundaries is large. This is the . .

case of the granular materials. To avoid this difficulty, we Ve Shall use this estimation further. _

start with phonons or oscillating modes initially localized in ~ USing the Hamiltoniari12), it is possible to determine the
each individual grain. The number of these modes is equal tft&! phonon current to théth grain from all neighboring
3N;, whereN; is the number of atoms in thi¢h grain. Fre-  9rans.

guencies of these modes are individual to each grain too. We

assume, however, that the grains are large, so that the fre- i it ata.

quencies are distributed homogeneously over the interval Q Ij,zk;p @i (ijpBicjp —H-C.))-

[0,wp]. Transport of these modes occurs due to their hop- .

ping between the neighboring grains; this can be considereldere the bracketé) denote the thermodynamic average. In

as a perturbation. We write the transfer Hamiltonian as folthe second order of the perturbation theory with respect to
lows: tijp» this value is equal to

sz Wik
ik

a;ai+ %) + kz (tijkpakajp+H.c), Qi:;k:p wikltijkpl*(Ni = Np) S wik— wjp), (14)
LY "
(12 . . .

whereT,; is the temperature of thigh grain, the Bose func-
where the Bose operatoss, (a;) create(annihilatg thek  tion n;=[e“k/Ti—1]" 1 is the number of phonons with the
=k;th localized phonon mode at thth grain. The first term energyw;, at theith grain. In particularn;=T,/w;, under
in Eq. (12) corresponds to the phonon energies of the indithe high temperatureg;> w;, so that
vidual modes and the second one to the hopping between
them.

— 2
To estimate the value of the hopping integtial,, , let as Qi= 2 [tijipl “(Ti = Tj) 8 wi— wjp),
. g ] . j.k.p
return to the simple models of two chains considered in the
Sec. Il. Then the HamiltoniaflL2) can be rewritten as and TC becomes temperature independent.

The 6 function in Eg.(14) means conservation of the
phonon energy under hopping. There are two limits that are
interesting to consider. First, the mean spacing between the
phonon levelsw;, significantly exceeds the hopping integral
|tijkp|. This is possible for the small grains or the phonons
whose energies are close to the band edge. Such
phonons are localized and do not participate in the thermal
where the Bose operators and b, correspond to the transport. Indeed, the phonon with certain enefigy, can-
phonons at the chains | and K,andp are the wave vectors not move to the neighboring grain, if the level with the same
of these phonons, measured from the band edge,a€., energy is absent there. This is the Anderson localization of
=wpCosk/’2 andw,= wpcosp/2. The Schrdinger equation  the phonons, which also restricts TC. Let us consider the
HV=EW following from this Hamiltonian leads to the contact of two one-dimensional chains studied in Sec. Il. In
equation for the energy spectrus) the first approximation the phonon states of the chains are
localized, and ifN,;# N,, their energies are different. Cor-

1 1
a et 5 +Ep wp( by by+ 5

HZZ Wy
k

+ (typan bp+H.C),
k,p

tip rections to these energies due to the hopping are determined
M o By 0 @3 by Eq.(5),

Fort,,=0, the energy spectrum is determines by the ze- St — p’twp
ros of the denominator, E¢13), i.e.,E= w, andE=w, . For @ 4N,
smallty, we writt E= w0+ d w, wherew is one of the zeros
of the denominator, Eq13), and dw is the correction. This Where
correction is equal to Ed5), if

’ . a m
o1 T (M—me? 4M-m)’
M—-m)w
tip= N;No(m—M) N Ny(m—M)e? The wave vectolp is measured from the band edge; it is
small for the Debye phonons witkh,~wp. Spacing be-

or Eq. (1), if tween the levels of the different chains is of the order of
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wp ( 0@ 2V
Aw~7cosiAq,
ie.,
du| Pt pt 0F i i+ Y
Aw q 27
2wco%
This means that fot~1, Sw<Aw, and all the phonon Oe s V

states are localized.
This is, however, characteristic of the 1D chain. For the
3D case we have

FIG. 4. The net of random resistors. For simplicity, only its 2D
projection is presented.

the states of théth grain for the integration with the 3D

2
S — P t“’D, density of states 8;N; /wp and assuming;~T;, from Eq.
4N, (14), we find
meanwhile Q:g<_til)(-|-__-r_)&
Aw~@ I 2 t21 I ! wéNiZNjZ
Ni ’ 2
Wi
. - wk/T
ie., ol T €
_ Xf D?(“’D_wk)zwidwk
Sw| pt _ ptsS o (e”—1)
Ao| 27 XY ppa? or

The phonons are localized if this value is less thax, 4/ Si(Ti—T))

where x,~0.35 is a percolation threshold for the 3D site Qi:( _t_>wD’8(T)—2’ (19
problem(see Ref. 8 for the detajlsThus, only the phonons 21 a

with p>p., wherep.~8ma?/(tSx.) is the mobility thresh- where

old, are delocalized and participate in the heat transport. To

estimate correction to the TC, we have to replasg B(T) = 205J1/0 x4eX ( - 3) 2dx

— wpCoSP2). B 2 Jo (e8—1)2 0
The value ofp, is small if S=d?; however, it increases and

for the smaller values @. This could be a result of porosity.

Indeed, for the point contact of the two sphefth® porosity T

is about - 7/6~1/2), NyN,=1, and we return back to the o= TS

1D case where all phonon states are localized.

Consider now the second limit. Suppose the mean spacinere S;; is the area of the contact between ittie and jth
between the phonon levels;, is considerably less than the grains, so that{t;,/t,})S;; is a random function off andj.
hopping integraltijkp|- This is characteristic of large grains ~ To determine the thermal conductivity, we have to add the
and the phonons that energies are far off the mobility edgevalues ofQ; over the grains in the unit layer. It is natural to
Assuming the phonon energies to be continuously distributethterpret Q; as an electrical current to the sitefrom its
on the interval 0,0p], we change the summation over the neighbors, and the temperaturd§ andT; as the potentials
states of thgth grain in Eq.(14), with the § function for its  of these sites. In other words, we have to estimate the con-
multiplication by the 1D density of the statetN3/(2wp) ductivity of the net of the random resistances whose values
[N;,=d/a is the number of atoms of thigh grain in one(z)  are [ Bwp(—tu/t,)S;/a®]) % It is important that these
direction]. Indeed, each oscillating mode of tité grain con-  random values do not have an exponential, but a powerlike
nects with each mode of thi¢h grain via the hopping inte- dispersion.
gral tj;,, . However, this connection occurs at the boundary
where each atom of thith grain connects only with one IV. CONDUCTIVITY OF THE 3D CUBIC LATTICE
atom of the jth grain. For this clear reasonNj, OF THE RANDOM RESISTORS
=N;/(NjxN;y), but notN; itself arises in the density of
states. This becomes more apparent if we consider the plane We find the conductivity of the net presented in Fig. 4.
interface, wheré;; ., d(kj—p)) (k; andp are the parallel Let Vi be the potential of the site, the coordinates of
to the grain boundary components of the wave vegtdiisis  which arei, j, k (Vojx=0Vyj=V), andr; 15 is resistance
means that density of the phonon states with regards to onef the cube edge between the siteg k andi+1,j,k. The
vector is one dimensional. Replacing also the summing ovefirst Kirchhoff's law being written for theth site is
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Viea™ Vi Vi Viegie  Vijrse— Vi Vige™ Vij -1k Mi-1jk Ei—12jk— N7ijk Ei—12jc 40— 0?=0,

Fi+uzk Fi-wzk Fij v fij - w2k where y~ ;1 ki+ 12k and o~ ;-1 & - 12k are the av-

Vik+1—Vik  Vik—Vijk-1 erages connected the next neighboring sites. Omitting them,
- S =0. (16)  we obtain
ijk+1/2 ijk—=1/2
The current across the net is — e _ o — e _ o
Nit1jk Eiv12jk= Ton -1k Eim1pik= i
1=> Vir2i” Vige (17)  so that
ik Tivagk
2V NNy o2

Equation(16) can be solved numerically for any distribu- == " Nrp 1+n’
tion of the resistance; ;15 . This can also be done analyti-
cally if we assume the small deviation of these values an@nd
the large number of neighboring sites. 2

Really, the solution of Eq(16) for equal resistorsr(jy r=rg 20 _ (19)
=rg) is Vij=iV/IN, whereN is the number of resistors in 1+n

the direction of the bias applicationz), Then I ) _
=NN,V/Nro, whereN, andN, are the number of resistors It can be shown thaty|~[&]~c*/[n(1+n)]; they are

on the contact plane. smaller tham>1. _
Let The value of mean conductivity i$51=,8thS/a2,
where S is the mean area of the intergrain boundary and
1 1 Vo =(|t;1/t,4]) depends only on the boundary structure. Then
it 12k r0(1+§'+1’2"‘) Vine =g (F 71 we can write TC as follows:
where &; 15« and »;;c are random variables with the zero 1 _
mean. Suppose independence of the fluctuations aff the kph= - B(MtSwp®(0). (20)
different sites, and the mean square of these fluctuations at ksa“d
the same site to beo? e, ivizkéir 12w Here d(o) is the factor relevant to the disorder. Equation
=0 5,,,5” Sk - Then the current across the net is (20) yields for it
=NV o-(1427] " 21
T S\ @y
We solved numerically the syste(m6) for the cube with
\% 100X 100x 100 sites by iterative Lanczdsr conjugate gra-
ol = Nro % 2 (714 2jc= 7ijic) €+ 112 dient algorithm outlined in Ref. 9. Accuracy of the solution

has been estimated by overall current deviation that equals to
sum of the absolute values of current imbalance in each site.
:N_ro % ijk(&i - 12— i+ 2721 - (18 The resulting deviation in our calculations typically was
' about 10 3 of the value of total current. This value charac-

We assume homogeneity of the fluctuations, i.e., their indeterizes very high accuracy of solution as well as accuracy of
pendence of the particular site. This means that all averagetetermining total current through cube. However, due to the
under sums in Eq(18) are invariant under the shift of all finite size of the cube, there is dispersion of the current for
indices on the same vector, i.é5»i+a, j—j+b, andk the different realization of the random value‘f]:;(l. Figure 5

—k+c. presents the average value of factoobtained from numeri-
To evaluate the averages for the current expregdig, it cal solution of Eq.(16) for different random realizations of
is necessary to rewrite EQqEL6) in terms of ¢ and 7, then Fijk ! together wrth the factod following from Eq.(21). Con-

multiply them by the correspondeétand average. This rou- ductivities rIlk were assumed to be distributed homoge-
tine leads to the infinite system of the linked equations fomeously on the interval1— 6/2, 1+ 6/2] (in calculations
the averagew¢ that connect the fluctuations of the conduc- they were produced by noise humber genejathis yields
tancesé and the potentialg at the different sites of the net. 2= §%/12.

To unlink the equations, we assume the number of neighbors Analysis of dispersion of th& factor for the maximal
for each site in the net to be large. Then it is possible to fluctuations of conductivity, i.e. fo6=2, yields the follow-
consider only the averages connected to the nearest neigihg average values cb and its standard deviation: 0.8745
bors. Assuming also the fluctuations to be smadl €1, 7 +0.0003. The calculations performed for the>x380x 30

|<1), we write and 50<50x 50 cube dimensions yield the following results
for ®: 0.8723t0.0011 and 0.87480.0021, respectively.
Nis1jk Ei+12jk — NWijk Eiv 12 T4y + a?=0, This statistics was derived from results for the six random
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101 tained allows us to estimate qualitatively the influence of

: different factors on the TC of nanostructures.

100 The value of TC is determined as a function of two pa-
0.99 - rameters and o. First of them corresponds to the transpar-
0.98 ency of the intergrain boundary for the short-wavelength

; phonons. The second one corresponds to the disorder that is
097 due to deviation of the grain sizes, the area of the intergrain
0.96 - boundary, and its width. Both the parameters depend on
0.05.] d many factors and should be considered as phenomenological.
] Nevertheless, it would be interesting to estimate the influ-

o 0941 ence of different factors on their values.
E 0.93 ] A For thet parameter at a one-atom 1D interface, we obtain

] t«(M—m)~ %, so that it becomes large iM~m. This
0-92 should be the case if velocities of the sound and the Debye
0.91 4 o frequencies of the grain material and the interface are close.
050 ] In particular, for the interface of the crystalline and amor-

] phous ALOs, this value isS/|S;ystaline™ Samorphoub™21.2.
0.89 . To reduce it, some impurities that change the interface den-
0.88 sity or elasticity should be introduced.

1 . To estimate the influence of the interface width, we can
087 use Eq.(10). If the Debye frequencies of the grain material
0.86 : : : : : : : : and the interface are close, thén— . If also (m— Q)N

0.0 05 1.0 15 20 <1, thent becomes close to its value for the one-atom in-

8 terface. Otherwise, we have an oscillating dependenterof

the interface width. In the 3D case, this means an increase of
FIG. 5. Factor of disorder. The bold line corresponds to Eg.the o value, which leads to a decrease of the TC.
(21), dots represent average value®f(over six random realiza- The grain-size dependence of TC is not simple. Two val-
tions of the COndUCt|V|t|e&)btalned from numerical solution of Eq ues: the gra|n sizel and the mean area of the |nterfa§e

(16). affect it, and the relatio®xd? is not always satisfied. Equa-
tion (20) determines TC of the large grains. For the smaller

realizations of the conductivities. Standard deviation gener-Erains the localization of the short-wavelength phonons be-

ally decreases with increasing cube size, whereas the curre Smes appreciable. To take this into account, we have to
value changes slightly. This gives assurance that the resul Sibstitute wm— w c.ospclz in this expression, Herep

for 100X 100% 100 cube reproduce the thermodynamic limit o= P . ' ¢

for the current with the accuracy being equal to the standard 8ma"/(tSxc) is the mobility thre;holdxcwo.SS or X,
deviation of® for various random realizations wﬁkl (for =0.6 for the three- or ~iwo-dimensional struciures,
5=2 it is equal to 0.0003). Obviously, the relative value of respectively. The value ofp, becomes comparable with/2

the standard deviation should decrease with decreasing (all the short-wavelength phonons are localizethen S

All the above, together with Fig. 5, make apparent that Eq~16a°/(txc). Fort~1, this means that the size of the inter-
(21) can be used for the qualitative estimations even for thdace region is comparable with six lattice constants. This is
large fluctuation of the conductivities. It seems that this isPoSsible even for the largel$-6a) grains due to porosity.

always the case ifi>>1; this makes the influence of the grain This may be the possible explanation of the experiments of
size fluctuations not so essential. Ref. 7, where a sharp jump of TC dt=10 nm in yttria-

stabilized zirconiagd~0.5 nm) nanostructured thin films has
been observed. TC of the nanostructure of smaller grains is
due to the large-wavelength phonons,(>d) that are not

In this paper we propose the model to describe the highlocalized. The number of such phonons\li,§]~d*3; thus, it
temperature thermal conductivity of the nonmetalic nanodis possible to expect an increage-d 2 of TC for the very
structures. We show that the short-wavelength phononsmall grain-size structures.
which are of main importance for the high-temperature ther- The temperature dependence of TC is determined by the
mal conductivity, are strongly localized at the grains. SuchB factor (Fig. 6). It is independent of the grain size. At small
phonon confinement has been investigated numerically foremperatures {<Tp), it increases due to increase of the
the superlattice¥’ the considerable decrease of TC due tonumber of the phonons responsible for the heat transport. At
change of the phonon spectrum caused by the boundaries hiaigh temperaturesI(>Tp) it is constant. Such a behavior of
been found. The jump of the temperature at the grain boundfFC follows also from the commonly used expressign
ary caused by the phonon confinement can be considered &s1/3C,Vd, where the heat capacit@, is a well-known
a possible mechanism of the Kapitza resistafdhis allows  function of temperature an¥ is the velocity of sound. It
one to use numerical methdds'® to estimate TC of the should be noted, however, that the high-temperature value of
structure. Nevetheless, the analytical expres¢dih we ob- TC we obtain is about of one order less than what the

V. DISCUSSION
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FIG. 6. Temperature factor.
commonly used expression yields; i.e., mean free patfs

less than the grain size. This is due to the confinement of th
high-energy phonons at the grains.
The decrease of TC, which is observed in some experi-

ments, is due to the phonon-phonon interaction that has ndt

been taken into account. To consider it in the framework of X ) L .
Oq.llows one to estimate what mechanism prevails in a certain

our model, let us assume that some resistors are series ¢
nected toriji (Fig. 4). Such an assumption valids if the pho-
non scattering at the grain boundaries and due to the phono
phonon interaction can be considered independently,
1N =g+ 1N ,,. This concerns also any other bulk mecha-
nism of the phonon scattering. The value of this resistance i
=(k;d) "1, where «; is the bulk part of TC. For the
phonon-phonon interaction it can be estimated mas
=1/3CyVl,p, where I,,=(20T,a)/(¥?T) is the phonon
mean free pathT, is the melting point, and/ is the Grun-
eisen constant. TheR=r;+r;;, rjy~a 2I[ B(T) wptd?],
and for the effective value of TG¢=1/(Rd), we obtain

1/0

K:kBTJ
0

kiB(X)tSP
fikg* kja2d+ kg TpB(X)tS®

MET

This expressign can be simplified if we substitutdy its
average valug,

1

0

64 X4ex —
(e'=1)2

5 (22)

B ki BtSwpd
kg *xia?d+ Bt Swpd’

however, in this case the trial parameter B(x)t/3 be-
comes dependent on the temperature.

It is apparent that the total TC is determined by the
minima value ofx,, and ;. Temperature dependences of
both the values for the different grain sizes are presented i
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Thermal conductivity (arb. units)
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FIG. 7. Temperature dependence of the hulland a boundary
Kpn parts of TC for the different grain-size nanostructurel (
>d,>dj).

Fig. 7. For a large grain-size nanostructu@irve 1 «;
<kKph, .., k~k;. Decreasing of the grain size results in
ome temperature interval whekg> «,,, (curve 2, i.e., k

~ kpp and the nanostructuring is important. This temperature
terval increases for a smaller grain sizairve 3.

It should be noted that temperature dependence of TC

experiment: phonon-phonon interaction or scattering at the
grain boundaries. For the first case TC decreasesc as

S0 thé‘tln— whereas for the latter one; increases or becomes

constant. Such a behavior of TC has been also obtained in
iRef. 2.

It seems possible that change of the phonon spectrum due
to confinement could change also the phonon-phonon part of
the TC, like it occurs in the superlattic¥&This is the subject
of futher investigations.
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APPENDIX

To obtain the boundary condition®) that connect the
amplitudesu);'" at the interface, we have to relate the values
Uy, U, Uy, U, Ug, andU_q. To do this, the motion
equations(6) should be written for the bordered atoms
==*(Ng+1) andn==Ng. In particular, for the atom at

=—Ny—1, we have
m(,()zul N~—1
0
=a(2u' —umt —u —u+u ). (AD)
n “Ng—17 Y=Ny~ Y-Ny—27 Y-Ny T YN/
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Here u',No is the solution of the first equation of E) _COSQNO[UI(]eip(NO+l)+Ul_qe_ip(N0+l)
expanded into the site=—N,. Note that the amplitude Ha—ip(Ng+1) {1l aip(Ng+1)
u',NO obeys the first equation of E¢), Whereasu'l‘h0 the +Uqe tUZqe ]
second one. Then E@A1) reduces to =c0SQ(Ng+ 1)[U{1e'p’\‘0+ U'_qe‘IpNO
+UllemiPNoy ' elPNo],
UI_NO:U_NO, q q

—sinQNg[ — ugeip(NoH)_ the—ip(N0+1)
I N _
quofl:quofly +U|q|e Ip(N0+l)+U|lqe|p(N0+1)]

’ =siNQ(No+1)[ —UgePNo—UL e~ PNo
Uny = Ung: +UlleiPNo !l iPNo)
q -q :

Herep=m—q<1. This allows us to expand the exponents
and rewrite the last equation as the boundary conditi®ns
for up''(0)=Ug"+UM,  and  guuy''(0)=—ip(Ug"
The last three equations received from the motion equatiOl:L Utll), which are the disp|acements and their derivatives at
for the atomsn=*Nj, andn=Ny+1 in the same manner. n=0. It can be shown that dif,/|=1. In particular, forQ

After substitution oful,'"" from Eg.(7) and elimination =7 (this happens whewgp=p in Fig. 3), we havet;
Of UIQ! we f|nd :t22:1 andt12:t2120.

oo
Ung+17= UNg+1-
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