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Weakly coupled tunneling systems in mixed crystals
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Department of Physics, Stanford University, Stanford, California 94305
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The low-temperature behavior of imperfect crystals like KCl with a few ppm of substitutional defects like
OH2 or Li1 is dominated by the dynamics of these defects. At low concentrations the defects are usually
described as isolated systems. We find that in typical experimental situations even at concentrations of only one
ppm the defects are not independent of each other. Instead they form pairs. For weak coupling, bulk quantities
like the dielectric constant are hardly affected, but the total moments~electric and elastic! of the pairs of
tunneling systems depend on the relative angles between the tunneling systems. Since these angles take several
discrete values, there is a set of Rabi frequencies, relaxation rates, and phase coherence times, affecting echo
experiments.

DOI: 10.1103/PhysRevB.66.134107 PACS number~s!: 61.72.Ji, 66.35.1a, 03.65.Yz
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I. INTRODUCTION

The low-temperature properties of alkali halides may
significantly modified by the presence of substitutional i
purities, such as Li1, CN2, or OH2. A few ppm of these
defects are sufficient to change the thermal behavior and
elastic and electric response below a few Kelvin.

Regarding the polar molecules CN2 and OH2, the point
symmetry of the impurity site gives rise to several equival
orientations; corresponding off-center positions arise for
small lithium ion. Quantum tunneling between these sta
results in a ground-state splitting of about 1 K. Since
number density of such tunneling states exceeds, even a
concentrations, that of small-frequency phonon modes of
host crystal, the impurities govern the low-temperature pr
erties of the material. The cubic symmetry of the fcc cryst
favors six, eight, or twelve defect positions. The resulti
energy spectra have been discussed in detail by Gomeet
al.,1 and agree well with the Schottky peak observed by P
and co-workers for various impurity systems at low dopin2

In defect crystals the importance of the coupling betwe
the tunneling systems depends on the concentration of
fects and ranges from weak~typically for a few ppm! to
strong~typically for a few hundred or thousand ppm!. Bulk
quantities like the dielectric constant of such interacting t
neling systems are well described by a model of Wu¨rger.3

But it is hard to gain information about the damping ra
from that treatment.

The low-temperature properties of glasses are simila
dominated by tunneling systems. Although little is know
about the detailed structure of these tunneling systems,
phenomenological standard tunneling model4 ~STM! pro-
vides a good description of most experimental facts.5 In re-
cent years, experiments at temperatures below about 200
showed clear deviations from the predictions of the ST6

which are mainly attributed to weak interactions between
tunneling systems. Burin and Kagan7 proposed a new relax
ation mechanism due to weak interactions and the existe
of a dipolar gap in the distribution of energy splittings. D
spite the success of these investigations in explaining at l
qualitatively most experimental features, there is still a la
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of a more rigorous treatment of the dynamics of interact
tunneling systems.

The defects are often approximated by simple two-le
systems~TLS’s! simplifying the calculation especially whe
dealing with interacting tunneling defects.3,8 In the case of
tunneling defects in crystals with eight possible defect po
tions the static and the dielectric properties are usually w
approximated whereas the elastic response dif
drastically.9,10 In Sec. IV C we shortly discuss tunneling de
fects taking into account their full structure, but for the sa
of simplicity we will use the two-state approximatio
throughout the paper.

Since a TLS describes a particle moving in a double w
potential there is a direction connected to each TLS, wh
we choose to be distributed homogeneously, and we ass
that the electric moment is aligned with that direction. Si
plifying the elastic moment to anelastic dipolewe choose its
direction to be homogeneously distributed as well. We ad
tionally assume that the direction of the elastic momen
independent from the direction of the electric moment. T
assumption is typically not justified but within the two-sta
approximation it is necessary to reveal effects discusse
the present paper which would be hidden if we assum
strictly aligned electric and elastic moments. In Sec. IV C
will justify our approach by showing that the mentioned e
fects are present for the defects taking their full structure i
account.

The Hamiltonian of a TLS is given by

HTLS52
D

2
sx2

F

2
sz , ~1!

with the tunneling splittingD of the classical ground state
and the Pauli matricessx , sy , andsz . The matrixsz cor-
responds to the real-space coordinate andF is the energy bias
between the ‘‘left’’ and ‘‘right’’ well given by external or
internal fields. The internal fields can be divided into tw
subclasses depending on their source; defects which
static on the time scales of experiments yield static fields b
for example, fast~tunneling! defects or elastic waves in th
medium generate dynamic fields and we have to take t
dynamics into account. Neglecting static fields, we end
©2002 The American Physical Society07-1
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PETER NALBACH PHYSICAL REVIEW B66, 134107 ~2002!
with the Hamiltonian~9! in which we included interactions
between tunneling defects. Each defect, therefore, sees
namic field generated by the other defects.

The coupling between the tunneling defects is modeled
a dipole-dipole typeJi j sz

( i )sz
( j ) term and the coupling con

stantJi j depends inversely on the cube of the distance
tween TLS’s. Accordingly we expect a distribution ofP(J)
}1/J2 for homogeneously distributed defects. We thereby
sume equal probabilities for both signs of the coupling
mimic the angular dependence of the dipole-dipole inter
tion. With rising concentration the mean value of the int
action increases.3 At lowest concentration of a few ppm th
interaction is usually negligible in measurements of the
electric constant.

We want to investigate weakly interacting two-level sy
tems coupled to a heat bath, a typical situation in a cry
with only a few ppm of tunneling defects. While such tu
neling systems are usually described as isolated, we ask
if a weak coupling leads to energy exchange between
tunneling systems and thus to a new relaxation mechan
We show that there is no new relaxation mechanism. T
coupled system separates into effective pairs. Each pair
be described as two effective uncoupled TLS and, then, e
weak interactions result in a broad distribution of effecti
moments~electric, elastic! within the two-state approxima
tion. Taking the full structure of the tunneling defects in
account we obtain a discrete set of a few effective mome
Rates for energy relaxation or dephasing of a tunneling
fect are given by the probability for an absorption or em
sion of a resonant phonon. If two TLS’s forming a pair ha
identical energy splittings as is typically the case for cryst
with only a few ppm of defects, a phonon with the sam
frequency can interact resonantly with both systems. Si
the wavelength of such phonons is typically larger than
distance between the tunneling systems, the phonons ca
resolve the single moments but only the total moment. As
values of these total moments are broadly distributed, so
the relaxation rates~for energy and phase! of the systems
instead of being peaked at the value which an isolated T
would have. Such a distribution may show up best with
echo experiments which are directly sensitive to the vari
rates.

Even if our model is not adequate to discuss interact
tunneling systems in glasses, since we neglected asym
tries ~static internal fields!, it can be viewed as a first step i
that direction.

The paper is organized as follows. In the following se
tion we give a short introduction to the Liouville formalism
which gives the main theoretical framework for the sub
quent discussion. In Sec. III we introduce the approximati
used to calculate the dynamics of the defects coupled
heat bath. In Sec. IV we investigate the dynamics o
coupled pair of TLS’s and calculate the relaxation rates
to the interaction with the phonon bath. In Sec. V we sh
that within the assumption of weak coupling we can simpl
the case of many interacting TLS’s to a set of pairs. The
section contains a summary of our results and a discussio
their experimental relevance.
13410
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II. LIOUVILLE FORMALISM

A convenient starting point is a formulation in Liouvill
space.11 This is a linear space spanned by quantu
mechanical Hermitian operators in which each operatorÂ is
considered as a vectoruA). SuperoperatorsO are introduced
as mappings of the quantum-mechanical operators o
themselves. The von-Neumann equation for the statist
operatorr̂(t) yields a simple example

] tr̂~ t !52 i @Ĥ~ t !,r̂~ t !#5:L~ t !ur~ t !) ~2!

defining the Liouville superoperatorL(t). We use\51
throughout the paper. There are several possibilities to de
a scalar product. In the following

~AuB!5Tr$Â†B̂% ~3!

is used. As in Hilbert space we can define a time evolut
superoperatorU(t,t8) which obeys

] tU~ t,t8!5L~ t !U~ t,t8! ~4!

with initial conditionU(t,t)5I andIuA)5uA). It is con-
venient to introduce at least two types of superoperators:
correlation operatorA with

AuX)ªu 1
2 $ÂX̂1X̂Â%), ~5!

and the response operatorB̃ with

B̃uX)5u i @B̂,X̂#). ~6!

With this formal preparation we can express the therm
dynamic averagêÂ&, correlation functionsCA,B(t,t8) and,
adding external fields to the HamiltonianĤ(t)→Ĥ

2hB(t)B̂, the response functionsRA,B(t,t8) ~within linear
response!:

^Â&5~1uAur!,

CA,B~ t,t8!5~1uAU~ t,t8!Bur!,

RA,B~ t,t8!5
d^Â~ t !&

dhB~ t8!
5~1uAU~ t,t8!B̃ur!. ~7!

The correlation and response functions are related by
fluctuation-dissipation theorem11

xpp9 ~v!52 tanh~bv/2!Cpp9 ~v!, ~8!

which connects the spectraxpp9 (v) andCpp9 (v). We define
the Laplace transformation of f (t) as f (z)
5 i *0

`dt exp(izt)f(t). Thus the spectra are given as the ima
nary part of the Laplace transforms for (z→v) with v real
andz in the upper complex half plane.

III. MODEL

In this paper we address the problem of coupled two-le
systems which are also coupled to a bath of phonons. Q
7-2
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WEAKLY COUPLED TUNNELING SYSTEMS IN MIXED . . . PHYSICAL REVIEW B66, 134107 ~2002!
generally, the heat bath may be reduced to a set of harm
oscillators with linear coupling to the dipole operatorsz

( i ) of
the TLS’s,12 leading to

Ĥ5HS1HSB1HB ,

HS52(
i

D i

2
sx

( i )2(
iÞ j

Ji j sz
( i )sz

( j ) ,

HSB5(
i

sz
( i )
•(

k
lk

( i )~bk1b2k
† !,

HB5(
k

vkbk
†bk , ~9!

with the annilation ~creation! operators for the phonon
bk(bk

†), respectively. The tunneling elements of tunneli
defects in crystals are usually equalD i5D. We consider the
case of weak coupling between the tunneling defects ass
ing that the mean couplingJ̄( r̄ ) between tunneling defects a
the mean interparticle distancer̄ is much smaller than the
tunneling elementD of the defects. The coupling betwee
the phonons and the TLS’s leads to damping for the lat
For crystals with sufficiently few defects, the time evolutio
of the phonons is not affected by the TLS’s and the effec
the heat bath on the TLS’s is entirely characterized by
generalized spectra

J( i j )~v!5
p

2 (
k

~lk
( i )!†lk

( j )d~v2vk!, ~10!

where we assumed equal coupling constants for all defe
As long as the excitation energies ofHS do not exceed a few
Kelvin, only the low-energy part of the bath excitations
important. At these energies the spectral functionJ( i 5 j )(v)
obeys a simple power-law behavior that is determined by
density of states(kd(v2vk) and the frequency dependen
of the coupling energieslk

( i ) .
In insulating materials, low-frequency elastic waves p

vide the most efficient damping mechanism. The linear d
persion relation gives rise to a quadratic density of phon
states. Taking into account the frequency dependencelk

( i )

}Avk due to the coupling of the elastic moment of a tw
level system to the distortion of the host material due to
elastic waves, we obtain the well-known cubic law

J( i 5 j )~v!5pa iv
3 with a i5

3g i
2

2p\rv5
, ~11!

wherer is the mass density of defects andv is the sound
velocity. g i is the deformation potential of the defecti and,
therefore, the coupling constant between the TLSi and the
phonons.

There are various approaches for calculating the diss
tive dynamics of single two-state systems coupled to a p
non bath.12–15The case of a pair of TLS’s was considered
Terzidis and Wu¨rger8 wherein they focused mainly on th
dielectric constant. In the low-temperature limit, all of the
13410
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approaches conclude that relaxation rates are governe
the direct or one-phonon process, resulting in wea
damped dynamics.

We address the question of how relaxation and depha
rates are changed if we allow for small interactions betwe
the TLS’s. As we are only interested in the low-temperatu
results, we use a simple resummed perturbation series in
duced by Horner and Wu¨rger11,14to deal with the coupling to
phonons. Our main focus is how small interactions betwe
the TLS’s alter the damping rates compared to the rate
independent TLS’s.

For example, in order to calculate the dipole-dipole c
relation functionCpp(t,t8) we first integrate out all bath de
grees of freedom. Formally we obtain

Cpp~ t,t0!5E
t0

t

dsE
2`

t0
ds8„1uPUeff~ t,s!Pren~s,t0 ,s8!ureq…

~12!

with the statistical equilibrium operator of the pairreq and
the dipole superoperatorP. We thereby assumed that at th
time t52`, both systems are decoupled and we can exp
the equilibrium as the direct product of the equilibrium o
erators of the pair and the bath. The following time evoluti
leads to a renormalization of the dipole operatorPren. We
give the above quantities in their lowest order.

Within the Laplace representation we get

Ueff~z!52@US~z!212M ~z!#21 ~13!

for the effective time evolution using the free time evolutio
US(z) of the defects alone. To lowest order inLSB5

2H̃SB the memory kernel reads

M ~ t,t8!5Tr$LSBU0~ t,t8!LSB%B , ~14!

where U0(t,t8) equals the free time evolution. The trac
Tr$•%B only has to be taken with respect to the bath degr
of freedom.

The renormalized dipole operator is in lowest order

Pren~s,t0 ,s8!5P1Tr$LSBU0~s,t0!PU0~ t0 ,s8!LSB%B .
~15!

We are mainly interested in phase coherence times and
laxation rates. The memory kernel is sufficient to calcul
these quantities.

Within the approximation, which we will use, the resu
ing rates are identical to rates obtained by Fermi’s gold
rule. However, the advantage of the Liouville formalism
that it provides us a general framework to obtain the
sponse functions and the rates in which we also could
beyond the approximations equivalent to Fermi’s gold
rule.

IV. A PAIR OF DEFECTS

The Hamiltonian of a pair of TLS’s is given by

HPair52
D1

2
sx

(1)2
D2

2
sx

(2)2Jsz
(1)sz

(2) , ~16!
7-3
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PETER NALBACH PHYSICAL REVIEW B66, 134107 ~2002!
whereJ is the coupling between the TLS’s and theD i are the
energy splittings of the TLS’s. The phonons couple via th
distortion field eab(r ) to the elastic momentsgab

( i ) of the
TLS’s.16 Since we have no detailed information about t
elastic moments, we approximate this coupling by

HSB5(
k

$sz
(1)lk

(1)~r1!1sz
(2)lk

(2)~r2!%~bk1b2k
† ! ~17!

with

lk
( i )~r i !5g ( i )cos~Q i !ikeikr iA \

8Nmvk
, ~18!

where we introduced the angleQ i between the elastic mo
ment and the direction of propagation of the phonon w
wave vectork. Since TLS’s are one dimensional, we cann
account for the full angular dependence of the quadrup
coupling. Simplifying to a picture of a dipole coupling, th
elastic moment couples to the direction of propagation of
phonons leading to the term cos(Qi) with the angleQ i be-
tween the two vectors. Since we integrate over all directi
of propagation of the phonon, this angle dependence yi
only a numerical factor for a single TLS.

In the case of a pair of TLS’s the phonons couple to
total moment of both defects. If the wavelength of the ph
non scattered by the pair of defects is longer than the
tance between them, the damping rates depend on the
tive angle between the two TLS’s. For defects further ap
the resulting damping rates are independent of the rela
angle between the two TLS’s and the above introduced
gular dependence yields only a numerical factor in the da
ing rates like for single TLS.

The same argumentation holds true for the coupling
tween an external electric field and the electric dipole m
ment of the defects as seen in the following section for
Rabi frequencies of the pair. Usual measuring frequen
fall in the range between 1 kHz and 1 GHz which giv
wavelengths not shorter than 1 cm. Accordingly the field
uniform over the entire sample. For describing the angu
dependence of the electric dipole coupling we introduce
anglesu i between the dipole moments and the electric fie

A. A pair without coupling to phonons

Before we go into detail about the calculations in Lio
ville space, we discuss the Hamiltonian~16! of the pair fol-
lowing Thimmelet al.17 The transformation matrix

T5expS i
a

2
sy

(1)sz
(2)1 i

b

2
sz

(1)sy
(2)D , ~19!

with tan(a1b)52J/D, tan(a2b)52J/d, D5(D1
1D2)/2, andd5(D12D2)/2 yields

HD5T†HPairT52
e1

2
tx

(1)2
e2

2
tx

(2) , ~20!

with the energiese1/25AJ21D26AJ21d2 and the Pauli
matricestx , ty , andtz . The same transformation has to b
applied to the dipole operators. In Fig. 1 we show the sp
13410
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trum of a pair withD51, J51/6, andd50. The spectrum
consists of four levels, the second and third of which are s
by 2AJ21d2, which is independent ofD. The arrows in Fig.
1 indicate possible transitions that can be induced
phonons or electric fields. Even though the Hamiltonian E
~20! describes two independent effective TLS’s, the transf
mation Eq. ~19! complicates the coupling to phonons
fields. Each phonon can induce all four transitions shown
Fig. 1. Since the phonon couples to the total moment of b
TLS’s, the four transitions are induced with two differe
transition strengths indicated by the numbers next to the
rows.

The transformed dipole operatorssz are given by

T†sz
(1)T5u1tz

(1)1v1tx
(1)tz

(2),

T†sz
(2)T5u2tz

(2)1v2tz
(1)tx

(2) ,

with

u15cos~a!, v252sin~b!,

u25cos~b!, v152sin~a!.

In the caseJ,d,D the two systems remain independe
since v i;O(J/d,J/D) and e i.D i1O(J/d,J/D). Accord-
ingly the coupling is negligible. This shows that the intera
tion can only affectresonantsystems which means that bo
systems have the same energy splitting.

Below we focus on the case ofd,J!D where u1.
2u2.2v1.2v2.1/A2. As long as the wavelength of th
electromagnetic field is large compared to the distance of
two dipoles, the probabilities of the transitions in Fig. 1 i
duced by an electric field are proportional to the square
the transition strengthss7

2 5(1/2)@cos(u1)7cos(u2)#
2 @where

2 (1) corresponds to the transition marked by 1~2!#. The
u i ’s are the angles between the electric field and the dipo
of the defecti.

Assuming that the anglesu i are evenly distributed, we
obtain a broad distribution of transition strengthss7 . Nev-
ertheless the modifications of the dielectric constant of
pair in comparison to isolated systems are of orderO(J/D),
and therefore small. In contrast, if one performsphase-
coherentexperiments on the tunneling defects, the situat
changes. With rotary echos one is able to measure the R
frequencies of the pairs which depend on the transit

FIG. 1. The spectrum of a pair of weakly coupled TLS’s. T
arrows give the possible transitions that can be induced by phon
or electric fields.
7-4
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WEAKLY COUPLED TUNNELING SYSTEMS IN MIXED . . . PHYSICAL REVIEW B66, 134107 ~2002!
strengths. Thus, this quantity is broadly distributed in
case of weakly coupled pairs, whereas it should be pea
for identical isolated systems. Thimmelet al.17 investigated a
pair interacting with a quasiclassical electric field. The we
coupling case is given as the third case (n5m51) in their
Appendix A4. The only additional assumption we need
order to adopt the results, is that the couplingJ is bigger than
the field energyh5pE using the bare dipole momentp and

the electric fieldE5uEW u. If J is smaller, we would expect th
coupling to be irrelevant compared to the field.

Taking only the dominant contributions into account, t
time-dependent dipole expectation value of a pair excited
an external field with frequencyv0 reads

p(0)~ t !5
1

4
p0(

6
s6r 1~16r 2!•$sin„~v02V6!t…

2sin„~v01V6!t…% ~21!

with the Rabi frequenciesV65hs6 , the temperature-
dependent factorsr i5tanh(bei/2), the frequencyv0 of the
external field which is chosen to equale1 and the bare dipole
moment p0 of a single tunneling system. We assumedJ
.0. If J,0 the temperature-dependent factor would cha
to r 1(17r 2).

If we assume that we can describe many weakly coup
tunneling systems by an ensemble of weakly coupled p
with different couplings,18 the Rabi frequencies should b
broadly distributed due to the distribution of the transiti
strengthssi 7 . Figure 2 shows the spectrum ofp(0)(t) after
averaging over the anglesu i . We show only the part for
frequencies higher than the external exciting frequencyv0.
If we try to explain such a spectrum by an ensemble
noninteracting TLS’s we have to assume the following d
tribution of dipole moments:

FIG. 2. The spectrum of the time-dependent dipole expecta
value and the distribution ofeffectivedipoles which results from
mapping the Rabi frequencies of an ensemble of weakly cou
pairs onto an ensemble of isolated TLS’s.
13410
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f ~ p̃!5
1

2 (
6

E
0

2pdu1

2p E
0

2pdu2

2p
d~ p̃2s6! ~22!

5
1

2A2p2
E

21

1

dy
Q~12uA2p̃6yu!

A12y2A12~A2p̃6y!2
, ~23!

with the Heaviside functionQ(x) and the normalized dipole
momentp̃ªp/p0. We, thereby, assumed equal probabiliti
for positive and negative couplingJ, and we assumed wea
couplinge1.e2.D. The inner plot in Fig. 2 shows the dis
tribution of dipole moments. The distribution is smooth b
tween6A2 except for a logarithmic singularity forp50.

We should point out once again that this distribution
effectivedipole moments is only relevant for echo expe
ments since we extracted it from a distribution of Rabi fr
quencies mapping these to effective dipole moments in o
to describe experiments within a picture of identical isola
tunneling systems. In the following section we take the co
pling to phonons into account.

B. Damped pair

In the last section we showed that as long as the tunne
systems areresonant, i.e., d,J!D, even a weak coupling
leads to a broad distribution of Rabi frequencies since
external wave is not able to resolve the single dipoles.
now investigate if something similar happens to the rel
ation rates.

In order to obtain the damping rates, we have to calcu
actual measuring quantities like the dipole susceptibility
the time-dependent dipole expectation value~starting from
an off-equilibrium situation!. Thus, we need the effectiv
time evolution@cp. Eq.~13!# of the system and, thereby, th
memory kernel@cp. Eq. ~14!#. It is convenient to use the
operators19 u i j )5u i &^ j u, where theu i & are the eigenvectors o
the pair HamiltonianHPair, as basis for the Liouville space
In this basis the free time evolution of the pair is the diago
matrix

@US
21~z!# ( i j )(kl)5~ i j uUS

21~z!ukl !52~z2~Ei2Ej !!d ( i j )(kl) ,
~24!

where the eigenvaluesEi of the HamiltonianHPair corre-
spond to the eigenvectorsu i &.

1. Bath functions

Before we discuss the memory kernel we introduce
relevant bath functions. We distinguish between correlati

BC
( i j )~z!5E

0

Vc
dvJ( i j )~v!coth~bv/2!

z

v22z2
, ~25!

and response functions

BR
( i j )~z!5E

0

Vc
dv2J( i j )~v!

v

v22z2
, ~26!

with the generalized spectraJ( i j )(v) @compare Eq.~10!# de-
fined as

n

d

7-5
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PETER NALBACH PHYSICAL REVIEW B66, 134107 ~2002!
J( i j )~v!5
p

2 (
k

@lk
( i )~r i !#

†lk
( j )~r j !d~v2vk!.

J( i i )(v) yield the well-known spectral functions whereas t
mixed spectraJ( iÞ j )(v) show an explicit dependence on th
positions of the TLSsi and j:

@lk
( i )~r i !#

†lk
( j )~r j !}exp@ ik~r j2r i !#. ~27!

But, as long as@k(r j2r i)#!1, which means as long as th
wavelength of the phonon is larger than the distance betw
the TLSs, the mixed spectra are equal to the spectral fu
tions. In order to calculate the spectra explicitly, one assu
linear dispersion and one introduces an upper cut-offVc for
the phonon frequencies.12

2. Approximations

It is well known that if you start with two arbitrary TLS’s
coupled to a boson bath, the coupling generates an effec
interaction between the TLS’s through exchange of virt
bosons.20 A careful investigation shows that the entries in t
memory kernel proportional to the bath response functi
BR

( iÞ j )(z) provide this effective interaction. We discuss t
interaction between the TLS’s as a renormalized coup
which incorporates these effects already. Therefore we
glect the contributions fromBR

( iÞ j )(z) in the memory kernel.
In the weak-coupling limit the resulting memory kern

yields only a small correction to the frequencies of the f
dynamics. Representing the memory kernel and the free
evolution@cp. Eq.~13!# as a matrix in the basis given abov
we neglect all entries of the memory kernel which comb
different invariant subspaces of the free time evolution. T
is valid if the couplingJ is bigger than typical entries of th
memory kernel. Otherwise, the coupling would turn out to
completely irrelevant, resulting in two uncoupled TLS’s. A
ditionally, we evaluate the remaining entries ofM (z) at the
resonance frequency of the corresponding invariant subs
of the free time evolution.14

The real parts of the memory kernel yield small renorm
izations for the resonance frequencies of our system. We
interested in the dephasing and relaxation rates which
given by the imaginary parts.

3. Decoherence rates

If we are interested in the dipole susceptibility, we have
calculate the time evolution of the subspaces involving
energies6e1 and6e2. The four subspaces are independe
from each other and within our weak-coupling assumpt
their dynamics are equivalent. We obtain for the mem
kernel of the subspace of frequency2e1

M ~2e1!5S A1B12C 2B2

2B1 A1B21CD ~28!

with

A5@cos2~Q1!1cos2~Q2!#BC
( i i )~2e1!,

C5cos~Q1!cos~Q2!@BC
(12)~2e1!1BC

(21)~2e1!#,
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B1/252@cos2~Q1!1cos2~Q2!#•@B9C
( i i )~2e2!

7B9R
( i i )~2e2!#,

where B9C(R)
( i i ) is the imaginary part of the bath correlatio

~response! function.
A direct way of observing these rates is to perform tw

pulse echo experiments. Therein the decay of the echo
plitude is governed by the rates we obtain from the abo
memory kernel.

There are two simple extreme cases:
~a! l.r 12: If the wavelengthl5hc/e1 is larger than the

distancer 12 between the two TLSs, the generalized spec
are independent of the positions of the TLS’s. Since the r
parts of the bath functions are of orderO(aVc

2), whereas the
imaginary parts are of the orderO(aD2), the off-diagonal
elements inM (2e1) are negligible. The anglesQ i are not
independent of each other since the relative anglec12 be-
tween the two TLS’s is fixed for each configuration. Th
average over all possible directions of the phonon yie
cos(Q1)cos(Q2)5(1/4p)cos(c12), so that the rates depend o
the relative angle between the two TLSs.

We obtain two transversal rates for excitations with e
ergye1 corresponding to the transition from the ground st
to the first excited state (G1) and from the first to the secon
excited state (G2). The expressionA in M (2e1) yields the
part already present for an isolated system. The express
B1/2 reflect the loss of coherence if the pair undergoe
thermal fluctuation with energye2. The termC describes the
mixing since the phonon cannot resolve both dipoles in
pendently. Finally we get

G15G0@12cos~c12!#@112n~e1!#12G02n~e2!,

G25G0@11cos~c12!#@112n~e1!#12G0@112n~e2!#,
~29!

with the bose factorsn(e1/2) and a material constantG0. For
an ensemble of pairs with homogeneously distributed re
tive anglesc12 we end up with a broad distribution of phas
decoherence rates. In Fig. 3 we show the distribution of

FIG. 3. The distribution of the factorz entering multiplicative
into the rateG1.
7-6
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WEAKLY COUPLED TUNNELING SYSTEMS IN MIXED . . . PHYSICAL REVIEW B66, 134107 ~2002!
angle dependent factorzª12cos(c12). In the case of an
isolated TLS,z51.

The distribution for the factorz follows

p~z!5
~1/2p!

A2z2z2
with zP]0,2@ . ~30!

It shows two square-root singularities. Since forT,D the
bose factor n(e1/2)!1, the minimal rate G1

min(z50)
54G0n(e2) is very small leading to long coherence times

~b! l,r 12: In the case ofl,r 12 the termsC are negli-
gible. In this case the dynamics turns out to be identica
that of two isolated TLS’s with energiese i which are inde-
pendently coupled to a heat bath, and the rates are not
tributed.

So far, we only discussed the decoherence rates. A
merical analysis of the relaxation rates, determining the
cay into thermal equilibrium, shows that these are a
broadly distributed due to the same mechanism.

C. †100‡- and †111‡-tunneling defects

In this section we try to give a short overview~without
the lengthy calculation! what we expect for tunneling defec
taking their full structure into account. We assumed, so
that the dielectric dipole as the elastic moment of a tunne
defect can point in any direction and both are not necessa
aligned. Accordingly all four anglesQ1 , Q2 , u1, andu2 are
independently distributed. These assumptions seem na
for tunneling defects of which we do not know the structu
The structure of tunneling defects in crystals, however
usually well known. There are three possible cases for cu
host crystals: 6, 8, or 12 potential minima which repres
the face centers, the corners and the edge centers of a
In the case of six~eight! minima the dipole moment point
along a@100# direction ~@111# direction!. These defects are
therefore, called@100# defects~@111# defects!.

For an electric field inx direction E5@E,0,0# the angle
between the electric field and the dipole moment can o
take the values: 0, 90, and 180 deg for a@100# defect and 45
and 135 deg for a@111# defect. Calculating the time
dependent dipole expectation value for a rotary echo exp
ment@cp. Eq.~21!#, we end up with more different transitio
strengthssi than the twos6 of the case of two-level systems
For a pair of@100# defects we would obtains050, s151,
ands252 leading to two visible peaks in the Rabi-frequen
spectrum@the peak corresponding tos0 has vanishing ampli-
tude, comp. Eq.~21!#. In the case of a pair of@111# defects
we obtains050 ands15A2 and, thus, only one peak in th
Rabi-frequency spectrum. The situation turns around
measuring with an electric field in@111# direction where the
@111# defect exhibits two Rabi frequencies and the@100# de-
fect only one.

Using the full structure of the tunneling defects we c
take into account the tensor character of the elastic mom
~see Refs. 3,10!. The assumption that the electric and t
elastic moment are independently directed ensured within
two-state approximation that the dielectric susceptibility
pairs with a dephasing rateG1(c1250) @cp. Eq. ~29!# was
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finite ~due to a finite total electric moment!. The dielectric
response of a pair of@111# defects by measuring inx direc-
tion exhibits a contribution decaying with a rateG1(c12
50) which has a finite total electric moment despite the f
that the moments are not independent of each other. Th
fore, our assumption of independent directed moments
necessary within the two-state approximation to reveal
situation. Instead of a broad distribution of rates we get
this special case discrete values which we can describe
a set of discrete prefactorsz50,1,2.

The dynamics of a pair of tunneling defects taking th
full structure into account depends strongly on the geome
of the experiment. Typically, we have several Rabi frequ
cies and we have long dephasing timesG1

21(c1250). For a
detailed comparison with experiments a complete invest
tion would be necessary. However, assuming independ
homogeneous distributions of the angles between the ela
moment and the elastic waves and the dielectric dipole m
ment and the electric field for both tunneling systems for
ing a pair reveals the full range of possible Rabi frequenc
and damping rates for tunneling defects in crystals.

V. MANY TWO-LEVEL SYSTEMS

In the last section we described weakly coupled pairs
tunneling defects. In this section we argue that we can
scribe weakly coupled tunneling defects as an ensembl
pairs; so to say within a pairmodel.

In a crystalline host material like KCl doped with a fe
ppm of defects, for example 5 ppm of6Li, these defects
form tunneling systems which tunnel between vario
minima of their potential-energy landscape provided by
host. Measurements of the dielectric constant, for exam
are well described within a picture of isolated identical tu
neling defects with a tunneling splitting of aboutD
.1.65 K.23 At concentrations of about 60 ppm the intera
tion between the tunneling defects results in measurable
viations from the picture of isolated identical tunnelin
defects.23 At these medium concentrations thepairmodelin-
troduced by Klein and others24 is used to describe the sys
tems. Within this approach one describes the tunneling
fects as an ensemble of pairs of two-level systems. At hig
concentrations of defects the pairmodel fails and a m
elaborated treatment of the coupling is necessary.23 A model
by Würger describes most experiments very well.23,3

A delocalization of the excitations of the tunneling defec
or in other words the existence of a collective phase of t
neling defects is experimentally not found and at concen
tions below 10 ppm the interaction between the tunnel
defects can be discarded at all for describing data of
dielectric constant. We showed in the last section by usin
pairmodel approach that even very weak couplings lead
several values of Rabi frequencies and relaxation rates
stead of single values expected in a picture of isolated id
tical tunneling defects. These effects might help to und
stand the small deviations of the experiments at samples
dopings less than 10 ppm and the theoretical predictio
Finally, it leads to a clearer understanding of a single tunn
ing defect in these crystalline materials.
7-7
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PETER NALBACH PHYSICAL REVIEW B66, 134107 ~2002!
In the following we will underpin the use of the pai
model. If we neglect the coupling to phonons the Ham
tonian~9! is identical to an Ising spin-1

2 system with a trans-
versal fieldD. The couplingJi j between the spins depend
on the inverse of the distancer i j between two spins cubed
Ji j }1/r i j

3 . Due to the angle dependence of the dipole-dip
type interaction the coupling constantJi j can have both
signs. If we focus our consideration for a moment to a sin
TLS i we can define the local fieldshj5Ji j sz j which a
neighborj is providing by the interaction to the TLSi. The
total local field h5( jhj vanishes due to the symmetryP
(2J)5P(J) of the distributionP(J) of coupling constants
Ji j . However, in order to decide whether the interaction i
relevant quantity for the dynamics of the TLSi we might
sum up the absolute values:w5( j uhj u. Switching over from
a sum to an integral in real space and integrating only o
all neighbors within a sphere of radiusR yields

w5E
Rmin

R

dR4pR2
J0

R3
tanh~bD/2!

54pJ0 tanh~bD/2!lnS R

Rmin
D , ~31!

with a minimal distanceRmin between TLS’s given by the
lattice constant and a mean interactionJ0 between TLSs. In
the thermodynamic limitR→` this expression diverges fo
any strength of the coupling. Accordingly, we expect that
interaction dominates the dynamics of the system. Let us
to base the above arguments on a more rigorous footing.
problem is the diagonalization of the Hamiltonian

H5(
i

D

2
szi1(

i j
Ji j sxisx j ,

where we rotated the Pauli matrix basis aroundsy by 90 deg
compared to Eq.~9!. Without interaction between the TLS
the ground state would be given by the product state of
the ground states of the individual TLS’s. The first excit
state would beN-fold degenerated~with the numberN of
TLS’s!. The wave functions are the products ofN21 of the
TLS’s in their ground state and one TLS in its excited sta
Tuning on weak interactions we might be tempted to neg
intermixture of the ground, the first excited and higher e
cited states and to discuss only the lifting of the degener
of, for example, the first excited state. Its Hamiltonian
given by

W15S 0 J12 J13 •••

J12 0 J23 •••

J13 J23 0 •••

A A �

D , ~32!

with the couplingJi j between TLSi and TLS j where we
used the basis: (↑↓↓•••), (↓↑↓•••), . . . . The eigenvalues
of the matrix W1 are distributed between@2v,v# with v
5v j5( j uJi j u which is independent of j. Since w
5v tanh(bD/2) we know from the considerations above th
in the thermodynamic limitv diverges. Accordingly, the as
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sumption that we can neglect intermixture of the ground,
first excited and higher excited states is questionable.
expect that the excitations are delocalized and the syste
in a collective phase. Levitov21 and Parshin and Schober22

found in similar models such a delocalization for excitatio
interacting with a dipolelike long-range 1/r 3 interaction.

These theoretical results are in contrast to experime
results. In a typical experimental situation the sample siz
of the order of 1 mm3. With lattice constants of the order o
5 Å and assumingT50 we can estimate that only for mea
couplingsJ0>D/@4p ln(1 mm/5 Å)#.531023D, the inter-
action actually dominates the dynamics of the tunneling
fects. Accordingly, at lowest concentrations~resulting in
lowest mean couplings! the experimental results might no
contradict the consideration above. However, we neglec
in our theoretical investigation the coupling to phonons~be-
sides the possibility that this coupling gives rise to the co
pling between the TLS’s!. The coupling to phonons results i
a finite linewidth g for the excitation frequencies of th
TLS’s.27 If an excited TLS is coupled by an interactionJ to a
neighbor the excitation energy is transferred back and fo
between the TLS and its neighbor with a period 2p/J. If the
lifetime ~relaxation time! t51/g of the excitation of the TLS
is less than the period of the oscillation, the TLS would
decayed to its ground state before the energy could be tr
ferred to the neighbor. The coupling would be irrelevant
this case since it is not effective in delocalizing the ene
over both systems. Thus, the interaction with phonons yie
a natural cut-off radiusRc for the interaction by the argumen
J(Rc)5Jmax(Rmin /Rc)

35g with the minimal distanceRmin
between tunneling defects which is of the order of a latt
constant and the maximal couplingJmax between neares
neighbors. Using this cut-off radius in the expression abo
for estimating the relevance of the interaction yieldsw8
54pJ0 tanh(bD/2)ln(Rc /Rmin) since we only have to inte
grate over the neighbors within a sphere of radiusRc . Fol-
lowing our simple argumentation we would conclude that
w8,D the interaction between the TLSs does not lead t
collective behavior/ delocalization. This argument does
rule out the formation of pairs or clusters of more than tw
TLSs but it explains the absence of a delocalization of
single TLS excitations. The same argument holds in glass7

To quantify the influence of a neighbor which is furth
apart form the TLS of interest than the cut-off radius w
investigate a Gedanken experiment. We prepare a symm
TLS in a superposition between its ground and excited st
This superposition is actually a localized state~in real space!
with a finite dipole expectation value. The free evolutio
forces the tunneling particle to tunnel periodically betwe
its two potential minima with a period 2p/D whereD is the
tunneling element. The coupling to phonons leads to a fin
lifetime for the coherent superposition resulting in an av
age behavior for the dipole expectation value ofp(t)
5cos(Dt)exp(2gt) with time t. If we include one neighbor
with a couplingJ to the TLS we can simply calculate th
time dependence of the dipole expectation value with
methods described in the section before. We assume tha
coupling is irrelevant: J,g. To simplify the investigation
we assume furthermore that the distancer 12 between the two
7-8
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WEAKLY COUPLED TUNNELING SYSTEMS IN MIXED . . . PHYSICAL REVIEW B66, 134107 ~2002!
TLS’s is bigger than the wavelengthl of a phonon in reso-
nance with the TLS’s. This saves us from taking additiona
mixed bath functions into account which would complica
the analysis, but which would not change the general beh
ior. Under these assumptions the corrections to the dip
expectation value are of orderO„(Jt)2

…. The assumptionJ
,g guarantees that the correction given by one neighbo
small for all times. However, it is important for the case
many neighbors that the corrections given by a neighbor
quadratic. All neighbors whose distance to the TLS of int
est is bigger than the cut-off radius give a correcti
}( j Ji j

2 t2.@J0J(Rc)#t2 where j sums only over neighbor
with r i j .Rc . For J0.J(Rc) it holds thatAJ0J(Rc).g and
the corrections are visible. However, it also ensures that
correction of nearby neighborsr i j ,Rc is bigger than the
correction by all the distant neighbors, which allows us
neglect the distant neighbors in a first approach comple
Since typicallyJ0 ,J(Rc)!D all corrections to the dynamic
of the defects are small and we do not expect a collec
phase to be formed or a delocalization of the excitations
happen.

At this point we will investigate what are typically cut-o
radii and how many neighbors will be within a sphere of t
cut-off radius around a given defect. The linewidth of CN2

defects in KCl, for example, is aboutg.1.353109 s21\
.10 mKkB .10 Typical nearest-neighbor maximal coupling3

are between 102–104 K with typical lattice constants o
about 0.5 nm (aKCl.0.623 nm at 1 K!. Thus, the cut-off
radius is a few hundreds times the lattice constant. The n
ber of defects #n within a sphere of radiusRc can be esti-
mated as #n5c(Rc /Rmin)

3.c3104–106 with the concen-
tration c of defects. For concentrations of a few ppm w
expect the number of neighbors within reach of the coupl
to be of orderO(1) or less.

So far, we argued that the interaction between the TL
does not lead to a delocalization of the excitations since
coupling to phonons provides an effective cut-off radius
the otherwise long-range 1/r 3 interaction. The same argu
ment was used by Burin and Kagan7 to conclude that there is
no delocalization of the excitations of the single tunneli
systems in glasses.

However, Burin and Kagan further showed that in glas
the weak coupling between the tunneling systems leads
formation of resonant pairs. These resonant pairs can
mapped to new effective TLS’s. If the tunneling system
have finite asymmetry energies these effective TLS’s
coupled to each other as shown in the Appendix. Since
coupling between the resonant pairs is of the same orde
magnitude than the coupling leading to the resonant p
these effective TLSs are strongly coupled to each other
the excitations delocalize. As Burin and Kagan showed
delocalization is accompanied by spectral diffusion wh
also arises only for asymmetric tunneling systems.25 Thus,
the formation of a collective phase due to the interaction
resonant pairs competes with the destruction by spectral
fusion and from this competition a new mechanism for e
ergy relaxation emerges.

Resonant pairs formed from symmetric TLS’s, howev
do not interact with each other by direct virtual phonon e
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change. Nevertheless the resonant pairs interact with e
other by higher-order effects~in the coupling to phonons!,
i.e., two-phonon exchange. This coupling is weaker and
resonant pairs are only weakly coupled. The same a
ments, which lead us to conclude that the single TLS’s ex
tations do not delocalize, therefore forbid a delocalization
the resonant pairs. What is more, the higher-order coup
depends typically on the distancer between the TLS’s like
1/r n with n.3. Thus, the coupling is of short-range natu
and in a short-range coupling problem we only expect c
lective phases for couplings comparable to the energy s
tings of the effective pairs.

After all, we believe to have ruled out the occurrence o
collective phase. The main argument is that as long as
coupling is weaker than the linewidth of an excitation t
coupling can be neglected. Any progress in a full and co
prehensive understanding of the above given argum
would be desirable. Accepting this argument to hold true,
us conclude that the interaction between tunneling defect
mixed crystals does not lead to a collective behavior at le
as long as the coupling is sufficiently weak. Nevertheless,
defects will form pairs, triples and clusters of more defec
In this scenario of small clusters the pair will obviously b
the most important member since more than two defects w
equal couplings between each other are more unlikely t
simply two such defects. In a triple, where two of the thr
are stronger coupled to each other than both are to the t
partner the pair is only weakly affected by the third partn
and we simply disregard these corrections in our approac
would be interesting to take triples and bigger clust
equally into account, and this step would be necessary
obtain a quantitative understanding of experiments. Ho
ever, to take only pairs into account seems to capture
main features which was excluded so far from any consid
ation: Even at very small defect concentrations the inter
tion effects cannot be neglected since the system forms s
clusters~mainly pairs!, which leads to very different Rab
frequencies and relaxation and dephasing rates compare
the case of isolated identical tunneling defects.

Below we briefly discuss the experimental relevance
our results.

VI. EXPERIMENTAL RELEVANCE

The low-temperature properties of defect crystals
studied in thermal, acoustic, and dielectric experimen
which measurebulk quantities such as specific heat, therm
conductivity, speed of sound, internal friction, dielectric co
stant, and dielectric loss. Furthermore there are various
electric echo experiments measuring directly the relaxa
rates or the Rabi frequencies. As we have shown in the
vious sections, small interactions between the tunneling
fects yield broad distributions of effective moments with
the two-state approximation. Taking the full structure of t
tunneling defects into account, we obtain a set of discr
values for the effective moments. This leads to several
ferent Rabi frequencies and relaxation or phase decoher
rates, but all thebulk quantities mentioned above are hard
affected.
7-9
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PETER NALBACH PHYSICAL REVIEW B66, 134107 ~2002!
Typical tunneling elements vary betweenD.2.3 K for
NaCl:OD2 and D.85 mK for NaF:OH2.26 Dielectric ex-
periments are usually performed at temperatures that c
cide with the tunneling elements which means betweenT
.10 mK and a few Kelvin. Typical measuring frequenci
range between a few hundred hertz and about 1 GHz co
sponding to energy splittings between 50 nK and 50 m
These frequencies are too small to excite single tunne
systems or weakly coupled pairs resonantly except for
NaF:OH2 systems.

The easiest way to confirm our results would be to p
form echo experiments. Therein the relaxation rates
dephasing rates of the defects, which are in resonance
the external field, are obtained from the decay of the e
amplitude. However, experiments in NaF doped with a f
ppm of OH2 showed that the energy splittings of the tunn
ing defects are broadly distributed.26 One does not know, if
the sample is heavily strained or if the interaction betwe
the defects is strong. In both cases our approach is not
equate.

The system NaCl:OH2 with a tunneling splitting of abou
D0.1.6 K has been well studied. At an OH concentration
about 16 ppm, Ludwig26 measured the dielectric loss an
constant. They report a relaxational contribution in the
electric constant which also leads to a measurable diele
loss. The relaxational contribution occurs due to inter
strains, which also lead to a distribution of energy splittin
and thereby to a distribution of relaxation rates. The data
the dielectric loss shows that the relaxation rates are dis
uted over six orders of magnitude. Describing the tunnel
defects as two-level systems and neglecting interactions
tween them the relaxation rates depend on the asymmetF
resulting from the strain:G}D i

2AD i
21F2.27 The distribution

of asymmetries necessary to describe the data is unrea
broad. If we take the full structure of the NaCl:OH2 system
as a@100# defect into account but we still neglect interactio
between the defects, the dependence of the relaxation
on the various asymmetries changes. Nevertheless, ta
only a distribution of internal strains~asymmetries! into ac-
count in order to explain the dielectric loss actually disagr
with the data of the dielectric constant.28 By including weak
interactions between the tunneling defects, we showed
we obtain a set of considerably different rates. If the asy
metries broaden the discrete peaks in the rate distributio
a way as discussed above, this leads naturally to very b
distributions. Thus, the relaxational contributions in the
electric loss and the dielectric constant results from inter
strains but the broad distribution of relaxation rates nec
sary to describe the data results from the interplay of w
interactions between the tunneling defects and asymmet
Accordingly, the data discussed yields a strong but indir
hint to the experimental relevance of our investigation.

Similar broad distributions of rates were found in KC
crystals doped with 2 ppm OH2.26 The tunneling splitting in
these systems is aboutD.170 mK. Accordingly, this system
is an ideal candidate for echo experiments for two reaso
First, the resonance frequency of about 4 GHz is technic
accessible. Second, because of the dielectric constant
one would suggest that the tunneling systems are o
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weakly disturbed by strain fields which simplifies the inte
pretation of the results considerably. Therefore, we stron
recommend echo experiments in these materials, sinc
would be the first direct observation of the dynamics of we
defined tunneling systems in crystals.

VII. SUMMARY

We have investigated the influence of weak~transversal!
interactions between impurities in alkali halides. Here is
brief summary of the main points:

~i! Since the coupling constants between the tunne
systems are broadly distributed and since the coupling
phonons leads to a finite lifetime for any excitation, we c
describe the system as an ensemble of weakly coupled p
Thus, weak interactions do not lead to a relaxation mec
nism via energy exchange.29

~ii ! Weak couplings between the tunneling systems
only relevant as long as the systems areresonant—the dif-
ference of the two energy splittings is smaller than the c
pling d5uD12D2u,J and as long as the inverse lifetimeg i
of the eigenstateu i & is smaller than the coupling,g i,J.

~iii ! Typical electric fields used to investigate the dyna
ics of tunneling impurities in alkali halides have wavelengt
exceeding the mean distance of the impurities even at c
centrations of only a few ppm. Accordingly the field cann
resolve the single dipoles but only the total moment. In
weakly coupled pair bulk quantities like the dielectric co
stant are hardly affected, but the pair exhibits two Rabi f
quencies determined by the sum and the difference of
dipoles. If the relative angle between the dipoles of two tu
neling systems are homogeneously distributed, the Rabi
quencies become broadly distributed between zero and tw
the Rabi frequency of an isolated impurity. For tunneli
defects in crystals the dipoles have discrete directions le
ing to a discrete set of Rabi frequencies.

~iv! Similar arguments hold true for the phase cohere
times and the relaxation rates which are determined by
coupling of the phonons to the elastic moments. This lead
a discrete set of rates with a very small minimal rate co
pared to the rate of isolated impurities.

~v! Dielectric loss data in NaCl: 16 ppm OH show broad
distributed relaxation rates which cannot only be attribu
to strain fields. These features can be explained within
weak-coupling picture. KCl samples doped with 2 ppm OH2

show similar behavior, and we strongly recommend echo
periments in these materials since it would be a direct ob
vation of the dynamics of well-defined tunneling systems
crystals.
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APPENDIX: INTERACTION BETWEEN RESONANT
EFFECTIVE PAIRS

The main goal of this appendix is to show that reson
pairs formed by weakly coupled two-level systems can o
interact with each other by the same interaction leading
the formation of the resonant pairs if the two-level syste
are asymmetric. Therefore, we discuss four coupled TLS
which TLS 1 and 2 form the resonant paira and TLS 3 and
4 form the resonant pairb.

The Hamiltonian for these four two-state systems is giv
by

H5(
i 51

4 S D i

2
sx

( i )1
Fi

2
sz

( i )D1 (
i , j 51

4

Ji j sz
( i )sz

( j ) , ~A1!

with the tunneling splittingsD i , the asymmetriesFi and the
coupling between the two-state systemsJi j . Diagonalizing
each two-state Hamiltonian independently results in

H5(
i 51

4
e i

2
sz

( i )1 (
i , j 51

4

Ji j $ūi ū jsz
( i )sz

( j )1uiujsx
( i )sx

( j )%

1 (
i , j 51

4

Ji j $ūiujsz
( i )sx

( j )1uiūjsx
( i )sz

( j )%,

with the energy splittingse i and ūi5Fi /e i and ui5D i /e i .
We assume thatue12e2u<u1u2J12 and ue32e4u<u3u4J34.
Thus, system 1 and 2 form a resonant paira and system 3
and 4 form a resonant pairb. It is the coupling termu1u2J12
y
er
.

G

13410
d

t
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f

n

and u3u4J34 which shifts the degeneracy of the up-dow
statesu↓1↑2&5:ua,1& and u↑1↓2&5:ua,2& for the resonant
pair a and u↓3↑4&5:ub,1& and u↑3↓4&5:ub,2& for the reso-
nant pairb. These terms turn out to be the effective tunneli
splittings for this up-down effective two-state system:Dpa
ªu1u2J12 andDpbªu3u4J34.

The effective two-state resonant pairs only consider
statesua,1& and ua,2& for the resonant paira and ub,1& and
ub,2& for the resonant pairb, respectively. The effective
Hamiltonian for these four states writes

H5
Dpa

2
tx

(a)1
Fpa

2
tz

(a)1
Dpb

2
tx

(b)1
Fpb

2
tz

(b)1Jabtz
(a)tz

(b)

~A2!

with Fpa5ue12e2u/2, Fpb5ue32e4u/2 and

Jab5ū1ū3J131ū2ū4J242ū1ū4J142ū2ū3J23, ~A3!

and

tx
(a)
ªua,1&^a,2u1ua,2&^a,1u,

tz
(a)
ªua,1&^a,1u2ua,2&^a,2u.

The operatorstx
(b) andtz

(b) are defined in the same way.
These results show that the effective resonant pairs, wh

Burin and Kagan7 introduced, are indeed coupled with ea
other by the same interaction which leads originally to t
formation of the resonant pairs if and only if the two-lev
systems are asymmetric. The interaction between reso
pairs is as strong as the parameters of the resonant p
D0paªu1u2J12;Jab . Thus, the resonant pairs are strong
interacting and they form a collective cluster. However, t
result shows that the interaction between the resonant p
vanishes for symmetric two-state systems.
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