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The low-temperature behavior of imperfect crystals like KCI with a few ppm of substitutional defects like
OH™ or Li" is dominated by the dynamics of these defects. At low concentrations the defects are usually
described as isolated systems. We find that in typical experimental situations even at concentrations of only one
ppm the defects are not independent of each other. Instead they form pairs. For weak coupling, bulk quantities
like the dielectric constant are hardly affected, but the total mom@istric and elasticof the pairs of
tunneling systems depend on the relative angles between the tunneling systems. Since these angles take several
discrete values, there is a set of Rabi frequencies, relaxation rates, and phase coherence times, affecting echo
experiments.
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I. INTRODUCTION of a more rigorous treatment of the dynamics of interacting
tunneling systems.

The low-temperature properties of alkali halides may be The defects are often approximated by simple two-level
significantly modified by the presence of substitutional im-SystemgTLS’s) simplifying the calculation especially when
purities, such as Li, CN~, or OH . A few ppm of these dealing with interacting tunneling defect&.In the case of
defects are sufficient to change the thermal behavior and tH&nneling defects in crystals with eight possible defect posi-
elastic and electric response below a few Kelvin. tions the static and the dielectric properties are usually well

Regarding the polar molecules CNand OH, the point approximated whereas the elastic response differs

symmetry of the impurity site gives rise to several equivalen rastlcal!y? . In Sec. IVC we shortly discuss tunneling de-
ects taking into account their full structure, but for the sake

orientations; corresponding off-center positions arise for th ¢ simplicity we will use the two-state approximation
small lithium ion. Quantum tunneling between these state plicity PP
roughout the paper.

resul;s '3 a grou?d-ststte splllt_tmg tOft about 1dK. Since ;P:e Since a TLS describes a particle moving in a double well
number density of such tunneling states exceeds, even at o otential there is a direction connected to each TLS, which

concentrations, that Of. §mal|—frequency phonon modes of th e choose to be distributed homogeneously, and we assume
host crystal, the impurities govern the low-temperature propga the electric moment is aligned with that direction. Sim-

erties of_the material. The cubic symmetry of the fcc cryst.alsp“fying the elastic moment to aglastic dipolewe choose its

favors six, eight, or twelve defect positions. The resultinggirection to be homogeneously distributed as well. We addi-
energy spectra have been discussed in detail by Gaez tionally assume that the direction of the elastic moment is
al.,' and agree well with the Schottky peak observed by Pohjndependent from the direction of the electric moment. This
and co-workers for various impurity systems at low dopfing. assumption is typically not justified but within the two-state

In defect crystals the importance of the coupling betweerapproximation it is necessary to reveal effects discussed in
the tunneling systems depends on the concentration of deke present paper which would be hidden if we assumed
fects and ranges from wealkypically for a few ppm to  strictly aligned electric and elastic moments. In Sec. IV C we
strong(typically for a few hundred or thousand ppnBulk  will justify our approach by showing that the mentioned ef-
quantities like the dielectric constant of such interacting tunfects are present for the defects taking their full structure into
neling systems are well described by a model o'frgm3 account.

But it is hard to gain information about the damping rates The Hamiltonian of a TLS is given by
from that treatment.

The low-temperature properties of glasses are similarly A F
dominated by tunneling systems. Although little is known Hrs==50x" 5
about the detailed structure of these tunneling systems, the
phenomenological standard tunneling m8désTM) pro-  with the tunneling splittingA of the classical ground states
vides a good description of most experimental fadis.re-  and the Pauli matrices, oy, ando,. The matrixo, cor-
cent years, experiments at temperatures below about 200 mi€sponds to the real-space coordinate Riglthe energy bias
showed clear deviations from the predictions of the $TM between the “left” and “right” well given by external or
which are mainly attributed to weak interactions between thénternal fields. The internal fields can be divided into two
tunneling systems. Burin and Kagaproposed a new relax- subclasses depending on their source; defects which are
ation mechanism due to weak interactions and the existencstatic on the time scales of experiments yield static fields but,
of a dipolar gap in the distribution of energy splittings. De- for example, fasttunneling defects or elastic waves in the
spite the success of these investigations in explaining at leastedium generate dynamic fields and we have to take their
gualitatively most experimental features, there is still a lackdynamics into account. Neglecting static fields, we end up

oy, (1)
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with the Hamiltonian(9) in which we included interactions Il. LIOUVILLE FORMALISM
between tunneling defects. Each defect, therefore, sees a dy-
namic field generated by the other defects.

The coupling between the tunneling defects is modeled b
a dipole-dipole typeJ;;o’o) term and the coupling con-
stantJ;; depends inversely on the cube of the distance be
tween TLS's. Accordingly we expect a distribution B{J)  hemselves. The von-Neumann equation for the statistical
«1/J? for homogeneously distributed defects. We thereby as- tora(t) vields a simple example
sume equal probabilities for both signs of the coupling toopera orp(t) yi 'mple eéxamp
mimic the angular dependence of the dipole-dipole interac- SN TR ()] — -
tion. With rising concentration the mean value of the inter- ap (1) TR, p(O]=:£0]pM) @
action increase$At lowest concentration of a few ppm the defining the Liouville superoperataC(t). We usefi=1

interaction is usually negligible in measurements of the dithroughout the paper. There are several possibilities to define
electric constant. a scalar product. In the following

A convenient starting point is a formulation in Liouville
spacet! This is a linear space spanned by quantum-
¥nechanica| Hermitian operators in which each operatis
considered as a vectph). Superoperator€® are introduced

as mappings of the guantum-mechanical operators onto

We want to investigate weakly interacting two-level sys- A tA
tems coupled to a heat bath, a typical situation in a crystal (A|B)=Tr{A'B} S
with only a few ppm of tunneling defects. While such tun- js used. As in Hilbert space we can define a time evolution
neling systems are usually described as isolated, we ask hesgiperoperatot4(t,t’) which obeys
if a weak coupling leads to energy exchange between the
tunneling systems and thus to a new relaxation mechanism. Ut )= LOULL) (4)
We show that there is no new relax_at|on _mechamsm._Thgvith initial condition U(t,t)=Z and Z{A)=|A). It is con-
coupled system separates into effective pairs. Each pair capnient to introduce at least two types of superoperators: the
be described as two effective uncoupled TLS and, then, evegyrejation operatord with
weak interactions result in a broad distribution of effective
moments(electric, elastig within the two-state approxima- A|X) :=| H{AX+ XA}, (5)
tion. Taking the full structure of the tunneling defects into .
account we obtain a discrete set of a few effective momentg&ind the response operatrwith
Rates for energy relaxation or dephasing of a tunneling de- N PN
fect are given by the probability for an absorption or emis- B|X)=i[B,X]). (6)
sion of a resonant phonon. If two TLS’s forming a pair have With this f | . he th i
identical energy splittings as is typically the case for crystals I ) this ormal preparatlgn we car\ express the thermo
with only a few ppm of defects, a phonon with the samedynamic averag¢A), correlation function<C, g(t,t') and,
frequency can interact resonantly with both systems. Sincadding external fields to the HamiltoniaM(t)—H
the wavelength of such phonons is typically larger than the- hB(t)B, the response functionB, g(t,t') (within linear
distance between the tunneling systems, the phonons cann@lsponsg
resolve the single moments but only the total moment. As the

values of these total moments are broadly distributed, so are (7—\)=(J1|A|p),

the relaxation rategfor energy and phageof the systems

instead of being peaked at the value which an isolated TLS Cag(t,t")=(1| AU (t,t")B|p),

would have. Such a distribution may show up best within

echo experiments which are directly sensitive to the various S(A)) -

rates. Rag(t,t’)= = (1| AU(t,t")Blp). (7

Even if our model is not adequate to discuss interacting ohg(t’)
tunneling systems in glasses, since we neglected asymme-
tries (static internal fieldg it can be viewed as a first step in
that direction.

The paper is organized as follows. In the following sec- " _ "
tion we give a short introduction to the Liouville formalism Xpp(@) =2 AN Bw/2)Cpy(w), ®
which gives the main theoretical framework for the subsewhich connects the spectyg (») andCp(w). We define
quent discussion. In Sec. lll we introduce the approximationshe Laplace transformation of f(t) as f(2)
used to calculate the dynamics of the defects coupled to &i[;dtexp(zt)f(t). Thus the spectra are given as the imagi-
heat bath. In Sec. IV we investigate the dynamics of &nary part of the Laplace transforms fa-¢ w) with o real
coupled pair of TLS's and calculate the relaxation rates dugindz in the upper complex half plane.
to the interaction with the phonon bath. In Sec. V we show
that within the assumption of weak coupling we can simplify IIl. MODEL
the case of many interacting TLS'’s to a set of pairs. The last
section contains a summary of our results and a discussion of In this paper we address the problem of coupled two-level
their experimental relevance. systems which are also coupled to a bath of phonons. Quite

The correlation and response functions are related by the
fluctuation-dissipation theoref
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generally, the heat bath may be reduced to a set of harmonapproaches conclude that relaxation rates are governed by
oscillators with linear coupling to the dipole operatdf) of ~ the direct or one-phonon process, resulting in weakly

the TLS’s? leading to damped dynamics.
A We address the question of how relaxation and dephasing
H=Hgs+Hggt+Hg, rates are changed if we allow for small interactions between

the TLS’s. As we are only interested in the low-temperature
A; 0 M -0 results, we use a simple resummed perturbation series intro-
Hs=— 2. 5 0x ~ ; Jijoz 037, duced by Horner and Wgert**to deal with the coupling to
. phonons. Our main focus is how small interactions between
_ _ the TLS’s alter the damping rates compared to the rate of
Hsg=>, o\ > N (be+b')), independent TLS’s.
i K For example, in order to calculate the dipole-dipole cor-
relation functionC,(t,t") we first integrate out all bath de-
Hg=> wkblbkv (9) 9grees of freedom. Formally we obtain

t t
with the annilation (creatior) operators for the phonons Cpp(t,to)zf dsf ° ds’(l|'Pueﬁ(t,s)Pren(s,to,s’)|peq)
bk(bl), respectively. The tunneling elements of tunneling o 7 12
defects in crystals are usually equgl=A. We consider the (12
case of weak coupling between the tunneling defects assunwith the statistical equilibrium operator of the paig, and

ing that the mean coupling(r) between tunneling defects at the dipole superoperat@. We thereby assumed that at the
the mean interparticle distangeis much smaller than the UMmet=—c, both systems are decoupled and we can express
tunneling element\ of the defects. The coupling between the equilibrium as the direct product of the equilibrium op-
the phonons and the TLS's leads to damping for the latteSrators of the pair and the bath. The following time evolution
For crystals with sufficiently few defects, the time evolution /€S t0 & renormalization of the dipole operafy,,. We
of the phonons is not affected by the TLS's and the effect o@iV€ the above quantities in their lowest order.
the heat bath on the TLS's is entirely characterized by the Within the Laplace representation we get

eneralized spectra _ _
J P Ue(2)=—[Us(2) *=M(2)] * (13)

ij ™ i - for the effective time evolution using the free time evolution
I () == ADYND S(w—wy), 10 g _

(@) 2 zk: (M) A"l = ) (10 Ug(z) of the defects alone. To lowest order iBggp=

where we assumed equal coupling constants for all defects. Hsg the memory kemel reads

As long as the excitation energiestdt do not exceed a few "n_ /
Kelvin, only the low-energy part of the bath excitations is ML) =T LseUo(t") Lsals, 14
important. At these energies the spectral functidi’)(w) where Uy(t,t’) equals the free time evolution. The trace
obeys a simple power-law behavior that is determined by th&@r{-}g only has to be taken with respect to the bath degrees
density of stateX6(w— w,) and the frequency dependence of freedom.
of the coupling energies(k'). The renormalized dipole operator is in lowest order

In insulating materials, low-frequency elastic waves pro-
vide the most efficient damping mechanism. The linear dis- Prer(S.t0.S") =P+ TH{LsgUo(s,to) PUo(to.S") Lsg}s -
persion relation gives rise to a quadratic density of phonon (15

states. Taking into account the frequency dependeile e are mainly interested in phase coherence times and re-

x\wy due to the coupling of the elastic moment of a two- |axation rates. The memory kernel is sufficient to calculate
level system to the distortion of the host material due to thehese quantities.

elastic waves, we obtain the well-known cubic law Within the approximation, which we will use, the result-
) ing rates are identical to rates obtained by Fermi’s golden
(=i) 3 37 rule. However, the advantage of the Liouville formalism is
JV(w)=majw® with aoj=—— (12)

that it provides us a general framework to obtain the re-
sponse functions and the rates in which we also could go
wherep is the mass density of defects andis the sound beyond the approximations equivalent to Fermi’s golden
velocity. vy; is the deformation potential of the defdcand, rule.
therefore, the coupling constant between the Tl&hd the
phonons. IV. A PAIR OF DEFECTS

There are various approaches for calculating the dissipa-
tive dynamics of single two-state systems coupled to a pho- The Hamiltonian of a pair of TLS's is given by
non bath*?>~3The case of a pair of TLS’s was considered by
Terzidis and Wrgef wherein they focused mainly on the Ay a_ &

) : e Hoo=— — (2) _ 3,4+(1) ,(2) 1
dielectric constant. In the low-temperature limit, all of these pair 2 Ix 2 7x Joz 07, (16)

27Thp05’
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wherel is the coupling between the TLS’s and theare the
energy splittings of the TLS’s. The phonons couple via their
distortion field e,4(r) to the elastic moments!); of the €
TLS’s.!® Since we have no detailed information about the !
elastic moments, we approximate this coupling by

Hse= 22 {ofND(r) + oME(r)} (bt bl (17) "

2
with f
7 FIG. 1. The spectrum of a pair of weakly coupled TLS'’s. The
)\ﬁi)(ri) =~(cog @®,)ike i / 7 (18 arrows give the possible transitions that can be induced by phonons
8NMwy or electric fields.

where we introduced the angf®; between the elastic mo- L _ _

ment and the direction of propagation of the phonon withirum of a pair withA=1, J=1/6, and5=0. The spectrum
wave vectork. Since TLS’s are one dimensional, we cannotConsists of four levels, the second and third of which are split
account for the full angular dependence of the quadrupol®Y 2vJ°+ 6%, which is independent of. The arrows in Fig.

coupling. Simplifying to a picture of a dipole coupling, the 1 indicate possik_)le_ transitions that can be i_ndUt_:ed by
elastic moment couples to the direction of propagation of th?honons or electric fields. Even though the Hamiltonian Eq.
phonons leading to the term c@kf with the angle®; be- (20) describes two independent effective TLS's, the transfor-
tween the two vectors. Since we integrate over all directiongation Eq. (19) complicates the coupling to phonons or

of propagation of the phonon, this angle dependence yield elds. Each phonon can induce all four transitions shown in
only a numerical factor for a single TLS. Fig. 1. Since the phonon couples to the total moment of both

In the case of a pair of TLS’s the phonons couple to thel LS’s, the four transitions are induced with two different
total moment of both defects. If the wavelength of the pho_transition strengths indicated by the numbers next to the ar-
non scattered by the pair of defects is longer than the dis@WS- _ _
tance between them, the damping rates depend on the rela- The transformed dipole operatoss are given by
tive angle between the two TLS’s. For defects further apart THoWT =y, i 1. 712
the resulting damping rates are independent of the relative z 1%z 1%tz
angle between the two TLS’s and the above introduced an-

. . . t (7= (2) (1) (2)
gular dependence yields only a numerical factor in the damp- Tlo T=ur " Fvam, 'n,

ing rates like for single TLS. with
The same argumentation holds true for the coupling be-
tween an external electric field and the electric dipole mo- u;=cofa), v,=-—sinB),
ment of the defects as seen in the following section for the
Rabi frequencies of the pair. Usual measuring frequencies u,=cogfB), vi=-sina).

fall in the range between 1 kHz and 1 GHz which gives o
wavelengths not shorter than 1 cm. Accordingly the field is" the caseJ<é<A the two systems remain independent
uniform over the entire sample. For describing the angulagince vi~0(J/6,J/A) and =A;+0O(J/6,J/A). Accord-
dependence of the electric dipole coupling we introduce thé"gly the coupling is negligible. This shows that the interac-

anglesd, between the dipole moments and the electric fieldion can only affectesonantsystems which means that both
systems have the same energy splitting.

Below we focus on the case af<J<A where u;=
) ] ) . —up,=-—uv;=—v,=1/\/2. As long as the wavelength of the
_ Before we go into detail about the calculations in Liou- glectromagnetic field is large compared to the distance of the
ville space, we discuss the Hamiltonie6) of the pair fol-  two dipoles, the probabilities of the transitions in Fig. 1 in-

A. A pair without coupling to phonons

lowing Thimmelet al!” The transformation matrix duced by an electric field are proportional to the square of
o . the transition strengths%:(1/2)[003(01)1003(62)]2 [where
T=ex;{ i _0(1)U§2)+i _0(21)0(2) , (19 — (+) corresponds to the transition marked by2}l]. The
27 2 Y 6;’s are the angles between the electric field and the dipoles
with tan(e+pB)=—J/A, tan@-pB)=-J/5, A=(s, Of the defeci. -
+A,)/2, ands=(A,—A,)/2 yields Assuming that the angles, are evenly distributed, we
obtain a broad distribution of transition strengths. Nev-
€ ertheless the modifications of the dielectric constant of the

€
Ho=T'Hpgy T=— 5 i)

2 2 T>(<2)' (20 pair in comparison to isolated systems are of oi@éd/A),

and therefore small. In contrast, if one performpkase-
with the energiese,,=yJ*+A%+J*+6° and the Pauli coherentexperiments on the tunneling defects, the situation
matricesr,, 7,, andr,. The same transformation has to be changes. With rotary echos one is able to measure the Rabi
applied to the dipole operators. In Fig. 1 we show the specfrequencies of the pairs which depend on the transition
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; . 4 deal 27Td02
04 | 1 f f 8(p—s.) (22)
< 13
o2y - 1 fl ®(1-|V2p*yl) 3
dipole moment p/p, 2272 M—y\1-(\V2p=y )2
' -2

0.5

.5 -0.5 1.5

with the Heaviside functio® (x) and the normalized dipole

momentp:=p/p,. We, thereby, assumed equal probabilities
for positive and negative coupling and we assumed weak
couplinge;=e,=A. The inner plot in Fig. 2 shows the dis-
tribution of dipole moments. The distribution is smooth be-
: : 0 tween= /2 except for a logarithmic singularity fqy=0.
0 0.5 1 1.5 We should point out once again that this distribution of
frequency (w-ag)m effectivedipole moments is only relevant for echo experi-
ments since we extracted it from a distribution of Rabi fre-
rhuencies mapping these to effective dipole moments in order
describe experiments within a picture of identical isolated
unneling systems. In the following section we take the cou-
pling to phonons into account.

spectrum p(m) (arbitray units)

FIG. 2. The spectrum of the time-dependent dipole expectatio
value and the distribution oéffectivedipoles which results from
mapping the Rabi frequencies of an ensemble of weakly couple
pairs onto an ensemble of isolated TLS’s.

strengths. Thus, this quantity is broadly distributed in the B. Damped pair
case of weakly coupled pairs, whereas it should be peaked
for identical isolated systems. Thimnetl al’ investigated a
pair interacting with a quasiclassical electric field. The weak-
coupling case is given as the third case=(m=1) in their
Appendix A4. The only additional assumption we need in
order to adopt the results, is that the coupling bigger than .0 tee
the field energyy=pE using the bare dipole momeptand In order to obtain the damping rates, we have to calculate
the electric fieldE=E|. If Jis smaller, we would expect the actual measuring quantities like the dipole susceptibility or
coupling to be irrelevant compared to the field. the time-dependent dipole expectation valserting from
Taking only the dominant contributions into account, thean off-equilibrium situation Thus, we need the effective
time-dependent dipole expectation value of a pair excited byime evolution[cp. Eq.(13)] of the system and, thereby, the
an external field with frequency, reads memory kernel[cp. Eg. (14)]. It is convenient to use the
operator¥’ |ij)=1i)(j|, where thei) are the eigenvectors of
the pair HamiltoniarHp,;,, as basis for the Liouville space.

In the last section we showed that as long as the tunneling
systems areesonant i.e., 5<J<A, even a weak coupling
leads to a broad dlstrlbutlon of Rabi frequencies since the
external wave is not able to resolve the single dipoles. We
now investigate if something similar happens to the relax-

1 _ In this basis the free time evolution of the pair is the diagonal
PO(t)= 7P S:ra(1215) {sin((wo—Q2)t) matrix
e [Us (D) 15y = (1] [Us () [KI) = = (2= (Ei = E})) &ijyxi) »
sin((wo+Q)D)} (22) (24)

where the eigenvalueg; of the HamiltonianHp,; corre-
with the Rabi frequencied).=7ns., the temperature- spond to the eigenvectols.
dependent factors,=tanh(Be/2), the frequencyw, of the
external field which is chosen to equaland the bare dipole 1. Bath functions

momentp, of a single tunneling system. We assuméd Before we discuss the memory kernel we introduce the

>0. (|f13<0) the temperature-dependent factor would changge|evant bath functions. We distinguish between correlations
tory(1¥r,

If we assume that we can describe many weakly coupled i Q¢ i z
tunneling systems by an ensemble of weakly coupled pairs Bc (Z):fo doJ"(w)coth Bul2) ——, (25
with different couplings® the Rabi frequencies should be Tz
broadly distributed due to the distribution of the transitionand response functions
strengthss; ;- . Figure 2 shows the spectrum pf®(t) after
averaging over the angle$;. We show only the part for (i) i) ®
frequencies higher than the external exciting frequesagy Br Z)_f dw2] (“’)w 2_ 2 (26)
If we try to explain such a spectrum by an ensemble of
noninteracting TLS’s we have to assume the following dis-with the generalized specttd!)(w) [compare Eq(10)] de-
tribution of dipole moments: fined as
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ID(w)= 5 2 NI () (= wy).
K
- 0.8
J(w) yield the well-known spectral functions whereas the
mixed spectral*1)(w) show an explicit dependence on the
positions of the TLS$ andj:

NI () cexik(rj—r))]. (27) 04 -

But, as long agk(r;—r;)]<1, which means as long as the
wavelength of the phonon is larger than the distance between
the TLSs, the mixed spectra are equal to the spectral func-
tions. In order to calculate the spectra explicitly, one assumes 0
linear dispersion and one introduces an upper cufqffor

the phonon frequenciés.

0.6 A

p(z)

05 1 1.5 2
Z

FIG. 3. The distribution of the facta entering multiplicative

2. Approximations into the ratel;.

It is well known that if you start with two arbitrary TLS’s B
coupled to a boson bath, the coupling generates an effective B1=2[cog(0,)+cog(0,)]- [B”g')(— €5)
interaction between the TLS’s through exchange of virtual — i)
bosons?® A careful investigation shows that the entries in the +B'R(—e)],

memory kernel proportional to the bath response functions i) o _
BU*)(z) provide this effective interaction. We discuss the WhereB"c(r) IS the imaginary part of the bath correlation
interaction between the TLS's as a renormalized coupling®SPonsefunction.

which incorporates these effects already. Therefore we ne- A diréct way of observing these rates is to perform two-
glect the contributions frorBS*”(z) in the memory kernel. pulse echo experiments. Therein the decay of the echo am-

In the weak-coupling limit the resulting memory kernel plitude is governed by the rates we obtain from the above

yields only a small correction to the frequencies of the freeMemMory kernel, . i
There are two simple extreme cases:

namics. Representing the memory kernel and the free tim i
dynamics. Representing the memory kernel and the free time (a) A>rq,: If the wavelengtth =hc/e; is larger than the

evolution[cp. Eq.(13)] as a matrix in the basis given above, . :
we neglect all entries of the memory kernel which combined's'[alncerlz between the wo TLSs, the generalized spectra

different invariant subspaces of the free time evolution. Thi€"© independent of the positions of the TLZS s. Since the real
is valid if the couplingd is bigger than typical entries of the Parts of the bath functions are of ordagaﬂc), whereas the
memory kernel. Otherwise, the coupling would turn out to belmaginary parts are of the ord@(«A*), the off-diagonal
completely irrelevant, resulting in two uncoupled TLS's. Ad- €léments inM(—e,) are negligible. The angle®; are not
ditionally, we evaluate the remaining entriesM{z) at the independent of each other since the relative anjgle be-
resonance frequency of the corresponding invariant subspad@een the two TLS's is fixed for each configuration. The
of the free time evolutiod? average over all possible directions of the phonon yields
The real parts of the memory kernel yield small renormal-cos@1)cos®,)=(1/4m)cos(y,), so that the rates depend on
izations for the resonance frequencies of our system. We até€ relative angle between the two TLSs.
interested in the dephasing and relaxation rates which are We obtain two transversal rates for excitations with en-

given by the imaginary parts. ergy e, corresponding to the transition from the ground state
to the first excited statel(;) and from the first to the second
3. Decoherence rates excited stateI(,). The expressiom\ in M(—€;) yields the

If we are interested in the dipole susceptibility, we have topart already present for an isolated .system. The expressions
' 431,2 reflect the loss of coherence if the pair undergoes a

calculate the time evolution of the subspaces involving th . . .
energiest e; and + €,. The four subspaces are independentth_er_mal f_Iuctuat|on with energy,. The termC desc_rlbes the
ixing since the phonon cannot resolve both dipoles inde-

from each other and within our weak-coupling assumptionm dentlv. Finall t
their dynamics are equivalent. We obtain for the memorypen ently. Finally we ge

kernel of the subspace of frequen
P AHenea Iy = Tol 1 co8 Yy 11+ 2n(e)]+ 2T g2n( ),

A+B;—C -B,
M(—e)=|  _ @® =y 142 2T [1+2
B, A+B,+C 2=o[1+cog o) [[1+2n(€1)]+20[1+2n(€7)],
: (29
with
(i with the bose factora(e,) and a material constaiht,. For
A=[coS(0;)+cos(0,)]Bc(—€y), an ensemble of pairs with homogeneously distributed rela-
(12) 21) tive anglesy;, we end up with a broad distribution of phase
C=c090;)cog0,)[Bc(—€1) +BE(—€1)], decoherence rates. In Fig. 3 we show the distribution of the
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angle dependent factar:=1—cos(/y,). In the case of an finite (due to a finite total electric momentThe dielectric

isolated TLSz=1. response of a pair dfl11] defects by measuring ir direc-
The distribution for the factoz follows tion exhibits a contribution decaying with a raie, (i,
=0) which has a finite total electric moment despite the fact
(1/27) . that the moments are not independent of each other. There-
BN with z€]0,7. (300 fore, our assumption of independent directed moments is

necessary within the two-state approximation to reveal this

It shows two square-root singularities. Since ox A the situation. Instead of a broad distribution of rates we get for
bose factor n(ei)<1, the minimal rate I'""(z=0) this special case discrete values which we can describe with

= 4T n(e,) is very small leading to long coherence times. & Set of discrete prefactors=0,1,2. _ _
(b) A<r45: In the case of\ <r,, the termsC are negli- The dynamlcs of a pair of tunneling defects taking their

gible. In this case the dynamics turns out to be identical tdull Structure into account depends strongly on the geometry

that of two isolated TLS's with energies which are inde- of the experiment. Typically, we have several Rabi frequen-

R

pendently coupled to a heat bath, and the rates are not di§léS and we have long dephasing tiniés (y,,=0). For a

tributed. detailed comparison with experiments a complete investiga-
So far, we only discussed the decoherence rates. A njion would be necessary. However, assuming independent

merical analysis of the relaxation rates, determining the defomogeneous distributions of the angles between the elastic

cay into thermal equilibrium, shows that these are alsgnoment and the elastic waves and the dielectric dipole mo-
broadly distributed due to the same mechanism. ment and the electric field for both tunneling systems form-

ing a pair reveals the full range of possible Rabi frequencies
C. [1001 and [111]-tunneling defects and damping rates for tunneling defects in crystals.

In this section we try to give a short overviefwithout
the lengthy calculatiorwhat we expect for tunneling defects
taking their full structure into account. We assumed, so far, |n the last section we described weakly coupled pairs of
that the dielectric dipole as the elastic moment of a tunnelingunneling defects. In this section we argue that we can de-
defect can point in any direction and both are not necessaril¥cribe weakly coupled tunneling defects as an ensemble of
aligned. Accordingly all four angle®,, O, 6,, and6, are  pairs; so to say within a pairmodel.
independently distributed. These assumptions seem natural |n a crystalline host material like KCI doped with a few
for tunneling defects of which we do not know the structure.ppm of defects, for example 5 ppm 6Li, these defects
The structure of tunneling defects in crystals, however, iSorm tunneling systems which tunnel between various
usually well known. There are three possible cases for cubiginima of their potential-energy landscape provided by the
host crystals: 6, 8, or 12 potential minima which represenhost. Measurements of the dielectric constant, for example,
the face centers, the corners and the edge centers of a culge well described within a picture of isolated identical tun-
In the case of sixeighy minima the dipole moment points neling defects with a tunneling splitting of abouk
along a[100] direction ([111] direction. These defects are, ~1.65 K.2* At concentrations of about 60 ppm the interac-
therefore, called100] defects([111] defects. tion between the tunneling defects results in measurable de-

For an electric field inx direction E=[E,0,0] the angle viations from the picture of isolated identical tunneling
between the electric field and the dipole moment can onlyjefects?® At these medium concentrations thairmodelin-
take the values: 0, 90, and 180 deg fd180] defect and 45  troduced by Klein and othesis used to describe the sys-
and 135 deg for a[111] defect. Calculating the time- tems. Within this approach one describes the tunneling de-
dependent dipole expectation value for a rotary echo experfects as an ensemble of pairs of two-level systems. At higher
ment[cp. Eq.(21)], we end up with more different transition concentrations of defects the pairmodel fails and a more
strengthss; than the twcs.. of the case of two-level systems. elaborated treatment of the coupling is neces$afymodel
For a pair of[100] defects we would obtais,=0, s;=1, by Wirger describes most experiments very véfl.
ands,=2 leading to two visible peaks in the Rabi-frequency A delocalization of the excitations of the tunneling defects
spectrunithe peak corresponding 83 has vanishing ampli- or in other words the existence of a collective phase of tun-
tude, comp. Eq(21)]. In the case of a pair dfl11] defects neling defects is experimentally not found and at concentra-
we obtains,=0 ands;= 2 and, thus, only one peak in the tions below 10 ppm the interaction between the tunneling
Rabi-frequency spectrum. The situation turns around fodefects can be discarded at all for describing data of the
measuring with an electric field {iL11] direction where the dielectric constant. We showed in the last section by using a
[111] defect exhibits two Rabi frequencies and fi€0] de-  pairmodel approach that even very weak couplings lead to
fect only one. several values of Rabi frequencies and relaxation rates in-

Using the full structure of the tunneling defects we canstead of single values expected in a picture of isolated iden-
take into account the tensor character of the elastic mometical tunneling defects. These effects might help to under-
(see Refs. 3,10 The assumption that the electric and thestand the small deviations of the experiments at samples with
elastic moment are independently directed ensured within theopings less than 10 ppm and the theoretical predictions.
two-state approximation that the dielectric susceptibility ofFinally, it leads to a clearer understanding of a single tunnel-
pairs with a dephasing raté,(¢41,=0) [cp. Eq.(29] was ing defect in these crystalline materials.

V. MANY TWO-LEVEL SYSTEMS
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In the following we will underpin the use of the pair- sumption that we can neglect intermixture of the ground, the
model. If we neglect the coupling to phonons the Hamil-first excited and higher excited states is questionable. We
tonian(9) is identical to an Ising spig-system with a trans- expect that the excitations are delocalized and the system is
versal fieldA. The couplingJ;; between the spins depends in a collective phase. Levité¥ and Parshin and SchoBér
on the inverse of the distancg between two spins cubed: found in similar models such a delocalization for excitations
Jijxllrﬁ . Due to the angle dependence of the dipole-dipoleinteracting with a dipolelike long-ranger®/interaction.
type interaction the coupling constadfj can have both These theoretical results are in contrast to experimental
signs. If we focus our consideration for a moment to a singlgesults. In a typical experimental situation the sample size is
TLS i we can define the local fields;=J;jo,; which a  of the order of 1 mr With lattice constants of the order of
neighborj is providing by the interaction to the TLE The 5 A and assuming =0 we can estimate that only for mean
total local fieldh=X;h; vanishes due to the symmet®  couplingsJo,=A/[4 In(1 mm/5 A)]=5x103A, the inter-
(—=J)=P(J) of the distributionP(J) of coupling constants action actually dominates the dynamics of the tunneling de-
J;j . However, in order to decide whether the interaction is afects. Accordingly, at lowest concentratiorigesulting in
relevant quantity for the dynamics of the TliSve might lowest mean couplingsthe experimental results might not
sum up the absolute values==;|h;|. Switching over from  contradict the consideration above. However, we neglected
a sum to an integral in real space and integrating only ovein our theoretical investigation the coupling to phondbe-
all neighbors within a sphere of radiksyields sides the possibility that this coupling gives rise to the cou-

pling between the TLS)s The coupling to phonons results in

R »J0 a finite linewidth y for the excitation frequencies of the
w= J; dR4mR Etanl’(ﬁA/Z) TLS's?”If an excited TLS is coupled by an interactidiio a
min neighbor the excitation energy is transferred back and forth
R between the TLS and its neighbor with a perioa/3. If the
=4mJytani( BA/2)In Rmm) : (3D lifetime (relaxation timé 7= 1/y of the excitation of the TLS

is less than the period of the oscillation, the TLS would be
with a minimal distanceR,,;, between TLS's given by the decayed to its ground state before the energy could be trans-
lattice constant and a mean interactignbetween TLSs. In  ferred to the neighbor. The coupling would be irrelevant in
the thermodynamic limiR—c this expression diverges for this case since it is not effective in delocalizing the energy
any strength of the coupling. Accordingly, we expect that theover both systems. Thus, the interaction with phonons yields
interaction dominates the dynamics of the system. Let us trg natural cut-off radiu®, for the interaction by the argument

to base the above arguments on a more rigorous footing. ThER.) = J;a(Rmin/Re) 3= 7y with the minimal distanc&;,

problem is the diagonalization of the Hamiltonian between tunneling defects which is of the order of a lattice
constant and the maximal coupling},,, between nearest
A neighbors. Using this cut-off radius in the expression above
H=2 S ot 2 Jijoyioy, ghoors. sing - pressit
T2 i for estimating the relevance of the interaction yields

=4mJytanhBA/2)In(R./Ryi) since we only have to inte-
grate over the neighbors within a sphere of radiys Fol-
owing our simple argumentation we would conclude that for
w’ <A the interaction between the TLSs does not lead to a

. collective behavior/ delocalization. This argument does not
state would beN-fold degeneratedwith the numberN of rule out the formation of pairs or clusters of more than two

TLS's). The wave functions are the productsitf-1 of the TLSs but it explains the absence of a delocalization of the

%rﬁﬁ Ino;hﬁézglz?rl:{]edrascttail;?\:r\:\?e?gie r;I:[Lt?el?elr;S tegg';[gdn:t?;ec?ingle TLS excitations. The same argument holds in gla7$ses.
9 9 P 9 To quantify the influence of a neighbor which is further

intermixture of the ground, the first excited and higher ex'apart form the TLS of interest than the cut-off radius we
cited states and 10 dis_cuss on_ly the lifting of the qege.ne@c%vestigate a Gedanken experiment. We prepare a symmetric
of, for example, the first excited state. Its Hamiltonian STLSina superposition between its ground and excited state.

where we rotated the Pauli matrix basis arourcby 90 deg
compared to Eq(9). Without interaction between the TLSs,
the ground state would be given by the product state of al
the ground states of the individual TLS’s. The first excited

given by This superposition is actually a localized stétereal spacg
0 Jpp Jig - with a finite dipole expectation value. The free evolution
forces the tunneling particle to tunnel periodically between
W= Jiz 0 Jas 32) its two potential minima with a period2/A whereA is the
SN VPP PO I tunneling element. The coupling to phonons leads to a finite
. - lifetime for the coherent superposition resulting in an aver-
age behavior for the dipole expectation value pft)
with the couplingJ;; between TLSi and TLSj where we  =cos(At)exp(—t) with time t. If we include one neighbor
used the basis:7(([---), (IT]--), ... . The eigenvalues with a couplingJ to the TLS we can simply calculate the

of the matrix W; are distributed betweep—uv,v] with v time dependence of the dipole expectation value with the
=v,—=2,—|.]ij| which is independent ofj. Since w methods described in the section before. We assume that the
=y tanh(BA/2) we know from the considerations above thatcoupling isirrelevant J<y. To simplify the investigation

in the thermodynamic limib diverges. Accordingly, the as- we assume furthermore that the distangebetween the two
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TLS's is bigger than the wavelength of a phonon in reso- change. Nevertheless the resonant pairs interact with each
nance with the TLS’s. This saves us from taking additionallyother by higher-order effectSn the coupling to phonons
mixed bath functions into account which would complicatei.e., two-phonon exchange. This coupling is weaker and the
the analysis, but which would not change the general behavesonant pairs are only weakly coupled. The same argu-
ior. Under these assumptions the corrections to the dipoleents, which lead us to conclude that the single TLS'’s exci-
expectation value are of ord€¥((Jt)%). The assumptiod  tations do not delocalize, therefore forbid a delocalization of
<y guarantees that the correction given by one neighbor ithe resonant pairs. What is more, the higher-order coupling
small for all times. However, it is important for the case of depends typically on the distancebetween the TLS’s like
many neighbors that the corrections given by a neighbor aré/r" with n>3. Thus, the coupling is of short-range nature
quadratic. All neighbors whose distance to the TLS of inter-and in a short-range coupling problem we only expect col-
est is bigger than the cut-off radius give a correctionlective phases for couplings comparable to the energy split-
«3;35t?=[JoJ(Ro)]t? wherej sums only over neighbors tings of the effective pairs.
with r;;>R.. ForJo>J(R.) it holds that\JoJ(R.) >y and After all, we believe to have ruled out the occurrence of a
the corrections are visible. However, it also ensures that theollective phase. The main argument is that as long as the
correction of nearby neighbons;<R. is bigger than the coupling is weaker than the linewidth of an excitation the
correction by all the distant neighbors, which allows us tocoupling can be neglected. Any progress in a full and com-
neglect the distant neighbors in a first approach completelyprehensive understanding of the above given argument
Since typicallydy,J(R.) <A all corrections to the dynamics would be desirable. Accepting this argument to hold true, let
of the defects are small and we do not expect a collectivéls conclude that the interaction between tunneling defects in
phase to be formed or a delocalization of the excitations tgnixed crystals does not lead to a collective behavior at least
happen. as long as the coupling is sufficiently weak. Nevertheless, the
At this point we will investigate what are typically cut-off defects will form pairs, triples and clusters of more defects.
radii and how many neighbors will be within a sphere of theln this scenario of small clusters the pair will obviously be
cut-off radius around a given defect. The linewidth of CN the mostimportant member since more than two defects with
defects in KCI, for example, is about=1.35x10° s™1# equal couplings between each _other are more unlikely than
~10 mKkg.° Typical nearest-neighbor maximal coupliigs simply two such defects. In a triple, where two of the thre{-_\
are between $3-10* K with typical lattice constants of are stronger cpu_pled to each other than both are to the third
about 0.5 nm §.=0.623 nm at 1 K Thus, the cut-off Partner the pair is only weakly affected by the third partner,
radius is a few hundreds times the lattice constant. The nunfnd we simply disregard these corrections in our approach. It
ber of defects # within a sphere of radiu®, can be esti- would b_e interesting to tak_e triples and bigger clusters
mated as #=C(R./Ry;,)3=cx 10°~1C with the concen- eque_llly into ac_cou_nt, and this stt_ep would be_ necessary to
tration ¢ of defects. For concentrations of a few ppm we Obtain a quantitative .unc_ierstandlng of experiments. How-
expect the number of neighbors within reach of the couplingVe": to take only pairs into account seems to capture the
to be of orderO(1) or less. main features which was excluded so far frqm any cqn3|der—
So far, we argued that the interaction between the TLng_mon: Even at very small defect poncentratlons the interac-
does not lead to a delocalization of the excitations since th#0n effects cannot be neglected since the system forms small
coupling to phonons provides an effective cut-off radius forclusters(mainly pairg, which leads to very different Rabi
the otherwise long-range ¥/ interaction. The same argu- frequencies _and reIa_xauo_n and dep.hasmg rates compared to
ment was used by Burin and Kagan conclude that there is (€ case of isolated identical tunneling defects.
no delocalization of the excitations of the single tunneling B€low we briefly discuss the experimental relevance of
systems in glasses. our results.
However, Burin and Kagan further showed that in glasses
the weak coupling between the tunneling systems leads to a
formation of resonant pairs. These resonant pairs can be
mapped to new effective TLS’s. If the tunneling systems The low-temperature properties of defect crystals are
have finite asymmetry energies these effective TLS’s arstudied in thermal, acoustic, and dielectric experiments,
coupled to each other as shown in the Appendix. Since thevhich measurdulk quantities such as specific heat, thermal
coupling between the resonant pairs is of the same order aonductivity, speed of sound, internal friction, dielectric con-
magnitude than the coupling leading to the resonant pairstant, and dielectric loss. Furthermore there are various di-
these effective TLSs are strongly coupled to each other andlectric echo experiments measuring directly the relaxation
the excitations delocalize. As Burin and Kagan showed thisates or the Rabi frequencies. As we have shown in the pre-
delocalization is accompanied by spectral diffusion whichvious sections, small interactions between the tunneling de-
also arises only for asymmetric tunneling systém$hus, fects yield broad distributions of effective moments within
the formation of a collective phase due to the interaction othe two-state approximation. Taking the full structure of the
resonant pairs competes with the destruction by spectral ditunneling defects into account, we obtain a set of discrete
fusion and from this competition a new mechanism for en-values for the effective moments. This leads to several dif-
ergy relaxation emerges. ferent Rabi frequencies and relaxation or phase decoherence
Resonant pairs formed from symmetric TLS'’s, however,rates, but all thédulk quantities mentioned above are hardly
do not interact with each other by direct virtual phonon ex-affected.

VI. EXPERIMENTAL RELEVANCE
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Typical tunneling elements vary betweén=2.3 K for  weakly disturbed by strain fields which simplifies the inter-
NaCl:OD~ and A=85 mK for NaF:OH .%° Dielectric ex-  pretation of the results considerably. Therefore, we strongly
periments are usually performed at temperatures that coirecommend echo experiments in these materials, since it
cide with the tunneling elements which means betw&en would be the first direct observation of the dynamics of well-
=10 mK and a few Kelvin. Typical measuring frequenciesdefined tunneling systems in crystals.
range between a few hundred hertz and about 1 GHz corre-
sponding to energy splittings between 50 nK and 50 mK.
These frequencies are too small to excite single tunneling
systems or weakly coupled pairs resonantly except for the We have investigated the influence of we@lansversal
NaF:OH systems. interactions between impurities in alkali halides. Here is a

The easiest way to confirm our results would be to perbrief summary of the main points:
form echo experiments. Therein the relaxation rates and (i) Since the coupling constants between the tunneling
dephasing rates of the defects, which are in resonance witkystems are broadly distributed and since the coupling to
the external field, are obtained from the decay of the ech@honons leads to a finite lifetime for any excitation, we can
amplitude. However, experiments in NaF doped with a fewdescribe the system as an ensemble of weakly coupled pairs.
ppm of OH™ showed that the energy splittings of the tunnel- Thus, weak interactions do not lead to a relaxation mecha-
ing defects are broadly distributé8iOne does not know, if nism via energy exchande.
the sample is heavily strained or if the interaction between (ii) Weak couplings between the tunneling systems are
the defects is strong. In both cases our approach is not a@dnly relevant as long as the systems ssonant—the dif-
equate. ference of the two energy splittings is smaller than the cou-

The system NaCl:OH with a tunneling splitting of about pling §=|A;—A,|<J and as long as the inverse lifetime
Ao=1.6 K has been well studied. At an OH concentration ofof the eigenstatéi) is smaller than the couplingy; <J.
about 16 ppm, Ludwitf measured the dielectric loss and (i) Typical electric fields used to investigate the dynam-
constant. They report a relaxational contribution in the di-ics of tunneling impurities in alkali halides have wavelengths
electric constant which also leads to a measurable dielectriexceeding the mean distance of the impurities even at con-
loss. The relaxational contribution occurs due to internakentrations of only a few ppm. Accordingly the field cannot
strains, which also lead to a distribution of energy splittingsresolve the single dipoles but only the total moment. In a
and thereby to a distribution of relaxation rates. The data ofveakly coupled pair bulk quantities like the dielectric con-
the dielectric loss shows that the relaxation rates are distribstant are hardly affected, but the pair exhibits two Rabi fre-
uted over six orders of magnitude. Describing the tunnelingyuencies determined by the sum and the difference of the
defects as two-level systems and neglecting interactions belipoles. If the relative angle between the dipoles of two tun-
tween them the relaxation rates depend on the asymrietry neling systems are homogeneously distributed, the Rabi fre-
resulting from the strainFocAiz\/Azi +F2.27 The distribution  quencies become broadly distributed between zero and twice
of asymmetries necessary to describe the data is unrealistideé Rabi frequency of an isolated impurity. For tunneling
broad. If we take the full structure of the NaCl:Ohsystem  defects in crystals the dipoles have discrete directions lead-
as a[100] defect into account but we still neglect interactionsing to a discrete set of Rabi frequencies.
between the defects, the dependence of the relaxation rates (iv) Similar arguments hold true for the phase coherence
on the various asymmetries changes. Nevertheless, takirines and the relaxation rates which are determined by the
only a distribution of internal strain@symmetriesinto ac-  coupling of the phonons to the elastic moments. This leads to
count in order to explain the dielectric loss actually disagree@ discrete set of rates with a very small minimal rate com-
with the data of the dielectric constafitBy including weak  pared to the rate of isolated impurities.
interactions between the tunneling defects, we showed that (V) Dielectric loss data in NaCl: 16 ppm OH show broadly
we obtain a set of considerably different rates. If the asymdistributed relaxation rates which cannot only be attributed
metries broaden the discrete peaks in the rate distribution it9 strain fields. These features can be explained within our
a way as discussed above, this leads naturally to very broatieak-coupling picture. KCI samples doped with 2 ppmOH
distributions. Thus, the relaxational contributions in the di-show similar behavior, and we strongly recommend echo ex-
electric loss and the dielectric constant results from internaperiments in these materials since it would be a direct obser-
strains but the broad distribution of relaxation rates necesvation of the dynamics of well-defined tunneling systems in
sary to describe the data results from the interplay of weakrystals.
interactions between the tunneling defects and asymmetries.
Accordingly, the data discussed yields a strong but indirect
hint to the experimental relevance of our investigation.

Similar broad distributions of rates were found in KCL-  The author wishes to thank H. Horner, S. Ludwig, B.
crystals doped with 2 ppm OH?® The tunneling splitting in ~ Thimmel, and K. McRobert for many stimulating and clari-
these systems is abolit=170 mK. Accordingly, this system fying discussions. Parts of the work were done in the Institut
is an ideal candidate for echo experiments for two reasongur Theoretische Physik at the University of Heidelberg. In
First, the resonance frequency of about 4 GHz is technicallyaddition | would like to thank the DFG, which supported the
accessible. Second, because of the dielectric constant dataork in Heidelberg within the project HO 766/5-3 “Wech-
one would suggest that the tunneling systems are onlgelwirkende Tunnelsysteme in Gkrn und Kristallen bei

VIl. SUMMARY

ACKNOWLEDGMENTS

134107-10



WEAKLY COUPLED TUNNELING SYSTEMS IN MIXED . ..

PHYSICAL REVIEW B66, 134107 (2002

tiefen Temperaturen.” The work in Stanford was supportedand usu,Js, Which shifts the degeneracy of the up-down
by the Alexander-von-Humboldt foundation and the DOEstates||,1,)=:|a,1) and |1,],)=:|a,2) for the resonant

Grant No. DE-FG03-90ER45435-A011.

APPENDIX: INTERACTION BETWEEN RESONANT
EFFECTIVE PAIRS

pair a and||374)=:|b,1) and|13]4)=:|b,2) for the reso-
nant pairb. These terms turn out to be the effective tunneling
splittings for this up-down effective two-state systefy,
:=UjUpJd1o and A yp:=U3Ugd34.

The effective two-state resonant pairs only consider the

The main goal of this appendix is to show that resonan%tates|a,1) and|a,2) for the resonant paia and|b,1) and

pairs formed by weakly coupled two-level systems can onl
interact with each other by the same interaction leading t

b,2) for the resonant paib, respectively. The effective
amiltonian for these four states writes

the formation of the resonant pairs if the two-level systems

are asymmetric. Therefore, we discuss four coupled TLS of A F

which TLS 1 and 2 form the resonant paiand TLS 3 and
4 form the resonant pals.

The Hamiltonian for these four two-state systems is given .

by

4
AR

= L ()
H=3 (St of

with the tunneling splittings; , the asymmetrie§; and the
coupling between the two-state systedys. Diagonalizing
each two-state Hamiltonian independently results in

ihj=

4
+ El Jjodlel (A1)

4 4
€; . _ . . .
H :iZl é()’gl)‘l‘ijE:l Jij{UinO'g)O'gJ)‘l‘UiUJ'O'S)O';])}

4
+ 2 dptuueol +uu o),

with the energy splittings; andu;=F;/¢; andu;=A,/¢; .
We assume thate; — ;| <UjU,J1, and|e3— 4] <U3zU,Js,.
Thus, system 1 and 2 form a resonant @aend system 3
and 4 form a resonant pédi It is the coupling ternu,u,J;»

A F
= % Tia) %1 Tga) + pr Tg(b) +7pb Tgb) + Jabrga) Tgb)
(A2)
with Fpa: | €1 62|/2, pr: | €3 64|/2 and
Jap=U1Usd1zt+ Upligdos— UsUgdis— Upladss,  (A3)

and
7®@:=|a,1)(a,2+|a,2)(a,1l,

Tga) ::|a,1><a,1| - |a,2><a,2| .

The operators{” and 7" are defined in the same way.

These results show that the effective resonant pairs, which
Burin and Kagahintroduced, are indeed coupled with each
other by the same interaction which leads originally to the
formation of the resonant pairs if and only if the two-level
systems are asymmetric. The interaction between resonant
pairs is as strong as the parameters of the resonant pairs:
Appai=U1UzJ1,~J,p. Thus, the resonant pairs are strongly
interacting and they form a collective cluster. However, the
result shows that the interaction between the resonant pairs
vanishes for symmetric two-state systems.
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